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GENOMIC SELECTION

Genomic Prediction of Gene Bank Wheat Landraces
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Clay Sneller,†† Matthew Reynolds,* Maria Tattaris,* Thomas Payne,* Carlos Guzman,*
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Keim Hall, Lincoln, Nebraska 68583-0915, ‡Departamento de Biometría, Estadística y Computación, Facultad de
Agronomía, Universidad de la República (Udelar), Paysandú, Uruguay, §Colegio de Post-Graduados, Montecillos, Edo. de
Mexico, 56230 Mexico, **Department of Plant Breeding & Genetics, Cornell University, Ithaca, New York 14853, and
††Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691

ORCID ID: 0000-0001-9429-5855 (J.C.)

ABSTRACT This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian

landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field

trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat,

H) for the highly heritable traits, days to heading (DTH), and days to maturity (DTM). Analyses accounting and not

accounting for population structure were performed. Genomic prediction models include genotype · environ-

ment interaction (G · E). Two alternative prediction strategies were studied: (1) random cross-validation of the

data in 20% training (TRN) and 80% testing (TST) (TRN20-TST80) sets, and (2) two types of core sets, “diversity” and

“prediction”, including 10% and 20%, respectively, of the total collections. Accounting for population structure

decreased prediction accuracy by 15–20% as compared to prediction accuracy obtained when not accounting for

population structure. Accounting for population structure gave prediction accuracies for traits evaluated in one

environment for TRN20-TST80 that ranged from 0.407 to 0.677 for Mexican landraces, and from 0.166 to 0.662 for

Iranian landraces. Prediction accuracy of the 20% diversity core set was similar to accuracies obtained for TRN20-

TST80, ranging from 0.412 to 0.654 for Mexican landraces, and from 0.182 to 0.647 for Iranian landraces. The

predictive core set gave similar prediction accuracy as the diversity core set for Mexican collections, but slightly

lower for Iranian collections. Prediction accuracy when incorporating G · E for DTH and DTM for Mexican

landraces for TRN20-TST80 was around 0.60, which is greater than without the G · E term. For Iranian landraces,

accuracies were 0.55 for the G · E model with TRN20-TST80. Results show promising prediction accuracies for

potential use in germplasm enhancement and rapid introgression of exotic germplasm into elite materials.
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Breeding gains have depended largely on having access to useful genetic

variation in cropgenepools.Genebanks are the repositoriesofnovel and

useful genetic variation contained in a crop’s gene pool. The wheat gene

bank of the International Maize and Wheat Improvement Center

(CIMMYT) has access to various germplasm pools, and preserves an

array of wild relatives, landraces, genetic stocks, and cultivar germplasm

materials. Wheat landrace germplasm has the advantage over wild

relatives of being more easily crossed with cultivated hexaploid wheat.

The potential of these landraces should be harnessed for present and

future wheat genetic improvement programs, and such efforts have

begun (Ayala et al. 2013; Caballero et al. 2010; Guzman et al. 2014,

2015; Vikram et al. 2016). Part of the existing genetic variation in

CIMMYT’s wheat and maize gene banks was characterized recently

by phenotyping and genotyping thousands of accessions through the

Seeds of Discovery (SeeD; http://seedsofdiscovery.org) project funded
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by the Mexican government through the Sustainable Modernization of

Traditional Agriculture program (MasAgro; http://masagro.mx).

Evaluation and use of the genetic resources stored in gene banks can

be facilitated by forming reference core sets. Initially put forward by

Frankel and Brown (1984) and Brown (1989), developing core sets

consists of sampling only a small proportion of all the collections of

a species that will maximize allele diversity. Several authors have since

studied different sampling strategies for forming “diversity” core sets

using phenotypic andmolecular marker data (Franco et al. 2006, 2010).

Recently, diversity core sets of Mexican and Iranian bread wheat land-

races that maximize allele diversity were prepared by using high-

throughput molecular markers, for their enhanced use in wheat

breeding through genome-wide association analysis (Vikram et al. 2016).

