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ARTICLE

Genomic landscape and chronological
reconstruction of driver events in multiple
myeloma
Francesco Maura1,2,3,14, Niccoló Bolli3,4,14, Nicos Angelopoulos2,5, Kevin J. Dawson2, Daniel Leongamornlert2,

Inigo Martincorena2, Thomas J. Mitchell 2, Anthony Fullam2, Santiago Gonzalez 6, Raphael Szalat7,

Federico Abascal 2, Bernardo Rodriguez-Martin8, Mehmet Kemal Samur7, Dominik Glodzik 2,9,

Marco Roncador2, Mariateresa Fulciniti7, Yu Tzu Tai7, Stephane Minvielle10, Florence Magrangeas10,

Philippe Moreau10, Paolo Corradini3,4, Kenneth C. Anderson7, Jose M.C. Tubio2,8, David C. Wedge11,

Moritz Gerstung 6, Hervé Avet-Loiseau12, Nikhil Munshi7,13,15 & Peter J. Campbell2,15

The multiple myeloma (MM) genome is heterogeneous and evolves through preclinical and

post-diagnosis phases. Here we report a catalog and hierarchy of driver lesions using

sequences from 67 MM genomes serially collected from 30 patients together with public

exome datasets. Bayesian clustering defines at least 7 genomic subgroups with distinct sets

of co-operating events. Focusing on whole genome sequencing data, complex structural

events emerge as major drivers, including chromothripsis and a novel replication-based

mechanism of templated insertions, which typically occur early. Hyperdiploidy also occurs

early, with individual trisomies often acquired in different chronological windows during

evolution, and with a preferred order of acquisition. Conversely, positively selected point

mutations, whole genome duplication and chromoplexy events occur in later disease phases.

Thus, initiating driver events, drawn from a limited repertoire of structural and numerical

chromosomal changes, shape preferred trajectories of evolution that are biologically relevant

but heterogeneous across patients.
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T
he genome of multiple myeloma (MM) is complex and
heterogeneous, with a high frequency of structural variants
(SVs) and copy-number abnormalities (CNAs)1–3. Trans-

locations between the immunoglobulin heavy chain (IGH) locus
and recurrent oncogenes are found in ~40% of patients. Cases
without IGH translocations often have a distinctive pattern of
hyperdiploidy affecting odd-numbered chromosomes, where the
underlying target genes remain mysterious. These SVs and
recurrent CNAs are considered early drivers, being detectable also
in premalignant stages of the disease1–3. Cancer genes are also
frequently altered by driver point mutations, with mitogen-
activated protein kinase (MAPK) and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-KB) signaling as major
targets4–8.

Many blood cancers develop along preferred evolutionary
trajectories. Early driver events, drawn from a restricted set of
possible events, differ in which subsequent cancer genes confer
clonal advantage, leading to considerable substructures of co-
operativity and mutual exclusivity among cancer genes. These
subtypes vary in chemosensitivity and survival, suggesting that
although patients share a common histological and clinical phe-
notype, the underlying biology is distinctly heterogeneous. Pre-
liminary studies have suggested that these patterns exist in MM as
well5–12, but have not yet been systematically defined in large
cohorts with broad sequencing coverage. There have been recent
reports of dependencies among MM driver mutations using
either targeted or exome-based approaches9,13, but we lack a
comprehensive characterization of MM genomic subgroups based
on the complete catalog of driver mutations, copy-number
changes and recurrent SVs. In addition, since the first MM whole
genome sequencing study6, the landscape of nonrecurrent SVs
and complex events has not been systematically explored.

In this study, we combine a large cohort of serial MM samples
analyzed by whole-genome sequencing (WGS) with a publicly
available dataset to define driver events and how they group
across patients, with implications for disease classification. Fur-
thermore, we describe the temporal evolution of the disease in
preclinical phases, highlighting the unexpected dynamism of
genomic changes, often in the form of private, complex structural
events.

Results
Landscape of driver mutations in MM. We performed whole
WGS of 67 tumor samples collected at different time points from
30 MM patients, together with matched germline controls
(Supplementary Data 1 and 2, “Methods”). We also included in
our analyses published whole exome data from 804 patients
within the CoMMpass trial (NCT01454297)14. To discover MM
driver genes, we analyzed the ratio of nonsynonymous to
synonymous mutations, correcting for mutational spectrum and
covariates of mutation density across the genome with the
dNdScv algorithm15–17. Overall, 55 genes were significantly
mutated with a false discovery rate of 1% (Fig. 1a and Supple-
mentary Data 3). Our shortlist of genes showed a 65% overlap
with a recently published study from the Myeloma Genome
Project (MGP) (Supplementary Data 3)13, with less frequently
mutated genes accounting for the discordant calls. This is
expected given the random sampling and differences in statistical
approaches and power between studies (Supplementary Data 3).
To confirm this, we restricted the multiple hypotheses testing p-
value correction to the set of unique driver genes from the MGP
(n= 26), thus identifying six additional shared drivers (ABCF1,
ZFP36L1, TET2, ARID2, KDM6A, and EP300) (Supplementary
Fig. 1 and Supplementary Data 3) and increasing the concordance
of the two datasets. Overall, 87% of all MMs had at least one of

these 61 driver genes mutated, with an average of 2.04 (0.98–3.08)
drivers per sample estimated calculating the global ratio of non-
synonymous to synonymous mutations17 (“Methods”). A sig-
nificant fraction of these driver point mutations was present in
subclones of the myeloma rather than the ancestral clone, sug-
gesting that they often play a role in later phases of cancer
development (Supplementary Fig. 2a).

