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Gastric cancer imposes a considerable health burden worldwide, and its mortality ranks as the second highest for all types of 
cancers. The limited knowledge of the molecular mechanisms underlying gastric cancer tumorigenesis hinders the develop-
ment of therapeutic strategies. However, ongoing collaborative sequencing efforts facilitate molecular classification and unveil 
the genomic landscape of gastric cancer. Several new drivers and tumorigenic pathways in gastric cancer, including chromatin 
remodeling genes, RhoA-related pathways, TP53 dysregulation, activation of receptor tyrosine kinases, stem cell pathways and 
abnormal DNA methylation, have been revealed. These newly identified genomic alterations await translation into clinical di-
agnosis and targeted therapies. Considering that loss-of-function mutations are intractable, synthetic lethality could be em-
ployed when discussing feasible therapeutic strategies. Although many challenges remain to be tackled, we are optimistic re-
garding improvements in the prognosis and treatment of gastric cancer in the near future. 
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INTRODUCTION 

With more than 900,000 new cases being reported every 
year, gastric cancer has become the fourth most commonly 
diagnosed cancer in the world (Jemal et al., 2011), and its 
death rate ranks as the second highest worldwide (Siegel et 
al., 2013). People in Asia, Eastern Europe and South Amer-
ica present the highest mortality of gastric cancer due to its 
high incidence (Siegel et al., 2013). In recent years, despite 
improvements in prognosis after the application of cisplatin 
and fluoropyrimidine-based chemotherapies, surgery remains 
the only curative therapy (Ryu et al., 2014). Unfortunately, 
highly frequent relapse, as well as distant metastases, ensure 
that the five-year survival of gastric cancer rarely exceeds 
10% (Group et al., 2010; Siegel et al., 2013). Therefore, 

more effective therapeutic approaches are urgently needed. 
A better understanding of the mechanisms underlying 

gastric cancer tumorigenesis is of crucial significance for 
conquering the disease. Major molecular biological  
advances have resulted in the better survival of gastric can-
cer patients (Yang et al., 2014). Small subsets of gastric 
cancers are defined by biomarkers, including the overex-
pression of HER2 (epidermal growth factor receptor kinase 
2) protein and amplification of its gene ERBB2. These  
biomarkers have led to the first targeted treatment approach 
for gastric cancer. The clinical trial of trastuzumab, an anti- 
HER2 antibody, showed that the use of trastuzumab for the 
treatment of HER2-overexpressing gastric cancer patients 
improved their overall survival compared with standard 
platinum- and fluoropyrimidine-based chemotherapy 
(Gravalos et al., 2011). Moreover, functional genomic alter-
ations, e.g., c-MET activation, have been identified as addi-



 Guo, J., et al.   Sci China Life Sci   February (2017) Vol.60 No.2 127 

tional biomarkers that would benefit these personalized 
treatments. However, the increasing knowledge of gastric 
cancer etiology has given rise to the realization that gastric 
cancer is characterized by molecular complexity. Recently 
published comprehensive genomic analyses of gastric can-
cer not only challenge the traditional clinical classification 
of gastric cancer but lead to much-needed new targets for 
drug development and therapeutic strategies (Kakiuchi et 
al., 2014; Liang et al., 2012; Wang et al., 2011, 2014; Zang 
et al., 2012).  

Because advancing genomic technologies continue to  
refine the molecular biology of gastric cancer, this review 
focuses on new insights into the genetics of gastric cancer 
revealed by recent next-generation sequencing studies. We 
describe functional genetic alterations in gastric cancer and 
provide several rational strategies that may broaden the 
range of clinical therapeutic approaches for gastric cancer. 

GENOMIC LANDSCAPE AND MOLECULAR 
CLASSIFICATION  

In 2014, The Cancer Genome Atlas (TCGA) project ana-
lyzed the genomic landscape of 295 primary gastric adeno-
carcinoma tumor tissues (Cancer Genome Atlas Research, 
2014) through genome sequencing and comprehensive mo-
lecular evaluations. These analyses led to the proposal of a 
new molecular classification for gastric cancer. Gastric  
adenocarcinomas traditionally varied from intestinal-type 
gastric carcinomas (IGCs) to diffuse-type gastric carcino-
mas (DGCs) in terms of their histological heterogeneity 
according to the Lauren classification system (Lauren, 
1965). In 2010, the World Health Organization proposed a 
division of gastric cancer into papillary, tubular, mucinous 
(colloid) and poorly cohesive carcinomas. However, these 
classification systems show little clinical therapeutic utility. 
Fortunately, new molecular classifications that were recent-
ly confirmed by genome sequencing analysis provide a 
guide to targeted agents that should be evaluated through 
clinical trials for distinct gastric cancer patients. 

