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Genomic prediction in contrast to a
genome-wide association study in
explaining heritable variation of complex
growth traits in breeding populations of
Eucalyptus
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Abstract

Background: The advent of high-throughput genotyping technologies coupled to genomic prediction methods

established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and

contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus

benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the

development of germplasm adapted to environmental stresses.

Results: Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities

using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the

infinitesimal model. Genomic prediction models using ~5000–10,000 SNPs provided predictive abilities equivalent

to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No

difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly

genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of

SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation

sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that

relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD)

was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita,

illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very

little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in

this study.
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Conclusions: This study provides further experimental data supporting positive prospects of using genome-wide data

to capture large proportions of trait heritability and predict growth traits in trees with accuracies equal or better than

those attainable by phenotypic selection. Additionally, our results document the superiority of the whole-genome

regression approach in accounting for large proportions of the heritability of complex traits such as growth in contrast

to the limited value of the local GWAS approach toward breeding applications in forest trees.
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Background
Species of Eucalyptus are the most planted hardwood

trees worldwide due to their multipurpose applica-

tions (e.g. pulp, paper, solid wood and bioenergy), su-

perior growth, high adaptability and wood quality [1].

Amongst the 800 catalogued species of Eucalyptus

L’Hér. (Myrtaceae), the “big nine” species within sub-

genus Symphyomyrtus account for over 95% of the

world’s eucalypt plantations [2]. Within this group,

Eucalyptus grandis Hill ex Maiden, E. urophylla S.T.

Blake, and E. camaldulensis Dehnh are the most eco-

nomically prominent ones in tropical regions, whereas

E. globulus Labill and E. nitens H. Deane & Maiden

are notable in temperate regions [1]. The extensive

intra- and interspecific diversity and sexual compati-

bility across species of Symphyomyrtus has been a

major advantage to breeders, as it allows rapid blend-

ing of gene pools that evolved separately under con-

trasting environmental pressures [3]. Nevertheless,

there is still ample opportunities for expanding the

use of some secondary species of Symphyomyrtus not

included among the “big nine”, to develop uniquely

adapted genetic material that combine rapid growth,

good wood quality and adaptation to environmental

stresses such as frost, heat and drought.

Eucalyptus benthamii Maiden & Cambage (Camden

white gum), a species of restricted occurrence in its

natural range in Australia [4], has showed great po-

tential to expand eucalypt commercial plantations into

subtropical regions subject to periodic frosts [5]. Eu-

calyptus benthamii planted as pure species or in

hybrid combinations has received increasing attention

in subtropical regions of southern Brazil and south-

eastern USA [6, 7]. Another species of marginal im-

portance until recently, Eucalyptus pellita F. Mueller

(large-fruited red mahogany), is highly suitable for

growth in year-round humid lowland equatorial cli-

mates under high temperatures, showing a particularly

high resistance to pathogens. Eucalyptus pellita is en-

demic to tropical regions in two disjoint natural for-

ests, in southern New Guinea and in northern

Australia [8]. It has shown fast growth in hybrid

combination with E. grandis providing resistance to a

number of fungal diseases [9].

Genomic selection (GS) was proposed by Meuwissen

et al. [10], and has gained increasing interest among for-

est tree breeders. This predictive methodology provides

an alternative approach to using marker-assisted selec-

tion (MAS) that relies on previously detected discrete

quantitative trait loci (QTL) in bi-parental mapping and

association genetics experiments. In forest trees, gen-

omic prediction began to be addressed by simulation

studies [11, 12] followed by experimental reports in

Pinus [13] and Eucalyptus [14] demonstrating the posi-

tive prospects of this breeding method. Since then, a

number of experimental genomic prediction studies have

confirmed the potential of GS in conifer species, includ-

ing Pinus [15–17] and Picea [18–21]. Recently, genomic

prediction models were evaluated across generations in

maritime pine (Pinus pinaster), [22, 23] demonstrating

even more encouraging perspectives of this novel ap-

proach to accelerate breeding of forest trees.

Several parameters were shown to affect GS prediction

accuracy in simulation studies, such as the number of

QTLs controlling the trait, trait heritability, the size of

the training population, number of markers and the ef-

fective population size (Ne) of the target population [11].

If an adequate density of markers is provided for a given

Ne, it is expected that most QTL will be in LD with at

least one marker and will be captured in predictive

models. Consequently, high-throughput and low-cost

genotyping platforms constitute an essential tool to

apply GS. The reduction of the effective population size

leads to increased relatedness between individuals and

more extensive LD in the population. Markers fitted in a

GS model will capture not only LD but also relatedness

between individuals in the training and validation sets.

An increase in prediction ability with enhanced related-

ness among the training and validation sets was shown

early on from simulation studies [24], and underscored

in all recent reviews on the perspectives GS in plant and

domestic animals breeding [25, 26]. Phenotypes of indi-

viduals closely related to the training population will be

better predicted over distantly related individuals.

In this study, we report the development of gen-

omic prediction models for growth traits in two

breeding populations of E. benthamii (n =505) and E.

pellita (n =732) using SNP data generated with the
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multi-species Eucalyptus EUChip60k SNP chip. Using

a genomic relationship matrix (GRM) we compared

the pedigree and genome-estimated breeding values

and narrow-sense heritabilities in the two populations.

Different Bayesian methods for predicting growth

traits were compared. The impact of variable numbers

of SNPs, different SNP sampling methods based on

their position in the genome, and the impact of re-

latedness on genomic prediction were also evaluated.