Beyond well-known myeloma genes such as KRAS, NRAS,
DIS3, and FAM46C5–8, several other interesting candidate genes
emerged. The linker histones HIST1H1B, HIST1H1D, HIST1H1E,
and HIST1H2BK all showed a distinctive pattern of missense
mutations clustered in the highly conserved globular domain
(Supplementary Fig. 2b–e), as also reported in follicular
lymphoma18. Many of the mutations were nearby, or directly
affected, conserved positively charged residues critical for
nucleosome binding, suggesting that they disrupt the histones’
role in regulating higher order chromatin structure. FUBP1, an
important regulator of MYC transcription19, showed an excess of
splice site and nonsense mutations, emerging as a potential tumor
suppressor gene in MM (Supplementary Fig. 2f). MAX, a DNA-
binding partner of MYC, showed an interesting pattern of start-
lost mutations, nonsense and splice site mutations, together with
hotspot missense mutations at residues Arg35, Arg36, and Arg60,
known to abrogate DNA binding7 (Supplementary Fig. 2g).
Genes with rather more mysterious function were also significant:
the zinc finger ZNF292, recently described as mutated in MM,
chronic lymphocytic leukemia and diffuse large B-cell
lymphoma13,20,21, showed an excess of protein-truncating
variants (Supplementary Fig. 2h); the uncharacterized TBC1D29
gene showed missense mutations clustered in the last exon22

(Supplementary Fig. 2i).

Dependencies of driver events. In pairwise comparisons, these
cancer genes showed distinct patterns of co-mutation and mutual
exclusivity both with each other and with recurrent cytogenetic
abnormalities (Supplementary Fig. 2j), as previously described9,13.
However, a pairwise approach does not have the power to detect
tertiary, quaternary and higher-level interactions which are
expected in a heterogeneous disease as MM9. Therefore, higher-
level statistics must be used to deconvolute the complex landscape
of MM and to identify subgroups of cases with a similar genomic
landscape. To this end, we developed a composite analysis
employing both Bayesian networks and the hierarchical Dirichlet
process (hdp)23 to define the conditional dependencies of all
driver events in MM and attempt a genomics-based classification
of the disease (Fig. 1b, c, Supplementary Fig. 3 and Supplemen-
tary Software 1)23,24. Bayesian network (BN) analysis identified
both known and novel patterns of higher-level co-occurrence and
mutually exclusivity between driver events. In particular, we
observed a pattern of co-occurrence between t(4;14)(MMSET;
IGH), TRAF3 deletion and 13q14 deletion (Supplementary
Fig. 3a). Furthermore, together with well-known mutually
exclusive patterns, such as the one between IGH translocations
and hyperdiploid cases (Supplementary Fig. 3b), several novel
ones were identified. Specifically, FAM46C and CDKN2C were
frequently deleted together, and when this happens the co-
deletion was mutually exclusive with t(4;14)(MMSET;IGH)
(Supplementary Fig. 3c); TRAF3 deletions were associated with
NFKBIA and showed a mutually exclusive pattern with t(11;14)
(CCND1;IGH) and t(14;16)(IGH;MAF) (Supplementary Fig. 3b,
d); MAX mutations were usually not associated with hyperdiploid
cytogenetic status (Supplementary Fig. 3e). Finally, CYLD dele-
tions were associated with both HRD and t(11;14)(CCND1;IGH)
and mutually exclusive with t(4;14)(MMSET;IGH) (Supplemen-
tary Fig. 3f).
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The BN approach identified several nodes of this complex
network of interactions, mainly represented by cytogenetic
lesions. We shortlisted these and added them to the list of driver
gene mutations above to extract clusters of MM cases with a
similar landscape of driver genomic events (Supplementary
Software 1 and “Methods”). Different from previous
approaches9,13, our analysis included the full catalog of point
mutations in MM driver genes (defined by dNdScv), recurrent
SVs and CNAs, representing a final list of 69 driver events. We
identified 7 groups (Fig. 1c, Supplementary Software 1), where the
strongest determinants of genomic substructure were IGH
translocations and recurrent CNAs. Some co-operating genetic
lesions were nonrandomly distributed across these main groups: a
significant fraction of patients without IGH translocations were
generally enriched for 1q gain and deletions on 1p13, 1p32, 13q,
TRAF3, and CYLD deletions (Cluster 1). RAS signaling mutations,
especially NRAS and KRAS, were associated with hyperdiploidy
and MYC amplification (Cluster 2). A significant fraction (33%)
of patients with t(11;14)(CCND1;IGH) were characterized by low
genomic complexity and high prevalence of IRF4 and CCDN1
mutations (Cluster 3). Patients harboring TP53 bi-allelic inactiva-
tion were clustered in an independent sub group (Cluster 4) and
displayed by far the worst prognosis as also recently demon-
strated (Supplementary Software 1)13. A significant fraction of t
(4;14)(MMSET;IGH) (51%) and t(11;14)(CCND1;IGH) (19%)

patients was characterized by multiple cytogenetic aberrations,
with low prevalence of CYLD/FAM46C and TRAF3 deletions,
respectively (Cluster 5). A second fraction of patients with t(4;14)
(MMSET;IGH) translocation (46%) were grouped with deletion of
13q14, gain of 1q21, DIS3, and FGFR3 mutations (Cluster 6).
Finally, patients without hyperdiploidy or the common IGH
translocations were characterized by a generally higher number of
driver gene mutations, across a wide range of myeloma cancer
genes (Cluster 7). Included in this final cluster was patients with t
(14;16) and t(14;20) translocations, between IGH and c-MAF or
MAFB, respectively, it may be that the small numbers of patients
with these events make it difficult to identify them as a separate
cluster.