Gastric cancer is divided into four subtypes according to 
the new molecular classification (Figure 1): tumors positive  

for Epstein-Barr virus (EBV), tumors with microsatellite 
instability (MSI), genomically stable tumors (GS), and  
tumors with chromosomal instability (CIN) (Cancer Ge-
nome Atlas Research, 2014). These molecular subtypes 
show distinct genomic features. EBV-infected tumors are 
chromosomally stable but present a significantly enriched 
EBV burden, showing extensive genome-wide hypermeth-
ylation and minimal demethylation (Cheng et al., 2015; 
Strong et al., 2013). In addition, EBV-infected tumors dis-
play frequent ARID1A, BCOR and PIK3CA mutations, 9p 
chromosome amplification, and lack of TP53 mutations, 
which contrasts with the high TP53 mutation frequency 
observed in CIN and MSI tumors (Cancer Genome Atlas 
Research, 2014; Wang et al., 2014). MSI tumors addition-
ally exhibit a high prevalence of DNA promoter hyper-
methylation, such as at the MLH1 promoter, which is dif-
ferent from EBV-associated DNA hypermethylation (Leite 
et al., 2011; Park et al., 2013). MSI tumors exhibit elevated 
mutation frequencies of genes encoding targetable onco-
genic proteins (TP53, KRAS, ARID1A, PIK3CA, ERBB3, 
PTEN and HLA-B) (Cancer Genome Atlas Research, 2014; 
Wang et al., 2014). Although few clear targets are observed, 
GS tumors are enriched in both the diffuse histological var-
iant and mutations of CDH1, RHOA or fusions of 
RHO-family GTPase-activating proteins. CIN tumors are 
characterized by extensive frequencies of TP53 mutation 
(71%), CDH1 mutation (37%), marked aneuploidy and fo-
cal amplification of receptor tyrosine kinases that are clini-
cally therapeutic targets (Cancer Genome Atlas Research, 
2014). The use of genomic landscaping and molecular clas-
sification may provide a valuable adjunct to histopathology 
and a roadmap for gastric cancer patient stratification and 
trials of targeted therapies. 

POTENTIAL TARGETS  

Chromatin remodeling genes  

Nearly half of gastric cancers harbor mutations in chromatin 
remodeling genes (Zang et al., 2012). ARID1A, the AT-rich 
interacting domain containing protein 1A, is one of the most 
commonly mutated chromatin remodeling genes and has 

 

 

Figure 1  Key features of gastric cancer subtypes. The schematic shows several salient characteristics of four molecular subtypes of gastric cancer. The 
frequency of each tumor subtype is also listed. EBV, tumors with Epstein-Barr virus; MSI, microsatellite unstable tumors; CIN, tumors with chromosomal 
instability; GS, genomically stable tumors. 
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been reported to exhibit a mutation frequency ranging from 
8% to 27% in gastric cancer samples (Abe et al., 2012;  
Inada et al., 2015; Wang et al., 2012). The majority of 
ARID1A mutations are frameshift or nonsense mutations 
that ultimately cause reduced expression of ARID1A pro-
tein in the cells (Wang et al., 2011; Zang et al., 2012). The 
function of ARID1A is mainly involved in DNA mismatch 
repair (Inada et al., 2015). Therefore, the loss of ARID1A 
may lead to genomic instability. 

Although the tumor suppressor role of ARID1A has been 
confirmed (Guan et al., 2011; Zang et al., 2012), it remains 
difficult to restore the weakened expression of ARID1A in 
patients. In addition, effective therapeutic approaches to 
target cancer with ARID1A mutations have yet to be eluci-
dated (Kim et al., 2012). Fortunately, synthetic lethality 
provides new insights regarding approaches to target cancer 
cells with ARID1A aberrations. Synthetic lethality exploits 
the fact that many cancer cells acquire defects in DNA  
repair pathways and become dependent on a compensatory 
mechanism to survive (Farmer et al., 2005; Jekimovs et al., 
2014). Inhibition of the compensatory DNA repair pathway 
selectively kills cancer cells with a defect in a particular 
DNA repair pathway. Because ARID1A plays a key role in 
chromatin remodeling (Inada et al., 2015), the loss of its 
function makes cells rely on other compensatory pathways 
for maintenance of genomic stability and promotion of sur-
vival. Therefore, it may be feasible to identify pathways that 
compensate for the reduced expression of ARID1A. EZH2 
methyltransferase, the catalytic subunit of polycomb repres-
sive complex 2, was recently identified as one such factor 
(Bitler et al., 2015) that shares a synthetic lethal relationship 
with ARID1A aberrations. EZH2 helps maintain genomic 
stability via generation of the lysine 27 trimethylation mark 
on histone H3 (H3K27 Me3) by its catalytic SET domain 
(Cao and Zhang, 2004). EZH2 inhibition causes regression 
of ARID1A-mutated ovarian tumors in vivo, but this effect 
has not been confirmed in ARID1A-mutated gastric cancer. 
Nevertheless, EZH2 inhibition may be a rational and prom-
ising therapeutic approach for gastric cancer treatment. 

