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Pleiotropy refers to the phenomenon of a single mutation or gene

affecting multiple distinct phenotypic traits and has broad impli-

cations in many areas of biology. Due to its central importance,

pleiotropy has also been extensively modeled, albeit with virtually

no empirical basis. Analyzing phenotypes of large numbers of

yeast, nematode, and mouse mutants, we here describe the geno-

mic patterns of pleiotropy. We show that the fraction of traits

altered appreciably by the deletion of a gene is minute for most

genes and the gene–trait relationship is highly modular. The stan-

dardized size of the phenotypic effect of a gene on a trait is ap-

proximately normally distributed with variable SDs for different

genes, which gives rise to the surprising observation of a larger

per-trait effect for genes affecting more traits. This scaling prop-

erty counteracts the pleiotropy-associated reduction in adaptation

rate (i.e., the “cost of complexity”) in a nonlinear fashion, resulting

in the highest adaptation rate for organisms of intermediate com-

plexity rather than low complexity. Intriguingly, the observed scal-

ing exponent falls in a narrow range that maximizes the optimal

complexity. Together, the genome-wide observations of overall

low pleiotropy, high modularity, and larger per-trait effects from

genes of higher pleiotropy necessitate major revisions of theoret-

ical models of pleiotropy and suggest that pleiotropy has not only

allowed but also promoted the evolution of complexity.
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Pleiotropy occurs when a single mutation or gene affects mul-
tiple distinct phenotypic traits (1). Pleiotropy has broad impli-

cations in genetics (1–3), development (4, 5), senescence (6), dis-
ease (7, 8), and many evolutionary processes such as adaptation (2,
9–13), maintenance of sex (14), preservation of redundancy (15),
and stabilization of cooperation (16). For example, the antago-
nistic pleiotropy theory of senescence asserts that alleles beneficial
to development and reproduction are deleterious after the re-
productive age and cause senescence, which may explain why all
species have a limited life span (6). Pleiotropy is the main theo-
retical reason behind the hypothesis that morphological evolution
occurs more frequently through cis-regulatory changes than
through protein sequence changes (9), as the former are thought to
be less pleiotropic than the latter. Pleiotropy also has important
implications in human disease, because many genetic defects each
affect multiple phenotypic traits. For instance, mutations in the
homeobox gene ARX cause ambiguous genitalia and lissencephaly
(whole or parts of the surface of the brain appear smooth) (Online
Mendelian Inheritance in Man no. 300215).
Due to pleiotropy’s central importance in biology, several

mathematical models of pleiotropy have been developed and im-
portant theoretical results have been derived from the analyses of
these models (10, 11, 17, 18). For example, Fisher proposed that
every mutation affects every trait and the effect size of a mutation
on a trait is uniformly distributed (10). On the basis of this model
and the assumption that the total effect size of a mutation is con-
stant in different organisms,Orr derived that the rate of adaptation
of a population to an environment quickly declines with the in-
crease of the organismal complexity, which is defined by the total
number of traits (12). This “cost of complexity” would likely pro-

hibit the origins of complex organisms and hence is puzzling to
evolutionary biologists (19, 20).
Although pleiotropy has been examined in detail in a few genes

(21, 22), its genomic pattern is largely unknown, which seriously
limits us from evaluating mathematical models of pleiotropy, ver-
ifying theoretical inferences from thesemodels, and testing various
pleiotropy-related hypotheses in many fields of biology. In this
work, we compile from existing literature and databases pheno-
types of large numbers of yeast, nematode, andmousemutants.We
describe the genomic patterns of pleiotropy in these organisms and
show that these patterns drastically differ from any mathematical
model of pleiotropy. We further demonstrate that the cost of
complexity is substantially alleviated when the empirical patterns
of pleiotropy are taken into consideration and that the observed
value of a key parameter of pleiotropy falls in a narrow range that
maximizes the optimal complexity.