Rapid and precise breeding is required by crop improvement pro-

grams, and various marker-assisted methods have proven their rele-

vance in different cereal crops. One of thesemethods is genomic selection

(GS), which is becoming a standard approach to achieve genetic progress

in plants. GS models often accurately predict the value of nonpheno-

typed plants, and reduce generation intervals by reducing the need for

field testing progeny (Meuwissen et al. 2001). Further, combining

methods involving high-density marker platforms with models that

include genotype · environment (G · E) interactions adds power

to GS models; however, Schulz-Streeck et al. (2013) found contrasting

prediction results when usingG · E.Genomic predictionmodels have

been proposed that take into account the random effects ofmarkers and

their interaction with environments by considering Gaussian processes

with covariance functions based on genetic and environmental similar-

ities among individuals (Burgueño et al. 2012; Jarquín et al. 2014).

Although the accessions stored in gene banks represent a rich asset

for breeders, alleles need to be moved from the accessions to cultivar

development programs. Lengthy prebreeding programs are required to

develop lines that combine favorable alleles from the germplasm bank

with good agronomic performance, and thus can be used as parents in a

breeding program. In recent years, genomic selection and prediction

have been studied in breadwheat using only elite germplasm sets (de los

Campos et al. 2009, 2010; Crossa et al. 2010; González-Camacho et al.

2012; Heslot et al. 2012; Pérez-Rodríguez et al. 2012; López-Cruz et al.

2015). To date, no study has been reported on the genomic prediction

accuracy of traits measured in wheat gene bank accessions, or on the

use of genomic G · E models on wheat bank accessions evaluated in

different environments. In a recent study, Gorjanc et al. (2016) per-

formed extensive computing simulation to evaluate germplasm enhance-

ment schemes within the SeeD initiative for harnessing polygenic

variation from maize landraces using genomic selection. Based on the

simulation of various prebreeding options, Gorjanc et al. (2016) con-

cluded that germplasm enhancement breeding programs can be initiated

directly from landraces or landraces crossed with elite testers.

Recently, methods for selecting efficient training populations to be

used inGS and prediction (Akdemir et al. 2015) have been developed to

select a training set based on molecular marker genotyped that mini-

mizes the predictive error variance. From the perspective of selecting a

subset of individuals from the entire population, this can be considered

a method for selecting a ‘prediction’ core set.

In lightof theabove, theobjectivesof this studywere: (1) to examine the

genomic prediction accuracy within a large number of Mexican and

Iranian wheat landraces held in CIMMYT’s gene bank for several phe-

notypic traits; two highly heritable traits were measured in two environ-

ments [i.e., days to heading (DTH), and days to maturity (DTM)

evaluated in drought and heat environments], and several other traits

were measured in a single optimum environment; and (2) to study two

genomic prediction strategies: (i) random cross-validation schemes where

20% of the accessions form the training (TRN20) set, and 80% of the

accessions comprise the testing set (TST80) (TRN20-TST80); (ii) studying

the prediction accuracy of two types of reference core sets (diversity and

prediction) that included 10% and 20%, respectively, of the total collec-

tions to predict the remaining 90%and 80%of the accessions, respectively.

For traits measured in a single optimum environment, we used the

standardGenomic Prediction Best LinearUnbiased Predictor (GBLUP)

model for the TRN20-TST80 partitions and the 10% and 20% diversity

and prediction core sets. For the two traits that were measured in two

environments, we used a G · E reaction norm model (Jarquín et al.

2014) for predicting the genetic value of 80% of the accessions for which

there were no phenotypic data available in either of the two environ-

ments. For core sets, we directly predicted the 80% and 90% of the

accessions that were not observed in both environments. Prediction

accuracy within each collection (Mexican and Iranian) was performed

accounting and not accounting for population structure.