In addition to EZH2 methyltransferase, the PI3K/Akt 
pathway is another key pathway that acts in a synthetically 
lethal manner in tumors with defective ARID1A (Zang et 
al., 2012). ARID1A mutations were found to be significantly 
associated with tumors harboring PIK3CA-activating muta-
tions (Yamamoto et al., 2012) or loss of PTEN expression 
(Bosse et al., 2013). ARID1A-deficient cells demonstrate an 
increased phosphorylation of Akt at the Ser473 site (Liang 
et al., 2012). These data suggest that loss of ARID1A   
expression sensitizes cancer cells to PI3K or Akt inhibitors 
(Samartzis et al., 2014). Because PI3K inhibitors are cur-
rently under clinical evaluation in gastric cancer (Fuereder 
et al., 2011), it will be necessary to perform a pre-selection 
of patients with respect to their ARID1A status prior to 

treatment with PI3K or Akt inhibitors. 
Apart from ARID1A, other members of the SWI-SNF 

complex (ARID1B, PBRM1 and SMARCC1), ISWI complex 
(SMARCA1) and NuRD complex (CHD3, CHD4 and 
MBD2) as well as other genes encoding histone-modifying 
proteins (SIRT1 and SETD2), are also mutated in 59% of 
gastric cancers (Zang et al., 2012). Moreover, histone me-
thyltransferase genes and epigenetic modifier genes also 
mutate at a relatively high frequency in gastric cancer. Oth-
er genes involved in the maintenance of genomic stability 
may also be inactivated in gastric cancer. BRCA1 or BRCA2 
inactivation, which occurs in approximately 10% of gastric 
cancer patients, is closely correlated to PARP1 function 
(Farmer et al., 2005). This synthetic lethal relationship has 
led to the exploitation of PARP1 inhibitors in the treatment 
of BRCA1-inactivated breast cancer (Bryant et al., 2005). 
Further investigation in synthetic lethality may provide ad-
ditional avenues that will broaden the horizon of targeted 
therapeutic strategies for gastric cancer.  

RhoA-related pathways 

Rho GTPases are subsets of the Ras superfamily that regu-
late and coordinate cell motility, the cell cycle, cell cyto-
skeleton remodeling and other cellular processes (Iden and 
Collard, 2008; Lu et al., 2009b; Narumiya et al., 2009;  
Sahai and Marshall, 2002). RhoA, an important member of 
the Rho GTPase subsets, plays a critical role in stress fiber 
formation, which is involved in cell invasion, metastasis and 
tumorigenesis through its downstream effectors, including 
ROCK1, protein kinase N, mDia and citron (Lu et al., 
2009b; Narumiya et al., 2009). In breast cancer, esophageal 
squamous cell carcinoma, colon cancer and other solid tu-
mors, RhoA protein is overexpressed and serves as a quan-
titative marker for prediction of the progression stage and 
prognosis in a molecular detection strategy (Bellizzi et al., 
2008; Fritz et al., 1999; Fukui et al., 2006; Malissein et al., 
2013; Zhang et al., 2013). RasV12 and loss of p53 synergis-
tically induce RhoA activity (Xia and Land, 2007). More 
recently, several studies have discovered novel mutations of 
RHOA (14.3% to 25.3%) and somatic genomic alterations 
of RhoA-related Rho-GAPs in GS tumors with diffuse-type 
histological characteristics; however, these have rarely been 
observed in other gastric cancer subtypes (Cancer Genome 
Atlas Research, 2014; Kakiuchi et al., 2014; Wang et al., 
2014; Zhou et al., 2014), suggesting that the RhoA-related 
pathway might be a novel signaling driver in GS tumors.  

