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41  Summary

42 e The tree of life is highly reticulate, with the history of population divergence buried amongst
43 phylogenies deriving from introgression and lineage sorting. In this study, we test the

44 hypothesis that there are regions of the oak (Quercus, Fagaceae) genome that are broadly

45 informative about phylogeny and investigate global patterns of oak diversity.

46 e We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632

47 individuals representing ca. 250 oak species to infer a time-calibrated phylogeny of the world’s
48 oaks. We use reversible-jump MCMC to reconstruct shifts in lineage diversification rates,

49 accounting for among-clade sampling biases. We then map the > 20,000 RAD-seq loci back to
50 a recently published oak genome and investigate genomic distribution of introgression and

51 phylogenetic support across the phylogeny.

52 e QOak lineages have diversified among geographic regions, followed by ecological divergence
53 within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four
54 clades that experienced increases in net diversification due to climatic transitions or ecological
55 opportunity.

56 e The support we find for the phylogeny contrasts with high genomic heterogeneity in

57 phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may
58 in fact depend on the gene flow that shapes the oak genome.

59

60  Keywords: Diversification rates, Genomic mosaicism, Oaks, Introgression, Phylogenomics, Quercus,
61  Restriction-site associated DNA sequencing (RAD-seq), Tree diversity

62
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Introduction

The tree of life exhibits reticulation from its base to its tips (Folk et al., 2018; Quammen, 2018). Oaks
(Quercus L., Fagaceae) are no exception (Hipp, 2018), and in fact the genus is rife with case-studies in
localized gene flow (e.g. Hardin, 1975; Whittemore & Schaal, 1991; McVay et al., 2017a; Kim et al.,
2018), and ancient introgression (Crowl et al., In review; McVay et al., 2017b; Kim et al., 2018). Oaks
have in fact been held up as a paradigmatic syngameon (Hardin, 1975; Van Valen, 1976; Dodd &
Afzal-Rafii, 2004; Cannon & Scher, 2017; Boecklen, 2017), a system of interbreeding species in which
incomplete reproductive isolation may facilitate adaptive gene flow and species migration (Petit ef al.,
2003; Dodd & Afzal-Rafii, 2004). The oak genome (Plomion et al., 2018) consequently tracks
numerous unique species-level phylogenetic histories that result from lineage sorting and differential
rates of introgression (Anderson, 1953; Eaton et al., 2015; McVay et al., 2017b; Edelman et al., 2018).
Oak genomes are mosaics of disparate phylogenetic histories (cf. Piibo, 2003). Given the prevalence
of hybridization in trees globally (Petit & Hampe, 2006; Cannon & Lerdau, 2015), understanding how
these stories line up with one another, and whether there are regions of the genome that track a
common story, is essential to understanding the prevalence of adaptive gene flow and the phylogenetic
history of forest trees.

Restriction-site associated DNA sequencing (RAD-seq; Miller et al., 2007a,b; Lewis et al.,
2007; Baird et al., 2008; Ree & Hipp, 2015) has revolutionized our understanding of oak phylogeny in
the past five years (Jiang et al., In review; Hipp et al., 2014, 2018; Cavender-Bares et al., 2015; Eaton
et al., 2015; Hipp, 2017; Fitz-Gibbon et al., 2017; Pham et al., 2017; Ortego et al., 2018; Deng et al.,
2018; Kim et al., 2018). Its ties to the genome, however, have not been fully exploited because of the
lack of an assembled genome. While earlier studies have explored the effects of gene identity on
phylogenetic informativeness (Hipp et al., 2014) and genomic heterogeneity in phylogenetic vs.
introgressive signals (McVay et al., 2017b,a), they have not had access to the oak genome sequence.
As a consequence, we do not understand the distribution of genomic breakpoints between introgressive
and divergent histories. Moreover, no studies to date have brought together a comprehensive sampling
of taxa to investigate the history of diversification across the genus.

In this paper, we integrate data from the recently published Quercus robur genome (Plomion et
al., 2016, 2018) with previously published RAD-seq data for 427 sequenced oak individuals across the
tree of life and new RAD-seq data for an additional 205 individuals to investigate the global oak
phylogenomic mosaic for approximately 60% of the world’s Quercus species. We test the hypothesis
that there are regions of the genome that are uniformly informative about Quercus phylogeny, regions

that make oak lineages what they are. Furthermore, using a time-calibrated one-tip-per species tree
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novel to this study for ca. 60% of known species, we test the hypothesis that the high diversity of oaks
in Mexico and eastern China is a consequence of high diversification rates. Finally, we show that the
consensus of the evolutionary histories of more than 20,000 RAD-seq loci matches our understanding
of oak evolution based on morphological information from extant and fossil species in spite of broadly

conflicting individual locus genealogies.

Materials and Methods

Previously published RAD-seq and new RAD-seq: sequencing and clustering

Data from previously published RAD-seq phylogenies were analyzed alongside new RAD-seq data for
a total of 632 individuals (Table S1). RAD-seq data were generated as described in the previous
studies. New data were from library preparations conducted at Floragenex, Inc. (Portland, OR, USA)
following the methods of Baird et al. (2008) with Pstl, barcoded by individual, and sequenced on an
[llumina Genome Analyzer IIx at Floragenex, or an Illumina HiSeq 2500 or HiSeq 4000 at the
University of Oregon Genomic Facility.

FASTQ files were demultiplexed and filtered to remove sequences with more than 5 bases of
quality score < 20 and assembled into loci for phylogenetic analysis using ipyrad 0.7.23 (Eaton, 2014)
at 85% sequence similarity. Consensus sequences for each individual for each locus were then
clustered across individuals, retaining loci present in at least 4 individuals and possessing a maximum
of 20 SNPs and 8 indels across individuals. The dataset was filtered to loci with a minimum of 15
individuals each, for a total of 58,985 loci. Data were imported into R using the RADami package
(Hipp et al., 2014) for downstream analysis.