Note that this study focuses on each collection of accessions (Mex-

ican and Iranian separately), and that prediction results from both

collections cannot be compared due to differences in population size,

number of markers, and traits measured and evaluated in different field

experiments. We included results of both collections in the same tables

and/or figures for easy presentation, but not for comparing Mexican

and Iranian landrace collections.

MATERIALS AND METHODS
Weuseda totalof8416Mexicanand2403Iranianbreadwheat (Triticum

aestivum) landrace accessions held in CIMMYT’s wheat gene bank. All

of the landraces were genotyped using genotyping by sequencing (GBS)

methods, and more than 40,000 SNPs were detected. The final number

of markers used for each trait in both sets of landraces varied (Table 1).

Phenotypic traits in Mexican and Iranian landrace data

The accessions were evaluated in the field and laboratory for several

traits, and the two collections (Mexican and Iranian) were planted in

different field experiments. DTH andDTM of theMexican and Iranian

wheat landraces were evaluated in field drought (D) and heat (H)

experiments at CIMMYT’s experiment station near Ciudad Obregon,

Sonora, northwest Mexico (27�209 N, 109�549W, 38 meters above sea

level), during the 2010–2011 Obregon cycle. Heat stress trials were

planted in April 2011, and drought stress trials were planted in No-

vember 2010. Both heat and drought are common in wheat growing

areas, and they considerably affect several important traits. The drought

trial was sown during the normal wheat planting cycle and harvested in

April. Plots received�250 mmof water through drip irrigation during

the entire cropping cycle. The heat stress trial was sown on a delayed

sowing date in early April (sowing date: 6–8 April; first irrigation: April

10, 2011), and harvested in July 2011. This trial was fully irrigated to

keep water limitations from confounding the heat-stress results. The

heat-stress trial had an average daily maximum temperature of 36.3�

(min 18.1�), compared to 27.8� (min 9.0�) for the drought stress trial.

In both drought and heat stress trials, fertilization, as well as weed,

disease, and pest control, were applied as necessary to minimize limita-

tions. TheMexican and Iranian landraces were evaluated in two separate

trials using an augmented grid-check field design with three randomized

checks distributed along rows and columns. Plots were 0.40 m2. For each

accession of each collection, DTHwas determined as the number of days

from emergence to 50% spike emergence. DTM was measured as the

number of days when 50% of peduncles were completely yellow.

Other traits were measured on Mexican and Iranian landraces, but

only in a single, optimum, well-irrigated environment in Cd. Obregon

using an augmented grid-check field design. For Mexican accessions
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evaluated in the optimum environment, the other traitsmeasured were:

thousand-kernelweight (TKW), testweight (TW),grainhardness (GH),

grain protein (GP), SDS sedimentation (SDS), grain yield per square

meter (GYSM) and plant height (PHT) (Table 1). Traits measured on

Iranian landraces only in the optimum environment in Cd. Obregon

were thousand-kernel weight (TKW), test weight (TW), grain width

(GW), grain hardness (GH), grain protein (GP), grain length (GL),

plant height (PHT), and SDS sedimentation (SDS).

Spatial analyses of field experiments

In agricultural field trials, accounting for major and minor sources of

spatial variation in plot errors is of paramount importance (Gilmour

et al. 1997). In this study, the raw data for all traits in eachMexican and

Iranian landrace experiment were corrected for plot-to-plot variability

using a separable autoregressive model fitted in the direction of the rows

and the columns of the spatial coordinates, inwhich the data are observed

on a regular grid (Gilmour et al. 2009). The autoregressive model is a

random process that describes processes that vary in space (or time). In

this autoregressive process, the value of the response trait in one exper-

imental plot depends on the trait’s other values in spatially related plots

and represents a special case of a time series problem (when one data

value depends on other previously observed data values).