Recurrent inactivating mutations in RhoA GTPase have 
been reported in T cell lymphoma (Cools, 2014; Palomero 
et al., 2014; Sakata-Yanagimoto et al., 2014; Yoo et al., 
2014). In GS tumors, mutant RhoA encodes known func-
tional domains related to effector interaction or GTP bind-
ing, working in a gain-of-function manner (Kakiuchi et al., 
2014). The Tyr42, Arg5 and Gly17 residues in RhoA pro-
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tein have been identified as key mutation hotspots (Cancer 
Genome Atlas Research, 2014; Kakiuchi et al., 2014). The 
Tyr42 mutation attenuates the activation of protein kinase N 
but does not affect mDia activation (Cancer Genome Atlas 
Research, 2014). The TCGA project detected missense mu-
tations at Tyr42 and Asp59 of GTPase-RhoA and mapped 
them onto the structures of RHOA and ROCK1 (Cancer 
Genome Atlas Research, 2014). Four alterations in the ef-
fector domain (Tyr34, Phe39, Glu40 and Try42 sites) have 
been shown to impair the binding of RhoA to its effector 
proteins (Wang et al., 2014). In addition to RhoA mutations 
that drive GS tumors by disrupting Rho signaling, the 
TCGA project further found RHOA-COL7A1 and 
COL27A1-ZNF618 fusions in GS tumors (Cancer Genome 
Atlas Research, 2014; Ushiku et al., 2015; Wang et al., 
2014).  

Gain-of-function and structural variants of RhoA dysreg-
ulate Rho signaling and triggers an invasive phenotype in 
diffuse GC. Agents targeting RhoA itself, e.g., ROCK I, 
ROCK II and other effectors in the RhoA oncogenic path-
ways, have shown therapeutic benefits in cardiovascular 
disease, urogenital disorders and in other types of cancer 
(Gur et al., 2011; Nunes et al., 2010), suggesting a thera-
peutic potential for GS tumors (Sadok et al., 2015; Shang et 
al., 2012). The selective Rho-kinase inhibitors Y-27632 and 
Fasudil have been tested in pre-clinical and clinical studies 
(Molli et al., 2012; Olson, 2008). Y-27632 exhibits an an-
ti-tumor effect against Ehrlich’s ascites carcinoma in mice 
through binding to the Rho-kinase ATP binding pocket in 
an ATP-competitive manner (Olson, 2008). In different cell 
lines, including cells isolated from a chronic myeloid leu-
kemia patient (Molli et al., 2012), myeloid cells bearing 
oncogenic forms of KIT, FLT3 and BCR-ABL (Mali et al., 
2011) and human colon cancer cells (Attoub et al., 2002), 
the Clostridium botulinum C3 exoenzyme could inhibit Rho 
ADP-ribosylation to trigger cell apoptosis and decrease cell 
proliferation. A small molecular compound, Rhosin, a 
RhoA inhibitor, was discovered through virtual screening 
(Shang et al., 2012). Rhosin exhibits dose-ependently inhib-
itory activity toward RhoA by targeting the GEF-interactive 
site of RhoA. Moreover, Rhosin also suppresses the inva-
sion of mammary epithelial cells and mammary sphere for-
mation (Shang et al., 2012). Compound Y16 works syner-
gistically with Rhosin in the inhibition of LARG-RhoA  
interaction, RhoA activation and RhoA-diated signaling by 
targeting G-protein-coupled Rho guanine nucleotide    
exchange factors. The combination of Y16 and Rhosin  
effectively inhibits the growth, migration and invasion of 
breast cancer cells (Shang et al., 2013). To date, no inhibi-
tors of RhoA signaling pathways have progressed into 
standard clinical therapy. However, the optimization of such 
inhibitors could be useful for future gastric cancer treat-
ments. 

TP53 dysregulation  

TP53 mutations have been observed in approximately 40% 
of gastric cancers (Iwamatsu et al., 2001; Oki et al., 2009), 
making it one of the most prevalent genetic alterations in 
gastric cancer. In addition to mutations at six discrete 
hotspot codons within the DNA-binding domain of TP53, 
loss of heterozygosity (LOH) of the TP53 gene is a main 
reason for the loss-of-function of p53 (Kobayashi et al., 
1996; Smith et al., 2006; Tahara, 2004). Although the 
prognostic impact of TP53 abnormalities in gastric cancer 
remains controversial (Gamboa-Dominguez et al., 2007; 
Lee et al., 2014; Liu et al., 2012; Sumiyoshi et al., 2006; 
Wei et al., 2015), the correlation between TP53 abnormali-
ties and the occurrence of aneuploidy is becoming increas-
ingly clear (Cesar et al., 2004; Gobbo Cesar et al., 2006; Lu 
et al., 2009a). This finding is reasonable because the 
maintenance of genome stability is one of the key roles of 
p53 (Belyi et al., 2010), often called “the guardian of the 
genome” (Suzuki and Matsubara, 2011). Data from recently 
published second-generation sequencing studies (Cancer 
Genome Atlas Research, 2014; Wang et al., 2014) also 
support this notion that a cluster of TP53 mutations is  
observed in one of the specific subtypes of gastric cancer, 
specifically gastric tumors with CIN. Because TP53 altera-
tions are closely associated with gastric cancer tumorigene-
sis, it is better to discuss gastric cancer treatments with re-
spect to the p53 status. 