RAD-seq loci were mapped back to the latest version of the Quercus robur haploid genome

(haplome 2.3; https://urgi.versailles.inra.fr/Data/Genome/Genome-data-access) (Plomion et al., 2018).

The oak genome is made of 12 pseudomolecules (i.e. chromosomes) and a set of 538 unassigned
scaffolds. Mapping was performed using Blast+ 2.8.1 (Camacho et al., 2009). We filtered alignments
based on expect (E) values (E-value <10™), alignment length (>80% of the length of the loci) and
percent identity (>80%). For each locus, the best alignment was kept. All sequence data analyzed in
this paper are available as FASTQ files from NCBI’s Short Read Archive (Table S1), and aligned loci

and additional data and scripts for all analysis are available from https://github.com/andrew-

hipp/global-oaks-2019. Analysis details are in the Supplement (Methods S1).

Phylogenetic analysis
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Maximum likelihood phylogenetic analyses were conducted in RAXML v8.2.4 (Stamatakis, 2014)
using the GTRCAT implementation of the general time reversible model of nucleotide evolution
(Stamatakis, 2006), with branch support assessed using RELL bootstrapping (Minh et al., 2013). For
the phylogeny including all tips (Fig. S1), analysis was unconstrained, and we used the taxonomic
disparity index (TDI) of Pham et al. (2016) to identify the extent of non-monophyly by species.
Topology within the white oaks of sections Ponticae, Virentes, and Quercus (hereafter in the paper
“white oaks s.1.,” contrasted with “white oaks s.str.” for just section Quercus) was observed to be at
odds with previous close studies (Crowl et al., In review; McVay et al., 2017b,a; Hipp et al., 2018) that
have shown the topology of the white oaks s./. to be sensitive to taxon and locus sampling. For dating,
samples were pruned to one sample per named species, favoring samples with the most loci, except for
species in which variable position of samples from different populations was deemed to represent
cryptic diversity, in which case more than one exemplar was retained. The singletons tree was
estimated in RAXML using a phylogenetic constraint (Manos, 2016; McVay et al., 2017b; Hipp et al.,
2018) available in the supplemental methods and supplemental data. The remainder of the tree was
unconstrained and conforms closely to previous topologies.

We utilized neighbor-net (Bryant & Moulton, 2004) to visualize overall patterns of molecular
genetic diversity. Likelihood-based methods (e.g., Solis-Lemus & Ané, 2016; Solis-Lemus et al., 2017,
Wen et al., 2018; Zhang et al., 2018) that we have utilized on smaller oak datasets (Crowl et al., In
review; Eaton et al., 2015; Hauser et al., 2017; McVay et al., 2017b,a) proved computationally
intractable for the current dataset. Consequently, we utilized a splits network inferred with SPLITSTREE
v. 14.3 (Huson & Bryant, 2006) based on the maximum-likelihood (GTR+gamma) pairwise distance
matrix estimated in RAXML and the same datasets utilized for the singletons tree. Full phylogenetic

analysis details are in the Supplement (Methods S1).

Calibration of singletons tree

Branch lengths on the tree were inferred using penalized likelihood under both a relaxed model, where
rates are uncorrelated among branches (Paradis, 2013), and a correlated rates model (which
corresponds to the penalized likelihood approach of Sanderson, 2002), as implemented in the chronos
function of ape v 5.1 (Paradis et al., 2004) of R v 3.4.4 (“Someone to Lean On”’) (R-Development-
Core-Team, 2004). Nodes were calibrated in two different ways, either using eight fossil calibrations,
corresponding to the crown of the genus and seven key clades (Fig. S2a; Table 1), or more
conservatively as stem ages, using a subset of five fossils (Fig. S2b; Table 1). The two calibrations

(referred to as the ‘crown calibration’ and ‘stem calibration’ respectively) bracket what we consider to
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be plausible age ranges for the tree. A separate estimate of the best fit A for the correlated clock model
was made using cross-validation as implemented in the chronopl function of ape, and that value of A
was used for both the relaxed and correlated clocks. Comparison of [JIC was used to identify the best
fit model for each value of A. Analysis details are in the Supplement (Methods S1)

Transitions in lineage diversification rates were estimated using the speciation-extinction model
implemented in Bayesian Analysis of Macroevolutionary Mixtures (BAMM) (Rabosky, 2014); the
BAMMLtools R package was used for configuration and analysis of MCMC. Priors were set using the
setBAMMpriors function. Analyses were run for 4E06 generations, saving every 2000 generations,
with four chains per MCMC analysis. To visualize changes in standing diversity over time for the
different sections, we plotted lineage through time (LTT) plots by section against 3'°O levels reported

in Zachos et al. (2001) as a temperature proxy. Analysis details are in the Supplement (Methods S1).

Investigating the genomic landscape of oak evolutionary history

Introgressive status of loci for two known introgression events involving the Eurasian white oaks
(McVay et al., 2017b) and the western North American lobed-leaf white oaks (McVay et al., 2017a)
was assessed by calculating the likelihood of phylogenies inferred for each locus under the constraint
of the inferred divergence history (species tree) and the gene flow history at odds with that divergence
history, as inferred in the studies cited above. These two cases are of particular interest because they
are well studied, and lineage sorting has been ruled out in the above studies as an explanation of
incongruence between the alternative topologies we test. Position of loci with a relative support of at
least 2 log-likelihood points for one history relative to the other were mapped back to the Quercus
robur genome (Plomion et al., 2018). Analysis details are in the Supplement (Methods S1).