Results and Discussion

Most Genes Affect only a Small Fraction of Traits. To uncover the
genomic patterns of pleiotropy, we compiled three large datasets
of gene pleiotropy for the baker’s yeast Saccharomyces cerevisiae,
one for the nematode worm Caenorhabditis elegans, and one for
the house mouse Mus musculus (SI Methods). The first dataset,
yeast morphological pleiotropy, is based on the measures of 279
morphological traits in haploid wild-type cells and 4,718 haploid
mutant strains that each lack a different nonessential gene (23).
The second dataset, yeast environmental pleiotropy, is based on
the growth rates of the same collection of yeast mutants relative to
the wild type in 22 different environments (24). The third dataset,
yeast physiological pleiotropy, is based on 120 literature-curated
physiological functions of genes recorded in the Comprehensive
Yeast Genome Database (CYGD). The fourth dataset, nematode
pleiotropy, is based on the phenotypes of 44 early embryogenesis
traits in C. elegans treated with genome-wide RNA-mediated in-
terference (25). The fifth dataset, mouse pleiotropy, is based on
the phenotypes of 308 morphological and physiological traits in
gene-knockout mice recorded in Mouse Genome Informatics
(MGI). These five datasets provide qualitative information about
the traits that are affected appreciably by each gene. In addition,
the first dataset also includes the quantitative information of the
effect size of each gene on each trait. Even after the removal of
genes that do not affect any trait and traits that are not affected by
any gene, these five datasets each include hundreds to thousands of
genes and tens to hundreds of traits (Fig. 1). They are thus suitable
for examining genome-wide patterns of pleiotropy.
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In all five datasets, we observed that most genes affect only
a small fraction of traits and only a minority of genes affect many
traits (Fig. 1). The median degree of pleiotropy varies from one to
seven traits (or 1–9% of the traits considered) in these datasets.
The degree of pleiotropy measured by the percentage of examined
traits is expected to be more accurate for the three datasets in
which the same set of traits was examined in all mutants (Fig. 1 A,
B, and D). By bootstrapping traits, we found that the SDs of our
estimated median and mean degrees of pleiotropy are generally
small, indicating that these estimates are precise (Fig. 1). To ex-
amine the impact of the number of examined traits on the esti-
mated pleiotropy, we randomly removed 50 and 90% of the traits
from each dataset, respectively. We found that the mean and
median degrees of pleiotropy, measured by the percentage of traits
examined, remain largely unchanged (Table S1), suggesting that
further additions of traits to our data would not substantially alter
our results. We thus predict that the median number of traits af-
fected by a gene is no greater than a few percent of the total
number of traits in an organism. Furthermore, because gene
pleiotropy is largely owing to the involvement of the same mo-
lecular function in multiple different biological processes rather
than the presence of multiple molecular functions per gene (26),
randommutations in a gene will likely affect the same traits as the
deletion of the gene does, although the magnitude of the pheno-
typic effects should bemuch smaller. Consequently, the observable
degree of pleiotropy is expected to be even lower for random
mutations than for gene deletions. Our genome-wide results echo
recent small-scale observations from fish and mouse quantitative
trait locus (QTL) studies (27, 28) and an inference from protein
sequence evolution (29) and reveal a general pattern of low plei-
otropy in eukaryotes, which is in sharp contrast to some commonly
used theoretically models (10, 18) that assume universal pleiotropy
(i.e., every gene affects every trait) (Table S2).

