
Bernal-Vasquez et al. BMC Genetics  (2017) 18:51 

DOI 10.1186/s12863-017-0512-8

RESEARCH ARTICLE Open Access

Genomic prediction in early selection
stages using multi-year data in a hybrid rye
breeding program
Angela-Maria Bernal-Vasquez1 , Andres Gordillo2, Malthe Schmidt2 and Hans-Peter Piepho1*

Abstract

Background: The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP)

because past years’ data provide valuable information on marker effects. Nonetheless, single-year GP models are less

complex and computationally less demanding than multi-year GP models. In devising a suitable analysis strategy for

multi-year data, we may exploit the fact that even if there is no replication of genotypes across years, there is plenty of

replication at the level of marker loci. Our principal aim was to evaluate different GP approaches to simultaneously

model genotype-by-year (GY) effects and breeding values using multi-year data in terms of predictive ability. The

models were evaluated under different scenarios reflecting common practice in plant breeding programs, such as

different degrees of relatedness between training and validation sets, and using a selected fraction of genotypes in

the training set. We used empirical grain yield data of a rye hybrid breeding program. A detailed description of the

prediction approaches highlighting the use of kinship for modeling GY is presented.

Results: Using the kinship to model GY was advantageous in particular for datasets disconnected across years. On

average, predictive abilities were 5% higher for models using kinship to model GY over models without kinship. We

confirmed that using data from multiple selection stages provides valuable GY information and helps increasing

predictive ability. This increase is on average 30% higher when the predicted genotypes are closely related with the

genotypes in the training set. A selection of top-yielding genotypes together with the use of kinship to model GY

improves the predictive ability in datasets composed of single years of several selection cycles.

Conclusions: Our results clearly demonstrate that the use of multi-year data and appropriate modeling is beneficial

for GP because it allows dissecting GY effects from genomic estimated breeding values. The model choice, as well as

ensuring that the predicted candidates are sufficiently related to the genotypes in the training set, are crucial.
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Background
Genomic prediction (GP) is a tool for predicting genomic

estimated breeding values (GEBV) of selection candidates

based on marker information. A reference set of individu-

als, called training set (TS), is phenotyped and genotyped

to train a model, which can be used to predict GEBV of

another set of individuals that has only been genotyped

but not phenotyped, the so-called prediction or validation

set (VS) [1]. Prediction performance of GP procedures
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can be assessed through cross validation (GP-CV). In GP-

CV the datasets are divided into k folds, where k-1 folds

are used for model training and the remaining fold for

model validation. This process is repeated using each of

the k folds in turn as validation set and then repeating the

process several times. An alternative method to evaluate

prediction performance is genomic prediction - forward

validation (GP-FV), which makes use of data from pre-

vious years for training the model to predict genotypes

tested in later years and in this way validate the model.

GP-FV mimics the ultimate goal in plant breeding, where

new genotypes in new environments are to be predicted.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-017-0512-8&domain=pdf
http://orcid.org/0000-0003-0415-8318
mailto: piepho@uni-hohenheim.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Bernal-Vasquez et al. BMC Genetics  (2017) 18:51 Page 2 of 17

One of the factors determining the accuracy of the pre-

dictions is the size of the training and the validation set

[2–5]; thus, usingmulti-year data is an attractive approach

to train GP procedures because it allows increasing the

TS-size, thereby potentially increasing prediction perfor-

mance. But using multi-year data is challenging because

different cycles (in different years) are disconnected, that

is, there are no genotypes in common across cycles; there-

fore, genotype-by-year effects (GY ) and genotype main

effects will be confounded. The only connection across

years is genetic, i.e., through the relatedness within the

material, which we expect, since the data comes from a

breeding program. The genetic connectivity has been dif-

ficult to exploit with standard phenotypic models. Multi-

location field trial data in breeding programs are often

analyzed by year and not over years because: (i) it is sim-

pler and faster, and (ii) it is difficult to accurately estimate

variation across years, partly because few if any genotypes

are common between breeding cycles. If GY effects are

not properly modeled, the genomic prediction procedure

will divert part of the marker information into prediction

of the GY interaction effects rather than the GEBV. This

situation poses the main challenge when combining data

across years.

Several authors have proposed an extension of the GP

model to predict genotype-by-environment interaction

effects by incorporating environmental data and crop

modeling [6, 7] or assuming a covariance matrix com-

posed of a genotype-related and an environment-related

component [8, 9]. In these studies, environment is under-

stood as the conditions of a given location in a given year,

i.e., the conditions in a year-location combination, and no

attempt ismade to differentiate the effects of locations and

years. Hence, year-location combinations are represented

by a single factor for “environment”. In the structure of

the present hybrid rye breeding program, however, it is

crucial to separate the location and year effects, since the

program runs in the same locations across years and the

interest of the breeders is in predicting the GEBV free

of GY and genotype-by-location (GL) effects. Most pro-

cedures used for GP do not include model terms that

dissect genotype effects, including GEBV and GY, mainly

because of the lack of overlapping genotypes across years

(selection cycles in the TS).

We hypothesize that in a multi-year dataset of a breed-

ing program, where there are no common genotypes

across years, GEBV can be dissected from GY based on

the genetic correlation between genotypes via the kinship

matrix. Further, genotypes from the same breeding cycle

evaluated in multiple years in the TS will enhance the sep-

aration between GEBV and GY effects. In light of this,

our principal objective was to evaluate the merit of differ-

ent models accounting for the GY effect. In order to put

the different models to a realistic test, we evaluated them

under scenarios representing common practice in breed-

ing programs, i.e., in different relatedness scenarios and

top-yield selection scenarios, where different fractions of

genotypes with top-yield performance in the TS were

selected. The top-yield selection scenarios are interesting

to breeders because considering only subsets of the best

genotypes would allow reducing the effect of genotypes

with confounded yield- and non-yield-QTL effects, i.e.,

genotypes whose grain yield is susceptible to be affected

by diseases or lodging or other - environmentally trig-

gered - threshold traits.

Methods

Phenotypic data structure

A first stage of the present hybrid rye program consists

of selfing single plants and selecting for line per se per-

formance in the subsequent selfing generations. After line

per se evaluation, selected lines are crossed to one or

more single crosses from the opposite gene pool. The

testcross progenies are evaluated in multi-location trials

[10] to assess their general combining ability (GCA). In

the first year of testcross evaluations, S2 lines are eval-

uated, from which a selected fraction is subjected to a

more intensive evaluation in the following year (GCA2),

across a larger number of environments. Again, a selected

fraction of genotypes is carried forward to a third selec-

tion stage (GCA3), where genotypes are evaluated inmore

environments and with more testers (See Additional file 1:

Figure S1 for a complete selection cycle description). The

minimum generation interval comprises five years, which

is the time from initial crossing to GCA1. In Fig. 1,

we depict the breeding program structure to define the

different GP-FV scenarios.

New GCA1 experiments are carried out each year with

new testers from the opposite gene pool, whereas testers

remain the same across GCA1 and GCA2 experiments

within the same selection cycle. At KWS-LOCHOW, a

selected fraction of genotypes are test-crossed for GCA3

in combination with a different set of testers compared to

GCA1 and GCA2, whereas the candidates are a selected

fraction of the candidates in GCA1 and GCA2. GCA1

experiments of different selection cycles (e.g. GCA1-2009,

GCA1-2010, GCA1-2011) do not normally share any

genotype or check entry. Further, a GCA experiment con-

sists of multi-environment trials (METs), where subsets

of genotypes are evaluated in series of trials allocated in

several locations (in one year). Within a year, trials are

connected through common genotypes and check entries.