To identify relative phylogenetic informativeness of loci, two tests were conducted based on the
singletons tree. First, the ML topology was estimated in RAXML for each of 2,762 mapped, rootable
loci of at least 10 individuals that resolved at least one bipartition. Overall, locus trees resolved an
average of 4.48 (+/- 1.83 s.d.) nodes, with a maximum of 15 and a median of 4. These were compared
with the total-evidence tree using quartet similarities using the tqDist algorithm (Sand et al., 2014) in
the Quartet package (Smith, 2019). We used as our similarity metric the number of quartets resolved
the same way for both the locus tree and the whole singletons tree divided by the sum of quartets
resolved the same or differently. Then, these same locus trees were mapped back to the singletons tree
using phyparts (Smith et al., 2015), which identifies for all branches on a single tree how many

individual locus trees support or reject that branch. We tested for genomic autocorrelation in
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phylogenetic signal using spline correlograms (Bjgrnstad & Falck, 2001; Bjgrnstad, 2008), with each
chromosome tested independently. Analysis details are in the Supplement (Methods S1).

Results

RAD-seq data matrix

RAD-seq library preps and sequencing yielded a mean of 1.685E06 + 1.104E06 (s.d.) raw reads per
individual; of these, > 99.8% (1.683E06 + 1.104E06) passed quality filters. The total number of
clusters per individual prior to clustering across individuals was 101,895 + 58,810, with a mean depth
of 17.2 + 11.2 sequences per individual and cluster. Clusters with more than 10,000 sequences per
individual were discarded. Mean estimated heterozygosity by individual was 0.0135 £ 0.0027, and
sequencing error rate was 0.0020 + 0.0004. After clustering, a total of 49,991 loci were present in at
least 15 individuals each. Each individual in the final dataset posseses 6.48% =+ 2.48% of all clustered
loci. The total data matrix is 4.352 x 10° aligned nucleotides in width. The singletons dataset is
composed of 22,432 loci present in at least 15 individuals, making up a dataset of 1.970 x 10° aligned

nucleotides.

All-tips tree

The all-tips tree (Fig. S1) comprises 246 named Quercus species, of which 99 have a single sample.
The remaining 147 species have an average of 3.54 +£2.72 (s.d.) samples each. 97 of the 147 species
with more than one sample cohere for all samples, and only 13 have a taxonomic disparity index (TDI,
Pham et al., 2016) of 10 or more (Table S3), suggesting taxonomic problems beyond difficulties
distinguishing very close relatives. All but four are Mexican species or species split between the
southwestern U.S. and Mexico (see Discussion). Of the others, the largest TDI values are for Q. stellata
and Q. parvula of North America, Q. hartwissiana and Q. petraea of western Eurasia, all with a
complicated taxonomic history.

The topology of the all-tips tree closely matches previous analyses based on fewer taxa (McVay
et al., 2017b; Hipp et al., 2018; Deng et al., 2018) for all sections except sections Quercus and
Virentes. Unlike previous analyses, the all-tips topology embeds the long-branched section Virentes
within section Quercus, sister to a clade comprising the SW US and Mexican clade and the Stellatae
clade. This appears to be an artefact of clustering, as prior analyses of the same taxa do not reveal this
topology, and unconstrained analysis of these taxa also recovers this aberrant topology. As a

consequence, we consider the large-scale topology of the white oaks s... not to be reliable in the all-tips
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tree, and as this topology is well resolved in prior works (McVay et al., 2017b,a), we constrain the

singletons topology as described in the methods section.

Topology and timing of the oak phylogeny

Between the correlated and relaxed models of molecular rate heterogeneity, the correlated rates model
(i.e., the penalized likelihood approach of Sanderson 2002) is consistently favored using ['1IC except at
L of 0, when the models are identical (Table S4). Though dating estimates differ little from A =0to A =
10 (not shown, but reproducible using code archived for this paper), cross-validation shows lowest
sensitivity of taxon-removal on dating estimates at A = 1.

Analyses with the crown-age calibrations (Fig. 1, S3a) suggest an older origin of most sections than
proposed in prior studies (e.g., Cavender-Bares et al., 2015; Hipp et al., 2018; Deng et al., 2018), in
part because in the current study we had access to a more comprehensive picture of the fossil record in
oaks, including fossils used as age priors that predate those used in earlier studies. Section Virentes in
our analysis has a crown age of ca. 30 Ma, whereas Cavender-Bares et al. (2015) estimated the crown
age at 11 Ma. Even under the stem-age calibrations (Fig. 1; Fig. S3b, c), we estimate the crown age of
Virentes at close to the Oligocene-Miocene boundary (ca. 23 Ma), nearly twice as old as prior
estimates. Sections Quercus and Lobatae had an Oligocene crown constraint (31 Ma) in our previous
work (Hipp et al., 2018); in the current study, they were constrained to a mid-Eocene origin (45-48
Ma) for the crown calibration, while the stem calibration recovers a late-Eocene origin for the red oaks
(39 Ma) while the white oaks float down to a mid-Oligocene crown age (28 Ma). In the previous study
of section Cyclobalanopsis, a minimum age of 33 Ma was set as a constraint at the root of subgenus
Cerris, leading to a late Oligocene crown age for section Cyclobalanopsis (Deng et al., 2018); by
contrast we recover an early Eocene crown age (38 Ma) for the group under the crown calibration, late
Eocene (36 Ma) under the stem calibration. Given the high fossil density in Quercus (Table 1 and
references therein; also reviewed in part in Denk & Grimm, 2009; Grimsson ef al., 2015; Denk et al.,
2017), the potential for alternative interpretations of their placement, and disparity among alternative
methods for modeling (Paradis, 2013; Donoghue Philip C. J. & Yang Ziheng, 2016), we leave an
investigation of a broader range of dating scenarios to later studies.