Gene–Trait Relationships Are Highly Modular. The genome-wide
data also allow us to test the modular pleiotropy hypothesis, which
is important for a number of theories of development and evolu-
tion (30). Gene–trait relationships can be represented by a bi-
partite network of genes and traits, in which a link between a gene
node and a trait node indicates that the gene affects the trait (Fig.
2A). Modular pleiotropy refers to the phenomenon that links
within modules are significantly more frequent than those across
modules (Fig. 2B). Given that cellular functions aremodularly and
hierarchically organized (30), modular pleiotropy likely exists, al-
though it is not considered in commonly used models of pleiotropy
(10, 12, 18) (Table S2). Using a bipartite-network–specific algo-
rithm (31), we identified modules and estimated the modularity of
each gene–trait network. Because random networks of certain
structures also have nonzero modularity (32), we compared the
modularity of an observed network with that of its randomly

rewired networks, which have randomized links but an unchanged
number of links per node (32) (Fig. 2C). We then calculated the
scaled modularity of a network, which is the difference between
the observed modularity of a network and the mean modularity of
its randomly rewired networks in terms of the number of SDs (32)
(Methods). Our results show large scaled modularity (34–238) in
each of the five gene–trait networks examined (Fig. 2 D–H), pro-
viding definitive evidence for the modular pleiotropy hypothesis.
Our results remain qualitatively unchanged even when a random
50% of the traits in each dataset are removed (Table S3). The
modularity would be overestimated if the genetic correlations
among traits are biased upward in our datasets compared with the
complete datasets that include all possible traits. Although we do
not know whether this bias exists, to be conservative, we merged
traits whose genetic correlation coefficients are >0.7 (Methods).
We found that highly significant modularity is still present in each
of the five gene–trait networks (Table S3).

Genes Affecting More Traits Have Larger Per-Trait Effects. The yeast
morphological pleiotropy data contain quantitative information
about the phenotypic effect size of mutations, which is another
important parameter in genetics that has never been available at
the genomic scale. Using a standardized measure of effect size for
all traits (Z-score, defined by the phenotypic difference between
a mutant and the mean of the wild type for a trait in terms of the
number of SDs) (Methods), we obtained, for each yeast gene, the
frequency distribution of the effect sizes on the 279 morphological
traits. As exemplified in Fig. 3A, this distribution is approximately
normal for most genes; the actual distribution is not significantly
different from a normal distribution for 85% of the genes exam-
ined (5% false discovery rate in the goodness-of-fit test). This
observation is consistent with a commonly used model (18), but is
in contrast to another where the distribution is assumed to be
uniform (10, 12) (Table S2). In fact, the uniform distribution can
be rejected for every gene at the significance level of P= 5 × 10−7

(goodness-of-fit test). It is notable that the SD of the effect size
distribution varies greatly among genes (Fig. 3B), in contrast to
models that assume a constant SD among genes (10, 12, 18) (Table
S2). It is also notable that the typical effect size distribution has
a nearly zeromean, although aminority of genes exhibit positive or
negative means (Fig. S1).
If one considers only those traits that are significantly affected by

a gene, the total size of the phenotypic effects of the gene can be

calculated by the Euclidean distance TE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1Z

2
i

q

, where n is

the gene’s degree of pleiotropy defined by the number of signifi-
cantly affected traits and Zi is the gene’s effect on trait imeasured
by the Z-score (27). We estimated from the yeast morphological
pleiotropy data that the exponent b in the scaling relationship of
TE ¼ anb equals 0.601, with its 95% confidence interval of (0.590,
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0.612) (Fig. 3C). This exponent is significantly greater than that
assumed in any theoretical model (Table S2). For example, the
invariant total effect model (12) assumes a constant total effect
size (b = 0), whereas the Euclidian superposition model (11, 17,
18) assumes a constant effect size per affected trait (b= 0.5). Our
results thus indicate that the per-trait effect of a gene, estimated by
TE=

ffiffiffi

n
p

on the basis of the definition of the Euclidian distance, is
larger when the gene affects more traits. One can also measure the
total effect size by theManhattan distance (33)TM ¼ ∑n

i¼1jZij.We
found the exponent d in the scaling relationship of TM ¼ cnd to be
1.095, with its 95% confidence interval of (1.083, 1.107) (Fig. 3D).