Trials are laid out as α-designs with two replicates and 32

incomplete blocks of size 12 to 16.

We analyzed grain yield data from two rye hybrid breed-

ing programs located in Germany and Poland of KWS-

LOCHOW. Three datasets were formed, i.e., the German
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Fig. 1 Selection cycles structure in the rye hybrid breeding program

(GER) dataset, with only German lines, the Polish (PL)

dataset, with only Polish lines, and the pooled dataset with

German and Polish lines (GER&PL). The datasets were

screened for outliers at the trial level using the method

BH-MADR developed in Bernal-Vasquez et al. [11]. The

genotype sets evaluated at the GCA1 level differ between

the two breeding programs within the same year. When

selected candidates reach theGCA2 andGCA3 stage, they

are evaluated in one common trial series across locations.

We used a GP-FV approach, where GEBV of a VS with

genotypes not included in the TS are predicted. We con-

sidered three scenarios that differ in the composition of

their TS, different relatedness scenarios between TS and

VS, and additionally, two different selection fractions for

the set of top-yielding genotypes. To assess prediction

performance we computed the predictive abilities of each

scenario in the three datasets, i.e., GER, PL and GER&PL.

Predictive abilities are defined in Subsection Predictive

abilities of this Section.

In the scenarios described in the following, the use of

GCA1, GCA2 and GCA3 data may indirectly increase the

proportion of segregating first-degree relatives in the TS

in comparison to a control TS composed of only GCA1

data. Each scenario is composed of three VS, one complete

TS and a control TS (Additional file 1: Figures S2–S4).

The VS were: VS1: GCA1-2012, VS2: GCA1-2013 and

VS3: GCA1-2014. The control TS scenarios do not include

the GCA2 and GCA3 trials. In the control TS, GCA1

data do not share common genotypes at all, thus we can

evaluate if using kinship to model GY indeed helps to

dissect GY from GEBV, thus allowing a more accurate

predictive ability. Complete TS make use of all data in

the cycle in order to check whether having this additional

information about some genotypes across the years also

allows to better dissect GY from GEBV with or without

the use of kinship to model the GY effects. This compar-

ison between control TS and complete TS is important

because by using control TS we loose information of the

common genotypes evaluated in additional years. In the

complete TS, we exploit the information of those overlap-

ping genotypes, which are very few in the end (approx.

1 to 2% in GCA3 from the total in GCA1), but we can

evaluate by cross validation whether they are sufficient to

improve the estimate of theGY effect. Since the minimum

generation interval in the breeding scheme from crossing

to GCA1 is five years, one would need to have breeding

cycles going back at least five years to include parental

lines in the TS. Hence, it is assumed that, for example,

genotypes selected in GCA1-2009 are most likely to be

the parents of genotypes evaluated in GCA1-2014. Thus,

GCA1-2014 is likely to be more closely related to GCA1-

2009 than GCA1-2013 to GCA1-2009. This theoretical

relatedness cannot always be realized, as the parental lines

can be renewed any time or kept longer in the program.

With this in mind, many TS-VS combinations can be eval-

uated as interesting scenarios, some being more realistic

than others. Keeping the TS fixed to evaluate different

VS in different years is more convenient for comparing

predictive abilities, acknowledging that some TS-VS sce-

narios may not seem entirely realistic in that prediction

is backwards rather than forwards in time. We would

hold, however, that temporal direction is not crucial when

evaluating predictive accuracy of a model or method.

The first scenario comprises lines from one selection

cycle and corresponds to data from GCA1-2009, GCA2-

2010, GCA3-2011 as TS (TS1) to predict VS1, VS2 andVS3
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(Additional file 1: Figure S2). The control set corresponds

to GCA1-2009 (controlTS1).

The second scenario comprises lines of two selection

cycles with data from GCA1-2009, GCA2-2010 (from

selection cycle 1), GCA1-2010 and GCA2-2011 (from

selection cycle 2) as TS (TS2) to predict VS1, VS2 and

VS3 (Additional file 1: Figure S3). As control TS we use

GCA1-2009 and GCA1-2010 (controlTS2).

The third scenario comprises lines of three selec-

tion cycles with data from GCA1-2009, GCA2-2010,

GCA3-2011 (of selection cycle 1), GCA1-2010, GCA2-

2011, GCA3-2012 (of selection cycle 2), and GCA1-2011,

GCA2-2012, GCA3-2013 (of selection cycle 3) as TS (TS3)

to predict VS1, VS2, and VS3 (Additional file 1: Figure S4).

The control TS contains GCA1-2009, GCA1-2010 and

GCA1-2011 (controlTS3).

To verify our hypothesis that using the kinship matrix

helps to separate the GEBV fromGY effects, we evaluated

four different models using the complete TS (explained

in the following) plus two models using the control TS

of each scenario. The models were evaluated in three

relatedness situations for each of the above described

scenarios: all available genotypes (All-scenario) and geno-

types with no (0P-scenario) and with one (1P-scenario)

parent in the TS. The TS-size remains fixed and the VS-

size changes according the relatedness degree with the TS.

To guarantee a fair comparison with VS of the same size

for the All-, 0P- and 1P-scenarios, a simple random sam-

pling was carried out to ensure VS-size of 100 genotypes.

We ran 10 iterations for VS-size = 100 and computed the

simple means and confidence intervals of the estimated

predictive abilities. The scenarios for the GER dataset with

VS1 used VS-size = 90, since there were less than 100

available genotypes. Finally, different selection fractions of

top-yielding genotypes in the TS were evaluated TS com-

posed of the 100% (Top100%), 75% (Top75%) and 50%

(Top50%) best yielding genotypes, i.e., TS-sizes vary and

VS-sizes remain fixed including all available genotypes

with markers.

Genotypic data

The marker information was obtained using a 10K

Infinium iSelect HD Custom BeadChip (Illumina, San

Diego, CA, USA). Monomorphic markers and markers

withminor allele frequency (MAF) less than 1% ormissing

information of more than 10% per marker were dropped.

A total of 10633 markers passed the quality test and were

used for GP. Homozygous marker genotypes were coded

as -1 and 1, and the heterozygous type, missing values and

technical failures were coded as 0 [12–14].

Statistical models for the training sets

Mixedmodels are widely used for multi-environment trial

(MET) analysis and can be fitted either in a single stage

or in multiple stages. A single-stage analysis models the

entire observed data in one stage at the level of individ-

ual plots, whereas a stage-wise analysis splits the analysis

into analyses at the level of factors that are hierarchi-

cally nested, e.g., first by environments and then across

environments [15].

The single-stage model can be stated as

γ = T : G×Y ×L+T ·(G×Y×L)+(Y ·L)/S/R/B+e, (1)

where γ is the vector of observed genotype yields, G

represents the genotypes, T the testers, Y the years, L

the locations, S the trials within locations, R the repli-

cates within trials, B the blocks within replicates, and e

the error associated with the observation γ . In the state-

ment of model (1), we have used the notation described

in Piepho et al. [16], where the dot operator (·) defines

crossed effects (A · B), the crossing operator (×) defines a

full factorial model (A× B = A+ B+A · B) and the nest-

ing operator (/) indicates that a factor B is nested within

another factor A (A/B = A + A · B). The colon (:) is

used to separate fixed (first) from random effects (last).