Patterns of structural variation in myeloma. Aside from the few
recurrent oncogenic translocations and aneuploidies, we lack an
unbiased and comprehensive description of genome-wide pat-
terns of SVs in MM. In the WGS data, we identified 2122 SVs,
with a heterogeneous distribution across the cohort (median 26
per patients, range 0–129) (Fig. 2a), suggesting that structural
variation is a major force shaping the MM genome. Transloca-
tions involving known targets such as the canonical IGH-onco-
gene andMYC translocations only accounted for 6.5% (137/2122)
of all SVs (Supplementary Fig. 4a, b). Instead, most SVs were
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private and included many unbalanced translocations and com-
plex events (Supplementary Fig. 4c–f, “Methods”)25. Most (24/30;
80%) patients had at least one complex SV (“Methods”), of
which chromothripsis was the most frequent (11/30; 36%)
(Fig. 2b, c)25–29. Chromoplexy occurred in three patients (Fig. 2b,
Supplementary Fig. 5a–c)25.

Interestingly, we also identified a novel pattern of complex SVs,
recently observed in some solid cancers25, characterized by cycles
of templated insertions, found in 6/30 (20%) patients. Here,
several low-amplitude copy-number gains on different chromo-
somes were linked together through SVs demarcating the region
of duplication (Fig. 2b, d; Supplementary Fig. 5d–h). The
presence of multiple copy-number gains suggests a replication-
based event, where the most plausible explanation for this pattern
is that the templates are strung together into a single chain,
hosted within one of the chromosomes.

Known driver genes were common targets of complex SV
events, including MYC (13/30 cases; 43%), CCND1 (8/30; 26%),
and MMSET (3/30; 10%). For example, the juxtaposition of
CCND1 to the IGH locus was caused by either unbalanced
translocations or insertional events in 5/8 patients (Supplemen-
tary Fig. 6). Similarly, MYC translocations showed unanticipated
complexity, with four cases of cycles of templated insertions, one
chromoplexy and one chromothripsis involving MYC or its

regulatory regions (Supplementary Fig. 7). Such events are the
structural basis of the oncogene amplification observed by FISH
in many cases of t(11;14) and t(8;14)30,31. Interestingly, many of
the MYC SVs involved the immunoglobulin light chain loci, IGK
or IGL, rather than the heavy chain IGH locus, and were seen in
patients with hyperdiploidy (Supplementary Fig. 4b). Although
sometimes occurring late, these events were under strong selective
pressure: we identified a striking case of convergent evolution
where a subclone bearing an IGL:MYC translocation was lost and
one bearing an IGH:MYC was selected at relapse (Supplementary
Fig. 8). SVs also led to loss of tumor suppressor genes such as
BIRC2/3, CDKN2A/B, CDKN2C, TRAF3, and FAM46C32, either
within focal deletions or more complex events. These data
confirm that structural variation, accessing both simple and
complex mechanisms of genome rearrangement, is an important
process driving MM evolution.

Timing of aneuploidies and SVs. Genomic studies have started
to investigate the temporal windows of occurrence of events in
MM, mainly through the identification of subclonal (late) point
mutations and SV appearing or disappearing in serial
samples5,10,12,33,34. In our cohort of serial WGS samples, we
could add significant resolution to this analysis through integra-
tion of SVs, CNAs, and point mutations. This investigation was
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particularly relevant for hyperdiploid patients (18/30). In fact,
even though trisomies of odd chromosomes are one of the hall-
mark lesions of myeloma1–3, their mode of acquisition is still a
matter of debate. If gains occur as independent events, subclonal
evolution within the myeloma cells between diagnosis and relapse
could lead to considerable diversification of chromosome com-
plements. Consistent with this, we observed significant karyotype
changes within the same patient over time, including loss or
acquisition of some gains in hyperdiploid patients (Supplemen-
tary Fig. 9)34. At the extreme end of this cytogenetic dynamism,
we found 4/30 patients acquiring a whole-genome duplication at
relapse, highlighting how multiple gains events may play a sig-
nificant role in relapsed/refractory stages and copy-number gains
may be acquired in different time windows (Fig. 3a, b and Sup-
plementary Fig. 9).

Our data thus suggest that even seemingly clonal CNAs could
actually be acquired late in a fraction of cells, but this could only

be revealed by analysis of serial samples. We therefore sought to
focus on the relative order of acquisition of clonal chromosomal
gains in single samples through a molecular time analysis based
on the fraction of duplicated to single-copy clonal (early) point
mutations35. The concept underpinning this approach is that any
trisomy should carry a high number of duplicated clonal
mutations if the gain occurred late in MM evolution, but only
few duplicated mutations in early gains (“Methods”). Indeed, we
found that the hallmark trisomies of hyperdiploidy tended to be
present in the ancestral clone of the myeloma, but within a given
patient were not always acquired simultaneously (Fig. 3c–e and
Supplementary Fig. 10) and rather showed an heterogenous
pattern of accumulation (Fig. 4a). To validate this approach, we
applied our molecular time analysis to serial samples. There,
apparently clonal CNAs on a single sample that were nevertheless
unstable across the series were correctly assigned to a later time
window (Supplementary Fig. 11).
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We could also time multiple duplications of the same
chromosome (Fig. 3c–e and “Methods”). Interestingly we
observed an heterogenous pattern of accumulation (Fig. 3c–e
and Fig. 4a). 1q gains were recurrently involved in multiple
duplications (7/14 cases), and we observed that in all but one
patient the second or third 1q gain was acquired in an
independent and late time window; in contrast the first 1q gain
was generally acquired together with other trisomies in the
earliest time window (Supplementary Fig. 10). Likely, this
provides the biological basis for the adverse prognostic effect of
multiple-copy gain of chr1q (a late event associated with
progression) but not of single gain (an early event potentially
associated with initiation)36.