Again, the observed d significantly exceeds that assumed in all
current models (0.5 in the invariant total effect model and 1 in the
Euclidian superpositionmodel; Table S2) and indicates larger per-
trait effects estimated by TM/n for genes affecting more traits. To
examine the robustness of the above results, we randomly removed
50 and 90% of the traits from the data, respectively. Our results
that b and d are slightly smaller when the number of traits used is
smaller (Fig. S2 A–D) suggest that, when more traits are examined
in the future, b and d would become slightly greater than the cur-
rent estimates. Our results are also robust to merging traits with
genetic correlations (Fig. S2 E and F). Because 279 morphological
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Fig. 2. High modularity of gene–trait bipartite networks. (A) A hypothetical

gene–trait bipartite network. A link between a gene and a trait indicates

that the gene affects the trait, and the thickness of the link indicates the

effect size. (B) Two modules are identified in the hypothetical gene–trait

network after the quantitative links are transformed to qualitative links (i.e.,

presence/absence) on the basis of whether an effect size is significantly

different from 0. (C) A randomly rewired network that has the same degree

distribution as the original hypothetical network shows no detectable

modular structure. The modularity and scaled modularity of the hypothetical

bipartite network are 0.41 and 3.9, respectively. D–H show the observed

modularity (blue arrows) and distribution of modularity for 250 randomly

rewired networks (red histograms) for the gene–trait networks of the (D)

yeast morphological, (E) yeast environmental, (F) yeast physiological, (G)

nematode, and (H) mouse pleiotropy datasets.
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Fig. 3. Scaling relationships between the total phenotypic effect size of

a gene and the degree of pleiotropy in the yeast morphological pleiotropy

data. (A) Examples showing the normal distribution of effect size over 279

traits. Two genes are chosen to show variable SDs of the normal dis-

tributions. (B) Distribution of the SD of the effect size for all 4,718 genes.
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traits were measured in each yeast mutant, in the above analyses,
a 5% false discovery rate was used as a cutoff to control for mul-
tiple testing in determining whether a trait is affected by a gene.
Our results remain qualitatively unchanged when the more con-
servative P= 5% after Bonferroni correction is used to correct for
multiple testing (Fig. S3).
We observed that the phenomenon of larger per-trait effects for

genes affecting more traits disappeared when the effect sizes of all
genes on all traits are randomly shuffled (Fig. S4). Thus, the
phenomenon is a property of the actual data rather than an artifact
of our analysis. It turns out that this phenomenon results from two
genome-wide features of pleiotropy described above: (i) a normal
distribution of effect sizes of a gene on different traits and (ii)
variable SDs of the normal distributions among different genes.
Comparing two genes both having normal distributions of effect
sizes but with different SDs, we proved mathematically that the
gene with the larger SD affects more traits (when a fixed effect-size
cutoff is applied) and has on average a larger per-trait effect
(SI Methods). In fact, the scaling relationships with the observed
b and d values can be largely recapitulated by using randomly gen-
erated effect size data, provided that a normal distribution with the
actual SD is used in generating such data for each gene (Fig. 3 E
and F; SI Methods). By contrast, when the same SD is used in gen-
erating the random effect size data for all of the genes (SI Methods),
we no longer observe larger per-trait effects for genes affectingmore
traits (b < 0.5 in Fig. 3G and d < 1 in Fig. 3H).
It is interesting to note that a recent mouse QTL study (27) also

reported b > 0.5, but a subsequent analysis (33) showed that,
owing to the likelihood of the inclusion of multiple genes per
QTL, the data can establish only b > 0, but not b > 0.5. Because
our yeast morphological pleiotropy data were collected from
strains that each lack only one gene, they are immune from the
above multiple-gene problem. Additionally, our observation that
the estimated b tends to be smaller when fewer traits are used
(Fig. S2) may also explain the unreliability (33) of the mouse QTL
study (27), which was based on a much smaller dataset. Further-
more, because our data were generated by examining all yeast
nonessential genes and a large number of traits, they are more
likely to reveal the general patterns of pleiotropy. It is important
to recognize that our results are based on pleiotropic effects of
genes (i.e., null mutations) rather than random mutations. How-
ever, our results likely apply to random mutations because the
effect sizes of random mutations in a gene are expected to be
proportional to the effect sizes of the gene (Methods).

