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Abstract 

Short-scale local adaptation is a complex process involving selection, migration and drift. The 

expected effects on the genome are well grounded in theory, but examining these on an empirical 

level has proven difficult, as it requires information about local selection, demographic history and 

recombination rate variation. Here, we use locally adapted and phenotypically differentiated 

Arabidopsis lyrata populations from two altitudinal gradients in Norway to test these expectations at 

the whole-genome level. Demography modelling indicates that populations within the gradients 

diverged less than 2000 years ago and that the sites are connected by gene flow. The gene flow 

estimates are, however, highly asymmetric with migration from high to low altitudes being several 

times more frequent than vice versa. To detect signatures of selection for local adaptation, we estimate 

patterns of lineage specific differentiation among these populations. Theory predicts that gene flow 

leads to concentration of adaptive loci in areas of low recombination; a pattern we observe in both 

lowland-alpine comparisons. Although most selected loci display patterns of conditional neutrality, 

we found indications of genetic trade-offs, with one locus particularly showing high divergence and 

signs of selection in both populations. Our results further suggest that resistance to solar radiation is 

an important adaptation to alpine environments, while vegetative growth and bacterial defense are 

indicated as selected traits in the lowland habitats. These results provide insights into genetic 

architectures and evolutionary processes driving local adaptation under gene flow. We also contribute 

to understanding of traits and biological processes underlying alpine adaptation in northern latitudes. 
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Introduction 

Population genetics theory by Haldane (Haldane 1930) and Wright (Wright 1931) laid the basis for 

predicting how selection and drift influence adaptive variation in the presence of gene flow. More 

recently, theoretical studies have shown that the interplay between these factors can lead to 

characteristic changes in genetic architectures underlying local adaptation (Griswold 2006; 

Kirkpatrick and Barton 2006; Bürger and Akerman 2011; Yeaman and Whitlock 2011; Akerman and 

Bürger 2014). An important prediction is the shift towards fewer large effect loci that are clustered 

in areas of reduced recombination, as correlated sites under strong selection are less easily swamped 

by gene flow (Lenormand and Otto 2000; Lenormand 2002; Kirkpatrick and Barton 2006; Bürger 

and Akerman 2011; Yeaman and Whitlock 2011; Akerman and Bürger 2014). The generality of this 

prediction has been shown with a continent-island model (single population adapting to a new 

environment under maladaptive migration) (Bürger and Akerman 2011; Akerman and Bürger 2014), 

as well as a framework where two connected populations experience selection towards distinct optima 

(Yeaman and Whitlock 2011; Akerman and Bürger 2014). The adaptive loci are also expected to 

show antagonistic pleiotropy, wherein a single locus is kept polymorphic by differential selection to 

contrasting environments, because under the alternative scenario of conditional neutrality (allele is 

selected for or against only in one environment, while being neutral in the other), the overall 

beneficial allele will be fixed at all populations over time (Yeaman and Whitlock 2011; Savolainen 

et al. 2013; Akerman and Bürger 2014; Wadgymar et al. 2017; Yoder and Tiffin 2017). The footprint 

of positive and negative selection on linked variants [i.e. genetic hitchhiking  (Maynard Smith and 

Haigh 1974) and background selection (Charlesworth et al. 1993), respectively] can be intensified by 

gene flow (Laurent et al. 2016; Pfeifer et al. 2018; Wang et al. 2018), but as migration also hinders 

adaptive differentiation, local adaptation under gene flow is restricted to environments where sharp 

differences in spatially variation selection can exist. For example, plant populations growing on toxic 

soils, either naturally occurring or contaminated by mine tailings, have exhibited such adaptation 
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(Antonovics and Bradshaw 1970; Sambatti and Rice 2006; Arnold et al. 2016; Aeschbacher et al. 

2017).  

 In the present study, we examine the genetic basis of local adaptation among lowland 

and alpine populations of a self-incompatible perennial plant, Arabidopsis lyrata. In mountainous 

environments, abiotic factors such as temperature and solar radiation can differ drastically among 

closely adjacent areas, producing steep environment gradients (Gonzalo-Turpin and Hazard 2009; 

Fischer et al. 2013; Kubota et al. 2015; Günther et al. 2016), not unlike those found on toxic soils. 

Indeed, we have recently demonstrated that A. lyrata individuals from different altitudes exhibit 

population specific phenotypes when grown at native common garden sites in Norway and in a novel 

habitat in Finland (Hämälä et al. 2018). Using whole-genome based demography modelling and a 

reciprocal transplant experiment, we further showed that despite evidence of gene flow, local alpine 

and lowland populations have highest fitness at their home sites, satisfying the local vs. foreign 

criterion of local adaptation (Kawecki and Ebert 2004). This study system and the combined 

knowledge of local adaptation and demographic history, as well as genome-wide recombination 

information from a high density linkage map (Hämälä et al. 2017), provides us a rare opportunity to 

study genomic patterns of adaptive differentiation under gene flow (Savolainen et al. 2013).  

Here, we extend our previous work to the genome level by examining variation 

potentially underlying the local adaptation. If the alpine adaptation evolved after recent colonization 

from the lowland sites, the high-altitude populations are expected to show lower genetic diversities 

and stronger population size contractions than the low altitude populations. The ongoing gene flow 

then leads us to look for evidence of antagonistic pleiotropy (loci showing high differentiation and 

signs of selection in both populations) and loci where reduced recombination contributes to 

maintaining polymorphisms. Furthermore, we expect to identify genes and biological processes 

underlying the lowland and alpine adaptation. We search for signs of selection by employing a 

measure for lineage specific differentiation, the population branch statistic (PBS) (Yi et al. 2010), on 

a set of whole-genome sequences. Unlike traditional differentiation measures, PBS can distinguish 
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the selected lineage by combining information from two closely related populations and an outgroup. 

As this method searches for allele frequency differences among populations, it is more likely to detect 

large effect loci instead of small effect ones underlying truly quantitative traits, because the latter 

signal may largely arise from linkage disequilibrium between populations (Latta 1998; Berg and 

Coop 2014). We then explore the potential effects of selection with coalescent and forward 

simulations, by utilizing parameter estimates available for these populations. 

We specifically address the following questions: What do diversity patterns tell us about 

the demographic history of these populations, and do we find footprints of gene flow on this variation? 

Do we find more selected sites in areas of reduced recombination in populations that receive more 

migrants? Are the adaptive loci more clustered under higher gene flow? Is the genetic architecture 

dominated by conditional neutrality or do we find loci exhibiting variation consistent with 

antagonistic pleiotropy?  And to what phenotypes and biological processes are the outliers associated 

with and do we find evidence of adaptive convergence between the two alpine areas? 

Results 

We used whole-genome data from 47 resequenced A. lyrata individuals. Most of the samples were 

collected from four populations growing in two alpine areas in Norway, each represented by a high 

and low group (Jotunheimen and Trollheimen; Fig 1): Lom, Jotunheimen (J1, 300 m.a.s.l.; n = 9), 

Spiterstulen, Jotunheimen (J3, 1100 m.a.s.l; n = 12), Sunndalsøra, Trollheimen (T1, 10 m.a.s.l; n = 

5) and Nedre Kamtjern, Trollheimen (T4, 1360 m.a.s.l; n = 9). The abbreviations come from Hämälä 

et al. (2018). For some of the analysis, we also included samples from Germany (GER; n = 6) and 

Sweden (SWE; n = 6) as comparison groups (Table S1). Data from the T4 population represent new 

collections for the current study, whereas other samples came from two earlier studies (Mattila et al. 