Combining data from molecular time analysis and the
clonality/stability of the trisomies over time, we reconstructed
the timing of acquisition of aneuploidies in each patient and
analyzed trends in the whole cohort. We found that in 13/18
hyperdiploid patients gains were acquired in different and
independent time windows (Fig. 4a). Overall, gains of odd
chromosomes and the first 1q gain were amongst the earliest in
our series, and recurrent chromosome losses were acquired later
than trisomies (Fig. 4b). These data are consistent with the
proposition that hyperdiploidy is an early driver event1,3, and
suggests a potential early role of a single 1q gain in MM
pathogenesis.

Translocations involving CCND1 and MMSET were always fully
clonal, confirming their early driver role in MM pathogenesis.MYC
translocations showed a more heterogenous pattern, with 8/13
events clonal and stable over time. Interestingly, this was biased
toward newly diagnosed or relapsed MM, where this recurrent
translocation was clonal and conserved between different samples
in 7/9 patients. Conversely, MYC aberrations were detected at
subclonal level in 3/4 samples collected at the smoldering MM
stage, confirming preliminary data that support a role of MYC
dysregulation during progression to symptomatic MM33,37. Chro-
mothripsis and cycles of templated insertion events were mostly
clonal and conserved during evolution (17/24 and 5/6, respectively),
suggesting they occurred early in MM pathogenesis (Fig. 4c).
However, a fraction of patients showed some evidence of late
chromothripsis (7/24), implying a possible involvement in late
cancer progression (Fig. 4c and Supplementary Fig. 9d). Conversely,
chromoplexy emerged as a late event being positively selected and/
or acquired at progression of smoldering into symptomatic MM
(one patient) or at relapse (two patients) (Fig. 4c).

Preferred evolutionary trajectories of myeloma development.
We integrated all extracted chronological data on SVs, hyperdi-
ploidy and point mutations to generate phylogenetic trees for
each sample (“Methods”, examples in Supplementary Fig. 12,
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Fig. 4 The chronological reconstruction of aneuploidies acquisition in MM. a Heatmaps representing the cumulative acquisition of copy-number gains

observed in 13/18 hyperdiploid patients, labeled in red if the final HRD profile was generated by multiple and independent events (n= 13) or green if the

trisomies were acquired in one single time window (n= 5). Boxes are color-coded based on the relative order of acquisition of each event; WCD=whole

chromosome duplication. b A Bradley–Terry model based on the integration between the CCF and molecular time of each recurrent CNAs (gains= red and

deletions= blue) for all 30 MM cases included in this study. Segments were ordered from the earliest (top) to the latest (bottom) occurring in relative

time from sampling. The time scale (X-axis) is relative since timing of genomic evolution is variable from case to case and not easily correlated to age.

c Cancer cell fraction of each single complex event for each patient over the time
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Supplementary Data 4)5,38. Differently from previous studies, this
analysis was not just limited to the differentiation between clonal
(early) and subclonal (late) events, but inferred molecular time
data from other genomic events (i.e., SVs, CNAs, and driver
mutations), allowing assessment of the order of acquisition of
early clonal driver events in MM in preclinical phases (“Meth-
ods”). Our methodology is worked through for one illustrative
patient carrying (i) several clonal chromosomal gains, (ii) 3 dis-
tinct and clonal chromothripsis events, and (iii) a whole-genome
duplication (Fig. 5). One chromothripsis involved chromosomes
8 and 15, duplicating the long arm of chromosome 15. Because
few mutations were present on chromosome 15 at the time it
duplicated, this must have occurred early in molecular time
(Fig. 5b). Gain of chromosome 3 and copy-neutral loss-of-
heterozygosity (CN-LOH) of small arm of chromosome 1 (chr1p)
occurred in the chromosome 15 gain’s time window, and they
were followed by a second chromosomal crisis involving chro-
mosomes 3, 5, 13, and 22. This chromothripsis must have
occurred on one of the two duplicated alleles of chromosome 3
(and therefore after the acquisition of a chromosome 3 trisomy)
because regions of copy-number loss within the chromothripsis
had a copy number of 2 and SNPs were heterozygous. Within the
same time window, two more events ensued: a new chromo-
thripsis on chr1p after CN-LOH, and an amplification of 1q to a
CN status of 4. Finally, this patient underwent whole-genome
duplication after two therapy lines, as highlighted by samples
from relapsed-refractory stages (Fig. 3b).

Through similar analyses, we were able to chronologically
reconstruct the order of acquisition of early and late (sub)clonal
events in all patients, potentially looking at timing of events
acquired years before sampling. The trunks of the phylogenetic
trees of 29/30 (97%) patients were characterized by few genomic
events, generally acquired during different time windows of the
MM life history leading to the emergence of the most recent
common ancestor (Fig. 6). These events were acquired with a
nonrandom order. Overall, chromothripsis, cycles of templated
insertions, chromosomal gains and other SVs accounted for most
of the earliest events, emerging as key drivers of disease initiation,
seeding the soil for driver events that would later arise and confer
further selective advantage to the clone. Focal deletions on
distinct oncogenes, whole-genome duplication and chromoplexy
were generally acquired during progression and/or relapse,
potentially representing new mechanisms of subclonal selection
and treatment resistance5,10.