Cost of Complexity Is Diminished with the Actual Patterns of

Pleiotropy. One of the most puzzling results from theoretical analy-
sis of pleiotropy is the cost of complexity conundrum (12). Using
Fisher’s geometric model (10), Orr (12) showed that the rate of
adaptation of an organism is U ¼ dw=dt ¼ −ð4kT2

E=nÞMwlnw,
where k is the product of the effective population size and the mu-
tation rate per generation per genome (in the functional part), TE is
the total effect size of a mutation defined earlier, n is the degree of
pleiotropy of a mutation, w is the current mean fitness of the pop-
ulation relative to the optimal, and M is a function of TE and n
(Methods). Although Orr assumed that each mutation affects all
traits of an organism and therefore n is also ameasure of organismal
complexity, we have shown that deleting a gene affects only a small
fraction of traits (Fig. 1). In other words, mutational pleiotropy is
much smaller than organismal complexity. Nonetheless, if the frac-
tion of traits affected by an average mutation is similar among dif-
ferent organisms (Fig. 1), mutational pleiotropy is still higher in
complex organisms than in simple organisms, because complex
organisms have more traits than simple organisms do. Hence, n in
the above formula may be interpreted as the effective organismal
complexity (i.e., the number of traits affected by an average muta-
tion), which is much lower than the actual organismal complexity
(i.e., the total number of traits). Empirical evidence suggests that k

may increase slightly with the level of organismal complexity, but
the exact relationship between them is unclear (19). To be conser-
vative, we here assume k to be independent of n. Note that although
we are using the original formula from Orr (12) for U, which was
based on a fixedmutation sizeTE for a given n, this formula is known
to be robust to variable mutation sizes (20). By comparing U among
organisms of different levels of complexity, Orr implicitly assumed
that the rate of adaptation is directly comparable among different
organisms, which requires further theoretical and empirical support.
Here, we follow Orr to compare U among different organisms.
If TE is independent of n, as assumed in the invariant total effect

model (12), or if TE is proportional to n0.5, as assumed in the
Euclidian superposition model (11, 17, 18) (Table S2), adaptation
rateU decreases with the degree of pleiotropy (or level of effective
organismal complexity) n (Fig. 4A), creating the cost of complex-
ity. Interestingly, the relationship between U and n changes when
the scaling exponent b > 0.5. It can be shown mathematically that,
when b> 0.5, an intermediate level of complexity yields the highest
adaptation rate (SI Methods) (Fig. 4A). The n value that corre-
sponds to the highest adaptation rate (noptimal) depends on several
parameters, including a (referred to as the mutation size, which is
the expected TE for mutations that affect only one trait), b, and w.
Smaller a and w values lead to larger noptimal (Fig. 4B). The null
mutations in the yeast morphological pleiotropy data yield a=2.9,
but we expect natural randommutations to have a much smaller a,
because most natural mutations affect the function of a gene only
slightly and thus have on average much smaller phenotypic effects
than gene deletions do (Methods). For example, if a = 0.01 for
natural randommutations, b= 0.6 as we have shown, and w= 0.9,
noptimal becomes 9 (Fig. 4A).
Numerically, we found that, when a and w are given, noptimal

reaches its maximum at an intermediate b value (Fig. 4C). By ex-
amining a large parameter space (10−8 ≤ a ≤ 10−2; 0.3≤ w ≤ 0.99),
we observed that the b value that offers themaximal noptimal occurs
in a narrow range between 0.56 and 0.79 (Fig. 4D), although
b potentially can vary from negative infinity to positive infinity.
It is important to confirm two key assumptions that Orr made in