2017; Hämälä et al. 2018). 
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Figure 1. Locations and altitudes of the A. lyrata growing sites. 

Alpine populations harbour lower genetic diversities than lowland populations 

Within each area, the high-altitude populations had lower synonymous nucleotide diversities than the 

low-altitude populations (p < 2.2×10-16; Fig S1). Synonymous Tajima’s D estimates were also more 

highly positive in the high-altitude populations (p < 2.2×10-16; Fig S2), suggesting stronger population 

size contractions in their history. Differentiation levels, as estimated with FST, were lower between 

the neighbouring lowland and alpine populations than between other comparison pairs (Table S2). 

The Jotunheimen populations were less differentiated from each other (J1-J3 FST = 0.09) than 

populations from Trollheimen (T1-T4 FST = 0.17). 

 We then conducted a principal component analysis (PCA) and an admixture analysis to 

further evaluate relationships between the studied individuals. PCA showed distinct divisions, with 

individuals clustering according to populations and populations clustering according to geographical 

location (Fig 1A). Consistent with the FST estimates, the Trollheimen populations were more clearly 

separated from each other than populations from Jotunheimen. In fact, in a model with only the focal 

populations included, variation along the first two principal components did not separate the J1 and 
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J3 populations (separation happens at PC4; Fig S3). The admixture patterns were in most part 

concordant with the PCA results. In general, individuals from the low-altitude populations J1 and T1 

had higher admixture proportions (from their respective high-altitude neighbours) than individuals 

from the high-altitude populations J3 and T4 (from their low-altitude neighbours) (Fig 1C). 

 

Figure 2. Visualization of the population structure and demographic history. Besides the Norwegian 
populations (J1, J3, T1, T4), individuals from Sweden (SWE) and Germany (GER) are included for 
comparison. A: Genetic variation along the first two eigenvectors of a principal component analysis 
(PCA). All six populations included. B: PCA with only the Norwegian populations included. The 
percentage of variance explained by the principal components are shown in brackets. C: Estimated 
admixture proportions for the best supported number of ancestral populations (K = 6). D: Estimated 
divergence times and migration rates between the Norwegian populations. Times are in years, while 
assuming a generation time of two years. Estimates above the colored arrows indicate population 
migration rates (4Nem). 

Demography analysis reveals recent divergence and asymmetric gene flow 

To quantify the levels of gene flow, as well as to have an estimate of divergence times and effective 

population sizes, we conducted site frequency spectra based demography simulations in fastsimcoal2 

(Excoffier et al. 2013). Simulations involving the Jotunheimen populations J1 and J3 were done as 

part of an earlier study (Hämälä et al. 2018) and here we add parameter estimates for the Trollheimen 

populations T1 and T4. Maximum likelihood estimates (MLE) from the best-supported models (for 

model selection, see Table S3) indicated more recent divergence between T1 and T4 (307 generations 

ago) populations then between J1 and J3 (866 generations ago) populations. The Trollheimen groups 

also had lower effective population size estimates (Ne: T1 = 1862; T4 = 779) than the Jotunheimen 
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groups (Ne: J1 = 3370; J3 = 4295). Although the levels of gene flow were clearly higher among the 

Jotunheimen populations, population migration rates (4Nem) were heavily biased towards the low 

altitude populations in both alpine areas (~36× higher from J3 to J1 than from J1 to J3, and ~2.4× 

higher from T4 to T1 than from T1 to T4) (Fig 1D). As A. lyrata is insect pollinated, the asymmetry 

in gene flow could result from higher seed dispersal or pollinator movement from high- to low-

altitudes, but because allele frequencies reflect events over extended periods of time, we cannot rule 

out other modes of migration that may have been in effect during colonization of the alpine areas. 

For all MLEs and their confidence intervals, see Table S4. 

Genome-wide patterns of population specific selection 

We studied population specific differentiation to examine the effects of gene flow on neutral and 

selected variants and to ascertain important biological processes at each lowland and alpine habitat. 

To this end, we used population branch statistic (PBS) (Yi et al. 2010) to distinguish loci that have 

been under directional selection after the adjacent low- and high-altitude populations diverged. 

Selection patterns between the neighbouring populations were examined by calculating PBS 

estimates in 50 SNP non-overlapping sliding windows for population trios J1-J3-GER and T1-T4-

GER. Using neutral data simulated under the best supported demography models, we first generated 

~50,000 PBS samples for each population and used the distributions to find limits to neutral variation 

in the observed data. The simulations predicted lower median estimates and more tightly centred 

distributions in the low-altitude populations than in the high-altitude populations (Fig 3A). Overall, 

the observed estimates corresponded well with the simulated data. Within both areas, the low-altitude 

populations had lower median estimates than the high-altitude population and the distributions were 

less dispersed around the median (Fig 3A). The observed distributions did, however, have slightly 

longer lower and upper tails than the neutral ones, suggesting balancing and directional selection, 

respectively. Significant deviations from the neutral expectations were determined by comparing the 

observed estimates against quantiles of the simulated distributions. Our outlier detection model 

detected fewer selected loci in the low-altitude populations than in the high-altitude populations 
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(Table 1). Although all outlier windows tended to localize in areas with lower than average 

recombination rates (genome-wide average = 3.7×10-8 crossing-overs per base pair), this trend was 

more pronounced in the low-altitude populations (p < 0.006; Fig S4) (Table 1). As the theory further 

predicts that gene flow leads to clustering of the adaptive loci, we measured for each outlier window 

the distance to the closest adjacent outlier window. This measure, as opposed to using all between-

window distances, is less affected by distances between the potential clusters. In both altitude 

comparisons, outliers in the low-altitude populations were located marginally closer to each other 

than in the high-altitude populations (p < 0.02; Fig S5) (Table 1), but there was no significant 

correlation between distance and recombination rate (Pearson r = 0.022, p = 0.48; Fig S6). To explore 

additional factors that might explain the occurrence of the outliers in low recombination regions, we 

examined variation in gene densities and mutation rates across the A. lyrata genome. We obtained a 

proxy for mutation rate by estimating the rate of synonymous substitutions (dS) between A. lyrata and 

A. thaliana. A positive correlation was observed between recombination rate and gene density 

(Pearson r = 0.159, p < 2.2×10-16; Fig S7) and recombination rate and dS (Pearson r = 0.109, p < 

2.2×10-16; Fig S8), but neither gene density (p > 0.09; Fig S9) nor dS (p > 0.24; Fig S10) showed 

significant differences in outlier areas between the low- and high-altitude populations. Lastly, to 

assess differences in recombination rate estimates between populations while controlling for gene 

density and mutation rate variation, we fitted the following linear model to our Jotunheimen and 

Trollheimen outlier sets: recombination rate = gene density + dS + population. For both data sets, 

likelihood-ratio tests comparing the fit of a full model to a reduced model with the population variable 

removed indicated significant differences between the low- and high-altitude populations (p < 0.05). 