Finally, a genome-wide association analysis was car-

ried out on the same datasets to evaluate what would

be the ability to capture heritability and detect

discrete associations for complex growth traits in an

operational breeding population under selection.

Methods
Populations and phenotypic data

This study was carried out on progeny trials of popula-

tions of E. benthamii and E. pellita that are part of the

breeding program of EMBRAPA (Brazilian Agricultural

Research Corporation). The E. benthamii progeny trial

was composed of 40 seed sources, being 36 open-

pollinated (OP) half-sib families from wild Australian

populations and four bulked seed sources (two from

Australian populations, one from a first generation

breeding population established in Colombo, PR, Brazil

and one from a second-generation breeding population

planted in Candói, PR, Brazil). The complete E. bentha-

mii trial involved 2000 trees planted in May 2007 in

Candói, in a randomized complete block design with 50

blocks in single-tree plots (one progeny individual per

block for each one of the 40 seed sources). The experi-

ment was thinned three times (removing 600 trees in

March 2009, 700 in March 2010 and approximately 200

in December 2010) to eliminate trees with poor growth,

malformed stems and damaged plants. The population

underwent 25 heavy frosts recorded (temperature vary-

ing from −3.4 to −12.6 °C) in 58 months, between plant-

ing (May 2007) and field evaluation (February 2012) that

killed or affected the growth of many trees which were

therefore culled. For E. benthamii 508 trees were ultim-

ately phenotyped at age 56 months for the following

growth traits: Diameter at Breast Height (DBH, cm),

Total Height (HT, m) and Wood Volume (WV, m3)

(Table 1). The E. pellita breeding trial was composed of

24 OP maternal families derived from a second-

generation clonal seed orchard located in Mareeba,

Queensland, Australia, established with selections from

four provenances in the areas of Kiriwo, Serisa and Keru

in the Morehead district of the Western Province of Pa-

pua New Guinea. The experimental design was a ran-

domized complete block design with 24 families and 40

blocks in single-tree plots (960 trees total) planted in

February 2010 in Rio Verde, GO, Brazil. For E. pellita

phenotypic evaluations were made at age 42 months

(September 2013) for DBH, HT and WV (Table 1).

Genotyping and filtering

A total of 552 E. benthamii trees and 771 E. pellita trees

were genotyped using the Eucalyptus Illumina Infinium

EUChip60K [27]. The genotypic data were filtered to re-

move SNPs with call rate (CR) ≤ 90% and monomorphic

SNPs, therefore keeping all SNPs with Minimum Allele

Frequency (MAF) > 0 in the analysis. Because trees were

genotyped before the final field measurements, some

genotyped trees died, so that ultimately 505 individuals

of E. benthamii and 732 of E. pellita had full genotypic

and phenotypic data for further analyses. An alternative

SNP dataset was also generated by keeping only SNPs

MAF ≥0.05. With the objective of evaluating the effect

of LD-pruning on predictions, polymorphic SNPs

(CR ≥ 90% and MAF > 0 or MAF ≥ 0.05) were pruned

based on pairwise linkage disequilibrium (LD) estimates

using PLINK v1.9 [28], to generate a pruned subset of

SNPs that are in approximate linkage equilibrium (LE).

The LD based SNP pruning method was applied with a

window size of 100 Kbp, shifting the window by one

SNP at the end of each step and removing one SNP from

a pair of SNPs if LD was greater than 0.2 (plink command:

–indep-pairwise 100 kb 1 0.2).

Effective population size estimation, population structure

and LD analyses

Effective population size (Ne) was estimated based on the

linkage disequilibrium (LDNe) method implemented in

NeEstimator v2.01 [29] for each species. A random mating

model and MAF < 0.05 was used for excluding rare alleles

in LDNe. Confidence intervals for these estimates were ob-

tained using the parametric method in NeEstimator,

Table 1 General attributes of the breeding populations and

trials studied

Phenotypic data E. benthamii E. pellita

Total number of trees in trial 2000 960

Total number of open pollinated (OP)
families

40 24

Number of blocks 50 40

Number of individuals/OP family 10 32

Number of trees measured 508 747

Number of trees used in the analyses 505 732

Effective population size (Ne) estimated
from LD data

50 35

Age at phenotyping (yr) 4.6 3.5

Site Candói, PR Rio Verde, GO

Coordinates 25o43’00″S/
52o11’00″W

25o36’00″S/
52o03’00″W

Number of traits 3 3
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where the number of independent alleles is used as the de-