WGS thus offered a more detailed compendium of driver
events, mostly structural, and of their chronological order of
acquisition. We next explored how this enriched view of the
genome offered by WGS fitted within the groups identified by the
combined hdp and BN clustering, based on whole-exome
sequencing of the CoMMpass dataset (Fig. 1c). Samples assigned
to Clusters 1 and 4 were characterized by multiple and
independent complex events acquired during different time
windows, in line with their complex driver profile observed in
the combined clustering. Patients assigned to Cluster 3 [low
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genomic impairment and t(11;14)(CCND1;IGH)] showed a high
grade of similarities also at WGS level, where we identified in all
cases few genomic lesions and the absence of both multigain and
complex events. In contrast, cases assigned to Clusters 2, 5, and
6 showed variable levels of genomic complexity. Overall this
suggests that, although exome/targeted approaches are able to
characterize mutations, recurrent CNAs and oncogene transloca-
tions, they are not completely able to fully decipher the MM
genomic complexity, and that WGS on a larger number of
samples will yield novel insights in MM pathogenesis.

Discussion
Our study provides several novel insights into MM biology,
taking advantage of WGS and serial sampling. For the first time,
we comprehensively describe the landscape of SVs and complex
events in MM, showing how these genomic aberrations are
pivotal for MM pathogenesis, but play differential roles during
different evolution phases. Interestingly, complex events such as
chromothripsis and cycles of templated insertions are strongly
players in MM, with an unexpectedly high prevalence that could
not be captured by previous exome-based studies. Interestingly,
these complex events had a key role in early phases of cancer
development. Conversely, other events, such as focal deletions on
oncogenes, chromoplexy and WGD, emerged as later aberrations
potentially involved in drug resistance and relapse.

We demonstrate here how hyperdiploidy reflects the sum of
multiple and independent chromosomal gains over time, in
contrast to prior hypotheses1–3. This early and multi-step
acquisition of trisomies is in line to what has been recently
reported in solid tumors in a large pan-cancer analysis35. How-
ever, in contrast to solid cancers35,39,40, MM does not show a
reliable relationship between global mutation burden and age,
probably because of mutational processes that are not linear in
time, and rather act in bursts, such as those promoted by AID and
APOBEC33. Therefore, although we can be confident that the first
trisomies occur early in relative molecular time, we cannot pro-
vide robust estimates of the chronological age at which these
events were acquired.

The combined chronological reconstruction of SNVs, CNAs,
and SVs suggests that MM development follows preferred evo-
lutionary trajectories, with stuttering accumulation of driver
events in keeping with its insidiously progressive but unpredict-
able clinical course. Critical early events include immunoglobulin
translocations with MMSET and CCND1, hyperdiploidy and
complex structural variation processes hitting key myeloma
genes. These early driver mutations shape the subsequent evo-
lution of myeloma, each with preferred sets of co-operating
cancer genes. The majority of these events are only detectable by
WGS, highlighting a significant limitation of exome/targeted
sequencing approaches to fully decipher the complexity of MM.
In the near future, large cohorts of MM studied by WGS will
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better characterize these evolutionary trajectories over time,
opening the field for more rationale therapeutic and preventive
strategies.

Methods
Sample selection. The study involved the use of human samples, which were
collected after written informed consent was obtained (Wellcome Sanger Institute
protocol number 15/046). Samples and data were obtained and managed in
accordance with the Declaration of Helsinki. DNA was extracted from CD138+
cells purified from bone marrow from 30 patients, of which 26 (86%) with multiple
sampling, for a total of 67 tumor samples and 30 matched normal samples
(Supplementary Data 1). Samples were collected at different clinical time points:
smoldering (n= 11), symptomatic (n= 15), and relapsed MM (n= 41) (Supple-
mentary Data 2). Constitutional control DNA originated from peripheral blood
mononuclear cells. Purity of the CD138+ fraction was assessed by anti-CD138
immunocytochemistry post sorting, and only samples with >90% plasma cells were
sequenced.

Massively parallel sequencing and alignment. Short insert 500 bp genomic
libraries were constructed, flowcells prepared and sequencing clusters generated
according to Illumina protocols. We performed 108 base/100 base (genomic)
paired-end sequencing on HiSeq X10 genome analyzers. The average sequence
coverage was 38.7-fold. Short insert paired-end reads were aligned to the reference
human genome (GRCh37) using the Burrows–Wheeler Aligner (BWA) (v0.5.9)41.

Processing of genomic data. CaVEMan (Cancer Variants Through Expectation
Maximization: http://cancerit.github.io/CaVEMan/) was used to call somatic
substitutions42,43. Indels were called using a modified Pindel version 2.0 (http://
cancerit.github.io/cgpPindel/) on the NCBI37 genome build44. SVs were discovered
using a bespoke algorithm, BRASS (Breakpoint Analysis) (https://github.com/
cancerit/BRASS) analyzing discordantly mapping paired-end reads. Discordantly
mapping read pairs that were likely to span breakpoints, as well as a selection of
nearby properly paired reads, were grouped for each region of interest43. In
patients with multiple samples, all discordant SVs were evaluated by PCR and by
manual curation on Integrative Genomics Viewer45 in order to confirm the
effective acquisition or loss of the rearrangement. Chromotripsis and chromoplexy
were defined as previously described26,27. We defined as complex events the fol-
lowing SV classes: chromothripsis, templated insertions among three or more
chromosomes, chromoplexy and all other complex events composed by more than
3 SVs, as recently described25.