Thus, the fact that outliers in the lowland populations are found in areas with lower recombination 

rates is due to recombination itself, not correlated genomic characteristics.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/374900doi: bioRxiv preprint 

https://doi.org/10.1101/374900


 10 

 

Figure 3. Identification of putatively adaptive loci. A: Observed population branch statistic (PBS) 
distributions compared against simulated neutral samples. Median estimates and interquartile ranges 
are marked for the observed (bold) and simulated (plain) distributions. B: Number of annotated genes 
found within 5 Kb of the significant (q < 0.05) PBS outlier windows. 

Table 1. Number of outlier windows, within outlier window recombination rates and between outlier 
window distances for each population. 

 #outliers Recombination rate (×10-8) Distance (Kb) 
 50-SNP 1-SNP 50-SNP 150-SNP 50-SNP 150-SNP 

J1 
896 

(1.1%) 
2.14 

(2.11 – 2.15) 
2.03 

(1.91 – 2.18) 
2.04 

(1.79 – 2.28) 
3.18 

(2.69 – 3.67) 
11.69 

(7.63 – 14.38) 
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2.22 

(2.20 – 2.25) 
2.38 
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2.36 
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3.80 

(3.18 – 4.62) 
12.52 

(9.00 – 15.21) 

T1 
966 
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2.55 
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3.96 
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14.44 
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Median estimates and their 95% CIs are shown in different SNP-based window sizes. For the 1- and 
150-SNP windows, we assumed the same percentage of outliers as estimated for the 50-SNP 
windows. Median genome-wide recombination rate = 3.7×10-8. 

Evidence of allelic trade-off at XRN2 locus 

Most selection outliers were found only in a single population (Dataset S1), likely caused by selection 

acting only on a single population (conditional neutrality). Some loci were, however, shared between 

the neighboring low- and high-altitude populations, suggesting possible antagonistic pleiotropy: 42 

out of 1668 genes that were found within 5 Kb of an outlier window were shared between J1 and J3 

(based on 10,000 permutated data sets, the expected number of shared outliers is 22; p = 0.0003), 

while 67 out of 2359 were shared between T1 and T4 (43 expected; p = 0.0007). (Fig 3B). One locus, 

XRN2, particularly stood out as one of the top outliers in T1 and T4, caused by higher than neutral 
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differentiation between all three population comparisons (i.e. T1-T4, T1-GER and T4-GER). To 

examine whether the observed pattern can result from directional selection favoring different alleles 

in different populations (antagonistic pleiotropy), we examined allele frequencies, as well as pairwise 

nucleotide diversities (π) and Tajima’s D estimates around the gene. Reduced diversity surrounding 

the selected site is a classical signal of a rapid selective sweep (Maynard Smith and Haigh 1974), 

whereas negative Tajima’s D indicates skews in the site frequency spectrum due to excess of rare 

variants – a pattern also consistent with a selective sweep (Braverman et al. 1995). Allele frequencies 

showed clear evidence of differentiation, with T1 fixed for one allele and T4 nearly fixed for the 

alternative allele. Both populations also had reduced nucleotide diversities and negative Tajima’s D 

estimates in an ~8 Kb area around the gene, suggesting directional selection in each lineage (Fig 4). 

To evaluate the likelihood of the observed patterns under our estimated demography parameters, we 

used forward genetic models in SLiM 2 (Haller and Messer 2017) to simulate nucleotide diversities 

and Tajima’s D estimates under different selection scenarios. We ran the simulation 10 × Ne 

generations to approach mutation-drift balance and introduced the sweep mutation with beneficial 

selection coefficient αb = 4Nes = 100, 1000 and 10,000. To simulate the effects of a genetic trade-off, 

deleterious alleles with selection coefficient ad = ½ × – αb migrated into a population with rate 4Nem 

= 0.083 or 0.034. We then recorded the time in number of generations until π and D dropped below 

the initial neutral estimate. The simulations were conducted as single-origin hard sweeps and as 

multiple-origin soft sweeps. For the soft-sweeps, we assumed that 5% of the corresponding 

population carried the adaptive allele before the start of selection. Each simulation was repeated 500 

times and the median value retained. These simplified models show that under a hard sweep with 

strong trade-off (αb > 100 and αd
 < –50), π and D could respond to selection in both populations within 

the estimated time frame. The same, however, was not true for lower selection coefficients or 

multiple-origin soft sweeps in general (Fig 5).  
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Figure 4. Evidence of opposing selective sweeps between T1 and T4 populations at candidate loci 
XRN2. FST gives the relative and dXY the absolute allele frequency differentiation at variable sites. falt 
shows frequencies of the alternate non-reference SNP alleles. Nucleotide diversity π and Tajima’s D 
indicate a loss of heterozygosity and an excess of rare variants, respectively. Shading marks the 
coding area of the gene. 
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Figure 5. Insights into selection acting on XRN2. Nucleotide diversity π (×10-3) and Tajima’s D were 
simulated for 8 Kb area with parameters corresponding to T1 population. The simulations were ran 
as single-origin hard sweeps and as multiple-origin soft sweeps. Shown are median estimates from 
500 simulations. Shaded area marks the 95% confidence intervals for the estimated divergence time 
between T1 and T4 populations. For T4 population, see Fig S11. 

Biological processes show adaptive convergence 

Most genes that localized within 5 Kb of the outlier windows were population specific (Dataset S1). 

Among the significant outlier loci, 49 out of 1785 genes were shared between the two low-altitude 

populations (25 expected; p = 0.0001), whereas in the high-altitude populations, 92 genes were shared 

out of 2240 (38 expected; p = 0.0001). (Fig 3B). We then conducted a Gene Ontology (GO) 

enrichment analysis to summarize the biological processes associated with these outlier genes. In 

contrast to individual loci, significantly enriched GO terms showed clear correlations among the low- 

and high-altitude populations (Fig 6). In the J1 and T1 populations, ‘leaf development’, ‘shoot system 

development’ and ‘response to bacterium’ were among the highest enriched GO categories, whereas 

the J3 and T4 outliers were enriched for terms ‘response to radiation’, ‘response to light stimulus’ 

and ‘cellular response to stress’.  
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Figure 6. Highest enriched shared and unique GO terms with more than ten supporting genes among 
the significant (q < 0.05) PBS outliers. Terms with Bonferroni corrected p-value < 0.05 are marked 
with a star. 

Discussion 

We found indications of lower genetic diversities and stronger population size contractions in the 

high-altitude populations than in the low-altitude populations. Combined with the low divergence 

time estimates from the demography models, these results point towards recent colonization of the 

alpine habitats in southwestern Norway. In contrast, populations in regions not influenced by the last 

glacial maximum (~20,000 years ago) likely reflect adaptation on a longer time scales [e.g. A. halleri 
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in Japan (Kubota et al. 2015) and A. thaliana in Italy (Günther et al. 2016)], making our A. lyrata 

population set particularly suitable system for studying recent and reciprocal adaptation among 

populations connected by gene flow.  