gree of freedom in a chi-square distribution. The genetic

structure for both eucalypt populations estimated based

on a Bayesian clustering method was determined with

STRUCTURE v2.2.4 [30] using only the LD-pruned SNPs

set. The individual structures were classified in K clusters

according to genetic similarity. The admixture model was

applied, with correlated allelic frequencies, using no previ-

ous population information. The number of tested clusters

(K) ranged from 1 to 10, and each K was replicated 10

times. The burn-in period and the number of Markov

Chain Monte Carlo (MCMC) replications were 100,000

and 200,000, respectively. The number of genetic groups

was determined based on the criteria proposed by Evanno

et al. [31] using the program STRUCTURE HARVESTER

v0.6.93 [32]. The software CLUMPP v1.1.2 [33] was used

to find consensus among the 10 most probable K interac-

tions. Principal component analysis (PCA) was performed

using SNPRelate R package [34], with only the LD-pruned

SNPs set. Analyses of linkage disequilibrium were per-

formed using LDcorSV [35]. Pairwise estimates of LD

were calculated by the classical measure of the squared

correlation of allele frequencies at diallelic loci (r2), as well

as correcting for bias due to relatedness and population

structure (r2VS), and adjusting it independently for re-

latedness (r2V) and for population structure (r2S). To esti-

mate the adjusted LD, the genomic relationship matrix

(GRM) was computed using the Powell method [36] im-

plemented in R. The population structure results were

based on the most probable value of K (K = 2). The LD

decay of r2 with distance in Kbp was fitted by a nonlinear

regression model between adjacent sites using the R script

by Marroni et al. [37]. To visualize patterns of LD decay

in the two eucalypts species, all the LD estimates (r2, r2V,

r2S, r2VS) were plotted up to a 100 Kbp distance.

Genomic and pedigree-based breeding value predictions

Prediction of breeding values by best linear unbiased pre-

diction (BLUP) [38] based on pedigree information

(ABLUP) was calculated using the expected genetic rela-

tionship between individuals. For the genomic estimated

breeding values the individual SNPs had their effects esti-

mated by adjusting all the allelic effects simultaneously

using Genomic BLUP (GBLUP) frequentist [39]. A 10-fold

cross-validation approach was used, defined as a random

subsampling partitioning of the data for each trait into

two subsets. The first subset with 90% of the individuals

was used as a training population to estimate the marker

effects. The second subset with the remaining 10% was

used as validation population, and had their phenotypes

predicted based on the marker effects estimated in the

training population. This process was repeated 10 times,

randomly selecting in each fold a different set of samples

as the validation population, until all individuals had their

phenotypes predicted and validated. Analyses of each trait

were carried out using the package rrBLUP [40] with the

following mixed linear model:

y ¼ Xbþ Zaþ e

where y is the phenotypic measure of the trait being an-

alyzed; X and Z are incidence matrices for the vectors

for parameters b and a, respectively; b is a vector of

fixed block effects; a is a vector of random additive ef-

fects and e is the random residual effect. The variance

structure of the model for pedigree-estimated breeding

values or simply estimated breeding values (EBVs) was

calculated with aeN 0;Aσ2a
� �

and the genomic-estimated

breeding values (GEBVs) with aeN 0;Gσ2a
� �

; where A is

a matrix of additive genetic relationships among indi-

viduals and G is a GRM estimated using the method

proposed by VanRaden [39]. The predictive ability

(rgy) was estimated as the correlation between the ob-

served and the genomic-estimated breeding values

(r(y,GEBV)). The narrow-sense heritability (h2) was

calculated as the ratio of the additive variance σ
2
a to

the phenotypic variance σ
2
y h2 ¼ σ

2
a=σ

2
y

� �
.

Bayesian methods

The SNP effects were estimated using five different

Bayesian genome-wide regression models, namely Bayes-

ian Ridge-Regression (BRR), Bayes A, Bayes B, Bayes Cπ

and Bayesian Lasso (BL) as implemented in the BGLR

package [41]. For these methods the genotypic informa-

tion was fitted using the following base model:

y ¼ Xbþ Zmþ e

where y is the vector of observations representing the

trait of interest; b is a vector with intercept and fixed

block effects; m is a vector of random markers effects

(m = [m1 … mk]
T); X and Z are incidence matrices for

the vectors for parameters b and m, respectively; e is a

vector of the random error effects. The Z matrix takes

values 2, 1 or 0 if the genotype of the ith marker is AA,

Aa and aa, respectively, where a is the least frequent al-

lele. Missing genotypes were replaced by the mean of

the genotype for the given SNP. In all Bayesian models it

was assumed that:

y b;m; σ2eeN Xbþ Zm; Iσ2e
� ����

beN 0; 106I
� �

e σ2eeN 0; Iσ2e
� ���

σ
2
e Se; νeeχ

−2
νe; Seð Þ

���

The assumptions of the m vector depend on the prior

adopted. The respective priors used in the linear
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regression coefficients for each model are described in

Additional file 1. To estimate the parameters of the

models a total 200,000 iterations of MCMC were used

with a burn-in period of 50,000 cycles and every fifth sam-

ple was kept. For all these models, a 10-fold cross-

validation approach was applied as described previously.

Genomic predictions using selected SNPs subsets

The Bayesian Ridge-Regression (BRR) model was fitted

using different subsets of SNPs of various sizes and se-

lected using different criteria as described below. Initially

a random sampling of SNPs stratified by chromosome

was tested using (i) a cumulative approach, such that

from the smallest subset of SNPs tested, additional ones

were added to the previous set and (ii) a non-cumulative

fashion, where different final sets of SNPs were ran-

domly selected from all available SNPs. Next, variable

positions of SNPs were tested, including: (iii) evenly

spaced SNPs across the genome; (iv) only SNPs within

gene models annotated in the Eucalyptus reference gen-

ome [42]; (v) SNPs based on LD-pruning and (vi) SNPs

from individual chromosomes. For each subset we esti-

mated the predictive ability and genomic heritability.