Our model (1) takes all factors except T as random. It is

therefore resolved as

γ = T : G + Y + L + G · Y + G · L + Y · L + G · Y · L

+ G · T + T · Y + T · L + G · T · Y + G · T · L

+ T · Y · L + G · T · Y · L + Y · L · S + Y · L · S · R

+ Y · L · S · R · B + e. (2)

In routine analysis of breeding trials, it is common to

analyze the data in stages. For this reason, we here also

consider different stage-wise approaches. The following

models are stage-wise representations of the single-stage

model (1). They differ in the number of stages and the

assumptions to modelGY. As will become apparent, there

are several options for stage-wise analysis and it is not

obvious which option is preferable regarding our main

objective to dissect GY from GEBV effects, which is why

we compare different approaches. In some models, we

move G to the fixed part to enable estimation of geno-

type means, for example in the second stage, where we

then submit the means to a third stage. It is stressed here

that taking G as fixed during all stages except the last is

just a technical requirement to render the stage-wise anal-

ysis equivalent to the single-stage analysis, and this does

not change the status of the genotype factor as random in

the full stage-wise analysis [15]. In the models where G is

kept as fixed, we will have T and G in the fixed part of the

model. The interaction G · T is taken as random because

not all genotypes are testcrossed with the same testers and

because, as just mentioned, G keeps its random status in

the last stage.

Note the slightly different interpretations of the main

effect G depending on the context. This effect refers in



Bernal-Vasquez et al. BMC Genetics  (2017) 18:51 Page 5 of 17

general to the genotypic main effect. In the GP stage, how-

ever, where it is modeled with the marker information (i.e.

using kinship), the main effect G refers specifically to the

pure additive genetic part of the genotypic effect, i.e. the

GEBV.

Among the models used for the control and the com-

plete datasets, some use kinship to model GY and others

not. For clarity, we differentiate approaches used for the

control TS (described first with labels A1 and A1K) from

the approaches using complete TS (with labels A2, A3,

A4 and A5). The distinction is to point out the difference

in the connectivity between the control TS and the com-

plete TS. The control TS do not share common genotypes

across years, whereas the complete TS share a fraction

of selected genotypes within selection cycles, i.e., across

GCA1 + GCA2 + GCA3 of the same cycle. Approaches

A2 and A3 are a two-stage version of model (1), whereas

approaches A4 and A5 have three stages. In A2, A3 and A5

we use kinship to model GY, while for the A4 approach,

kinship is not used to model GY. Table 1 summarizes the

labels, the short notation (both used indistinctly to better

link the approaches in the Discussion and the Figures) and

a brief description with the key elements to distinguish the

approaches. A detailed explanation of the models A1 to

A5 follows next.

Year-wise approachwithout (A1) andwith (A1K) kinship:

modeling for the control sets

All the control TS are composed of independent GCA1

trials in one, two or three years (controlTS1, controlTS2
and controlTS3, respectively). We denote them as inde-

pendent because the GCA1 trials have no checks in

common. Thus, one approach was to estimate adjusted

genotype means for each year separately in a first step and

then model a fixed year effect while obtaining GEBV for

genotypes in the GP stage [17]. This approach presumes

that the mean of the genotypes evaluated in one year is

a better year effect estimate than the year effect estimate

based on a few checks shared across years. The approach

is based on the assumption that the genotypes evaluated

in each year are a random sample of the breeding popu-

lation. Hereafter, we refer to this method as the year-wise

approach (A1). One disadvantage of this approach is that

it disregards annual genetic gain (1 to 2%).

In the first stage, wemodel the plot data within locations

and years as

γ = G · T : S/R/B + e, (3)

which is resolved as

γ = G · T : S + S · R + S · R · B + e, (4)

where factors are defined as for model (1). Adjusted

genotype-by-tester means
(

m(1)
)

are computed for each

year-location combination and are submitted to the sec-

ond stage, where adjusted genotype means
(

m(2)
)

are

calculated, using a year-wise model defined as

m(1) =G + T : G · T + L · (G × T) + ǫ1 (5)

=G + T : G · T + L · G + L · T + L · G · T + ǫ1.

All terms are defined as for model (1), ǫ1 is the vec-

tor of errors associated with the adjusted means m(1)

with ǫ1 ∼ N (0,R1) and R1 is a diagonal matrix whose

diagonal elements are computed from the inverse of the

variance-covariance matrix estimated in the first stage

[18]. Hereafter, m(x) always denotes the adjusted mean

and Rx always denotes a diagonal matrix carrying over

these diagonal weights computed in the x−th stage. The

model at the GP stage is then

m(2) = Xβ + Zgug + ǫ2, (6)

where m(2) is the vector of adjusted genotype means

across years, X is the design matrix of the years, β is

the vector of year effects, Zg is the marker matrix for

Table 1 Summary of GP-FV approaches

Label Short notation TS used No. stages Use of Kinship Description
to model GY

A1 Year-wise controlTS1 , controlTS2 , 2 + GP no Year-wise model and GP with year as fixed effect
without kinship controlTS3

A1K Year-wise controlTS2 , controlTS3 2 + GP yes Year-wise model and GP with year as fixed effect
with kinship and GY modeled using kinship

A2 2-stg-Kin TS1 , TS2 , TS3 2 yes Across years model with GP included in the 2nd
stage and GY modeled using kinship

A3 2-stg-Kin-het TS1 , TS2 , TS3 2 yes Across years model with GP included in the 2nd
stage and GY modeled using kinship. Allows heterogeneous
rogeneous variance among years in the GY interaction effect

A4 3-stg-NoKin TS1 , TS2 , TS3 3 no Across years model for the TS using no kinship to model GY.
Third stage is GP

A5 3-stg-Kin TS1 , TS2 , TS3 3 yes Across years model for the TS. Uses kinship in the 2nd stage
of the TS to model GY. Third stage is GP
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genotypes, and ug the vector of marker effects.We assume

that ug ∼ N
(

0, Iσ 2
ug

)

, and var
(

Zgug
)

= ZgZ
T
g σ 2

ug
. Fur-

thermore, ǫ2 is the vector of errors associated with the

adjusted meansm(2) with ǫ2 ∼ N (0,R2).

The alternative approach is to additionally model theGY

effects in the GP stage. Hereafter, we refer to this strategy

as the year-wise with kinship approach (A1K). Given the

disconnectedness of the genotypes across years in GCA1

trials, dissecting the genotype main effects G (the GEBV)

and the GY becomes difficult. If kinship information is

included to model the genotypic correlation among rela-

tives, it may be possible to dissect the G and GY effects,

provided that genotypes tested in different years can be

regarded as representative of the same breeding popu-

lation, which is usually the case. A slight bias will be

incurred though due to genetic progress, but this can be

tolerated if more than outweighed by the improved preci-

sion of the year effect estimate. The key idea behind the

use of kinship to dissect the GY effects is that, while there

is no replication of genotypes across years, there is plenty

of replication across years at the level of genes and their

alleles.

The model for the GP is

m(2) = Xβ + Zgug + Zgyugy + ǫ2, (7)

where m(2), Xβ and Zgug are defined as for model (6).

The GY effects are modeled as w = Zgyugy, with Zgy

as the marker matrix for genotypes-by-year effects and

ugy the vector of marker-by-year effects whose variance is

var
(

ugy
)

= Iσ 2
ugy

, and hence var(w) = ZgyZ
T
gyσ

2
ugy

.

In particular, Zgy is a block-diagonal matrix with blocks

given by the marker coefficient matrices of genotypes in a

given year
(

Zgyr

)

, e.g., Zgy =

⎛

⎝

Zgy1 0 0

0 Zgy2 0

0 0 Zgy3

⎞

⎠.

Under the mixed model formulation of ridge regression,

ZgyZ
T
gyσ

2
gy represents the linear structure of the genotype-

by-year variance-covariance matrix with covariance of

two genotypes within the same year depending on the

similarity in their marker profiles [12]. Note that the

covariance among different years is zero. Any covariance

between years is captured by themain effect for genotypes

via the Zg matrix.