Gene flow shapes patterns of neutral and adaptive variation 

The effects of gene flow on genetic patterns of local adaptation have been intensely studied at the 

theoretical level (Lenormand and Otto 2000; Lenormand 2002; Griswold 2006; Kirkpatrick and 

Barton 2006; Bürger and Akerman 2011; Yeaman and Whitlock 2011; Akerman and Bürger 2014), 

but the empirical support for number of key predictions are still weak or missing. For example, under 

higher gene flow, is adaptation attributable to fewer large effect loci that are clustered in areas of 

lower recombination? We approach these questions by examining the lineage specific differentiation 

patterns among populations that receive variable number of migrants. The demography modelling 

indicated highly asymmetric gene flow between the neighbouring low- and high-altitude populations, 

which combined with the PBS analysis makes this setup more closely resemble a continent-island 

model (Bürger and Akerman 2011; Akerman and Bürger 2014) than a two-population model of local 

adaptation (Yeaman and Whitlock 2011; Akerman and Bürger 2014). Consequently, the low-altitude 

populations J1 and T1 showed PBS distributions with lower and less dispersed overall estimates than 

the high-altitude populations J3 and T4, and our simulation-based outlier detection model predicted 

more adaptive loci in the high-altitude populations. Our results further showed that outlier windows 

in the low-altitude populations were found in areas with lower recombination rates than in the high-

altitude populations. The outliers were also slightly more densely clustered in the low-altitude 

populations, but the lack of correlation with recombination rates suggest that this pattern may be 

driven by other processes. In fact, if the genetic architecture underlying local adaptation evolves only 

through de novo mutations, a considerable amount of time may be needed for the signature patterns 

to form (Kirkpatrick and Barton 2006; Yeaman and Whitlock 2011; Yeaman 2013). As the observed 

differences have evolved recently, potentially during the last 1000 generations, patterns resistant to 

allele swamping (i.e. loci that in areas of low recombination and clustered loci) were likely present 
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as standing genetic variation before the selection shift, leading to them being retained under gene 

flow independently. Additionally, these signals may in part be influenced by the interaction of gene 

flow and purifying selection, as alleles deleterious in one environment are more readily removed from 

areas of low recombination (Hudson and Kaplan 1995). 

Similar results have previously been found among stickleback population pairs that 

exchange migrants at different rates (Marques et al. 2016; Samuk et al. 2017). However, by 

combining estimates of bidirectional gene flow with lineage specific selection analysis, we were able 

to examine these patterns not only between the Jotunheimen and Trollheimen study pairs, but also 

within them, making it possible to ascertain asymmetric effects and to better approach the genetic 

architecture underlying the local adaptation. Furthermore, although previous studies have shown a 

trend of outliers localizing in areas with lower than average recombination rates (Renaut et al. 2013), 

the effects of gene flow on this process have not (to our knowledge) been reported in any other plant 

taxa. 

Selection patterns suggest antagonistic pleiotropy between neighbouring populations 

A major question in local adaptation research concerns the role of antagonistic  pleiotropy in 

promoting adaptive divergence (Kawecki and Ebert 2004; Savolainen et al. 2013; Tiffin and Ross-

Ibarra 2014; Wadgymar et al. 2017; Yoder and Tiffin 2017), and this issue is particularly relevant 

when the focus is on closely adjacent populations (Yeaman and Whitlock 2011; Akerman and Bürger 

2014). A traditional way to search for genetic trade-offs is to measure presumably adaptive trait 

variation in contrasting environments and to find correlations between phenotypes and genotypes 

through genetic mapping (Fournier-Level et al. 2011; Ågren et al. 2013; Anderson et al. 2013; 

Leinonen et al. 2013). Although this approach has the potential advantage of linking phenotypes to 

fitness, focusing on preselected traits might cause important factors to be overlooked. Furthermore, 

the causative genes underlying the often-wide quantitative trait loci (QTL) intervals have rarely been 

discovered. Here, we used PBS scans to find loci showing patterns of opposing selection among the 

neighbouring low- and high-altitude populations, because under gene flow and unrestricted 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/374900doi: bioRxiv preprint 

https://doi.org/10.1101/374900


 17 

recombination, the frequency differentiation is only expected to be maintained by such fitness trade-

offs.  

Among the outliers potentially affected by antagonistic pleiotropy, we discovered one 

locus (XRN2) with clear evidence of allelic trade-off between the T1 and T4 populations. In A. 

thaliana, XRN2 is known to be involved in various RNA processing tasks (Zakrzewska-Placzek et al. 

2010), including posttranscriptional gene silencing (Gy et al. 2007); a defence response against viral 

mRNAs. Examination of nucleotide diversities and Tajima’s D estimates showed that the observed 

sequence patterns have likely resulted from two rapid and opposing selective sweeps, while the 

forward simulations indicated that selection has to be strong to produce these patterns in just under 

600 generations (the upper confidence interval for the divergence time estimate). Furthermore, as 

suggested by our simulations, the highly negative Tajima’s D estimates are likely the result of a single 

or very few haplotypes being swept to a high frequency in each population. The sweeps might, 

however, have started from a standing genetic variation, but due to low Ne and high drift, nearly all 

haplotypes were lost during the initial selection phase, producing hard sweep like patterns (Orr and 

Betancourt 2001; Hermisson and Pennings 2017). In the absence of migration, a hard sweep with 

strong selection would likely lead to a wider footprint than observed here (Kaplan et al. 1989; Kim 

and Stephan 2002), but empirical studies have suggested that ongoing gene flow and selection against 

the migrant alleles might lead to a signal that is highly localised [e.g. selection on gene controlling 

colour patterns in deer mice (Linnen et al. 2013; Pfeifer et al. 2018)]. We nevertheless acknowledge 

that this signal could more easily arise from selection that is older than our demography model 

suggests, but given the recent postglacial colonization of Scandinavia by A. lyrata (<10,000 

generations ago) (Mattila et al. 2017), a genetic trade-off accompanied by gene flow is still the most 

likely source for the observed patterns. Reduced recombination, on the other hand, is likely not a 

factor here, because our linkage map and the short area influenced by the selective sweeps indicate 

that this area of the chromosome recombines freely.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/374900doi: bioRxiv preprint 

https://doi.org/10.1101/374900


 18 

As shown by Martin & Lenormand (2006, 2015), conditional neutrality may actually 

be the dominant driver of local adaptation across all environments, because it can evolve through 

purely deleterious mutations (as opposed to antagonistic pleiotropy, which requires a beneficial effect 

in at least one environment). This fact is probably reflected in our results as well, as the footprint of 

background selection can sometimes be similar to genetic hitchhiking (Comeron 2017), but some 

trade-off loci are likely also identified as conditionally neutral due to lack of power to detect selection 

in both lineages (Anderson et al. 2013; Tiffin and Ross-Ibarra 2014; Wadgymar et al. 2017; Yoder 

and Tiffin 2017). The divergence between these populations might also be too recent for antagonistic 

pleiotropy to become more common, as it is a prediction based on longer evolutionary time scales 

(Yeaman and Whitlock 2011). Studies based on QTL mapping have suggested that genetic trade-offs 

may be more abundant between the long since diverged Swedish and Italian A. thaliana populations 

(Ågren et al. 2013; Price et al. 2018). However, in the absence of gene flow, these patterns are not 

due to interaction of migration and selection, but they might e.g. reflect genomic constraints. In any 

case, the apparent prevalence of conditional neutrality can result in freer spread of alleles, which 

might be beneficial for these A. lyrata populations upon climate change (Fournier-Level et al. 2011; 

Hämälä et al. 2018). 