deriving the formula for U (12). The first assumption is that phe-
notypic traits are independent from one another, as was originally
described by Fisher in his geometric model (10). As questioned by
Haldane and other authors, this assumption is often unmet (20, 34,
35). Nonetheless, it was later demonstrated that the geometric
model can still be applied when nonindependent traits are linearly
transformed to compound traits that are independent from one
another (35). We therefore performed a principal component
analysis of thewild-typephenotypicmatrix (SIMethods) tomake the
resultant principal component traits orthogonal to one another.
Applying the same linear transformation to the mutant phenotypic
matrix to obtain the compound phenotypic effects for each gene (SI
Methods), we found that our results of the Euclidian scaling coef-
ficients b> 0.5 and theManhattan scaling coefficient d> 1.0 remain
unchanged (Fig. S5). This finding also demonstrates that the phe-
nomenon that genes affecting more traits have larger per-trait
effectsholds evenwhen the traits are independent fromoneanother.
The second assumption of Orr is that the fitness effect of

a mutation should increase with its phenotypic effect size (TE).We
confirmed the validity of this assumption by showing that the fit-
ness effect of deleting a gene is significantly positively correlated
with its TE (Spearman’s ρ = 0.377, P < 10−10). This positive cor-
relation, coupled with the positive correlation between TE and the
degree of pleiotropy n (Fig. 3C), may explain the phenomenon that
deleting a more pleiotropic gene tends to cause a larger fitness
reduction (36).

Concluding Remarks. In summary, our genome-wide analysis of
pleiotropy in yeast, nematode, and mouse revealed a generally
low level of pleiotropy for most genes in a eukaryotic genome
and a highly modular structure in the gene–trait relationship.
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Furthermore, the quantitative morphological data from yeast
showed that genes affecting more traits tend to have larger per-
trait phenotypic effects. Although an organism potentially contains
many more traits than our data currently include, several analyses
indicated that our results are robust and therefore our conclusions
are expected to be largely unchanged even when most or all traits
of an organism are considered. These findings necessitate a major
revision of the current theoretical models that lack the above three
empirical features of pleiotropy (Table S2) and require reevalua-
tion of biological inferences derived from these models. For ex-
ample, these three features substantially alleviate the cost of
complexity in adaptive evolution. First, the generally low pleiot-
ropy means that even mutations in organisms as complex as
mammals do not normally affect many traits simultaneously.
Second, high modularity reduces the probability that a random
mutation is deleterious, because the mutation is likely to affect
a set of related traits in the same direction rather than a set of
unrelated traits in random directions (20, 37). These two proper-
ties substantially lower the effective complexity of an organism.
Third, the greater per-trait effect size for more pleiotropic muta-
tions (i.e., b > 0.5) causes a greater probability of fixation and
a larger amount of fitness gain when a beneficial mutation occurs
in a more complex organism than in a less complex organism.
These effects, counteracting lower frequencies of beneficial
mutations in more complex organisms (10), result in intermediate
levels of effective complexity having the highest rate of adaptation.
Together, they explain why complex organisms could have evolved
despite the cost of complexity. Because organisms of intermediate
levels of effective complexity have greater adaptation rates than
organisms of low levels of effective complexity due to the scaling
property of pleiotropy, pleiotropy may have promoted the evolu-
tion of complexity. Whether the intriguing finding that the em-
pirically observed scaling exponent b falls in a narrow range that
offers the maximal optimal complexity is the result of natural se-
lection for evolvability or a by-product of other evolutionary pro-
cesses (38) requires further exploration.