Two-stage approachwith kinshipmatrix: 2-stg-Kin (A2)

The single-stagemodel (1) can be estimated in a two-stage

analysis, where adjusted genotype-tester means by loca-

tions and years are computed in the first stage, and then

in the second stage, adjusted genotype means across loca-

tions and years are calculated. GP-FV can be incorporated

in this second stage, allowing to compute GEBVs for a set

of genotypes that belong to a new year, i.e. the VS.

The first stage remains as for the previous approaches

and is described by model (3). The second-stage model is

m(1) = T : G × Y × L + T · (G × Y × L) + ǫ1. (8)

The model is fitted using the adjusted genotype-by-

tester meansm(1) for the different year-location combina-

tions computed in the first stage. The four-way factorial in

model (8) is resolved as

T : G + Y + L + G · Y + G · L + Y · L + T · Y + T · L

+ G · T + G · Y · L + G · T · Y + G · T · L + T · Y

× L + G · T · Y · L. (9)

Hence, the second-stage model (8) can be written as

m(1) = 1μ + Xβ + Zgug + Zgyugy + Zbub + ǫ1, (10)

where m(1) is the vector of adjusted genotype-tester

means obtained in the first stage [model (3)], 1 is a m × 1

vector of ones with m the number of genotypes, μ is the

intercept, X is the design matrix for fixed effects, β is the

vector of fixed-effects parameters. The tester (T) is the

only fixed effect in model (9). The GEBV G is equivalent

to v = Zgug, with Zg the marker matrix for genotypes

and ug the vector of marker effects whose variance is

var
(

ug
)

= Iσ 2
ug
, and hence var(v) = ZgZ

T
g σ 2

ug
. Similarly,

the genotype-by-year effect G · Y is equivalent to w =

Zgyugy, where Zgy is the marker matrix for genotypes-

by-year and ugy is the vector of marker-by-year effects

whose variance is assumed to be var
(

ugy
)

= Iσ 2
ugy

, then

var(w) = ZgyZ
T
gyσ

2
ugy

.Zb is the designmatrix for the other

random effects between years and ub is the vector of ran-

dom effects between years, which includes the effects of

G × Y × L + T · (G × Y × L) except G and G · Y . Thus,

ub =

(

uT
b(1)

,uT
b(2)

, . . . ,uT
b(t)

)T
with ub(k) the vector of the

k-th random effect between years, and var (ub) = �b =

⊕t
k=1

�b(k) with var
(

ub(k)

)

= �b(k) = Iσ 2
b(k). The symbol

⊕ denotes the direct sum of matrices and defines block

diagonal matrices [19]. The vector of errors is ǫ1 with

ǫ1 ∼ N (0,R1).

Two-stage approachwith kinshipmatrix and heterogeneous

variance: 2-stg-Kin-het (A3)

In this approach, we allow heterogeneity among years in

the variance of the interaction G · Y . Thus, for model (10)

we assume var
(

ugy
)

= � = ⊕m
r=1Iσ

2
ugy(r)

, where σ 2
ugy(r)

is the genotype-by-year variance in the r-th year with the

genotype entries sorted by year. If w = Zgyugy, then

var(w) = Zgy�ZT
gy.

Three-stage approachwithout kinship: 3-stg-NoKin (A4)

A three-stage approach for GP-FV may alleviate the com-

putational burden imposed by using a two-stage model.

In practice, plant breeders often use the following three-

stage approach: In the first stage adjusted genotype-tester
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means
(

m(1)
)

are estimated per year-location combi-

nation using model (3). In the second stage adjusted

genotype means across years and locations
(

m(2)
)

are

estimated using the model

m(1) = Xβ + Zbub + ǫ1, (11)

where X is the design matrix for fixed effects β . We need

G to be fitted as a fixed effect (together with T), since

we are estimating adjusted genotype means. Except for

overlapping genotypes across different selection stages

(GCA1, GCA2, GCA3), within the same selection cycles,

the G · Y variance component is completely confounded

with that for G under this model. Zb and ub are the

design matrix and vector for the random effects between

years, respectively. The vector includes all random effects

indicated in model (8) except G. ub is equivalent to
(

uT
b(1)

,uT
b(2)

, . . . ,uT
b(t)

)T
with ub(k) the vector of the k-th

random between-year effects. The variance is var(ub) =

�b = ⊕t
k=1

�b(k) where var
(

ub(k)

)

= �b(k) = Iσ 2
b(k). This

means, G · Y , for example, is synonymous with Zb(1)ub(1),

where Zb(1) is the design matrix for genotype-by-year

effects and ub(1)
the vector of random genotype-by-year

effects with var
(

ub(1)

)

= Iσ 2
b(1). The vector of errors asso-

ciated with the records ofm(1) is ǫ1 with ǫ1 ∼ N (0,R1).

Finally, in the third stage, the GP model is implemented

as

m(2) = 1μ + Zgug + ǫ2, (12)

where m(2) is the vector of adjusted genotype means

across locations and years, 1 is a m × 1 vector of ones,

withm the number of genotypes,μ is the intercept, Zg the

marker matrix for genotypes, and ug the vector of marker

effects. We assume ug ∼ N
(

0, Iσ 2
ug

)

, thus var
(

Zgug
)

=

ZgZ
T
g σ 2

ug
. The vector of errors is ǫ2 with ǫ2 ∼ N (0,R2).

The difference between the two-stage (A2, and A3) and

the three-stage (A4) approaches [using model (10) and

model (12)] for GP-FV is the estimation of the GY effects,

which in the first case makes use of the kinship matrix,

whereas in the second case kinship is ignored.

Three-stage approachwith kinship in the second stage:

3-stg-Kin (A5)

The three-stage approach can also make use of the kin-

ship matrix in the second stage to dissectGY fromGmain

effects.

The second-stage model is written as

m(1) = Xβ + Zgyugy + Zbub + ǫ1, (13)

where X is the design matrix for fixed effects β . We keep

G and T as fixed effects. Zb is the design matrix and

ub is the vector of random effects between years for the

random effects except the GY effects, for which we use

Zgyugy, where Zgy is the marker matrix for genotypes-

by-year effects and ugy is the vector of marker-by-year

effects whose variance is var
(

ugy
)

= Iσ 2
ugy

, such that

var(w) = ZgyZ
T
gyσ

2
ugy

. The vector of errors associated with

the records of m(1) is ǫ1 with ǫ1 ∼ N(0,R1). The third

stage is the same as for the 3-stg-NoKin approach [model

(12)] using the adjusted genotype means computed in the

previous stage.

Calculation of predictive ability - models for validation sets

Predictive abilities (ρGP) were estimated as the Pear-

son correlation coefficient between the adjusted genotype

means of the VS
(

m(2)
)

and the GEBV
(

v̂ = Zû
)

. To

estimate m(2) (adjusted genotype means) of the VS, we

used a two-stage analysis, with model (3) as first stage

to obtain adjusted genotype-tester means
(

m(1)
)

across

locations and years. In the second stage, the adjusted

genotype meansm(2) were estimated for VS1:GCA1-2012

and VS3:GCA1-2014 using the model

m(1) = G + T : G · T + L · (G × T) + ǫ1 (14)

= G + T : G · T + L + L · G + L · T + L · G · T

+ ǫ1,

where all terms are defined as for model (1). For

VS2:GCA1-2013, we did not include a location L main

effect or a genotype-by-location effectG·L because testers

and locations were totally confounded, thus the effect L ·T

represents L+L ·T andG ·L ·T representsG ·L+G ·L ·T .