Resistance to solar radiation is selected for in alpine environments 

Besides genome-wide patterns of adaptive differentiation, our results revealed genes and biological 

process that may underlie colonization of alpine and lowland habitats in southwestern Norway. A 

major factor associated with highland environments is the increase in solar radiation intensity (Körner 

2007). Indeed, earlier studies conducted on plants (Fischer et al. 2013), as well as on humans (Yang 

et al. 2017), have detected directional selection on UV resistance genes in high-altitude populations. 

Our analysis also discovered a UV resistance gene TT5 (Li et al. 1993) among the most significant 

outliers in J3 and a DNA break repair (a trait related to increased radiation levels) gene RAD23C 

(Farmer et al. 2010) was found in T4. Furthermore, genes involved in response to light stimulus were 

discovered in both populations, and the highest shared outlier between J3 and T4 was ADG1; a gene 
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thought to be important in acclimation to high light intensities in A. thaliana (Schmitz et al. 2014). 

As indicated by our GO enrichment analysis, loci involved in ‘response to radiation’ were more 

numerous than expected among the outlier loci in the two alpine populations. Additional highly 

enriched GO categories were ‘response to light stimulus’ and ‘cellular response to stress’, which 

might also be linked to adaptation under increased solar radiation. Selection on radiation resistance 

genes may not, however, be ubiquitous among highland populations, as shown by studies on A. halleri 

in Japan (Kubota et al. 2015) and on A. thaliana in Italy (Günther et al. 2016). Therefore, these results 

suggest that solar radiation imposed selection can be a significant driver of adaptive divergence in 

the northern latitudes, even though the high-altitude areas in Scandinavia are relatively low elevation 

compared to highest regions in the world.  

Vegetative growth and bacterial defence are important traits in lowland adaptation 

We also discovered interesting selection patterns in the low-altitude populations. Genes involved in 

leaf development and vegetative growth were found among the top outliers in J1 and T1, and the 

corresponding ‘leaf development’ GO category was significantly enriched in both gene sets. ‘Shoot 

system development’, another significantly enriched term, is especially interesting because we have 

previously shown that lowland populations generally produce longer flowering shoots than alpine 

populations, and the trait had a positive correlation with fitness at the Finnish sea level field site 

(Hämälä et al. 2018). Bacterial defence seems to be another important trait in the lowland habitats. 

The GO term ‘response to bacterium’ was significantly enriched in both lowland populations, and the 

top outlier in J1 (SRT2) is involved in that process (Wang et al. 2010). Selection on bacterial defence 

genes has previously been discovered among populations from different altitudes in A. halleri 

(Fischer et al. 2013; Kubota et al. 2015) and in A. thaliana (Günther et al. 2016), but as those studies 

relied on traditional divergence outlier methods, the authors could not infer whether the selection 

target had been the low- or the high-altitude lineage. Furthermore, XRN2, the gene exhibiting allelic 

trade-off between T1 and T4, is thought to be involved in immune responses in A. thaliana (Gy et al. 
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2007), but it also has a role in general RNA processing (Zakrzewska-Placzek et al. 2010), so the 

causal factor behind the trade-off may not be related to pathogen defence.  

 Despite the fact that many genes with same biological processes were shared between 

the two high- and low-altitude populations, almost all individual loci were population specific. This 

lack of correlation at the gene level likely indicates that populations living in similar environments 

have responded to same environmental pressures through different genetic pathways, suggesting 

either subtle differences in phenotypes under selection or that selection has acted on different genes 

underlying the same polygenic traits. Considering the recent divergence time estimate between 

populations from the two alpine areas (~2800 years ago) and the growing evidence of convergent 

local adaptation even among more distantly related groups (Arnold et al. 2016; Yeaman et al. 2016), 

these results suggest that adaptation to altitude specific environments in A. lyrata is not constrained 

to only few key genes, which might further aid adaptation to future climates. 

Conclusions 

By studying recently diverged, phenotypically differentiated and locally adapted A. lyrata 

populations, we have gained novel insights into adaptive processes driving differentiation under 

ongoing gene flow. As predicted by theory, selection outliers in the lowland populations were located 

in areas with lower recombination rates than in the alpine populations. We also found a locus 

displaying clear footprints of strong opposing selective sweeps in the Trollheimen populations; a 

pattern likely caused by antagonistic pleiotropy. However, most selected loci showed indications of 

conditional neutrality, potentially reflecting the recent divergence between these populations. 

Phenotypes associated with the outliers further revealed biological processes that may underlie recent 

alpine and lowland adaptation in northern Europe. These results contribute to understanding of 

processes driving adaptive differentiation under gene flow, as well as of traits and biological 

processes underlying alpine adaptation in northern latitudes. 
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Materials and methods 

Study populations 

We studied altitude adaptation among Norwegian Arabidopsis lyrata populations from two alpine 

areas (Jotunheimen and Trollheimen). Both areas were represented by one low- and one high-altitude 

population (Fig 1; Table S1). Based on patterns of microsatellite variation, populations within both 

alpine areas form distinct genetic clusters (Gaudeul et al. 2007). The fitness and phenotypic variation 

of these populations were previously studied in Hämälä et al. (2018). In that study, the areas were 

represented by four populations, which were abbreviated as J1 to J4 and T1 to T4. Here, we retain 

the naming convention and call the populations J1 (300 m.a.s.l), J3 (1,100 m.a.s.l), T1 (10 m.a.s.l) 

and T4 (1360 m.a.s.l). The distance between the J1 and J3 growing sites is approximately 25 km, 

whereas the approximate distance between T1 and T4 is 30 km. The two alpine areas are roughly 100 

km apart (Fig 1). We previously showed that individuals from J1 and J3 exhibited local superiority 

when grown at reciprocal common garden sites in Norway. The T1 and T4 individuals were not 

planted at their local environments, but when grown at common garden in Finland, they expressed 

phenotypic differences consistent with altitude adaptation (Hämälä et al. 2018).  