One feasible therapeutic approach to target p53-deficient 
tumors is to restore the function of p53. To achieve this 
goal, a recombinant adenovirus encoding p53 has been de-
veloped (Jekimovs et al., 2014). The results from clinical 
trials with two of the adenovirus-mediated p53 (Ad-p53) 
cancer gene therapies, advexin (Senzer and Nemunaitis, 
2009; Wolf et al., 2004) and SCH-58500 (Atencio et al., 
2006; Buller et al., 2002), demonstrated the safety and fea-
sibility of their administration. However, the anti-tumor 
efficacy of these therapies has been limited in some cancer 
patients. This insufficiency may be attributed to the low 
transduction of p53 into cancer cells via these Ad-p53 vec-
tors. To overcome these transduction defects, competent 
oncolytic adenoviruses (CRAd-p53) vectors have been  
developed. The CRAd-p53 vectors exploit the promoters of 
cancer-related genes to maintain a stable and high virus 
expression. Initial in vitro and in vivo studies focused on 
AdDelta24-p53 (van Beusechem et al., 2002), SG600-p53 
(Wang et al., 2008) and OBP-700 (Yamasaki et al., 2012) 
demonstrated their equivalent safety and improved anti- 
tumor effects compared with those of their Ad-53 counter-
parts. The efficacy of recombinant Ad-p53 in gastric cancer 
cell lines was recently proven either as a monotherapy or in 
combination with oxaliplatin (Chen et al., 2011). However, 
its in vivo anti-tumor activity in the treatment of gastric 
cancer awaits further investigation. 
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Although tumor suppressor genes such as TP53 are rare-
ly tractable, low-molecular-weight compounds capable of 
selectively targeting p53-deficient tumors were recently 
identified. One of the most effective p53 reactivators, 
PRIMA-1 (Bykov et al., 2002), is able to restore the specific 
DNA binding and transcriptional transactivation function to 
mutant p53 by stabilizing the p53 core domain and promot-
ing wild-type folding. The administration of PRIMA-1 leads 
to p53-dependent apoptosis in a range of tumors with p53 
deficiency. APR-246 (PRIMA-1 MET), similarly to its  
analog, was tested in a Phase I/II clinical trial with promis-
ing results (Lehmann et al., 2012). Another recently report-
ed promising compound that targets p53-deficient cancers is 
an FDA-approved drug for the treatment of type 1 and type 
2 diabetes (Venkatanarayan et al., 2015). Pramlintide, a 
synthetic analogue of amylin, has been demonstrated to 
trigger rapid tumor regression in p53-deficient thymic lym-
phomas. This anti-tumor effect has been attributed to the 
ability of pramlintide and amylin to inhibit glycolysis and 
induce reactive oxygen species and apoptosis. These afore-
mentioned sophisticated strategies to target p53-mutant 
cancers will provide novel insights into the treatment of 
gastric cancer. 

Receptor tyrosine kinases 

As one of the most frequently dysregulated pathways,  
receptor tyrosine kinases (RTKs) are activated by either 
copy number gains or hotspot mutations that maintain an 
active conformation of the protein kinase domain (Carrera 
et al., 2014). In gastric cancer, the majority of RTKs that 
show dysregulation is the epidermal growth factor receptor 
family (ERBB). Activation of ERBB2 (HER2) is found in 
approximately 17% of gastric cancer samples, and gene 
amplification is the main cause of this effect (Gravalos and 
Jimeno, 2008; Yano et al., 2006). This finding prompted the 
initiation of clinical trials of gastric cancer, which were  
designed to explore the efficacy of trastuzumab, a mAb 
against the extracellular domain of HER2 protein (Gravalos 
et al., 2011). The median overall survival rate was favorable 
for a trastuzumab-plus-chemotherapy arm with a 26%  
reduction in the death rate. These promising results 
prompted the approval of trastuzumab in 2013 for the 
treatment of gastric cancer. Apart from trastuzumab, ramu-
cirumab, a fully human IgG1 anti-VEGFR-2 mAb, was  
approved in 2015 for patients with gastric cancer or GEJ 
(gastro-esophageal junction) adenocarcinoma who show 
progression following fluoropyrimidine or platinum- 
containing chemotherapy. 