White oaks s.str. are estimated in the crown-calibration analysis to have arrived in Eurasia some
point in the Oligocene, close to the split between the section Ponticae sisters, which despite their
morphological similarity appear to have diverged from one another nearly twice as long ago as the
crown age of the Mexican white oaks; under the stem-calibration, the Eurasian white oaks are

approximately half the crown age of the Ponticae. By contrast with the two species of sect. Ponticae,
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the Mexican white oak ancestor gave rise to an estimated 80 species in approximately half the time.
The Roburoids had divided into a European and an East Asian clade by the early Miocene under the
crown calibration, the late Miocene under the stem calibration.

Under the diversification scenarios implied by both the crown and the stem calibrations (Fig. 1, 2),
there are four relatively recent and nearly simultaneous upticks in diversification: white oaks of Mexico
and Central America; the red oaks of Mexico and Central America; the Eurasian (Roburoid) white
oaks; and the Glauca, Semiserrata, and Acuta clades of section Cyclobalanopsis. In addition, the
Eurasian white oaks and the southeastern U.S. white oaks (the Stellatae clade) and red oaks (the
Laurofoliae clade) show a lesser increase in diversification rate in both analyses, and the clade of
section Ilex that includes the Himalayan and Mediterranean species shows an uptick in diversification
rate in the stem calibration. This result is robust to missing taxa, as we find essentially the same clades
increasing in rate even assuming the 40% of missing taxa in our study were missing at random from the
tree (Fig. S3a-c), with the addition of a portion of section I/ex and some of the eastern North American

taxa as high-rate clades under the global sampling proportions model.

Genomic arrangement of RAD-seq loci

A total of 39,860 loci aligned to at least one position on the oak genome. The 12
“pseudochromosomes” (inferred linkage groups, corresponding to the 12 Quercus chromosomes) as
well as 360 scaffolds that did not map to the linkage groups were targeted by these loci. A total of
19,468 loci mapped to a unique position on a scaffold placed to one of the 12 oak genome
pseudochromosomes, an average of 1,622.3 + 575.4 (s.d.) per chromosomes. Of these, 31.7% + 8.1%
overlapped with the boundaries of a gene model (Fig. 3), despite the fact that only 10.1% of the 716
Mb of the Quercus robur genome that fall within the 12 pseudochromosomes fall within the endpoints
of a gene model.

For the tests of introgression, 2,422 loci had taxon sampling appropriate to testing for
introgression involving Q. macrocarpa and Q. lobata (the Dumosae alternative topologies); 2,228 were
suitable to testing for introgression involving the Roburoid white oaks and Q. pontica (the Roburoid
alternative topologies); and 728 were suitable to testing both. Because we were interested in
investigating genomic overlap in support for different areas of the species tree, we limited ourselves to
the 728 loci that were potentially informative about both situations. Of these, 418 mapped to one
position on one of the Quercus robur pseudochromosomes; and of these, 297 exhibited a log-likelihood
difference of at least 2.0 between the better and more poorly supported topology for the Dumosae

hypothesis or the Roburoid hypothesis, or both (Fig. 4). There was no correlation between the Roburoid
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and Dumosae hypotheses (r = -0.0286, p = 0.4878), meaning that loci that support or reject either of the
Roburoid hypotheses do not correlate with a particular Dumosae hypothesis. Moreover, whether or not
a locus is located within one of the Q. robur gene models has no effect on whether it recovers the
introgression or the divergence history for the Roburoid oaks (366 = 0.6494, p = 0.4209) or the
Dumosae (F 415 = 0.0377, p = 0.8461).

Quartet similarity—the number of taxon quartets with a topology shared between trees over the
total number of quartets that both trees are informative about—between the RAD-seq individual-locus
trees and the singletons tree (Fig. S4) is similarly uninfluenced by presence in one of the gene models
presented in the Quercus robur genome (Plomion et al., 2018) (F 2542 = 0.0495, p = 0.8239) and shows
no evidence of genomic auto-correlation (Fig. S5). Rather, loci that support the tree are distributed
across the genome. The same is true using locus trees to investigate the support for selected nodes of
the phylogeny, all strongly supported (bootstrap support > 95% for all nodes tested; Fig. S1) (Fig. 5).
The 2762 RAD-seq locus trees made 4,745 branch-level support claims and 27,283 conflict claims on
the singletons tree, of which 6,409 total claims pertain to the nodes investigated, ranging from 107 to
1,055 per node (427.3 £ 273.7; Fig. 5). The locus-by-locus incongruence is high at this level: the
proportion of loci concordant with each node averages 0.2395 + 0.2523, but the range is high, from
0.6879 for the genus as a whole to as low as 0.0075 for the Mexican red oaks and 0.0088 for the
Mexican white oaks (Table S5). There is no genomic autocorrelation in support vs. rejection of nodes
in the singletons tree by individual locus trees (as inferred using phyparts; Smith et al., 2015) (Fig. S6),
but the correlation between the crown age of clades investigated and the proportion of loci concordant
with the crown age is positive and moderately significant (r = 0.4996, p = 0.0579; Fig. S7). Three
clades stand out as outliers for high proportion of loci supporting divergence (outside the 95%
regression CI): the genus as a whole, and sections Cerris and Ilex. This widespread genomic
incongruence is reflected in broad network-like reticulation in the neighbor-net tree at the base of most

clades (Fig. 6).