The model is

m(1) = G + T : G · T + L · T + G · T · L + ǫ1. (15)

Adjusted genotypemeans based onmodels (14) and (15)

(corresponding to VS1 and VS3, and VS2, respectively) are

computed using best linear unbiased estimation (BLUE).

Hence, predictive ability in each scenario was the Pearson

correlation coefficient between the GEBV (v̂) frommodels

(6), (7), (10) or (12) and m(2) of the VS from models (14)

and (15), i.e.

ρGP = corr
(

v̂,m(2)
)

. (16)

Results

Structure of datasets and variance components

Variance components were estimated using the two-stage

model (8) for all datasets (GER&PL, GER and PL), the

three complete TS (TS1 [one cycle data], TS2 [two cycles

data] and TS3 [three cycles data]) and the three VS

(VS1:GCA1-2012, VS2:GCA1-2013 and VS3:GCA1-2014)

(Table 2). The expected confounding of some effects due

to the unbalancedness of the trials and the poor connec-

tivity across cycles and between TS and VS is illustrated

by the asymptotic correlation matrix for variance com-

ponent estimates computed from the information matrix
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Table 2 Summary of variance component estimates in the three

datasets

Dataset TS VS G GY L GL YL GYL ac(GL,GYL)

GER&PL TS1 VS1 0.00 6.44 145.10 0.00 93.30 4.48 na

GER&PL TS1 VS2 2.29 2.19 109.86 1.36 161.58 3.71 –0.89

GER&PL TS1 VS3 6.45 2.72 166.48 2.41 117.31 5.08 –0.92

GER TS1 VS1 6.75 0.58 143.57 1.11 92.65 3.83 –0.89

GER TS1 VS2 3.74 1.04 113.46 1.08 169.73 4.03 –0.88

GER TS1 VS3 4.55 0.93 173.53 1.41 108.66 4.68 –0.92

PL TS1 VS1 0.00 5.68 160.05 0.00 85.39 4.28 na

PL TS1 VS2 0.00 3.41 108.72 1.72 155.03 3.03 –0.90

PL TS1 VS3 0.00 11.28 173.99 3.24 94.82 5.17 –0.98

GER&PL TS2 VS1 5.85 1.77 132.51 0.80 89.24 3.17 –0.96

GER&PL TS2 VS2 4.18 1.54 110.06 1.27 149.52 2.78 –0.96

GER&PL TS2 VS3 7.42 1.56 166.22 1.60 108.97 3.92 –0.97

GER TS2 VS1 8.00 0.29 142.97 1.15 89.21 3.06 –0.93

GER TS2 VS2 5.98 0.44 112.15 1.49 161.93 2.92 –0.94

GER TS2 VS3 6.89 0.13 172.96 1.62 109.00 3.44 –0.93

PL TS2 VS1 0.00 6.12 135.17 0.00 84.60 4.17 na

PL TS2 VS2 0.00 4.22 89.73 0.004 155.83 4.00 –0.97

PL TS2 VS3 0.00 9.97 158.31 0.00 92.84 6.13 na

GER&PL TS3 VS1 2.24 4.53 163.69 0.68 86.92 3.89 –0.87

GER&PL TS3 VS2 5.09 1.51 159.44 1.11 93.36 4.07 –0.81

GER&PL TS3 VS3 7.32 1.02 176.06 1.18 85.59 4.84 –0.86

GER TS3 VS1 7.19 1.10 170.60 0.78 86.35 3.66 –0.80

GER TS3 VS2 7.02 0.38 186.59 1.18 84.42 4.14 –0.80

GER TS3 VS3 7.01 0.32 166.34 1.16 88.32 3.69 –0.76

PL TS3 VS1 0.00 5.33 156.13 0.77 84.70 3.80 –0.94

PL TS3 VS2 0.67 5.00 144.19 0.97 93.47 4.10 –0.85

PL TS3 VS3 5.19 3.61 161.72 0.99 81.25 5.20 –0.90

German and Polish together (GER&PL), only German (GE) and only Polish (PL), for all

the training set (TS) and validation set (VS) combinations. Reported effects use the

factors: Genotypes (G), year (Y) and location (L). ac(GL,GYL) is the asymptotic

correlation between variance component estimates of GL and GYL effects. na

represents non-estimable values due to a zero value of a variance component

TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, TS2 : GCA1-2009 + GCA2-2010 +

GCA1-2010 + GCA2-2011, TS3 : GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010

+ GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS1 :

GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014

([19], p. 248), e.g. for the GER&PL dataset TS1-VS3
(Additional file 1: Table S2 lower diagonal).

The correlation between variance component estimates

for G and GY is −0.8747, for L and YL it is −0.2556,

for GL and GYL it is −0.9229, for GTL and GTYL it is

−0.9758 and between GT and GTY it is −0.9491. The

confounding is also observed in the asymptotic correla-

tion matrix for variance component estimates of the TS1
scenarios (Additional file 1: Tables S3 and S4). For the TS2
(Additional file 1: Tables S5–S7) and the TS3 (Additional

file 1: Tables S8–S10) scenarios, the confounding is still

visible, though in rather lower magnitudes.

An asymptotic correlation of ≃ −1 indicates ill-

conditioning ([20], p156). Confounding of effects is the

limiting case of ill-conditioning when the asymptotic cor-

relation between two effects is exactly −1. It is clear that

the extreme unbalancedness of the datasets renders vari-

ance component estimates unstable, in the sense that a few

genotypes in the analysis impact strongly on the relative

contribution of each effect to the total variance.

Additionally, variance components for genotype main

effects (G) in the PL dataset are most of the times esti-

mated as zero as well as for GL interaction effects, reflect-

ing the poor connectivity of the datasets. The asymptotic

correlations between the variance component estimates of

GL and genotype-by-year-by-location interaction (GYL)

effects were marginally more negative for the Polish sce-

narios than for the German ones (Table 2). This could be

due to a different trial allocation across years and locations

in Poland than in Germany. The GER dataset has more

locations per year that are not repeated across the other

years, whereas in the PL dataset fewer locations are used

across years, that is, more locations are repeated across

years, i.e., the number of location-year combinations com-

pared to the number of total locations across years are

greater in the GER than in the PL datasets (Additional

file 1: Table S1). This situation reflects more confounding

for the PL dataset, and as a consequence, the PL dataset

does not have as many GL or GYL effects as the GER

dataset, so that asymptotic correlations between the vari-

ance estimates for GL and GYL effects are slightly higher

in absolute value for the PL program than for the GER

program (Table 2). The confounding is diminished when

more years are used in the TS because the number of

year-location combinations increases.

Predictive abilities

Predictive abilities were calculated using Eq. (16) (Figs. 2,

3 and 4). Notice that the year-wise with kinship approach

(A1K) is not used for controlTS1 because the control TS is

composed of only one year, thus fitting a GY effect would

over-parametrize the model.

There are years or cycles that are easier to predict than

others. Predicting the VS1:GCA1-2012 had, across all

datasets, the highest predictive abilities. VS2:GCA1-2013

had also relatively high ρGP compared to VS3:GCA1-2014.

There was a marginal increase in ρGP along the

approaches from TS covering data from two and three

selection cycles (TS2 and TS3) over TS1 (one selection

cycle). In the GER&PL program, this increase is observed

especially for VS1 and for the 1P-scenario of VS2. In

Germany the difference between TS2 and TS3 is small,

though there is a general increase of the predictive abil-

ity in these two datasets over TS1. In the PL dataset, ρGP
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Fig. 2 Predictive abilities (y-axis) of the German and Polish dataset for the three scenarios. TS1 and controlTS1 , TS2 and controlTS2 , and TS3 and

controlTS3 to predict the validation sets VS1 , VS2 and VS3 with All, 0P and 1P-scenarios. Black lines for each bar represent the 95% confidence

intervals of the predictive ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets, approaches

2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1 :

GCA1-2009, TS2 : GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2 : GCA1-2009 + GCA1-2010, TS3 : GCA1-2009 + GCA2-2010 +

GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3 : GCA1-2009 + GCA1-2010 + GCA1-2011,

VS1 : GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014

obtained using TS3 or TS2 are not always better than TS1.