First, we evaluated models using different SNP subsets

(from all 13,787 and 19,506 SNPs available for E. bentha-

mii and E. pellita respectively, down to 2000 in smaller

increments of 1000 SNPs, 1500, 1250, 1000, 750, 500,

300, 250, 200, 150 and 100 SNPs) with either a cumula-

tive (i) or non-cumulative (ii) sampling of SNPs. For

each number of SNPs and sampling strategy, ten repli-

cates were performed. The evenly spaced SNPs subsets

(iii) were created using different target windows sizes,

with 1 SNPs every 10, 50, 100, 250, 500 Kbp and 1 Mbp,

resulting in variable average distances between SNPs

(Additional file 2: Table S1). For the within-gene SNP

subset (iv), all SNPs located within annotated gene

models (genic regions) and SNPs located outside of

annotated gene models (intergenic regions) in the Euca-

lyptus genome were evaluated. To create the subsets of

SNPs selected based on LD pruning (v), SNPs in ap-

proximate LE (r2 ≤ 0.2) with each other were chosen

using PLINK v1.9 [28]. Finally, in the chromosome-

specific SNP subsets (vi) the prediction models were fit-

ted independently using only SNPs on each chromosome

separately.

Genomic prediction controlling for relatedness between

training and validation sets

To assess the relative impact of relatedness versus his-

torical LD on the predictive ability, BRR prediction

models were fitted minimizing relatedness between

training and validation populations. Individuals were split

into training and validation sets based on a Principal

Component Analysis (PCA) or STRUCTURE analysis

(K = 2). In E. benthamii, 21 outlier individuals were re-

moved and the remaining individuals were split into two

subpopulations based on maximum genetic distance, one

with 310 trees and the other with 174. For E. pellita, 26

outliers were excluded and the remaining 706 individuals

were split into two subpopulations with 192 and 514 trees.

As a control, a 10-fold cross-validation in each direction,

with the same numbers of individuals used in the split

populations, was carried out by random allocation of the

individuals to training and validation sets.

Genome-wide association analysis

A mixed linear model association (MLMA) analysis was

performed using the GCTA software [43]. This associ-

ation analysis was fitted using the following base model:

y ¼ Xbþ g þ e

where y is the phenotype; b is a vector of fixed effects in-

cluding intercept, block, population structure and SNPs

to be tested for association; X is the incidence matrix for

the vectors for the parameters b; g is the polygenic effect

(random effect) captured by the GRM calculated using

all SNPs and e is the random residual effect. The covari-

ate computed for population structure was based on the

fact that the population had two subpopulations (K = 2).

The variance structure of the MLMA model were geN
0;Gσ2g

� �
; eeN 0; Iσ2e

� �
; cov(g, e′) = 0, where G is the

GRM between individuals calculated as described earlier

[44] and I is the identity matrix. For comparisons with

the MLMA model, we also performed a linear model

based association (LMA) analysis fitting each SNP inde-

pendently. This single-SNP association analysis was car-

ried out using PLINK [28] using a similar model as

MLMA, except for the exclusion of the polygenic effect

(g). The Bonferroni procedure was implemented to con-

trol for type I error at α = 0.05 and the Benjamini &

Hochberg procedure [45] was used to control for false

discovery at a rate FDR = 5%. The quantile-quantile

(Q-Q) and Manhattan plots were generated using the

qqman R package [46].

Results
SNP genotyping

Of the 60,904 SNPs in the EUChip60K, 50,303

(82.6%) and 49,518 (81.3%) were genotyped for E.

benthamii and E. pellita respectively (Additional file

2: Figure S1A), by using the phylogenetically appro-

priate SNP clustering file for SNP calling [27], and

filtering for SNPs with CR ≥ 90%. After selecting

polymorphic SNPs (MAF > 0) 13,787 and 19,506

SNPs were retained for further analyses with a final

rate of missing data of 1.4% and 0.8% for E. bentha-

mii and E. pellita, respectively. An alternative SNP
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dataset was also used by filtering out SNPs with

MAF < 0.05 to investigate whether removing lower

frequency SNPs had an impact on genomic predic-

tions. A total of 7563 SNPs for E. benthamii and

12,483 SNPs for E. pellita were retained for this alter-

native set.

Linkage disequilibrium and estimated effective

population sizes

Linkage disequilibrium (r2) was calculated for all pair-

wise physical distances among all the polymorphic SNPs

(MAF > 0) on each chromosome separately. The aver-

age, genome-wide LD for pair of SNPs within a 100 Kbp

distance from each other was 0.141 and 0.271 for E.

benthamii and E. pellita, respectively. When correcting

the LD for biases due to relatedness and population

structure (r2VS), the average estimates were reduced to

0.096 and 0.178 (Additional file 2: Table S2). The

genome-wide LD decayed to an r2 below 0.2 within 15.6

Kb and 70.6 Kb (red line), while r2VS showed a slightly

faster decay within 7.7 and 25.5 Kb (pink dots) for E.

benthamii and E. pellita, respectively (Fig. 1a and c).

Linkage disequilibrium decayed to <0.2 for r2S (correct-

ing for population structure) within 14.7 and 66.2 Kb

(green line), while r2V (correcting for relatedness)

showed a slightly faster decay within 7.7 and 25.6 Kb

(blue line), very similar to r2VS for E. benthamii and E.

pellita, respectively (Fig. 1a and c, Additional file 2:

Table S2). The faster LD decay for r2V or r2VS confirms

the strong effect of genetic relationship in these breeding

populations. Slightly different patterns of LD decay were

observed when including the SNPs with MAF < 0.05

(Fig. 1a and c, MAF > 0) or excluding those (Fig. 1b and

d). Datasets without the SNPs with MAF < 0.05 showed

a slightly higher pairwise r2, with corrected LD (r2VS)

decaying to r2 = 0.2 at 14.5 Kb in E. benthamii and 35.8

Kb in E. pellita (Fig. 1b and d, Additional file 2: Table

S2). Estimated effective populations sizes based on LD

data were Ne = 50 and Ne = 35 for E. benthamii and E.

pellita, respectively (Table 1).