Discussion

Our analyses demonstrate that the diversity of oaks we observe today reflects deep geographic
separation of major clades within the first 15 million years after the origin of the genus, and that
standing species diversity arose mostly within the last 10 million years, predominantly in four rapidly
diversifying clades that together account for ca. 60% of the diversity of the genus. Previous work has
demonstrated American oak diversity was shaped in large part by ecological opportunity, first by the

space left by tropical forests as they receded from North America, then by migration into the mountains
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of Mexico (Hipp et al., 2018; Cavender-Bares et al., 2018). The current study deepens this
understanding by demonstrating two increases in diversification rates in Eurasia: one in the Eurasian
white oaks, which arrived from eastern North America 7.5 to 18 Ma to low continental oak diversity,
and no closely related oaks; and one in the southeast Asian section Cyclobalanopsis, driven by
changing climates and the Himalayan orogeny (Deng et al., 2018). At the same time, our work
demonstrates widespread genomic incongruence in phylogenetic history, with alternative phylogenetic
histories interleaved across all linkage groups. Contrary to our hypothesis at the outset of this study,
there appear to be no regions of the genome that on their own define the entire oak phylogeny. Instead,
the primary divergence history of oaks (Crowl et al., In review; McVay et al., 2017b) knits together

and emerges from a patchwork of histories that comprise the oak genome.

Topology and timing of the global oak phylogeny

Our work indicates that by the mid-Eocene (45 Ma), all Quercus sections (fide Denk et al., 2017),
representing eight major clades of the genus, had originated with the possible exception of section
Quercus, which under the stem calibrations scenario arose at the Eocene-Oligocene boundary (33 Ma).
Following this compressed interval of crown radiation, diversification rates spiked in the late Miocene
to Pliocene, ca. 10 Ma (Fig. 2), primarily in southeast Asia, Mexico, and the white oaks of Eurasia. The
eight fossil calibrations that we utilize here, and the two alternative methods of calibrating the tree (Fig.
S3a-c), bracket what we consider to be a wide range of the plausible diversification times for the genus;
so that while additional calibrations and a wider range of rate models bear investigation, we consider
this overall finding for the shape and timing of oak diversification to be reasonable.

While Quercus arose at around the early Eocene climatic optimum (the earliest known Quercus
fossil is pollen from Sankt Pankratz, Austria, 47°45° N latitude, ca. 56 Ma; Hofmann et al., 2011), early
fossils range as far north as Axel Heiberg Island in far northern Canada, which at 79° (both modern and
paleolatitude in early Eocene; Scotese, 2014) is 20° further north than the northernmost oak populations
today. As it followed the cooling climate southward, the genus remained largely a lineage of the
northern temperate zone with some species of sections Virentes, Lobatae, and Quercus inhabiting
tropical climates; but even these possess physiological adaptations that reflect their temperate ancestry
(Cavender-Bares, 2019). In Eurasia, section Cyclobalanopsis dominates in subtropical evergreen
broadleaf forests (Deng et al., 2018), but the sister sections Cerris and Ilex are temperate to
Mediterranean. This climatic conservatism structures the geographic distribution of oak clades at
several levels. Geographic patterns among and within major clades in the American oaks (subg.

Quercus) have already been studied in detail, with geographic differentiation among the western U.S.,
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the eastern U.S., and the southwestern U.S. and Mexico / Central America in each of two sections
approximately simultaneously (Hipp et al., 2018). The current phylogeny makes clear that in the
Eurasian white oaks of sect. Quercus, the Roburoid clade, the morphologically distinctive
Mediterranean, dry-adapted species often treated as subsection Galliferae (e.g., Tschan & Denk, 2012)
are distributed among all four subclades, suggesting that adaptations to the Mediterranean climate are
convergent within the Roburoid clade; as discussed below under Rapid diversification of the Eurasian
white oaks, it is geography rather than ecology or morphology that defines clades: species within clades
are mostly separated by ecology, not geography. Likewise, the western Eurasian members of section
llex form an inclusive subtree, in which the two widespread Mediterranean species Q. coccifera and Q.
ilex are clearly separated and placed sister to the montane Asian clade. The geographically most distant
species of the section are also genetically most distinct (Fig. 6). Even within clades, geographic
structuring is evident. In section Cerris, for example, the east and west Eurasian species group in sister
clades; within these latter, the western Mediterranean Q. crenata and Q. suber ‘corkish oaks’, the Near
East ‘Aegilops’ oaks (Q. brantii, Q. ithaburensis, Q. macrolepis), and the remaining central-eastern
Mediterranean members of the section are clearly separated. Within sect. Quercus, the North American
Prinoids and Albae form a grade, reflecting diversification in North America predating dispersal of the
Roburoid ancestor back to Eurasia. Once established in Eurasia, this lineage then diverged into East
Asian and western Eurasian sister clades, ca. 10 My after isolation from its North American ancestors.
Geography is imprinted in the oak phylogeny across clades, time periods, and continents.

Despite the older crown-age inferences in the current study in comparison to the RAD-seq
studies of 2015-2018, relative dates in the present study confirm earlier results that the American oaks
increased in diversification rate as they entered Mexico (in both red oaks and white oaks). It broadens
this perspective with a global sample, providing evidence that the relative diversification rate of the
Glauca, Acuta, and Semiserrata clades of the semitropical southeast Asian section Cyclobalanopsis is
comparable to if not higher than the Mexican diversification. To a lesser extent, the Eurasian white
oaks (the Roburoid clade) also show an increased rate of diversification. It is worth noting that the
crown age of the Roburoid clade as a whole may be younger than our inferences, as fossil data raise
some questions as to whether the Old World Roburoids were already isolated by the early Oligocene.
Eocene sect. Quercus from Axel Heiberg Island (Canada), for example, appears to be closely allied
with East Asian white oaks, and Quercus furuhjelmi from the Paleogene of Alaska and central Asia
might belong to any of the modern New World or Old World white oak lineages, as might the early
Oligocene Quercus kodairae and Q. kobatakei from Japan (Camus, 1936, 1938; Tanai & Uemura,
1994; Menitsky, 2005; Denk & Grimm, 2010; Tschan & Denk, 2012). Whereas previous analysis of
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Fagus (Fagaceae) found an unambiguous deep split between North American and Eurasian beech
species that was also backed by fossils (Renner et al., 2016), the fossil data we have to date do not
conclusively pin down the divergence between the North American and Eurasian white oaks. By
contrast, the inferred early Miocene split between western Eurasian and East Asian white oaks 1s
compatible with fossil evidence (Denk & Grimm, 2010), lending support to the observed increase in

diversification rates observed in this study.