Genotypic data

The DArT-Seq (Sansaloni et al. 2011) platform was used to generate

genomic profiles ofMexican and Iranian wheat landraces. This technology

combines DArT complexity reduction methods with next generation se-

quencing platforms, which allow scanning over 100,000 loci for DNA

variation primarily targeting genetic regions. DArTseq integrates silico-

DArT markers (based on SNP and methylation variation) with “tradi-

tional” SNPmarkers on the fragments detected in genomic representation

(Carling et al. 2015). Two enzymes (PstI and HpaII) were used to create

genomic representations of both populations. The samples were submitted

to digestion and ligation of barcode adaptors, which allowmultiplexing 96

samples in a single lane of an IlluminaHiseq2500 (Illumina Inc., SanDiego,

CA). More than 2,000,000 tags per sample generated up to 77 bases. A

DArT P/L analytical pipeline was used to generate allele calls for SNP and

silico-DArT. From a total of 40,000 markers, a set of filtering parameters

was applied to select and provide high quality markers. Marker filtering

was done in a trait-specificmanner because some traits were notmeasured

in all the lines; thus these lines had to be deleted from the prediction.

The number ofmarkers used in each data set for each traitmeasured

in Mexican and Iranian landraces are shown in Table 1. Genomic

heritability (h2) (shown in Table 1) was computed as the ratio between

the genetic variance due to markers over the summation of the genetic

variance plus the error variance (h2 ¼
s2
g

s2
gþs2

e
).

Defining 10% and 20% diversity core sets of wheat
Mexican and Iranian landraces

To develop a suitable genomic selection training model, we sampled

reference core sets of theMexican and Iranian wheat landraces. Reference

core setswere formedsolelywithgenotypicmarker information.Twosuch

representative setswith 10%and20%of theMexican and Iranian landrace

collectionswere selected tomaintain the collections’geneticdiversitybased

on genetic distance: these reference core sets are named diversity core sets.

To define the reference core sets, allele frequencies were calculated;

modified Rogers genetic distances (MRD; Reif et al. 2005) between pairs of

accessions were then computed and the accessions classified into groups

by the hierarchical “minimum variance within group” clustering method

(Ward 1963) using the “hclust” routine from the “fastcluster” R package

(R Core Team 2016). Using the MRD and the minimum variance within

group strategy guarantees that the individuals within a group have a low

average distance, while individuals between groups have a high average

distance. Using theMRD genetic distance is justified because it satisfies the

condition of being a Euclidean distance (Franco et al. 2005).

To define the number of groups in each set, different partitions of

accessionswere analyzed using the “rect.hclus” routine fromR; this routine

draws rectangles around the different branches of a dendrogram so that

corresponding clusters are highlighted. Sample size per group was defined

by average MRD distance values calculated for each cluster and the num-

ber of accessions to be obtained per cluster was defined as being pro-

portional to the group average distance (D-method, Franco et al. 2005).

Once sample size per group was defined, 1000 independent “candidate

subsets” were selected from the collection by the stratified random sam-

pling method using the previously defined number of accessions per

group. An average MRD distance value was calculated for each of the

“candidate subsets,” and the subset showing the highest average MRD

value was selected as the training set.

Defining 10% and 20% prediction core sets of wheat
Mexican and Iranian landraces

Here the selection of the core set was based on the reliability measure of

VanRaden (2008) that is expressed as G21

�
G11 þ

12h2

h2

�21

G’

21, where

G11is the genomic relationship matrix of the individuals in the training

set, G21 is the genomic relationship among individuals in the training

and testing sets, and h2 is the trait’s genomic heritability. This reliabil-

itymeasure is related to the prediction error variance (PEV), and also to

the coefficient of determination.