Genomic and pedigree-estimated heritabilities

For E. benthamii the pedigree-based narrow-sense heri-

tabilities (h2) estimated for DBH and WV were 0.326

and 0.297, and considerably lower for HT (0.088). Esti-

mates of genomic heritabilities varied depending on the

method used, with GBLUP and BL yielding considerably

lower heritabilities than the pedigree-based ones and

those obtained using other Bayesian methods (Table 2).

When using Bayes B and BRR, heritabilities were higher

(0.155 and 0.190). Estimates of variance components are

reported in Additional file 3. In E. benthamii, the vari-

ance components had similar estimates with all methods

used. The pedigree-based narrow-sense heritabilities

estimated for E. pellita were zero for DBH and WV, and

nearly zero for HT (0.019), while the genomic estimated

heritabilities based on SNP data were considerably

higher (e.g. 0.414–0.527 for DBH using the different

methods) (Table 2). This unexpected result strongly sug-

gests that the informed pedigrees for the E. pellita popu-

lation do not match the true relationships that the SNP

data correctly recovered. Differently from E. benthamii,

in E. pellita the genomic heritabilities had similar esti-

mates for all methods used. Average heritabilities for E.

pellita considering all genomic methods (~0.47 for DBH;

~0.29 for HT; ~0.44 for WV) were higher for all traits,

compared to those estimated for E. benthamii (~0.23

for DBH; ~0.09 for HT; ~0.20 for WV). Heritabilities

estimated including or not lower frequency SNPs

(MAF < 0.05) in the genomic relationship matrix

were equivalent for both species, varying within the

standard error of the estimates (Table 2). Genomic

heritabilites captured large proportions of the pedi-

gree-based heritability in E. benthamii. The Bayesian

methods on average captured 73% and 69% of the

pedigree-heritability for DBH and WV, respectively. For

HT, however, genomic heritabilities varied considerably de-

pending on the method, at times surpassing the pedigree-

based estimate. No assessment was possible for E. pellita

due to the inconsistency of the pedigree data that provided

no valid estimate of pedigree-based heritability.

Genomic predictions

Consistent with expectations, predictive abilities (rgy)

followed the same trend as the estimated genomic heri-

tabilities (Table 2). Predictive abilities estimated using

different Bayesian methods produced equivalent esti-

mates to those obtained using GBLUP and pedigree-

based. For the E. benthamii population both pedigree

and genomic predictive abilities were generally low, aver-

aging 0.16 for DBH, 0.14 for WV and close to zero for

HT across all methods. For E. pellita, genomic predictive

abilities were considerably higher, averaging 0.44 for

DBH, 0.34 for HT and 0.42 for WV, suggesting the pres-

ence of a larger amount of additive genetic variation for

these traits in this breeding population (Table 2). No dif-

ference was observed in the predictive abilities when

using SNP sets including or not lower frequency SNPs.

During cross-validation of genomic predictions a consid-

erable variation was observed in the predictive abilities

estimated across the different folds (Additional file 2:

Table S3). This variation was larger for E. benthamii,

where the predictive ability across folds ranged from a

low −0.058 to 0.415 using BRR for DBH, with an average

of 0.162 with a standard error (SE) of ±0.044. In E. pel-

lita, the variation was smaller, with estimates ranging

from 0.358 to 0.550 for DBH, with the ten-fold average

equal to 0.441 ± 0.019 (Additional file 2: Table S3).
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Impact of variable numbers of SNPs on genomic

predictions

Based on results of the different prediction methods, we

chose to use only BRR to evaluate the impact of different

SNPs sampling schemes on the predictive abilities. Subsets

with progressively increasing randomly selected num-

bers of SNPs stratified by chromosome were used to

estimate genomic predictions. Estimates of predictive

ability and heritability increased rapidly with increas-

ing number of SNPs up to ~3000 for all traits in both

populations, (Table 3, Fig. 2). Predictive abilities

plateaued at approximately 5000 SNPs although heri-

tabilities and predictive abilities still increased by 5 to

10% after that. Additionally, when less than 5000

SNPs were used, a much larger variation in predictive

ability was seen across the validation folds. These re-

sults indicate that at least in these populations,

models with ~5000 to 10,000 SNPs will provide pre-

dictive abilities equivalent to those obtainable by

using all the available SNPs. The non-cumulative

sampling approach yielded essentially the same results

with a plateau at ~5000 SNPs, but showed a more

Fig. 1 Genome-wide pattern of Linkage Disequilibrium (LD) decay up to 100 Kbp pairwise SNP distances. Decay curves of the classical measure

of the squared correlation of allele frequencies at diallelic loci (r2), adjusted for population structure (r2S) and relatedness (r2V), and adjusted for

both (r2VS). a Plot with SNPs filtered using MAF > 0 and b MAF ≥ 5% in E. benthamii. c Plot with SNPs filtered using MAF > 0 and d MAF ≥ 0.05

in E. pellita
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spiky pattern of increasing predictive ability as more

SNPs were fitted into the model (Additional file 2:

Figure S2).