Taxonomy of the Mexican and Central American oaks
The general high species-coherence we observe in the all-tips tree provides strong evidence that oak
species, in general, are genetically coherent biological entities. The fact that 97 of the 147 species with
more than one sample cohere for all samples provides the broadest test to date of species coherence in
oaks. Among the species that do not exhibit coherence, the majority are from Mexico. Two sets of
examples suggest that the Mexican oaks, while having been the focus of extensive taxonomic study
(e.g., Trelease, 1924; Spellenberg & Bacon, 1996; Spellenberg et al., 1998; Gonzalez-Villarreal, 2003;
Valencia-A., 2004; de Beaulieu & Lamant, 2010), may harbor even higher species diversity than
current estimates. The examples of Quercus laeta (Gonzalez-Elizondo et al., In prep.) and Q. conzattii
(McCauley et al., In revision; McCauley & Oyama, In prep.) exemplify a problem likely to be common
in Mexican oaks. Both species have samples from northern and central to southern Mexico.
Researchers working with them have noticed that northern and southern populations differ and may
constitute separate species as our molecular data suggest. These samples are from two centers of
Mexican oak diversity (Torres-Miranda et al., 2011, 2013; Rodriguez-Correa et al., 2015) and may
reflect even higher species diversity in areas already known for high diversity. Interestingly, the
observed divergence between northern Mexico and the Jalisco and Oaxaca samples in these examples
appear to correlate with the formation of the Tepic-Zacoalco rift 5.5 Ma in the Jalisco block (Ferrari &
Rosas-Elguera, 2000) and not with climatic transitions during the Pleistocene, which has been argued
to be more a period of population movement than of speciation in the neotropics (Bennett ef al., 2012).
Notably, one of the youngest groups in the white oaks is located in the Sierra Madre Occidental, which
harbors great habitat diversity in relatively small areas (Torres-Morales et al., 2010). The rugged and
relatively young topography, a product of magmatism and subduction processes that lasted up through
12 Ma (Ferrari et al., 2018), and the convergence of temperate and tropical climates shaped the high
diversification rates.

Several other cases of confusing taxonomy involving Mexican and Central American species

are less clear. For example, the sect. Lobatae complex involving Q. eugeniifolia, Q. benthamii, Q.
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cortesii and Q. lowilliamsii, has a history of extensive taxonomic complication (Quezada Aguilar et al.,
2016). The current work provides evidence that the species constitute a complex meriting more
attention and draws attention to the possibility that Central American oak diversity and the role of
Central American geology in Neotropical oak diversification has been underestimated (Cardenes-Sandi
et al., 2019), overshadowed as they have been by interest in the Mexican oak diversification (Quezada
Aguilar et al., 2017). In the white oaks s.str. (sect. Quercus), cases such as Q. insignis and Q.
corrugata seem even more obscure. Field observations (HG-C) suggest subtle differences between Q.
insignis, a species of conservation concern from Jalisco, Oaxaca, Chiapas and Veracruz (Jerome,
2018), and Q. corrugata (from Chiapas and Oaxaca), but our molecular data are inconclusive. In
general, taxonomy of the recently diverged or still-diverging Mexican species is particularly
complicated because of extensive hybridization and introgression, even among relatively distantly
related species (Spellenberg, 1995; Bacon & Spellenberg, 1996; Gonzdlez-Rodriguez et al., 2004;

Bacon et al., 2011) and the dynamics of recent or ongoing speciation.

Rapid diversification of Eurasian white oaks
Among the long-studied oaks of Eurasia (e.g., Camus, 1936, 1938, 1952; Schwarz, 1993; Menitsky,
2005), the data presented here point to the important role of ecological and morphological convergence
among unrelated oaks. Phylogeny of the Eurasian white oaks (the Roburoid clade of section Quercus)
has not previously been addressed in detail, despite their importance to our understanding of oak
biodiversity and biology (cf. Kremer et al., 1991; Dumolin-Lapegue et al., 1997; Petit et al., 1997,
Leroy et al., 2017 and references therein). Previous work has sampled a maximum of 14 Roburoid
species (Hubert et al., 2014), but not recovered the monophyly of the clade, much less relationships
among species. Our study includes 23 of the estimated 25 Roburoid white oak species, the strongest
sampling to date. The late Miocene increase in diversification rate inferred in our study at the base of
the western Eurasian white oaks clade is a particularly exciting finding, as it is one of only four major
upticks in diversification inferred in our study. Our sampling of northern temperate white and red oaks
is almost complete, and we have accounted for sampling bias in our diversification analyses, making it
unlikely that the increase in diversification rate detected here is artefactual. The fact that the Roburoids
are a northern temperate clade makes their radiation notable.

The unexpected increase in diversification rate in the Roburoids parallels the sympatric
diversification of red and white oaks in North America, with divergence within clades and geographic
regions accompanying convergence between clades (Cavender-Bares et al., 2018). As in the Mexican

oak diversification (Torres-Miranda et al., 2011; Rodriguez-Correa et al., 2015), the western Eurasian
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white oaks are ecologically diverse, ranging from lowland swamp to Mediterranean scrub, steppe and
from mesic lowland forests to subalpine timberline (de Beaulieu & Lamant, 2010). The European
Roburoid clades are not readily diagnosable morphologically, and the morphological and ecological
convergence among clades has led to taxonomic confusion. The morphologically distinctive
Mediterranean, dry-adapted species (subsection Galliferae; cf. Tschan & Denk, 2012), for example, are
distributed among all four subclades. Conversely, Roburoid clades 1 to 4 show geographic sorting
whereas differentiation within clades commonly reflects ecological and climatic niche evolution along
with morphological adaptations (e.g. from deciduous large lobed leaves to small, brevideciduous,
unlobed leaves). Our study thus demonstrates that across the genus, ecological diversification within

clades has shaped diversification.