Whole-genome sequencing 

Whole-genome data from two previously published studies were used (Mattila et al. 2017; Hämälä et 

al. 2018): nine individuals from J1, 12 from J3 and five from T1. For the present study, we also 

sequenced nine individuals from T4 population, which exhibited more high-altitude specific 

phenotypes (earlier flowering start and shorter flowering shoots, as well as higher fruit production) 

in our field experiments than the previously sequenced T3 population (Hämälä et al. 2018). In 

addition, a German population (abbreviated as GER) consisting of six individuals was used as an 

outgroup in the selection scan (see ‘Selection scan’) and the German and a Swedish population (SWE; 

consisting also of six individuals) were used as comparison groups in admixture and principal 

component analysis (see ‘Analysis of genetic diversity and population structure’). The German and 

Swedish individuals, as well as five individuals from J3, came from Mattila et al. (2017), whereas the 
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other previously sequenced individuals were from Hämälä et al. (2018). In all three studies, DNA 

was extracted from fresh leaves using NucleoSpin Plant II kits (Macherey-Nagel), the libraries for 

Illumina whole-genome sequencing were prepared with NEBNext master mix kits (New England 

Biolabs), and the sequencing was done with Illumina HiSeq2000 (Mattila et al. 2017) and HiSeq2500 

(Hämälä et al. 2018; this study) in Institute of Molecular Medicine Finland, University of Helsinki, 

using PE100 chemistry. The median read coverage per individual ranged from six to 25. The low 

coverage in some individuals combined with the variable nature of the short-read sequencing means 

that information contained in large part of the data set is insufficient to call genotypes with high 

confidence (Nielsen et al. 2011). Therefore, to lessen the bias caused by uncertain genotypes, we 

adopted a SNP call free approach and based all estimated statistics on genotype likelihoods. 

Sequence processing and allele frequency estimation 

Low quality reads and sequencing adapters were removed using Trimmomatic (Bolger et al. 2014). 

The reads were aligned to A. lyrata v1.0 reference genome (Hu et al. 2011) with BWA-MEM (Li and 

Durbin 2009). Duplicated reads were removed and indels realigned with GATK (DePristo et al. 

2011). Likelihoods for the three possible genotypes in each biallelic site were then calculated with 

the GATK model in ANGSD (Korneliussen et al. 2014). We only used reads with mapping quality 

over 30, while sites needed to have quality over 20 and sequencing depth no less than 4×. Allele 

frequencies for the selection scan were then estimated directly from the genotype likelihoods using a 

maximum likelihood model by Kim et al. (2011). The strict filtering associated with SNP calling 

(commonly the ranking genotype needs to be ten times more likely than the others) can especially 

reduce the number of heterozygote calls in areas of low coverage (for a comparison between SNP 

calls and genotype likelihoods in our data, see Fig S12). The method used here circumvents that 

problem by taking the genotype uncertainty into account, producing unbiased allele frequency 

estimates even with the minimum threshold coverage (Kim et al. 2011; Nielsen et al. 2011).  
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Analysis of genetic diversity and population structure 

We studied genetic variation within populations by estimating two summary statistics with ANGSD 

(Korneliussen et al. 2014): nucleotide diversity π, which is a measure of the population mutation rate 

q = 4Neµ (Nei and Li 1979), and Tajima’s D, which approximates how far the population is from a 

mutation-drift balance (Tajima 1989). Principal component analysis (PCA) and admixture analysis 

were conducted to further assess the genetic relationships between the study populations. Genotype 

likelihoods were estimated for 4-fold degenerate sites with ANGSD and used as a input for PCAngsd 

(Meisner and Albrechtsen 2018). As suggested by the program documentation, we used the optimal 

number of PCs to define the likely number of ancestral populations (K). 

Demography simulations 

Site frequency spectra based coalescent simulations were used to estimate divergence times, 

migration rates and effective population sizes. Estimates involving the Jotunheimen populations J1 

and J3 were inferred as part of an earlier study (Hämälä et al. 2018), and here we conducted additional 

simulations for the Trollheimen populations T1 and T4. Briefly, derived site frequency spectra (SFS) 

were estimated for 4-fold degenerate sites in ANGSD (Korneliussen et al. 2014) and the demography 

models were fitted to these in fastsimcoal2 (Excoffier et al. 2013). We tested four different migration 

models between the Norwegian populations: no migration, unidirectional migration (from 1 to 2 and 

from 2 to 1) and bidirectional migration. To explore alternative explanations for the estimated 

migration parameters, we also tested whether asymmetric expansion after a bottleneck may lead to 

spurious signals that could be mistaken for gene flow. Simulation were repeated 50 times to acquire 

global maximum likelihood estimates for the parameters. Model selection was based on the Akaike 

information criterion (AIC) scores. We then used 100 nonparametric bootstrap SFS to define 95% 

confidence intervals for the parameter estimates. For more information about the demography 

analysis, see Hämälä et al. (2018). 

As our approach for examining the genetic architecture of local adaptation rely on 

accurately estimating the direction of gene flow, we evaluated the performance of the inference 
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method with simulated data. We used MLEs from the best supported demography models (Table S4) 

to generate 10,000 ´ 10 Kb fragments for each population. As with the observed data, SFS from the 

simulated samples were estimated with ANGSD and used as an input for fastsimcoal2. A reasonable 

correspondence between parameters estimates from the observed and simulated data sets (Table S5) 

confirmed that fastsimcoal2 performs reliably with our A. lyrata populations. 

Selection scan 

Selected sites were detected by scanning the chromosomes for areas of unexpectedly high 

differentiation  between the populations; a pattern indicative of directional selection (Lewontin and 

Krakauer 1973). The relative levels of differentiation were estimated with FST measure by Hudson et 

al. (1992): 1 – (HW / HB), where HW and HB are the mean number of differences within and between 

populations, respectively. However, here we used a more specific formula, developed for the two 

population, two allele case by Bhatia et al. (2013): 

𝐹"# =
(𝑝' − 𝑝))) − 𝑝'(1 − 𝑝')𝑛' − 1 − 𝑝)(1 − 𝑝))𝑛) − 1

𝑝'(1 − 𝑝)) + 𝑝)(1 − 𝑝')  

where 𝑛. is the sample size and 𝑝. is the minor allele frequency in the two populations to be compared. 

This estimator has been shown to be unbiased by unequal sample sizes and less prone to 

overestimating differentiation than other commonly used FST measures (Bhatia et al. 2013). The 

selection scan was conducted in SNP-based window sizes to prevent biasing the estimates with 

unequal SNP numbers. As the average linkage disequilibrium decays rapidly in these A. lyrata 

populations (Fig S13), 50-SNP non-overlapping sliding windows (median length ~3 Kb) provided a 

good trade-off between resolution and independence of the estimates. We also used 1-SNP and 150-

SNP (median length ~10 Kb) windows to confirm patterns related to genetic architecture of local 

adaptation. FST for a window of size n was calculated using the weighting method by Reynolds et al. 

(1983): 1 − (∑ 𝐻.1/∑ 𝐻.3)4.5'4.5' . For lower number of markers (such as within windows), this 

approach is often more reliable than averaging the FST estimates over loci (Weir and Hill 2002; Bhatia 

et al. 2013). FST can, however, be inflated by reduced within-population nucleotide diversities, 
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brought on e.g. by background selection or lowered recombination (Charlesworth 1998; Cruickshank 

and Hahn 2014). For this reason, we also estimated absolute levels of differentiation between the 

populations; an index commonly called dXY (Nei 1987; Cruickshank and Hahn 2014). To make it 

compatible with allele frequencies estimated from genotype likelihoods, dXY for a window of size n 

was calculated by simply excluding the within-populations component of FST: 

𝑑78 =
1
𝑛9𝑝.'(1 − 𝑝.)) + 𝑝.)(1 − 𝑝.')

4

.5'
 

This measure is indifferent to within-population levels of diversity, but it can be biased by unequal 

sample sizes. Therefore, to balance the shortcomings of both FST and dXY, we only considered sites 

that were detected as outliers using both measures. 