Methods
Modularity of Gene–Trait Bipartite Networks. Gene–trait relationships can be

represented by a bipartite network where the genes form one type of nodes

and traits form the second type of nodes. A link between a gene node and

a trait node indicates that the gene affects the trait. To separate modules, we

used BRIM (31), which is modified from thewidely used Newman definition of

modularity (39) for bipartite networks. For a given module partition, this al-

gorithm calculates the difference between the density of within-module links

and its random expectation. It then attempts to find themodule partition that

yields the highest difference, which is called the modularity of the network.

The rawmodularity score obtained from the algorithm has a theoretical range

between 0 and 1, with 0 meaning no modularity and 1 meaning very high

modularity. However, because even a random network may have a nonzero

modularity depending on the network size and degree distribution (32, 40),

wemeasure the level of networkmodularity by scaledmodularity (32), which is

the difference between the observed modularity and the mean modularity of

its randomly rewired networks divided by the SD in modularity among the

randomly rewired networks. The randomly rewired networks were generated

by randomly linking nodes while conserving the number of links of each node

and the total number of nodes of the original network. We also calculated

scaled modularity after merging traits whose genetic correlation coefficient is

>0.7. We chose this cutoff because, after the merge, no trait can genetically

explain more than one-half of the variance of another trait (0.72 = 0.49).

Scaling Relationships Between the Degree of Pleiotropy and the Total Effect

Size.Using theyeastmorphological pleiotropydata,we calculated thenumber

(n) of traits that are significantly affected by each gene. We then measured

a gene’s total phenotypic effect on these n traits, using either the Euclidian

distance (TE) or the Manhattan distance (TM). We expect the scaling rela-

tionships of TE ¼ anb and TM ¼ cnd . We estimated a, b, c, and d using the

curve-fitting toolbox in MATLAB, which employs a nonlinear least-squares

method to fit the observations with the power function. The confidence

intervals of the estimated parameters were also calculated byMATLAB, which

uses the decomposition of the Jacobian, the degree of freedom, and the root

mean squared error.

Because gene pleiotropy is largely owing to the involvement of the same

molecular function in multiple different biological processes rather than the

presence of multiple molecular functions per gene (26), random mutations in

a gene will likely affect the same traits as the deletion of the gene does, al-

though the magnitude of the phenotypic effects should be much smaller. For

simplicity, let us assume that the effect on a trait from a random mutation in
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Fig. 4. The “cost of complexity” is alleviated when the scaling exponent b > 0.5. (A) The relative adaptation rate as a function of the degree of pleiotropy (n)

changes with the scaling exponent b. The relative adaptation rate is calculated using Orr’s formula. The initial fitness w is set at 0.9 and the mutation size a is
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a gene is on average h times the effect on the same trait froma nullmutation in

the gene, where the effect is again measured by Z-score and 0 < h << 1. Let TE′

be the total effect size of the randommutation in Euclidean distance. It can be

shown that TE′ ¼ hTE ¼ ðahÞnb. Thus, the scaling relationship between the total

effect size of a randommutation andpleiotropy is the sameas that between the

total effect size of a null mutation and pleiotropy, except that themutation size

parameter for random mutations is h times that for null mutations.

Calculating the Rate of Adaptation. Assuming Fisher’s geometric model, Orr

(12) derived the formula for the rate of fitness increase during an adaptive

walk to the optimal to be U ¼ dw=dt ¼ − ð4kT2
E =nÞMw ln w; where

M ¼ ð1=
ffiffiffiffiffiffi

2π
p

Þ
Ðþ∞
x ðy − xÞ2e− y2=2dy, x ¼ TE

ffiffiffi

n
p

=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 2 ln w
p

Þ, and the other

variables are defined in the main text. In Orr’s calculation (12), TE was as-

sumed to be independent of n. In our model, TE scales with the degree of

pleiotropy by TE ¼ anb, where a is the mutation size parameter that corre-

sponds to the mutation size when the degree of pleiotropy is 1 and b is the

scaling exponent. We implemented numerical calculations of the above

formulas in MATLAB.
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