Impact of variable position-based SNP sampling methods

Overall, no difference was seen in the estimates of heri-

tabilities and predictive abilities when different position-

based SNP sampling schemes were used, as long as the

total number of SNPs was close to 5000 (Table 3, Fig. 2).

The predictive abilities estimated with a subset of evenly

spaced SNPs every 1 Mbp windows (610 SNPs in E.

benthamii and 609 SNPs in E. pellita), were slightly

higher than those using 500 randomly sampled SNPs

(Table 3). Although these results indicate that the

number, and not the position of SNPs, determines the

accuracy of predictions, they also suggest that even dis-

tribution might provide a small-added advantage when

compared to random sampling. No significant differ-

ences in predictions were seen for any trait in both spe-

cies when SNPs located in genic versus intergenic

regions were used, and the predictions were equivalent

to those obtained by random sampling of equivalent

numbers of SNPs. The same result was observed with

the LD-pruning approach, where estimates of predictive

ability were similar either using LD-pruned SNPs in LE

or all polymorphic SNPs (Table 3). There was no differ-

ence observed in the estimates of variance components

when different sets of SNPs sampled based on position

in the genome were used (Additional file 3).

When only SNPs located on single chromosomes were

used, heritabilities dropped on average by 30–45% when

compared to using all SNPs (e.g. for WV from 0.243 to

0.177 in E. benthamii; from 0.418 to 0.244 in E. pellita),

indicating that genome-wide marker coverage is critical

for capturing the additive genetic variance (Table 4). The

predictive abilities using SNPs on single chromosomes

were similar across chromosomes and also dropped on

average by 15–30% when compared to using all SNPs

(Table 4). However, when the heritabilities and predictive

abilities provided by single chromosomes were com-

pared to those obtained using equivalent numbers of

randomly sampled SNPs subsets, no appreciable differ-

ences were seen. This result indicates that the drop in

predictive ability is most likely due to the small number

Fig. 2 Estimates of heritability (h2) and predictive ability (rgy) with increasing numbers of SNPs for different traits using a cumulative approach to

SNP sampling. a and b estimates of h2 and rgy for E. benthamii, respectively; c and d estimates of h2 and rgy for E. pellita, respectively
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of SNPs per chromosome (average of 1253 for E. bentha-

mii and 1773 for E. pellita) and not to the fact that they

are located on a single chromosome. We did not have

sufficient numbers of SNPs on a single chromosome to

compare to the larger random subsets of 3000 or 5000

to see the effect on predictions.

Impact of relatedness between training and validation sets

To assess the relative contribution of relatedness to the

predictive ability (as opposed to short-range historical

LD between SNPs and QTL), GS models were fitted try-

ing to minimize relatedness between training and valid-

ation sets based on genetic differentiation determined by

a PCA (Additional file 2: Figure S3). Predictive ability ob-

tained when minimizing relatedness was null for E.

benthamii (Fig. 3a) (e.g. from 0.108 to −0.032 for DBH)

and reduced approximately by half for E. pellita (e.g. from

0.348 to 0.154 for DBH) compared to the predictive abil-

ities achieved when the same number of individuals were

used to build the model without controlling for related-

ness (Fig. 3b). These results suggest that predictions in the

E. benthamii population were fully dependent on related-

ness, while in E. pellita some short-range SNP-QTL LD

might be contributing to predictions, although relatedness

also seems to be the main driver.

Association genetics models comparison

GWAS under an LMA model, i.e. without the intro-

duction of a GRM, resulted in a large number of as-

sociations, most or all of them likely spurious. For

example, with only block as a covariate in the

model, the number of SNPs associated with wood

volume (WV) in E. pellita was 249. When the

population structure was included as covariate, the

number of associated SNPs was reduced to 120 (Fig.

4a, red line). The quantile-quantile (Q-Q) plot exhib-

ited in Fig. 4b shows the inappropriateness of the

LMA model without the GRM, as the observed and

expected P-values differed considerably for a large

number of SNPs. When the genomic relationship

matrix, block and structure effects were included in the

MLMA model, five significant associations (Fig. 4c, blue

line) were detected using a FDR of 0.05 (Additional file 2:

Table S4). All these five significant SNPs have low allele

frequency (MAF < 0.005). Nevertheless, when a more

stringent adjustment for multiple testing was used

(Bonferroni 5%), only one significant association persisted

for volume in E. pellita (Fig. 4c, red line). In the MLMA

model adjusted for the GRM, population structure and

block covariates, most P-values were consistent with the

expected ones along the diagonal in the Q-Q plot, indicat-

ing suitability of this GWAS model (Fig. 4d). Furthermore,

the model built with GRM reduced considerably the num-

ber of significant associations, likely removing spurious

associations. The single SNP associated with volume in E.

pellita on chromosome 6 (Fig. 4c, red line) is located in an

exonic region of a gene whose function is involved in a

plant-type cell wall cellulose biosynthetic process

(Additional file 2: Table S4). In E. benthamii, no significant

associations were found when the GRM was included in

the model.

Discussion

This study makes a further step towards the experimen-

tal assessment of whole-genomic prediction of complex

traits in species of forest trees in general and of Eucalyptus

Fig. 3 Estimates of predictive ability (rgy) with different levels of relatedness between training and validation sets. Related: random allocation of

individuals to training and validation sets; Unrelated: individuals were split into training and validation sets by minimizing relatedness between

sets based on a principal component analysis (a) E. benthamii and (b) E. pellita
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in particular. Our results corroborate previous reports in

forest trees showing encouraging perspectives of using

genome-wide SNP data to capture large proportions of

trait heritability and predict traits such as height and

diameter growth with accuracies as good as or better than

those attainable by conventional phenotypic selection.