A single differentiation measure, either FST or dXY, can detect localized selection, but it 

cannot distinguish which lineage has been the target. A recently developed method, population branch 

statistic (PBS) (Yi et al. 2010), overcomes this limitation by comparing differentiation estimates 

between two closely related populations and an outgroup. The FST and dXY values were first 

transformed into relative divergence times: 𝑇 = −ln(1 − 𝑋), where X is the differentiation measure. 

PBS for population 1 was then estimated as: 

PBS = 	𝑇') + 𝑇'B − 𝑇)B2  

The obtained value quantifies the magnitude of allele frequency change in a lineage 1 since its 

divergence from the closely related population 2 and the outgroup 3. Selection acting only on a single 

lineage would appear as higher than neutral differentiation between the focal populations (i.e. T12) 

and one of the outgroup comparisons (e.g. T13), whereas different alleles being under selection in both 

focal populations would lead to high differentiation between all three population comparisons (i.e. 

T12, T13 and T23). By choosing a sufficiently different outgroup, we can reduce the chance that loci 

under differential selection between the focal populations are also under selection in the outgroup, as 

this can introduce bias into the analysis. Therefore, the German population was chosen as the 

outgroup over the Swedish one, because it diverged from the Norwegian populations around 30,000 
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generation ago (Table S4) and its natural growing environment is highly different from the Norwegian 

environments (Leinonen et al. 2009). Lineage specific selection patterns among the focal populations 

were estimated by calculating PBS estimates for population trios J1-J3-GER and T1-T4-GER. To 

further evaluate if selection acting on the outgroup lineage influences our results, we compared 

population specific PBS outliers (for explanation of the outlier detection, see next section) to FST and 

dXY outliers estimated between the corresponding focal population and the outgroup (e.g. PBS outliers 

in population J1 were compared against regular differentiation outliers between J1 and GER). Each 

comparison had minimal (~5%) overlap, suggesting that selection acting on the outgroup lineage 

causes no major bias in categorization of the putatively adaptive loci. 

Outlier detection  

We compared the PBS estimates against simulated samples to find sites that show higher 

differentiation than expected under neutrality. Neutral data were generated with coalescent models in 

ms (Hudson 2002), by taking into account the genome-wide recombination rates and the demographic 

history of these populations. This approach can produce realistic approximations of the null 

distribution, which generally leads to fewer false positives compared to methods based on specific 

population genetic or statistical models (Lotterhos and Whitlock 2015; Hoban et al. 2016). The 

relevant MLEs from the demography models (i.e. divergence times, migration rates and effective 

population sizes, going back to a most recent common ancestor of these populations) were used for 

each population comparison. Recombination rates for sequences that corresponded in size to observed 

window lengths were pulled randomly from a linkage map published in an earlier study (Hämälä et 

al. 2017). The map was constructed by crossing populations representing the two A. lyrata subspecies 

(one from Eurasia and one from North America) and it is not specific for the populations of the present 

study. However, we expect that in A. lyrata, as in many other species (Ritz et al. 2017), the large-

scale recombination patterns are conserved among populations, making the linkage map a suitable 

tool for the current study. The mutation rate was set to 7×10–9 following Ossowski et al. (2010). Using 

the simulated data, we acquired ~50,000 neutral PBS estimates for each population, which constituted 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/374900doi: bioRxiv preprint 

https://doi.org/10.1101/374900


 27 

the null distributions for outlier testing. We defined p-values as the proportion of neutral estimates 

that had the same or higher PBS value than the observed one. The p-values were subsequently 

transformed into false discovery rate based q-values (Storey and Tibshirani 2003) to reduce the bias 

caused by multiple testing. PBS estimates with q-value lower than 0.05 were considered significant. 

We have implemented this PBS scan and outlier detection method into a new C program, PBScan, 

available at: https://github.com/thamala/PBScan 

Analysis of putatively adaptive loci 

To examine processes potentially affecting localization of the adaptive loci, we estimated 

recombination rates, gene densities, and mutation rates for the outlier areas. We used the linkage map 

and A. lyrata v1.0 genome annotation (Hu et al. 2011) to estimate recombination rates and gene 

densities, respectively. Additionally, we used A. lyrata – A. thaliana whole-genome alignments from 

Mattila et al. (2017) to estimate the proportion of synonymous nucleotide substitutions per 

synonymous site (dS), which served as a proxy for mutation rate (Begun and Aquadro 1992). To 

evaluate whether outlier statistics differ between populations, distributions were compared with 

bootstrap based Kolmogorov-Smirnov test (Sekhon 2011) with 10,000 replicates.  

For one especially interesting locus, XRN2, we also examined what evolutionary 

scenarios may have produced the selection patterns by conducting simulations under different 

forward genetic models in SLiM 2 (Haller and Messer 2017). As in the case of neutral simulations, 

we used the estimated demography parameters, mutation rate from Ossowski et al. (2010), and 

recombination information from the corresponding area of the linkage map (r = 3.7´10-8). Selection 

parameters (4Nes = 100, 1000 and 10,000) were based on Pennings and Hermisson (2006). Code for 

the SLiM 2 simulations is available at: https://github.com/thamala/SLiM2_scripts 

Lastly, we examined to what biological processes these outliers are associated with 

using a Gene Ontology (GO) (Ashburner et al. 2000) analysis. Although GO enrichment analysis has 

known caveats, such as those related to difficulty in defining the null expectations for significant 

testing or spurious signals caused by linked selection, it remains one of the best tools for summarizing 
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functions among large quantities of genes (Gaudet and Dessimoz 2017). PANTHER tools (Mi et al. 

2017) was used to detect significantly enriched terms among genes that localized within or were 