Allele-specific copy-number analysis of tumors was performed by applying
ASCAT (v2.1.1), to next-generation sequencing data46. The evaluation of copy-
number changes, also including subclonal and minor aberrations, was performed
by Battenberg process38,47. Both ASCAT and Battenberg were used to correctly
estimate the cancer cell fraction (CCF) for each sample.

Driver mutations. To identify genes under positive selection in MM, i.e., drivers of
tumor progression, we relied on the recently published dNdScv method, which
estimates the excess of nonsynonymous mutations while accounting for the
mutational spectrum and gene-specific mutation rates16,17. dNdScv was run on a
series of 834 MM patients: 30 patients from this cohort and 804 patients from the
CoMMpass series. The CoMMpass data were generated as part of the Multiple
Myeloma Research Foundation Personalized Medicine Initiatives (https://research.
themmrf.org and www.themmrf.org). We run dNdScv on the entire gene set and,
to increase statistical power, on a restricted set including recently reported potential
MM driver genes13. In addition to identifying positively selected genes, dNdScv
estimates the excess in nonsynonymous mutations across a set of genes, making it
possible to calculate the average number of driver mutations per sample, as recently
reported17.

BN analysis. The BN was constructed by first creating a binary matrix of the
presence/absence of genomic aberrations and mutations in each patient. The
Gobnilp48 software was then used with default parameters. These include a max-
imum of three parents. The algorithm finds the globally optimal BN within the
constraints set, by posing the learning of the BN structure as a linear optimization
problem that is solved using integer linear programming via the SCIP Optimization
suite49. For the resulting BN, we wrote bespoke functions in SWI-Prolog50 that find
the logic gates combination which maximizes the Fisher exact test P value when
regressing the parents against the child (fisher.test() R function)51. Gate formulae
are constructed by considering all possible gate combinations that involve the
parental edges to a specific child node. From all the formulae we selected the one
that maximizes the p value of the Fisher’s exact test and uses the least number of
gates. Gate vectors are produced by performing the gate operation on its input
vectors. The output vector can then be tested against the child vector. Logic gates in
sequence are abbreviated, thus in the presented BN the two AND gates: [t(4;14)
AND HRD AND t(14;16)] are abbreviated to a single AND gate with three inputs:
AND[t(4;14),t(14,16),t(11,14)].

The BN allows the identification of both complex and simple pattern
correlations of drivers. The output is composed by two different figures: (i) the
global BN figure (Fig. 1b), where all the gates/correlations are listed and connected;
(ii) the heatmap of driver events for each family in the BN, which allow easy
interpretation by scientist through visual inspection (Supplementary Figs. 3
and 13).

Hierarchical Dirichlet process. The hdp was used to investigate the main MM
genomic subgroups (https://github.com/nicolaroberts/hdp)23. All dN/dS-extracted
driver mutations and the most clinically relevant and recurrent CNAs and SVs
were included, for a total of 69 variables available for 724 (87%) cases.

The final exome-based clusters were extracted combining the hdp and BN data
(Supplementary Figs. 14 and 15).

The full analysis process written in R is provided in Supplementary Software 1.

Construction of subclone phylogeny. Somatic mutations were clustered using a
Bayesian clustering method5,38. This method assumes a mixture model for the
counts of mutant and wild-type reads in a series of NGS read samples, and a
Dirichlet process prior on the sequence of category (or cluster) weights. In this
model, the count of reads carrying a particular mutation, in the reads from a
specific tissue sample, follows a binomial distribution (conditional on the assign-
ment of the mutation to a subclone, and on the frequency of this subclone among
the tumor cells from the specified tissue sample). A Markov chain Monte Carlo
(MCMC) sampler (based on Gibbs sampling) was used to sample from the pos-
terior distribution of the subclone (cluster) weights, the subclone (cluster)
assignments of the mutations, and the frequency of each subclone among the
tumor cells from the specified tissue sample. The MCMC sampler was run for 1000
iterations, of which the first 300 were discarded. The MCMC output was post-
processed, as described in Nik-Zainal et al. and Bolli et al.5,38, to obtain point
estimates of: (i) the subclone (or cluster) weights; (ii) the assignment of mutations
to subclones; (iii) the frequency of each subclone among the tumor cells from each
tissue sample.

In order to identify the phylogenetic relationships between subclones, we
followed the previously published approach5,38, and this version of the “pigeonhole
principle”: if the proportion of cells carrying mutation A is p_A, and the
proportion carrying mutation B is p_B, and p_A+ p_B > 1, then at least one cell
must carry both mutations A and B. We also assume that within a tumor, each
mutation occurred as a unique event. So, p_A+ p_B > 1 and p_B < p_A implies
that all cells which carry mutation B must also carry mutation A. We can represent
the relationships among subclones as a phylogenetic tree, in which each node
represents a subclone. We can also interpret the branch which ends in a node as
representing the same subclones as this node (it is more natural to think of
branches as representing subclones in this way, as mutations occurred in some
temporal order along each branch of the tree). For any proposed set of
parent–offspring relationships among a set of subclones, we can check if the above
pigeonhole principle is respected by the subclone frequency parameters for every
tissue sample. If the pigeonhole principle is respected for every tissue sample, then
we say that this set of parent–offspring relationships is “allowed”. In practice, we
relaxed this condition slightly, by introducing a “tolerated error” parameter, to
which we have assigned the value 0.001. This means that when comparing the
subclone frequencies of a subclone with its putative daughter subclones, we allow
the total frequency of the daughter subclones to exceed the frequency of the
parental subclone by as much as 0.001 before we declare a violation of the
pigeonhole principle. We have also introduced an “acceptable mutant count”
parameter, to which we have assigned the value 50. This means that all subclones
which contain fewer than 50 mutations were excluded.