They depend on the model and the VS used.

When relatedness between TS and VS increased, there

was a general increase in ρGP . The increment depends

on the dataset, the target VS and the model (particu-

larly for the PL dataset). For example, in the VS1 of the

GER dataset, the increase in ρGP from the 0P- to the 1P-

scenario was from ∼ 0.30 to ∼ 0.60, and in the pooled

dataset (GER&PL) from ∼ 0.40 to ∼ 0.50, whereas in the

PL dataset the 1P-scenario had too wide confidence inter-

vals and varying predictive abilities across models, so that

no general trend can be recognized. For VS3, there was

no increase in ρGP from the 0P- to the 1P-scenario. This

is in agreement with the Euclidean distances presented in

Additional file 1: Table S11.

Predictive abilities were on average higher for the GER

dataset (0.2741) than for the GER&PL program (0.2407)

and markedly higher than for the PL dataset (0.1424).

When splitting German and Polish genotypes within the

GER&PL dataset, ρGP for only Polish lines was lower

than the ρGP obtained when only considering the PL pro-

gram, whereas the ρGP obtained for German lines within

the GER&PL dataset was higher than that obtained from

the GER dataset alone. The principal component analysis

(PCA) of the marker data in Fig. 5 shows that the geno-

types from the PL program form a more compact cloud

than those from the GER program and that the Polish

lines are well contained within the cloud of the German

lines. Although the first two principal components cap-

ture little variance (< 15%), the PCA shows that lines in
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Fig. 3 Predictive abilities (y-axis) of the German dataset for the three scenarios. TS1 and controlTS1 , TS2 and controlTS2 , and TS3 and controlTS3 to

predict the validation sets VS1 , VS2 and VS3 with All-, 0P- and 1P-scenarios. Black lines for each bar represent the 95% confidence intervals of the

predictive ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets, approaches 2-stg-Kin (A2),

2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1 : GCA1-2009,

TS2 : GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2 : GCA1-2009 + GCA1-2010, TS3 : GCA1-2009 + GCA2-2010 + GCA3-2011 +

GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3 : GCA1-2009 + GCA1-2010 + GCA1-2011, VS1 :

GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014

the PL program are more closely related than lines in the

GER program, so that some far related German lines could

cause a bias in the prediction of the Polish lines within the

GER&PL dataset.

For controlTS2 and controlTS3, approach A1K (year-

wise with kinship) was on average 17% higher in pre-

dictive ability than A1 (year-wise without kinship) across

programs, relatedness scenarios, TS and VS (17.3% in

the GER dataset, 21.8% in the PL dataset and 13.0% in

the GER&PL dataset). Approaches A2 (2-stg-Kin), A3

(2-stg-Kin-het) and A4 (3-stg-NoKin) yielded very similar

predictive abilities across datasets, relatedness scenarios

and VS for TS2 and TS3 (on average 0.2497), and were

also very close to predictive abilities obtained by A1K (on

average 0.2477). The worst approach was A5 (3-stg-Kin),

which led on average to 23% lower ρGP than the average

of A2, A3 and A4 across programs, relatedness scenarios

and VS.

Predictive abilities in sampling scenarios

To avoid the confounding effect of the VS-size and to

objectively compare parent scenarios and models, we

defined a VS-size of 100 genotypes to be predicted and

iterated the GP-FV 10 times. Results are depicted in

Additional file 1: Figures S5–S7. The predictive abilities

and their 95% confidence intervals are based on the mean

of the 10 sample draws.

The predictive abilities obtained for the scenarios with

samples of 100 genotypes in the VS confirmed the trends

observed for scenarios with complete validation sets
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Fig. 4 Predictive abilities (y-axis) of the Polish dataset for the three scenarios. TS1 and controlTS1 , TS2 and controlTS2 , and TS3 and controlTS3 to

predict the validation sets VS1 , VS2 and VS3 with All-, 0P- and 1P-scenarios. Black lines for each bar represent the 95% confidence intervals of the

predictive ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets, approaches 2-stg-Kin (A2),

2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1 : GCA1-2009,

TS2 : GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2 : GCA1-2009 + GCA1-2010, TS3 : GCA1-2009 + GCA2-2010 + GCA3-2011 +

GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3 : GCA1-2009 + GCA1-2010 + GCA1-2011, VS1 :

GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014

(Figs. 2, 3 and 4). The size of the confidence intervals

varied between the sampling scenarios and the scenar-

ios using all available genotypes. For smaller VS-size

(sampling 100 genotypes), confidence intervals are wider,

suggesting that more and better data would allow better

genotype estimates, as expected.

Relatedness scenarios

A PCA for each combination TS-VS-relatedness sce-

nario in all the datasets (GER&PL, GER and PL) showed

that PC1 and PC2 captured only little variance (< 15%)

(Additional file 1: Figures S8–S16), but still showed that

TS and VS are genetically structured and there is no

clear separation for TS and VS using different relatedness

degrees, i.e., different parent number in the TS.

Additionally, the mean of the Euclidean distance using

the marker matrix for genotypes in TS and all related-

ness scenarios of VS (Additional file 1: Table S11), showed

no strong variation between relatedness scenarios and

between TS-VS combinations. The values were in general

slightly higher for the PL dataset than for the GER dataset,

showing that the two groups are closely related within

themselves but marginally genetically divergent between

them. The results are consistent with the PCAs, since

there was no clear pattern from the 1P-scenarios that

would suggest a closer relatedness between TS and VS

than the 0P-scenarios or the All-scenarios.

For the three relatedness scenarios (All, 0P- and 1P-

scenarios) across all the datasets (GER, PL and GER&PL),

approach A1K (year-wise with kinship) produced, in
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Fig. 5 Principal component (PC) plots for the training datasets TS1 , TS2 and TS3 of the German (GER) and the Polish (PL) programs. TS1 : GCA1-2009 +

GCA2-2010 + GCA3-2011, TS2 : GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, TS3 : GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 +

GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013

general, very similar predictive abilities to approaches A2

(2-stg-Kin), A3 (2-stg-Kin-het) and A4 (3-stg-NoKin), and

these four approaches were on average 18% better than

approaches A1 (year-wise without kinship) and A5 (3-stg-

Kin) in terms of ρGP . In the GER and GER&PL datasets,

A1K produced slightly higher predictive abilities than A2,

A3 and A4 for All- and 0P-scenarios, whereas for 1P-

scenario there was no markedly difference between A1K

and A2, A3 and A4. In the PL program, A4 had on aver-

age 13% and 8% higher ρGP than A1K for the 0P- and

1P-scenario, respectively. For the All-scenario, A4 showed

no difference with A1K and both approaches yielded on

average 14% better ρGP than A2 and A3.

Top-yield scenarios

In the present study, using a selected fraction of indi-

viduals in the TS was useful only in the control TS, i.e.,

when a given selection cycle (genetic background) was

represented by only one year of (GCA1) data (Figs. 6,

7 and 8). In this case, the effects of non-yield QTL are

confounded within each genetic background with the GY

effects. Consequently, a selected fraction of individuals

with higher grain yield performance will reduce variation

due to non-yield QTL and, therefore, reduce bias due to

confounding effects. In contrast, when two or more years

of data are available per genetic background, environmen-

tal and non-yield QTL effects can be estimated separately,

thus rendering the use of selected fractions in the TS

(Top75% or Top50%) non-effective.