When sample size increases, computation of that reliability measure

is difficult to do in practice. A solution to this problem was recently

proposed by Akdemir et al. (2015), who proposed including a set of

individuals that form the training set (i.e., individuals for phenotyping

n Table 1 Phenotypic traits of Mexican and Iranian gene bank
landrace collections, number of accessions, number of markers,
and heritability (h2) of the trait

Trait
Number of
Accessions

Number of
Markers h2

Mexican collection
Days to heading (DTH) 8481 23,747 0.556
Days to maturity (DTM) 8481 23,747 0.554
Plant height (PHT) 8414 23,756 0.345
Grain yield per square meter

(GYSM)
8142 23,740 0.339

Thousand-kernel weight (TKW) 8102 23,855 0.583
Test weight (TW) 8102 23,855 0.527
Grain hardness (GH) 7863 23,574 0.448
Grain protein (GP) 8101 23,849 0.508
SDS sedimentation (SDS) 8093 23,946 0.504

Iranian collection
Days to heading (DTH) 2374 39,758 0.827
Days to maturity (DTM) 2374 39,758 0.822
Thousand-kernel weight (TKW) 2000 33,709 0.833
Test weight (TW) 2000 33,709 0.754
Grain hardness (GH) 2000 33,709 0.839
Grain protein (GP) 2000 33,709 0.625
Grain length (GL) 2000 33,709 0.881
SDS sedimentation (SDS) 2000 33,709 0.681
Grain width (GW) 2000 33,709 0.848
Plant height (PHT) 2000 33,709 0.434
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and genotyping), and a second set containing the testing sets on which

the predictionmodel is validated. The authors proposed approximating

the PEV as the objective function to be minimized by applying an

efficient method that uses the first 100 principal components of the

marker data. In this study, the proposed method to approximate the

PEV was used to form 10% and 20% prediction core sets that will be

the training populations of Mexican and Iranian landraces used to

predict the remaining accessions.

Statistical models

We used the standard GBLUP genomic prediction model for traits

evaluated in a single environment, and a G · E model that ex-

tended the GBLUP theory to a reaction norm model (Jarquín et al.

2014) for traits DTH and DTM measured in D and H environ-

ments. Phenotypic data were obtained after correcting for the field

experimental design, and doing a spatial field adjustment based on

the repeated check using the spatial autoregressive model de-

scribed above.

Genomic prediction accuracy accounting and not accounting for

population structure: Genomic accuracy is affected by population

structure and/or linkage disequilibrium (LD) betweenmarkers and

QTL (Daetwyler et al. 2015). Population structure affects genetic

variation because some individuals are more related than others,

or because a sample may contain individuals from different groups

with similar allele frequencies within groups but with different

reference allele among them at a particular locus. One way to

remove this structural variability due to stratified populations

would be to include the first few principal components in the

analyses as fixed effects; this will decrease genomic prediction

accuracy (Daetwyler et al. 2015).

As expected, in the extensive gene bank collections of landrace

accessions included in this study (Mexico and Iranian), there is a

population structure. Although it is difficult to decide whether to adjust

for population structure, we performed the prediction (i) accounting for

population structure, and (ii) not accounting for population structure.

To account for population structure, analyses were based on the relative

contribution to molecular variance. The plots of the proportion of total

variance explained by the eigenvalues of the genomic relationship

matrixG for Mexican and Iranian landraces shown in Figure 1, A–H

depicted a substantial population structure. The first five and nine

eigenvectors for the Mexican and Iranian landraces accounted for

about 25% and 30% of the total variance, respectively. We used the

first five eigenvectors to adjust phenotypes for population structure.

This number of eigenvectors was also suggested by Gou et al. (2014)

in stratified maize and rice populations.

When accounting for population structure by correcting the

phenotypic response variables of all the traits by the first five

principal components, prediction accuracies decreased by about

15–20% (on average) as compared with analyses that did not ac-

count for population structure. Full results of the prediction ac-

curacy of models fitted without correcting for population structure

are given in the Appendix.