Genomic heritabilities and predictions

Genomic heritabilities, irrespective of the method used,

were generally lower than the pedigree-based estimates,

with the exception of HT in E. benthamii (Table 2).

Genomic heritability is considered to better reflect the

true genetic relationships among individuals and as such,

it corresponds to the proportion of phenotypic variance

that can be explained by regression on molecular

markers. The genomic heritability and trait heritability

are expected to be equal only when all causal variants

are typed. Additionally, when close relatives sharing long

chromosome segments are analyzed, high prediction ac-

curacy and very small bias in genomic heritability

Fig. 4 Manhattan and Quantile-quantile (Q-Q) plots for wood volume (WV) in E. pellita. a and b represent the Manhattan and the Q-Q plots, re-

spectively, for LMA model adjusted for block and population structure covariates. c and d represent the Manhattan and Q-Q plots, re-

spectively, for the MLMA model adjusted for block and population structure covariates, and for the genomic relationship matrix. Red line

indicates Bonferroni-corrected threshold with an experimental type I error rate at α = 0.05 and blue line indicates false discovery rate (FDR) at 5%
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estimates are expected [47]. Given the relatively long-

range LD and relatedness in our populations, our esti-

mates of genomic heritability should closely reflect the

amount of additive genetic variance for the traits mea-

sured. Genomic heritabilities lower than the pedigree-

based estimates were also reported in open-pollinated

families of spruce [19, 21]. Pedigree-based heritability es-

timates from open-pollinated families could be inflated

due to the presence of full-sibs or selfs and the inability

of these estimates to disentangle the non-additive from

the additive genetic components [48]. For E. pellita,

pedigree-based heritability could not be estimated. How-

ever, by using the SNP data, heritability estimates were

obtained that breeders would not otherwise have had ac-

cess to.

Predictive abilities of growth traits using GBLUP

and different Bayesian methods reached similar results

for all traits, in line with previous reports in forest

trees [16, 20, 22]. These results provide further evi-

dence that growth traits in Eucalyptus, and likely for

all forest trees, are complex in architecture, controlled

by a large number of small effect loci and fit ad-

equately the infinitesimal model. The predictive ability

estimates obtained for growth traits in E. pellita

(0.34–0.44) using GBLUP were slightly lower than

those reported for E. grandis x E. urophylla (0.46–

0.55) [14]. For E. benthamii, predictive abilities were

lower (~0.16), possibly the result of (i) the larger ef-

fective population size; (ii) the relatively limited num-

ber of individuals used for model training (only

~500); and (iii) the limited genetic diversity available

in this species and particularly so in this introduced

population in Brazil, also indicated by the low herit-

ability found in our study as well as in others with

similar germplasm [6]. From the applied breeding

standpoint however, the genomic predictive abilities

were as good as or better than the predictive abilities

based on phenotypic data.

Prediction models using ~5000 SNPs provided predict-

ive abilities almost equivalent to using all available SNPs

for all traits and no difference was observed using differ-

ent sets of SNPs. These results suggest that genomic

prediction is largely driven by relatedness such that once

a certain number of randomly sampled SNPs across the

genome are used, suitable predictive ability is reached.

This outcome indicates that low-density SNP chips could

be contemplated as a way to reduce cost of GS in line to

what has been the case for domestic animals [26, 49]. It is

expected, however, that genomic predictions will decay

over generations due to the combined effect of recombin-

ation and selection on the patterns of LD [50], unless con-

tinuous model retraining strategies are adopted [12]. At

this point, therefore, it is not clear whether the use of

smaller SNP subsets is warranted for the long-term

implementation of GS in Eucalyptus. A better assessment

will be possible when predictions are carried out across

breeding generations testing variable SNP densities.

We observed a major impact of relatedness on predic-

tions, more so in E. benthamii than E. pellita (Fig. 3)

consistent with theoretical expectations [24] and previ-

ous experimental results in forest trees [14, 18, 19]. The

relative contributions of historical LD and relatedness

are however difficult to disentangle. Predictive ability

can be high even in the absence of LD when markers

capture genetic relationships, but it will be even greater

if markers are in LD with causal loci [24]. The extent of

LD detected in these populations reflected their differ-

ences in evolutionary and breeding history. A faster

genome-wide LD decay was observed in E. benthamii

(7.7 Kb, Fig. 1a) than in E. pellita (25.6 Kbp, Fig. 1c).

While the E. benthamii population is derived from seeds

collected in wild stands and its LD was similar to that

found in natural populations of E. grandis (≈4–6 Kb)

[51], the E. pellita population comes from a clonal seed

orchard established with advanced selections such that a

smaller effective population size and more extensive LD

was expected.