Although the clinical application of trastuzumab and 
ramucirumab improves the overall survival rate of gastric 
cancer patients, treatment resistance is inevitable. Primary 
resistances as well as required resistances, are the major 
reasons for the treatment failure observed in patients.   

Because PIK3CA is one of the main downstream effectors 
of RTK signaling, its hotspot mutations that lead to consti-
tutive PI3K pathway signaling even in the absence of 
growth factors usually induce primary resistance to RTK 
inhibition (Velho et al., 2005). Because nearly 80% of 
EBV-positive gastric cancer tumors harbor altered PIK3CA 
(Cancer Genome Atlas Research, 2014), it is necessary to 
conduct a pre-selection of patients with respect to the status 
of PIK3CA and its suppressor gene, PTEN, prior to onset of 
trastuzumab treatment. In HER2-overexpressing tumors, the 
predominant mechanism of resistance is compensatory sig-
naling by other cell-surface receptors, including the repro-
gramming of IGF1R, MET, GDF15 and other members of 
the ERBB family (Nahta, 2012). Because the PI3K pathway 
is commonly shared by different RTKs, its inhibitors may 
be a useful option for overcoming trastuzumab resistance in 
the future. Other mechanisms underlying treatment     
resistance include the expression of a selectively truncated 
version of HER2 (Molina et al., 2001; Nagy et al., 2005), 
alterations of focal adhesion kinases FAK and Src (Gong et 
al., 2004) and STAT3 activation (Korkaya et al., 2012). It 
has now become increasingly clear that cancer cells have 
many redundant mechanisms that confer resistance to tar-
geted therapies and that rational drug combinations are 
needed to achieve enhanced efficacy.  

Stem cell pathways 

Aberrations in stem cell pathways result in fibrosis, degen-
erative diseases and cancer. Transforming growth factor  
(TGF-), Wnt and hedgehog signaling are pivotal pathways 
that influence the cell division, invasion, migration and ul-
cer repair processes (An et al., 2013; Lagasse, 2008; Zhao, 
2014). Disorders in these processes usually lead to gastric 
adenocarcinoma and other tissue-specific gastrointestinal 
cancers (Stojnev et al., 2014). Genome sequencing and 
comprehensive molecular profiling have identified novel 
driver mutations involved in stem cell pathways in gastric 
cancer. 

Genes in the TGF- pathway have been predicted to be 
key drivers in both MSI and other types of gastric cancers 
(Mishra et al., 2005; Wang et al., 2014). TGFBR2, 
ACVR2A, SMAD4, SMAD2 and ELF3 mutations have been 
observed in MSI tumors and microsatellite-stable (MSS) 
tumors (Cancer Genome Atlas Research, 2014; Wang et al., 
2014). ELF, the TGF- adaptor protein, and the common 
mediator Smad4 are important for the maintenance of cell 
structure and the conferment of cell polarity (Katuri et al., 
2006; Levy and Hill, 2005). Inactivating mutations in ELF3 
in gastric cancer may particularly lead to the silencing of 
TGF- signaling through reduced TGFBR2 expression 
(Park et al., 2001). Additionally, inactivating mutations in 
TGF- also occur in pancreatic carcinomas and colon can-
cers (Katuri et al., 2006). Loss of expression of Smad4 and 
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ELF in advanced colorectal cancer is indicative of poor 
prognosis (Tang et al., 2005). In such cases, tumor cells 
may enhance their own proliferative, invasive and metastat-
ic behavior through other aspects of TGF- signaling 
(Ikushima and Miyazono, 2010). Thus, TGF- signaling can 
switch from a tumor-suppressing to a tumor-activating 
function. TMEM16A, a membrane protein associated with 
calcium-dependent chloride channel activity (Caputo et al., 
2008), has been reported to be significantly upregulated and 
amplified in gastric cancer tissues and contributes to tumor 
invasion and poor prognosis of gastric cancer through the 
TGF- pathway (Liu et al., 2015). 