Tree finding algorithm. We describe below a simple algorithm to identify all trees
which are allowed (compatible with the pigeonhole principle) by the subclone
frequency parameters for every tissue sample. We have implemented this algorithm
as a function in the R language (Supplementary Software 2). This R function also
plots the trees. In these tree plots, the length of each tree branch is proportional to
the number of mutations assigned to the corresponding subclone.

Let us denote the list of k subclones s= (1, 2,…, k). We can represent a tree as a
list of k elements t= (t[1], t[2],…,t[k]), in which t[i] denotes the ancestor of
subclone i. The element t[i] can take a value from the list of subclones s, or the
value 0 (to indicate that subclone i has not be assigned an ancestor). We will also
use the notation s/a to denote a list which contains every element of list except
element a which has been deleted.

In the step 1, it identifies all those subclones in list s which could be the root
node of the tree, and place these possible root nodes in a new list r. For each
candidate root node, take every other subclone, and test whether this subclone is
allowed to be a daughter node of the candidate root node. Only if every other
subclone is an allowed daughter node of the candidate root node, can we accept the
candidate as a possible root node. In many cases, there is only one such node.

In the step 2 it creates an empty list of trees. Notice that in general, the list p(i, t)
of possible parent nodes of subclone i in tree t does depend on the current tree t.
This is because subclone i may already have been assigned daughter nodes in tree t.
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These daughter nodes, and any other descendant nodes of subclone i, must be
excluded from the list of possible parent nodes of subclone i.

The resulting list T of trees may be empty, indicating that we cannot construct a
tree which is compatible with the pigeonhole principle, given the subclone
frequency parameters for every tissue sample. In practice, the list T often contains
only a single tree.

Supplementary Fig. 16 shows two examples of the phylogenetic three generation
from the Dirichlet clustering data (2D-plot)5,33.

Molecular time and copy-number timing. During a copy-number gain, all SNVs
already acquired on the involved allele will be duplicated as well52. Consequently,
the variant allelic frequency corrected for the nontumor cells contamination (c-
VAF) of all these clonal duplicated SNVs will change from 50% to ~66%, being
present on two out of three alleles. Consequently, all clonal SNVs occurred (i)
anytime on the nonduplicated allele or (ii) on one of the two duplicated alleles after
the duplication will have a c-VAF ~33% and all subclonal SNVs will always occur
on one single allele with a c-VAF <33%. (Supplementary Fig. 17a)

To assign each SNV to either a pregain or postgain status, we have created a
script that uses mclust R function for this analysis. Our R function is called
“mol_time” and is available on github.com/nicos-angelopoulos/mol_time. The
input to the function is the corrected c-VAF profiles as shown in Supplementary
Fig. 17. In panels (b) and (c) mclust was run on 2 chromosome gains dividing the
SNV catalog in two main groups: one where mutations were detected on two alleles
and one where mutations were observed only of one allele out of three. In panel (d)
mclust was run on a CN-LOH, and this explains why duplicated and nonduplicated
mutations had 100% and 50% c-VAF, respectively. Finally, in the last plot (e)
differently from the recently published molecular time analysis35, mclust was also
run in the presence of two extra copies of the same chromosome. The fact that we
have mutations present on three and on two chromosomes suggested that these
two gains were acquired at different time points. If we had only one group of
mutations at 75% c-VAF (tripled SNVs), it would have been compatible with a
tetrasomy acquired in one single event.

In Supplementary Fig. 18 we showed an example of the mol_time function
clustering part output (mclust based) for sample PD26410d. For each clonally
duplicated chromosome all the clonal SNVs are annotated according to their
position (x-axis) and their corrected c-VAF (y-axis). All extracted clusters were
highlighted with different colors. Gray dots represent the SNVs for which the
cluster assignation was not possible due to insufficient certainty. On chromosome
11 we have three different clusters: SNVs on one allele (dark red), SNVs on two
alleles (dark green), and SNVs on three (blue). The existence of three clusters,
rather than of two, suggests that the first and second chromosome 11 gains were
acquired in two independent MGs.

To avoid noise between the different clusters we applied a threshold below
which data points that belong to an alternative cluster are excluded from the timing
calculation. This second part is based on the assumption that all patients’
chromosomes have a constant mutation rate (r). Using the mol_time function, we
estimated the relative time of each chromosomal gain occurrence (molecular time;
T) using the model and formulas summarized in Supplementary Fig. 19a
and below:

Trisomy (2:1)

CN2 ¼ r ´T

CN1 ¼ r þ 2 ´T ´ 1� Tð Þ

T ¼ CN2= CN2þ CN1� CN2ð Þð Þ=3

Here CN2 and CN1 refers to the number of mutations detected on two and one
alleles respectively. T and r refer to the molecular time and constant mutation rate
respectively.