The presence of some level of short-range historical

LD could in part explain why predictions were still

reasonable in E. pellita even after attempting to

minimize relatedness between training and validation

sets (Fig. 3b). However, another possibility is that our

attempt to decrease relatedness was not completely

efficient. To evaluate these alternative hypotheses we

compared the predictive abilities obtained using the

same number of markers concentrated on a single

chromosome (capturing largely the effect of related-

ness), versus distributed genome-wide (capturing re-

latedness and LD). Assuming an infinitesimal model

in which growth traits are controlled by many QTLs

with small effects distributed genome-wide, the differ-

ence between these two sets could be tentatively

taken as the contribution of historical LD to predic-

tions. An increase of 22 to 35% in predictive ability

was seen (e.g. 0.306 versus 0.414 for DBH) when

genome-wide SNPs were used, suggesting that some

short-range historical LD between markers and causal

loci could be accounted for in this population. Over-

all, our results corroborate previous reports on the

major impact of relatedness on genomic prediction

and further highlight the importance of properly plan-

ning the populations on which GS models will be

trained and those where the models will be applied. If

the training population is more or less related to the

validation population than the future selection candi-

dates, then the expected outcome of implementing

genomic selection will be over- or underestimated,

respectively.
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GWAS versus genomic prediction in breeding populations

The objective of our GWAS was to assess the value of

this approach in closed breeding populations under se-

lection and compare it to whole-genome prediction from

the standpoint of how much genetic variation could be

captured for practical breeding. After duly controlling

for population structure and experimental fixed effects,

and applying experiment-wide corrections for multiple

tests, we identified only one significant association for

volume growth in E. pellita (Fig. 4c). Despite the rela-

tively larger population size (n = 732) when compared to

populations used in previous GWAS in forest trees

(typically between ~300 and ~700 individuals), our

results are consistent with the fact that very few asso-

ciations were also found for growth in all those re-

ported GWAS to date [52–59]. Population sizes used

have been small, such that experiments have suffered

from low power to detect the likely large number of

small effect loci controlling growth. Integrating link-

age mapping data from bi-parental pedigrees with as-

sociation populations has been attempted but results

have not improved and only a handful of associations

have been found, again explaining very little of the

genetic variation [56, 57, 59]. Our direct comparison

between GS and GWAS is novel and more explicitly

corroborates the fact that while genome-wide regres-

sion is able to account for large proportions of the

pedigree-heritability (e.g. 73% for DBH in E. bentha-

mii) and provide useful phenotype predictions, very

little of the heritability is captured into significant as-

sociations using the GWAS approach. Reasons for

this major discrepancy are not surprising and have

been widely discussed in the plant, animal and human

literature [60–62]. They derive essentially from the

fact that GWAS by principle, relies on the application

of stringent significance tests to declare an associ-

ation. These very stringent tests typically result in

only the largest effect QTLs being found, while the

vast majority have too small an effect to be detectable

in the limited power GWAS populations used. If no

major effect exists, then no associations are found,

which is most likely the case of the limited associ-

ation results for growth targeted in our study.

A potential criticism to our GWAS is the fact that

it was carried out in a breeding population with lim-

ited diversity and not in a canonical GWAS popula-

tion sampled from the wild. GWAS studies for

growth traits in forest trees have in fact targeted col-

lections of trees derived from natural populations

sampling large amounts of diversity. The goal of those

studies has been to detect associations that would po-

tentially allow gene discovery or even the identifica-

tion of the elusive QTN (quantitative trait nucleotide)

[63]. However, notwithstanding the fact that very few

associations were found for growth traits in those

GWAS, explaining overall negligible fractions of trait

heritability, it is not clear yet how marker-trait associ-

ations detected in undomesticated tree populations,

genetically distant from improved germplasm, would

be converted into useful information to breeding prac-

tice. This, in fact, has not been demonstrated yet in

forest trees. Targeted alleles found by GWAS in nat-

ural populations might contribute relatively negligible

effects, be already fixed or simply not be sampled in

existing breeding populations [64]. On the other

hand, although genetic variation available in breeding

populations is in principle more limited, associations

detected in genetically improved material should be

more relevant to breeding. A recent GWAS in a Eu-

calyptus breeding population reported promising re-

sults using a regional heritability mapping, an

approach able to capture both common and rare al-

lelic effects that individually contribute too little vari-

ance to be detected by conventional GWAS [58]. The

availability of GWAS data could be valuable to im-

prove genomic predictions accuracies by assigning

locus- or trait-specific priors to genomic prediction

models [65], as recently shown in rice [66].

Conclusions

This study contributes further experimental data sup-

porting the positive prospects of genomic selection to

predict complex traits such as height and diameter

growth in forest trees with accuracies equivalent or su-

perior to those achievable by phenotypic selection. We

show that genetic relatedness captured by the SNP data

between training and validation populations and, by ex-

tension, to future selection candidates, is what will most

likely determine the successful use of genomic selection

in Eucalyptus breeding. We also conclude that more im-

portant to GS than the number and position of the SNPs

fitted in the model, is the extensive LD created in closed

breeding populations with small effective population

sizes. Lower density SNP panels with ~5000 to 10,000

SNPs, distributed across the genome, should provide a

good compromise between genotyping costs and pre-

dictive ability in such standard breeding populations ad-

vanced by open pollinated breeding. However, further

experiments are necessary to evaluate the performance

of such SNP densities across generations of breeding.

Our results also illustrate the superiority of the whole-

genome regression approach in accounting for large pro-

portions of the heritability in contrast to the limited

value of the local GWAS approach for breeding applica-

tions. To provide useful GWAS data toward breeding

for growth traits in Eucalyptus and likely in all forest

trees, it will be necessary first to massively increase the

sample size, such that sufficient power is reached to
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detect at least part of the slightly larger effects segregat-

ing in the target breeding population. In the meantime,

the encouraging results of genomic prediction that we,

and others, have shown in this and other studies should

probably receive greater attention if the objective is to

impact breeding practice.
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