Recurrent mutations in genes encoding Wnt pathway 
molecules, such as APC, MACF1 and CTNNB1, have fre-
quently been found in both DGCs and IGCs (Anastas and 
Moon, 2013; Kakiuchi et al., 2014). CTNNA2, which   
encodes one component of cell-adhesion complexes, is  
mutated in 6.4% of MSS tumors, and this mutation has been 
identified as a novel driver mutation in gastric cancer 
(Wang et al., 2014). RNF43, which encodes an E3 ubiquitin 
ligase involved in the deregulation of the Wnt pathway, is 
also inactivated by mutation in MSS tumors (Koo et al., 
2012). Several targeted agents of Wnt signaling are being 
developed (An et al., 2014), including -catenin-TCF an-
tagonists and other mechanism-based inhibitors that princi-
pally target enzymes (Kahn, 2014). All of these agents are 
still in their infancy and need to be evaluated for their clini-
cal efficacy and safety in gastric cancer patients. Neverthe-
less, some nonspecific modulators affect the Wnt pathway, 
such as non-steroidal anti-inflammatory drugs (NSAIDs) 
(Baron et al., 2003; Sandler et al., 2003), COX2 inhibitor 
(Grosch et al., 2001; Xie et al., 2012), vitamins (Klampfer, 
2014; Larriba et al., 2011; So and Suh, 2015), polyphenols 
(Liu et al., 2008; Oh et al., 2014) and other FDA-approved 
drugs. In addition, the combination treatment of the ERK1/2 
inhibitor PD98058 and DAPT, a potent secretase inhibitor, 
has been shown to markedly sensitize gastric cancer cells to 
apoptosis by suppressing -catenin signaling (Yao et al., 
2013).  

Furthermore, GLI3 and ZIC4, which are involved in 
hedgehog signaling, are also important driver genes affect-
ing a portion of MSS tumors (Wang et al., 2014). The 
hedgehog pathway inhibitors, vismodegib, which was  
approved in 2012 by the FDA for the treatment of locally 
advanced and metastatic basal cell carcinoma (BCC) 
(Chang et al., 2014; Sandhiya et al., 2013; Wilkes, 2012), 
has also been employed in the treatment of advanced gastric 
and gastroesophageal junction cancer. Patients administered 
FOLFOX and vismodegib simultaneously, achieved better 
median overall survival (vismodegib+FOLFOX, 14.9 
months compared to FOLFOX, 11.5 months) 
(NCT00982592) (Cohen et al., 2013). BMS-833923, anoth-
er SMO inhibitor, has also been combined with cisplatin 

and capecitabine for the treatment of inoperable metastatic 
gastric or gastroesophageal cancer patients 
(NCT00909402). Further clinical studies on hedgehog 
pathway inhibitors, such as vismodegib, BMS-833923, 
SARIDEGIB and LY2940680, are needed for gastric cancer 
(Justilien and Fields, 2015; Sandhiya et al., 2013). 

Amplifications of the genes that encode the stem cell 
markers CD44 and CD24 and other stem cell signaling bi-
omarkers constitute additional aberrations that have been 
reported in gastric cancer (Chen et al., 2012, 2013; Zhang et 
al., 2011b). These novel driver gene mutations of stem cell 
pathways may be exploited as biomarkers for the unveiling 
of potential therapeutic targets. 

Aberrant DNA methylation 

Cancer cells typically present aberrant DNA methylation, 
including peculiar gene promoter CpG island hypermethyl-
ation and global genomic DNA hypomethylation (He et al., 
2015). These usually occur at the 5′ position of the cytosine 
ring within CpG dinucleotides, resulting in the silencing of 
genes and non-coding genomic regions (Cheng et al., 2013). 
Tumor-suppressor gene methylation is one of the most 
well-defined epigenetic alterations involved in gastric car-
cinogenesis (Qu et al., 2013). Approximately 400 genes are 
actively expressed in normal gastric epithelial cells, but 
these genes can be inactivated in gastric cancers through 
hypermethylation of their gene promoter CpG islands 
(Kang, 2012). Aberrant gene promoter CpG island hyper-
methylation occurs early in multi-stage gastric carcinogene-
sis and tends to increase in a step-wise manner in the pro-
gression toward malignancy (Cheng et al., 2013). Because 
hypermethylation of tumor-suppressor gene promoters is a 
common characteristic of gastric cancer cells, inhibition of 
DNA methyltransferases has emerged as an effective strat-
egy against gastric cancer (Egger et al., 2004).  

Aberrant DNA methylation might be an important 
mechanism in EBV-related and MSI gastric carcinogenesis 
(Matsusaka et al., 2011). EBV-associated gastric cancer 
makes up almost 10% of all gastric cancers, which has spe-
cial clinicopathological characteristics such as male predi-
lection and preferential location in the cardia and middle 
part of the stomach (Cheng et al., 2015). EBV-positive  
tumors showed the highest degree of genome-wide hyper-
methylation and minimal demethylation, while MSI cancers 
accumulated a large number of promoter hypermethylation 
and demethylation out of promoter (Wang et al., 2014).  
Additionally, all EBV-positive tumors display CDKN2A 
(p16INK4A) promoter hypermethylation, while MSI subtype 
exhibits the MLH1 hypermethylation. The extreme CpG 
island methylator phenotype in EBV-positive tumors is  
different from that in the MSI subtype, which mirrors dif-
ferences between the two groups in their spectra of muta-
tions and gene expression. EBV-positive tumors have a 
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substantially higher frequency of promoter DNA hyper-
methylation and less gene mutations than MSI subtype 
(Cancer Genome Atlas Research, 2014; Wang et al., 2014).  