closer than 5 Kb of significant (q-value < 0.05) outlier windows.  
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Figure S2. Whole-genome distributions of nucleotide diversity (π). Median estimates and 
interquartile ranges (in the units of ´10-3) are marked in each figure. Estimated in 50 Kb non-
overlapping sliding windows. The low-altitude populations have π estimates that are statistically 
higher than in the high-altitude populations (J1-J3 p-value = < 2.2´10-16, T1-T4 p-value < 2.2´10-16; 
one-sided bootstrap Kolmogorov-Smirnov [KS] test). 
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Figure S3. Whole-genome distributions of Tajima’s D. Median estimates and interquartile ranges are 
marked in each figure. Estimated in 50 Kb non-overlapping sliding windows. The low-altitude 
populations have D estimates that are statistically lower than in the high-altitude populations (J1-J3 
p-value < 2.2´10-16, T1-T4 p-value < 2.2´10-16; one-sided bootstrap KS test). 
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Figure S4. Variation along the third and fourth principal components in the Norwegian-only PCA. 
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Figure S4. Per base pair recombination rate distributions for the PBS outlier areas. Median estimates 
and interquartile ranges are marked in each figure. The low-altitude populations have recombination 
rate estimates that are statistically lower than in the high-altitude populations (J1-J3 p-value = 0.005, 
T1-T4 p-value = 0.0001; one-sided bootstrap KS test). 
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Figure S5. Distributions for between PBS outlier windows. Median estimates and interquartile ranges 
are marked in each figure. The low-altitude populations have distance estimates that are statistically 
lower than in the high-altitude populations (J1-J3 p-value = 0.01, T1-T4 p-value = 0.006; one-sided 
bootstrap KS test). 
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Figure S6. Correlation among within outlier window recombination rates and between outlier 
window distances. Pearson r = 0.022, p = 0.482. 
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Figure S7. Genome-wide correlation among per base pair recombination rates and per base pair gene 
densities. Pearson r = 0.159, p < 2.2×10-16. 
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Figure S8. Genome-wide correlation among per base pair recombination rates and the rate of 
synonymous nucleotide substitutions (dS). Pearson r = 0.109, p < 2.2×10-16. 
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Figure S9. Per base pair gene density distributions for the PBS outlier areas. Median estimates and 
interquartile ranges are marked in each figure. The gene density estimates do not differ statistically 
between the low- and high-altitude populations (J1-J3 p-value = 0.08, T1-T4 p-value = 0.16; two-
sided bootstrap KS test). 
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Figure S10. Synonymous nucleotide divergence distributions (dS) for the PBS outlier areas. Median 
estimates and interquartile ranges are marked in each figure. The dS estimates do not differ 
statistically between the low- and high-altitude populations (J1-J3 p-value = 0.245, T1-T4 p-value = 
0.212; two-sided bootstrap KS test). 
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Figure S11. Nucleotide diversity π (×10-3) and Tajima’s D estimates simulated for 8 Kb area with 
parameters corresponding to T4 population. The simulations were ran as single-origin hard sweeps 
and as multiple-origin soft sweeps. For the latter case, we assumed an initial frequency of 0.05 for 
the adaptive allele. Shown are median estimates from 500 simulations. Shaded area marks the 95% 
confidence intervals for the estimated divergence time between T1 and T4 populations. 
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Figure S12. PBS distributions generated with SNP calls and genotype likelihoods compared against 
simulated neutral samples. Data were filtered using the following settings: mapping quality 30, site 
quality 20, genotype quality 20 (SNP calls only), minimum coverage 4×. SNPs were called with 
Freebayes and the genotype likelihoods were estimated with the GATK model in ANGSD.  
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Figure S13. The decay of linkage disequilibrium (LD), as measured by r2 between SNP allele counts, 
with physical distance. 
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Table S1. Location information for the study populations. 
Population Location Lat (N) Lon (E) Altitude (m.a.s.l) 
J1 Lom, Jotunheimen 61°84´ 8°57´ 300 
J3 Spiterstulen, Jotunheimen 61°62´ 8°40´ 1100 
T1 Sunndalsøra, Trollheimen 62°66´ 8°62´ 10 
T4 Nedre Kamtjern, Trollheimen 62°74´ 9°30´ 1360 
SWE Stubbsand, Sweden 63°12´ 18°57´ 5 
GER Plech, Germany 49°39´ 11°29´ 400 

 
 
Table S2. Pairwise FST estimates for the study populations. 
Population J1 J3 T1 T4 SWE 

J3 0.086     
T1 0.267 0.276    
T4 0.305 0.312 0.165   
SWE 0.335 0.340 0.313 0.352  
GER 0.412 0.425 0.369 0.413 0.417 

Values are weighted genome-wide averages estimated for synonymous sites. 
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Table S3. The maximum likelihood function (L), Akaike information criterion (AIC) and Akaike 
weights (w) for each tested migration model. The best fitting models for each population comparison 
are in bold. 

Population model Migration model ln(L) AIC w 

J1-J3-GER 

No migration -812,518.216 1,625,050 3.48´10-19 

From J1 to J3 -812,517.500 1,625,051 2.12´10-19 

From J3 to J1 -812,514.302 1,625,045 4.24´10-18 

Bidirectional migration -812,473.580 1,624,965 1 

Bottleneck -817,705.393 1,635,433 0 

T1-T4-GER 

No migration -794,034.865 1,588,084 1.03´10-10 

From T1 to T4 -794,028.514 1,588,073 2.51´10-8 

From T4 to T1 -794,017.947 1,588,052 9.11´10-3 

Bidirectional migration -794,010.067 1,588,038 1 

Bottleneck -794,035.752 1,588,098 9.35´10-14 

J1-T1-GER 

No migration -819,066.549 1,638,147 1.26´10-15 

From J1 to T1 -819,031.510 1,638,079 0.73 

From T1 to J1 -819,032.371 1,638,081 0.27 

Bidirectional migration -819,059.187 1,638,136 3.07´10-13 

Bottleneck -820,688.170 1,641,398 0 

J3-T4-GER 

No migration -864,472.383 1,728,959 1 

From J3 to T4 -864,495.367 1,729,007 3.78´10-11 

From T4 to J3 -864,488.217 1,728,992 6.83´10-8 

Bidirectional migration -864,519.009 1,729,056 8.64´10-22 

Bottleneck -864,503.865 1,729,034 5.18´10-17 
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Table S4. Maximum likelihood estimates (MLE) and their 95% confidence intervals for the 
demography parameters estimated from the observed data. 
Parameter MLE 95% CI 
NJ1 3370 2691 – 4988 
NJ3 4295 3776 – 5788 
NT1 1862 1049 – 2481  
NT4 779 514 – 1171 
NGER 51,351 43,854 – 61,369 
MJ1-J3 0.266 0.077 – 1.503 
MJ3-J1 9.748 6.033 – 10.918 
MT1-T4 0.034 0.002 – 1.021 
MT4-T1 0.083 0.007 – 2.491 
MJ1-T1 0.004 0.001 – 0.322 
TJ1-J3 866 637 – 1097 
TT1-T4 307 214 – 602 
TJOT-TRO 1393 1022 – 1725 
TGER-NOR 27,813 23,450 – 33,279 

N is the effective diploid population size (Ne), M is the population migration rate 4Nem, and T is the 
divergence time in number of generations. JOT-TRO indicates the divergence between Jotunheimen 
and Trollheimen and GER-NOR the divergence between Germany and Norway. 
 
 
Table S5. Demography estimates compared between observed and simulated data. Shown are 
maximum likelihood estimates and their 95% confidence intervals. 
Parameter Observed Simulated 
NJ1 3370 (2691 – 4988) 4570 (866 – 10,188) 
NJ3 4295 (3776 – 5788) 5118 (1065 – 11,032) 
NT1 1862 (1049 – 2481) 2911 (657 – 8818) 
NT4 779 (514 – 1171) 1212 (290 – 3840) 
MJ1-J3 0.266 (0.077 – 1.503) 0.626 (0.010 – 5.253) 
MJ3-J1 9.748 (6.033 – 10.918) 10.895 (2.065 – 11.972) 
MT1-T4 0.034 (0.002 – 1.021) 0.006 (0.001 – 1.351) 
MT4-T1 0.083 (0.007 – 2.491) 0.055 (0.009 – 6.681) 
TJ1-J3 866 (637 – 1097) 755 (42 – 934) 
TT1-T4 307 (214 – 602) 237 (117 – 848) 

N is the effective diploid population size (Ne), M is the population migration rate 4Nem, and T is the 
divergence time in number of generations.  
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