Changing conditions and formula, this approach may be extended also to other
chromosomal duplications:

CN-LOH (2:0)

T ¼ CN2= CN2þ CN1ð Þ=2ð Þ

Gains with two extra copies (3:1).

T1st ¼ CN3= CN3þ CN2þ CN1� 2 ´CN2� CN3ð Þ=4ð Þ

T2nd ¼ CN3þ CN2ð Þ= CN3þ CN2þ CN1� 2 ´CN2� CN3ð Þ=4ð ÞÞ

Gains three extra copies (4:1)

T1st ¼ CN4 ´ 5ð Þ= CN1þ CN2 ´ 2þ CN3 ´ 3þ CN4 ´ 4ð Þ

T2nd ¼ CN4þ CN3ð Þ ´ 5ð Þ= CN1þ CN2 ´ 2þ CN3 ´ 3þ CN4 ´ 4ð Þ

T3rd ¼ CN4þ CN3þ CN2ð Þ ´ 5ð Þ= CN1þ CN2 ´ 2þ CN3 ´ 3þ CN4 ´ 4ð Þ

Here CN3 and CN4 refers to the number of mutations detected on three and
four alleles, respectively. T1st, T2nd, T3rd refer to the molecular time of the first,
second, and third multi gain events.

Thanks to this approach we were able to estimate the molecular time of each
copy-number duplication. In general, early gains will have a low ratio between
duplicated (CN2) not-duplicated (CN1) mutations. Conversely late gains will have
a high duplicated mutation burden (CN2) with a lower not-duplicated mutations
(CN1) (Supplementary Fig. 19b).

Only clonal CNAs segments with a length > 1Mb and a total number of clonal
SNVs > 50 were considered. The confidence interval of each molecular time value
was estimated using a bootstrapping function. To define if different gains occurred
in one single time window or in different independent events we used multiple
hierarchical clustering approach for each single bootstrap solution (hclust R
function; www.r-project.org) and we integrated the most likely results with the
Battenberg CNA changes over the time. To avoid any bias related to any potential
subclonal mutation rate acceleration and heterogeneity, we included only clonal
shared SNVs (early clonal) extracted by the Dirichlet process5,38,53.

The recurrent MM CNAs chronological acquisition order was estimated
combining the Battenberg CCF and molecular time data into a Bradley–Terry
model, including just the earliest sample of each patient23.

Rearrangement timing. Considering the number of reads supporting each rear-
rangement breakpoint and adjusting this value for both copy-number and CCF, we
were able to estimate the adjusted VAF of each rearrangement (r-VAF). During
any copy-number gain, the r-VAF of clonal SVs will change similarly to that of
SNVs. Specifically, if the r-VAF is ~66% of all tumor reads, the SV will be classified
as “pregain” being present on two different duplicated alleles. Conversely, if the r-
VAF supports the involvement of just one allele (~33%), it may have occurred
either on the not-duplicated allele or on one of the two duplicated alleles. We
differentiated these two situations considering the status of any copy number
generated by each SV and/or by the presence of in phase SNV/SNPs within any SV
reads. The first approach is based on the fact that, if occurring after a gain, any
deletion on the not-duplicated allele will generate an CN-LOH (2:0); and an
involvement of one duplicated allele will generate a normal diploid segment (1:1).
Conversely an involvement of the duplicated allele before the gain will generate a
deletion (1:0) (Supplementary Fig. 20a, b).

The second approach is based on the presence of one or more clonal SNVs or
SNPs phased within the reads supporting the rearrangement (Supplementary
Fig. 20c, d). This specific event may generate three different situations:

(1) SNV/SNP c-VAF is ~66% and involves also all rearrangements reads (r-VAF
~66%). In this scenario, we can assume that the rearrangement and the
substitution involved the duplicated allele before the gain.

(2) SNV/SNP c-VAF is ~66% and involves also all rearrangements reads (r-VAF
~33%). In this scenario, the rearrangement occurred on one of the two
duplicated alleles after the gain.

(3) SNV/SNP c-VAF is ~33% and involved all rearrangements reads (r-VAF
~33%). In this case the rearrangement and the substitution occurred on the
minor nonduplicated allele.

Merging these data together with the “molecular time”, the CNA segment CCF
and the structure of SV associated with CNAs were able to reconstruct the
chronological order of many MM events.

Digital PCR. Droplet digital PCR assays were designed spanning the breakpoint of
interest such that only mutant molecules would be amplified (Supplementary
Table 1). PCR reactions were prepared in triplicate with 10 μl of 2× evagreen
ddPCR supermix (Bio-Rad), 1 μl of assay mastermix (consisting of 16.2 μl H2O,
14.4 μl of 25 μM forward primer, and 14.4 μl of 25 μM reverse primer) and 0.5 μl of
whole genome amplified DNA in a total volume of 20 μl. PCR reactions were
partitioned using a QX200 droplet generator according to the manufacturer’s
instructions. Samples were run on a PCR machine using the following parameters:
95 °C for 10 min, followed by 29 cycles of 94 °C for 30 s and 55 °C for 60 s, finally
samples were held at 98 °C for 10 min and then kept at 4 °C until the next step.
Plates were read on a Bio-Rad QX100 droplet reader and droplets positive for the
assay target were quantified using QuantaSoft software (Bio-Rad).

Data availability
Multiple myeloma sequence files are available at the European Genome-phenome archive

under the accession codes EGAD00001003309 and EGAD00001001898. Data from the

CoMpass study is available from dbGAP under the accession code phs000748.v1.p1.
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