Genomic landscape of the global oak phylogeny

The current study uses mapped phylogenomic markers to demonstrate that the oak tree of life is etched
broadly across the genome. Previous work demonstrated that approximately 19% of RAD-seq loci were
associated with ESTs (Hipp et al., 2014), but that the EST-associated RAD-seq loci analyzed alone did
not yield a topology that was different or differently supported than the RAD-seq loci not associated
with EST markers, and that they were not differently apportioned to the base or the tips of the
phylogeny (which might have suggested that RAD-seq loci associated with coding regions were more
or less conservative or more or less homoplasious than the remainder). In the current study, 6,099
(31.3%) of RAD-seq loci in our dataset that map uniquely to one position in the genome do so in or
overlapping with a predicted gene in the Quercus robur genome (as expected from a methylation-
sensitive restriction enzyme; Rabinowicz et al., 2005; Pegadaraju et al., 2013). Our work demonstrates
that gene-based RAD-seq loci do not differ from non-gene-based RAD-seq loci in similarity to the
consensus tree or on introgression rates in the Roburoids and the Dumosae. Gene identity tells us little
or nothing about how reliably a region of the genome records phylogenetic history.

At the same time, non-significant correlation between loci that strongly differentiate alternative
topologies in the Dumosae and Roburoids suggests that these stories segregate nearly independently on
the genome. There is also no evidence of genomic autocorrelation of phylogenetic informativeness in
our study, despite the fact that our study has more mapped markers that significantly differentiate
topologies in at least one of these parts of the tree than a previous study investigating genomic
architecture of differentiation at the species level (N = 158 mapped markers with known Ggr; Scotti-
Saintagne et al., 2004). Our hypothesis that there are particular genes or regions of the genome that

define the oak phylogeny globally appears to be false: rather, the phylogenetic history of oaks is
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defined by different genes in different lineages, making evolutionary history of oaks a phylogenetic and
genomic mosaic. The effort to find a single best suite of genes for phylogenetic or population genetic
inference across the oak genus is thus unlikely to be successful, though markers can clearly be designed
for individual clades (Guichoux et al., 2011; Fitzek et al., 2018). What is perhaps most remarkable is
that this heterogeneity of histories covarying independently along the oak genome yields, in aggregate,
an evolutionary history of the complex genus that mirrors the morphological and ecological diversity of

living and fossil oak species.

Conclusion

Questions about the genomic architecture of population differentiation and speciation are generally
asked at fine scales (Leroy et al., 2017, 2018), at the point at which population level processes directly
shape genomic differentiation. But microevolution—comprising processes at the population level—
leaves an imprint in the phylogeny; when such impressions persist, they can often be detected using
topological methods that may be sensitive even to introgression along internal phylogenetic branches
(Eaton et al., 2015; Solis-Lemus & Ané, 2016; McVay et al., 2017b). With multiple Fagaceae genomes
now becoming available (Staton et al., 2015; Plomion et al., 2016, 2018; Sork et al., 2016; Ramos et
al., 2018), we may soon be able to detangle the mosaic history of oaks and understand what story each
gene tells. The current study makes clear that the phylogeny we unravel will neither be unitary nor told
by a small subset of the genome, as the regions of the genome capturing the divergence history for one
clade are not the regions capturing the divergence history of another. Understanding phylogenetic
history in the face of this variation is only one problem. It will be followed by a greater one: how do we
interpret the history of oak diversification in space and time if it is really a collection of diverse
histories from different regions of the genome, all reflecting different evolutionary pathways, all

equally real?
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Figure Captions

Fig. 1. Singletons tree, calibrated using eight crown calibration fossils (solid lines) or 5 stem-
calibration fossils (dotted lines). Single exemplars per species were analyzed using maximum
likelihood; multiple samples are included for some species to represent cryptic or undescribed diversity
(e.g., in Quercus arizonica, Q. laeta, Q. conzattii) or named infraspecies (e.g., varieties of Quercus
agrifolia and Q. parvula). Labels to the right of the tree indicate subgenera (black) and sections
(medium gray) following the latest taxonomy for the genus (Denk et al., 2017). Branch colors represent
net diversification rates estimated using reversible-jump MCMC in BAMM (Rabosky, 2014),
integrating over uncertainty in the timing and location of shifts in lineage diversification rates.
1jMCMC was conducted with explicit lineage-specific sampling proportions specified, and thus
accounts for the relatively low species sampling in the Mexican / Central American oaks and the
southeast Asian section Cyclobalanopsis. All bootstrap values > 100 except for nodes marked with *,
which are all 80-99 except for two: the common ancestor of Q. costaricensis and Q. humboldtii and the

MRCA of Q. myrsinifolia and Q. salicina both have bootstrap values < 5.

Fig. 2. Lineages-through-time (LTT) plot showing the diversification of five species-rich lineages
(sections Cerris, Cyclobalanopsis, Ilex, Lobatae, Quercus) within genus Quercus for the preferred
(early fossils treated as crown group representatives) and conservative dating (dimmed lines, fossils
treated as stem group taxa). Major tectonic events on the Northern Hemisphere (formation of the
Qinghai-Tibetan Plateau, QTP (Scotese, 2014; Botsyun et al., 2019); closure of the Turgai Sea) and
global climate context (based on marine stable isotope data; Zachos et al., 2001) shown for
comparison. Timing of onset of Arctic glaciation and viability of the North Atlantic Land Bridge for
oak migration are reviewed in Denk et al. (2010, 2013)and literature therein. Background colors
indicate Cenozoic epochs/periods (following Walker et al. (2018); from left to right: Paleocene,

Eocene, Oligocene, Miocene, Quaternary).