For the control TS across all datasets, the Top75% and

Top100% scenarios using the year-wise (A1) approach and

year-wise with kinship (A1K) approach had a higher ρGP
than the Top50% scenario. For the GER and GER&PL

datasets A1K using Top75% was marginally better than

A1K using Top100% (on average 4% better) and across all

datasets, A1K had 13% higher ρGP than A1. Additionally,

for A2 (2-stg-Kin), A3 (2-stg-Kin-het), A4 (3-stg-NoKin)

and A5 (3-stg-Kin) the Top100% scenarios outperformed

the Top75% and Top50% scenarios in terms of ρGP .

Discussion
The key contribution of this paper was an evaluation of

the use of kinship to model GY effects in disconnected

datasets for a better separation from GEBV. We presented

a detailed step-by-step genomic prediction analysis mod-

eling GY with different approaches and extending the

use of molecular markers to deal with disconnected tri-

als. We also use a validation set system across years that

approximates to the breeders’ aim of empirical validation.

In the analyzed datasets, we found thatG andGY effects

(and other effects that include factorG) were confounded.

This was evident from the large negative asymptotic cor-

relations that reflect ill-conditioning (Tables 2, Additional

file 1: Tables S2–S4). Using multiple genetic backgrounds

as in TS2 (two selection cycles) and TS3 (three selection

cycles), it is possible in principle to build bridges across

years given that GY is specific to the genetic background.

Nonetheless, the unbalancedness of the design was still

so strong that those effects remained confounded (Addi-

tional file 1: Tables S5–S10). The use of several cycles

improved the estimate of the variance of genotype effects

because there were more lines repeated across years

within cycles (especially in the PL dataset), thus solving

the problem of a zero variance estimate with single-cycle

data. By contrast, the use of multiple cycles did not solve

the ill-conditioning problem.
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Fig. 6 Predictive abilities (y-axis) of the German and Polish dataset for selection scenarios of top-yield performance. Selection in the training set

(TS): 50% of highest yielding genotypes (gray bars), 75% of highest yielding genotypes (yellow bars) and 100% of the genotypes (blue bars), using

validation sets VS1 , VS2 and VS3 . Black lines for each bar represent the 95% confidence intervals of the predictive ability. Year-wise approach (A1) and

year-wise with kinship approach (A1K) were fitted to the control TS, approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5)

to the complete TS. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1 : GCA1-2009, TS2 : GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011,

controlTS2 : GCA1-2009 + GCA1-2010, TS3 : GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 +

GCA2-2012 + GCA3-2013, controlTS3 : GCA1-2009 + GCA1-2010 + GCA1-2011, VS1 : GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014

The main advantage expected from pooling

GCA1+GCA2+GCA3 data in the TS is that a better bridge

is built between years, leading to more precise adjusted

means, thus allowing to dissect GY from GEBV. If most

of the interaction is specific to the genetic background (as

we assume it to be), multiple genetic backgrounds (selec-

tion cycles) are needed for a better separation of main

SNP effects, such as in TS2 and TS3. Auinger et al. [4]

recently found that aggregating data from several consec-

utive cycles connected by a sufficient number of common

ancestors improves the accuracy of the predictions of

candidate genotypes. Our results confirm their conclu-

sion and complement the recommendation towards using

additionally a selected fraction of 75% best yielding geno-

types in the TS to reduce biasing effects due to non-yield

QTL. The most surprising result is that the highest and

most stable results are obtained with the controlTS2
and controlTS3 with A1K, i.e., using GCA2 and GCA3

data apparently is not only advantageous, but leads to a

slight reduction in prediction abilities in comparison to

using multiple consecutive GCA1 data, as in A1K. This

is probably due to a biased segregation and variation of

QTL effects in the selected fractions of GCA2 and GCA3

with respect to the non-selected GCA1 datasets.

The advantage of using a whole cycle with GCA1 to

GCA3 is that the genotypes making it to GCA2 and

GCA3 have been seen in more than one year, thus mod-

els that use a complete TS benefit from the TS struc-

ture, allowing reasonable GY estimates with or without

kinship. By using only GCA1 experiments (i.e., control

TS), a good coverage of the genetic target population is

achieved and the use of kinship to model the genetic

connection across years (specifically with model A1K)

seems to be powerful enough to estimate GY fairly inde-

pendent from GEBVs. Modeling GY is essential when

there is no connectivity between years as different sets of

genotypes are tested each year. By contrast, there is excel-

lent connectivity between locations in each year through

genotypes and checks because the same set of geno-

types is usually tested at all or most locations. Thus, we

expect that the GL effect estimates are relatively accu-

rate within a year whereas modeling GY is the Achilles’

heel of the whole analysis as GY will be confounded with

the GEBVs.
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Fig. 7 Predictive abilities (y-axis) of the German dataset for selection scenarios of top-yield performance. Selection in the training set (TS): 50% of

highest yielding genotypes (gray bars), 75% of highest yielding genotypes (yellow bars) and 100% of the genotypes (blue bars), using validation sets

VS1 , VS2 and VS3 . Black lines for each bar represent the 95% confidence intervals of the predictive ability. Year-wise approach (A1) and year-wise with

kinship approach (A1K) were fitted to the control TS, approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the

complete TS. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1 : GCA1-2009, TS2 : GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011,

controlTS2 : GCA1-2009 + GCA1-2010, TS3 : GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 +

GCA2-2012 + GCA3-2013, controlTS3 : GCA1-2009 + GCA1-2010 + GCA1-2011, VS1 : GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014

The PL dataset produced markedly lower predictive

abilities than the GER and the GER&PL datasets. We had

stated that the German genotypes profited from the Polish

ones but not vice versa, perhaps because the GER program

is genetically more diverse than the PL program (Fig. 5),

so that there are some SNPs that are monomorphic for the

Polish lines but not for the German lines causing a bias

in the prediction of the Polish lines within the GER&PL

dataset. Probably the main reason why the PL dataset had

markedly lower predictive abilities than the GER dataset

is that the Polish data have a higher error, i.e., GY, GL and

GYL interaction effects are estimated less accurately. The

fact that in Poland there are fewer GL and GYL evalua-

tions (Additional file 1: Table S1) could explain why the

Polish predictive abilities were lower. Endelman et al. [21]

show that having larger populations spread across more

environments produces higher predictive abilities than

evaluating the same genotypes in fewer environments.

The GER dataset has a higher number of GL and GYL

combinations because trials with Tester 1 and Tester 2 are

not evaluated in exactly the same locations, whereas in

the PL dataset, there is a balanced design of testers across

locations within a year.

Predictive abilities were in general 26% higher for the

1P-scenarios than the 0P-scenarios and 15% higher than

for the All-scenarios, reinforcing the findings of other

genomic prediction studies on the effect of relationships

between TS and VS [22–26]. The use of the kinship to

model GY in 0P-scenarios did not consistently compen-

sate the lack of relatedness. Although the three relat-

edness scenarios (All-, 0P- and 1P-scenarios) showed

small differentiation by the mean Euclidean distance

(Additional file 1: Table S11) and not so marked diver-

gence in the PCA plots (Additional file 1: Figures S8–S16),

a realized relationship between TS and VS does have a

positive impact on the predictive abilities. In the best case,

i.e. the GER dataset - VS1:GCA1-2012, predictive abilities

ranged from ∼ 0.14 to ∼ 0.38 in the 0P-scenario and from

∼ 0.50 to ∼ 0.73 in the 1P-scenario.