Methylation of the p16 gene promoter occurs continually 
in various human cancers, including colon, lung, breast, 
bladder and gastric cancers (Alves et al., 2011; Celebiler 
Cavusoglu et al., 2010; Jablonowski et al., 2011; Ve-
ganzones-de-Castro et al., 2012; Zhang et al., 2011a). P16, a 
member of the cyclin-dependent kinase inhibitor (CKI) 
family, blocks cells in the G1 phase and induces apoptosis 
through the activation of caspase-3 (Merlo et al., 1995). P16 
shows high frequency and density of gene promoter meth-
ylation with a loss of expression (Na and Woo, 2014). The 
demethylation agent 5-aza-dC markedly upregulates the 
expression of the p16 gene and promotes cell apoptosis, 
suggesting that hypermethylation of the p16 promoter might 
be involved in EBV-associated gastric carcinogenesis and 
demethylation therapy may be a novel therapeutic strategy 
for EBV-associated gastric cancer (He et al., 2015).  

Several DNA-demethylating agents have been tested in 
clinical trials and have already been applied in clinical 
therapy, e.g., 5-azacytine and 5-aza-2′-deoxycytidine. Both 
of these agents are used to treat all subtypes of myelodys-
plastic syndrome and acute myelogenous leukemia    
(Kaminskas et al., 2005; Prakash et al., 2001; Yoo and 
Jones, 2006). DNA-demethylating agents used either alone 
or in combination with chemotherapeutic drugs and histone 
deacetylase inhibitors have been shown to be effective in 
the treatment of cancers. For instance, 5-aza-2′-eoxycyti-ne 
is used to treat ovarian cancer in combination with car-
boplatin (Appleton et al., 2007; Pohlmann et al., 2002). 
Promoter hypermethylation of tumor-suppressor genes, e.g., 
P16, CDH1, and MLH1, occurs at a high frequency in gas-
tric cancer cells. Several studies have shown that DNA  
demethylation is an effective strategy for the treatment of 
hypermethylation-associated gastric cancer (He et al., 2015; 
Na and Woo, 2014). There is no doubt that DNA methyl-
transferase inhibition is a potential remedy for gastric  
cancer.  

CONCLUSIONS 

A comprehensive understanding of the mechanisms under-
lying gastric cancer tumorigenesis is indispensable for 
therapeutic development. Although gastric cancer lags  
behind many other tumor types with respect to genetic  
sequencing and specific targeted therapies, recently pub-
lished data employing second-generation sequencing have 
broadened our horizons regarding the genomic landscape of 
gastric cancer. A new molecular classification has been  
described and found to be correlated with the distinct salient 
genomic features among gastric cancer subtypes. The iden-
tification of these subtypes will offer a roadmap for patient 

stratification and trials of targeted therapies. Another nota-
ble achievement from the sequencing studies is the discov-
ery of gain-of-function mutations in RhoA that are associ-
ated with gastric cancer tumorigenesis. Further investigation 
of RhoA-related therapies in gastric cancer may be benefi-
cial for the improvement of patient survival. 

Despite the continual emergence of genomic alterations 
in gastric cancer, few of these can be qualified as potential 
therapeutic targets, largely because loss-of-function muta-
tions were thought to be intractable and hard to be targeted. 
The synthetic lethality theory provides new insights into the 
tightly correlated functions of distinct genes. Many synthet-
ic lethal genes have been identified in tumor cells in which 
the tumor-suppressor genes were somehow silenced. These 
tumor-addicted genes may be validated as potential targets 
if selective toxicity in terms of genetic alterations is    
expected. However, many studies are needed to evaluate 
both the feasibility and the safety of these potential targets 
in gastric cancer treatment. 

As the first valid functional target, HER2 overexpression 
is found in approximately 17% of gastric cancer patients. 
The anti-HER2 antibody trastuzumab has been demonstrat-
ed to be beneficial for the improvement of overall survival. 
Despite the success of trastuzumab in gastric cancer treat-
ment, acquired resistance is inevitable. A better under-
standing of the molecular mechanisms underlying resistance 
is necessary to overcome this clinical problem. Moreover, 
the importance of combinatory strategies in the battle 
against resistance should never be underestimated if a sus-
tainable response is desired.  
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