Fig. 3. RAD-seq loci by chromosome. RAD-seq loci mapping to a unique position on one of the twelve
Quercus robur genome pseudochromosomes are included in this figure and analyses reported in the
paper. Chromosome length is based on total sequence length of scaffolds assigned to the Q. robur
pseudochromosomes. Genomic position of loci overlapping vs not overlapping a gene was determined
by detecting overlap of the RAD-seq locus start and end points with start and end points of the 25,808

gene models reported for the Q. robur genome (Plomion et al., 2018).
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Fig. 4. Genomic distribution of loci favoring alternative placements of the Roburoid white oaks and of
Quercus lobata | Quercus macrocarpa. The 19,468 RAD-seq loci that map to a single position on one
of the Quercus robur pseudochromosomes are represented by gray bands; chromosomal areas of darker
gray have a denser mapping of RAD-seq loci. Mapped beside the chromosomes are the positions of
325 RAD-seq loci with a log-likelihood difference of at least 2 between trees constrained to be
monophyletic for the Roburoids vs those placing the Roburoids with Q. pontica (194 loci); those
differing by at least 2 between trees constrained to be monophyletic for both the Dumosae and the
Prinoids vs those placing Q. lobata or Q. macrocarpa in the opposing clade (290 loci); or both (159
loci). These two hypotheses were selected because the topological differences have been demonstrated
in prior studies (Crowl et al., In review; McVay et al., 2017b,a) to be a consequence of introgression,
not lineage sorting alone. The relative mapping of these loci thus provides a study in the distribution of
loci that are informative about population divergence history vs. ancient introgression in two closely
related clades. The mismatch between loci (r = -0.0286, p = 0.4878) suggests that introgression is not

genomically conserved.

Fig. 5. Loci congruent vs. discordant with key nodes of phylogeny. An average of 123.9 (£ 178.9)
RAD-seq locus trees are informative about each of the 15 named clades represented in this figure. Dark

bands indicate RAD-seq loci that support a node; light bands indicate loci that conflict with it.

Fig. 6. Neighbor-net, planar (meta-)phylogenetic network based on pairwise ML distances. Members of
the major clades with unambiguous (tree) support (cf. Fig. 1) are clustered. All currently accepted
sections are color-coded; edge bundles defining neighborhoods corresponding to sections and infra-
sectional clades are colored accordingly. Main biogeographic splits within each section are indicated by
dotted gray lines. The graph depicts the variance in inter- and intra-sectional genetic diversity patterns.
The most genetically unique clades within each subgenus (sect. Lobatae for subgenus Quercus; sect.
Cerris for subgenus Cerris) are placed on the right side of the graph; the distance to the spider-web-like
center of the graph, which in this case may represent the point-of-origin (being also the mid-point
between all tips and the connection of both subgenera) reflects the corresponding phylogenetic root-tip
distances observed in the ML tree. Tree-like portions may be indicative of bottleneck situations in the
formation of a clade; fan-like portions reflect potential genetic gradients developed during unhindered
radiation (geographic expansion; note e.g. the position of Texan white and red oaks; strict West-East

ordering within sect. Ilex), 1.e. absence of major evolutionary bottlenecks.
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Table 1. Fossil calibrations used in this study, with nodes indicated as most recent common ancestor of
selected taxa. Max and min indicate maximum and minimum ages for calibrations in Ma. Crown
calibration node and stem calibration node indicate the taxa whose MRCA are the calibration points for

the crown and stem calibration analyses respectively. References cited in Table S2.

Node Max Min Crown calibration node Stem calibration node
Quercus — genus 56 56 Quercus Quercus|Notholithocarpus
section Lobatae 47.87 47.87  Quercus_agrifoliajQuercus_emoryi Quercus_agrifolia]Quercus_arizonica
section Cyclobalanopsis 48.32 4832  Quercus_gilvalQuercus_acuta Quercus_gilvalQuercus_rehderiana
section Quercus 45 45  Quercus_lobatalQuercus_arizonica Quercus_ponticalQuercus_arizonica
section llex 47.8 378  Quercus_franchetiilQuercus_rehderiana
section llex - in part 355 33.4  Quercus_rehderiana|Quercus_semecarpifolia
section Cerris - in part 34 30  Quercus_cheniilQuercus_acutissima Quercus_franchetii|Quercus_cerris
section Cerris — European clade 23 205  Quercus_crenata|Quercus_cerris

Supplement

Fig. S1. All-tips tree split by page (separate PDF)

Fig. S2a. Fossil calibration points: crown calibrations

Fig. S2b. Fossil calibration points: stem calibrations

Fig. S3a. Crown calibrations, global sampling estimate (60%)

Fig. S3b. Stem calibrations with rates, assuming clade-specific sampling proportions.

Fig. S3c. Stem calibrations, global sampling estimate (60%)

Fig. S4. Quartet similarity between individual loci and the full, all-tips tree, mapped to chromosomes
Fig. SS. Splines by chromosomes - quartets

Fig. S6. Splines by chromosomes - phyparts

Fig. S7. Phypart components

Table S1. Sampling table (separate XLSX)

Table S2. Citations for fossil calibrations.

Table S3. Taxonomic disparity index (TDI) for all unique species
Table S4. ['1IC values for alternative calibrations

Table SS5. Phypart components and clade ages

Methods S1. Analysis details.
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