All approaches revealed marked variation in predic-

tive abilities across scenarios. In general, there was

a modest increment of the year-wise with kinship

approach (A1K) over the year-wise approach (A1), in

particular controlTS2:GCA1-2009 + GCA1-2010 and

controlTS3:GCA1-2009 +GCA1-2010 +GCA1-2011 over

controlTS1:GCA1-2009. The confidence intervals of the



Bernal-Vasquez et al. BMC Genetics  (2017) 18:51 Page 15 of 17

Fig. 8 Predictive abilities (y-axis) of the Polish dataset for selection scenarios of top-yield performance. Selection in the training set (TS): 50% of

highest yielding genotypes (gray bars), 75% of highest yielding genotypes (yellow bars) and 100% of the genotypes (blue bars), using validation sets

VS1 , VS2 and VS3 . Black lines for each bar represent the 95% confidence intervals of the predictive ability. Year-wise approach (A1) and year-wise with

kinship approach (A1K) were fitted to the control TS, approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the

complete TS. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1 : GCA1-2009, TS2 : GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011,

controlTS2 : GCA1-2009 + GCA1-2010, TS3 : GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 +

GCA2-2012 + GCA3-2013, controlTS3 : GCA1-2009 + GCA1-2010 + GCA1-2011, VS1 : GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014

predictive abilities of the year-wise approach (A1) over-

lapped most of the times with predictive abilities of the

year-wise with kinship approach (A1K) (black lines of

Figs. 2, 3 and 4), but even so, in challenging programs

as the Polish one, the benefit of using the kinship was

worth about 22% on the correlation scale. In the GER and

GER&PL datasets the approaches A2, A3 and A4 had con-

sistent and very similar predictive abilities. Only A5 was

almost always markedly lower in predictive ability than

the other models. From these results we conclude first,

that using the kinship to model GY for settings of dis-

connected years is safer than estimating the year effect

as the simple average of the genotypes evaluated in a

given year, and second, when the datasets cover multi-

ple genetic backgrounds in the same year (as datasets

used for A2, A3, A4 and A5), it is possible to estimate

GY effects either by using kinship directly in the GP

stage (A2 and A3) or simply using the correct model in

the TS to obtain adjusted genotype means across years

(A1K) and submit them to GP. Hence, kinship is help-

ful in the case of disconnected data and no harm is

done using it in other cases. Although computational load

may increase with the use of kinship to model GY, novel

approaches that combine dense and sparse matrix meth-

ods alleviate this burden and are starting to become freely

available [27].

It was surprising that the 3-stg-Kin approach (A5) had

markedly lower predictive abilities than the approach

3-stg-NoKin (A4) because the difference between both

approaches is that in A5, we use kinship to model the GY

whereas in A4 we do not, so we would have expected that

using kinship in modeling GY improves predictive abil-

ity. While this expectation was confirmed in the other

approaches that used kinship (A2 and A3), this was not

the case here. All methods are designed to approximate

the same single-stage model (1), so that it was not obvi-

ous which one should work better because it uses kinship

to model the GY effects, as does model (1). While both

A5 and A1K seek to approximate the single-stage model

(1), A1K makes somewhat weaker assumptions because it

does not use kinship to model GY in the second stage.

So while A5 better approximates the single-stage model,

there is no guarantee that the single-stage model is the

best model for GP. This may explain why A1K does better
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in terms of predictive accuracy and also why A4 fared

better than A5.

Predictive abilities for VS1:GCA1-2012 ranged from ∼

0.24 on average in the PL dataset to maximum ∼ 0.73

in the GER dataset, and the lowest ρGP occurred for

VS3:GCA1-2014 ranging from zero (or negative) in the

worst case of the PL dataset to ∼ 0.33 the best case

in the GER dataset. The results that we obtained are

in accordance with the predictive abilities reported by

Auinger et al. [4], which ranged between 0.39 and 0.58

(with an average heritability of 0.83) and were based

on GP-FV. The validation sets VS1:GCA1-2012 and

VS2:GCA1-2013 could be predicted more accurately than

VS3:GCA1-2014. Data from the year 2014 has been iden-

tified as problematic, since it is not easy to predict within

the GP program from KWS-LOCHOW. We acknowledge

the fact that the scenarios TS3-VS1 and TS3-VS2 are less

realistic in the sense that data from the same year of pre-

diction is used in TS andVS, but we consider those scenar-

ios because the number of genotypes in GCA3-2012 and

GCA3-2013 is low (less than 30 shared genotypes within

cycles in all the programs) and there are no genotypes in

common between TS and VS, keeping our condition of

disconnected TS and VS valid for the presented scenarios.

Moreover, removing data from GCA3-2012 or GCA3-

2013 from TS3 led to only a slight variation in the value of

the reported predictive abilities, with changes occurring

after the third of fourth decimal place.

Besides focusing in the mean performance across years,

another important target in plant breeding is to investi-

gate stability, which refers to the variability from year to

year. In the context of genomic prediction, it makes sense

to also study the expected consistency of year to year per-

formance aiming to minimize this variability [8, 28]. This

stability aspect deserves further study.

The results obtained for the top-yield scenarios led us to

conclude that using a multiple genetic background in the

TS allows capturing the true QTL for yield, whereas when

having only one year in the TS (i.e. control sets), the model

is not able to do this distinction and hence, a pre-selection

of best yielding genotypes may improve the predictive

abilities. This explains the ability of the year-wise with

kinship approach (A1K) to improve ρGP using 75% of the

best-yielding genotypes even if the TS-size was reduced.

Selecting a top fraction of best yielding genotypes for the

TS basically allows to reduce the genotype-by-year effects

that cannot be accurately estimated due to absence of con-

nectivity across years. In this work, we randomly used

75% top fraction, but other values (e.g 95%, 90%, 85%,

80%) should be further considered. The implementation

of the A1K (year-wise with kinship) approach is advanta-

geous from the technical point of view, since the analysis

requires lower computing power than using 100% data

from complete cycles as for A2, A3 and A4. Given the

overlap of the 95% confidence intervals for the majority of

the approaches across scenarios, there is no single method

that always outperforms the contending methods. Never-

theless, our favorite approach for GP using disconnected

years of a breeding program with a similar structure to

the one described in the present work is the year-wise

with kinship (A1K) approach with TS composed of mini-

mum two single years ofmultiple genetic backgrounds (i.e.

controlTS2 and controlTS3). Our reasons for this pref-

erence are as follows. For the A1K approach the predic-

tive abilities were more stable across scenarios, including

that the relationship information (kinshipmatrix) ensured

that GY were properly estimated, computing load was

manageable and a pre-selection of the best genotypes in

the TS did not have negative effects over the predictive

abilities.

Conclusions
The main conclusions of this study are: (i) Using multi-

year datasets is advantageous, (ii) the year-wise with kin-

ship approach (A1K) with two or three years in the TS

(controlTS2 or controlTS3) was our favourite since it led

to slightly better and more consistent ρGP trend than any

other approach, (iii) the use of kinship to model GY in

multi-year datasets is encouraged, especially for datasets

covering multiple genetic backgrounds and where dis-

connected trials across years are evaluated, i.e. year-wise

with kinship approach (A1K), (iv) if only data from one

selection cycle is available (TS1) there is a loss in ρGP
with no options to improve via kinship or other mod-

els, (iv) predictive abilities improved in scenarios where

TS and VS were more related (1P-scenario), and (v) pre-

selection of top-yielding genotypes is recommended in

cases where several single-year data are available within

selection cycles and in such cases, the use of the kinship

to model GY is also advisable.
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