GBLUP single-environment model for traits measured in one

environment:We applied a single-environmentmodel for several traits

that were measured in one environment. This model regresses the

phenotype vector containing the records for the response variable,

y ¼ fyig (where i indexes wheat landraces accessions), on markers

using a linear model of the form yi ¼ mþ
Pp

k¼1 xikbk þ ei, (i =

1,2,. . .,n accessions; k = 1,2,. . .,p markers) or, in matrix notation,

y ¼ 1mþ Xbþ e (1)

where m is an intercept, X ¼ fxikg is a matrix of marker genotypes,

b ¼ fbk g is a vector of marker effects and e is a vector of model

residuals. The assumptions of the GBLUP model (VanRaden, 2007,

2008) are thatbeNð0; Is2
bÞ, and eeNð0; Is2

e
Þ. Setting g ¼ Xb; model

(1) can be represented as:

y ¼ 1mþ g þ e (2)

with geNð0;Gs2
uÞ, with the entries of G given byPp

k¼1
ðxik 2 2pkÞðxjk 2 2pkÞPp

k¼1
2pkð12 pkÞ

where pk is the estimated allele frequency

whose number of copies at the ith accession is counted in xik . Cen-

tering (i.e., subtracting 2pk from the genotype codes) and standard-

ization (i.e., dividing by
Pp

k¼1 2pkð12 pkÞÞ allows interpreting

s2
u ¼ s2

b

Pp
k¼1 2pkð12 pkÞ as a genomic variance. As the number

of independently segregating loci increases, the entries of the genomic

relationship matrix G converge to twice the coefficient of parentage

(or coancestry) between lines.

GBLUP G 3 E models for traits measured in two environments:

Response variables (DTHandDTM)measured in two environments (D

andH) were analyzed by applying a sequence of multiplicative reaction

normmodels similar to that used by Jarquín et al. (2014) with genomic-

based relationship matrices and by Pérez-Rodríguez et al. (2012) with

pedigree-based relationship matrices. Two models (M1 and M2) in-

cluded only the main effects of environment, accessions and/or geno-

mic information. Models M3 and M4 included the main effects and

different types of interactions. Several articles have used slightly differ-

ent sequences of models for assessing the prediction accuracy of models

including main effects and interaction terms (Zhang et al. 2014),

depending on the structure of the main effects and interaction terms

of interest. A brief description of the models considered in this study is

given below.

Main effect model 1 (M1):Thisbaselinemaineffectmodel considers

the response of the jth accession in the ith environment (yijÞ as a func-

tion of a random effect model that accounts for only the effect of the

environment (Ei), the accession (AjÞ; plus a residual (ej):

yij ¼ mþ Ei þ Aj þ eij (3)

where m is an intercept, Ei e
iid

Nð0; s2
EÞ is the random effect of the ith

environment, Aj e
iid

Nð0; s2
AÞ is the random effect of the jth accession,

and eij e
iid

Nð0;s2
e
Þ is a model residual. Here Nð�; �Þ stands for a

normally distributed random variable, and iid stands for independent

and identically distributed. In this model, the effects of the lines are

regarded as independent; therefore, there is no borrowing of infor-

mation between landrace accessions.

Main effect model 2 (M2): The other main effect model adds to

model (equation 3) the random effect of the jth genome gj, which is an

approximation of the true genetic value of the jth accession (Jarquín

et al. 2014). This approximation is given by the regression on marker

covariates gj ¼
Pp

k¼1 xjkbk , where xjk is the genotype of the j
th acces-

sion at the kth marker, and bk is the effect of the k
th marker with the

assumption that bk e
iid

Nð0;s2
bÞ (k=1,. . .,p) and s2

b is the variance of

the marker effects. The vector g ¼ ðg1; . . . ; gJÞ9 contains the genomic

values of all the accessions, and is assumed to follow a multivariate

normal density with zero mean and covariance matrix CovðgÞ ¼ Gs2
g ,
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where G is the genomic relationship matrix and s2
g is the genomic

variance, which is proportional to s2
b (s2

g}s
2
b). Therefore, model (3)

becomes

yij ¼ mþ Ei þ Aj þ gj þ eij (4)

where the vector of random effects is assumed geNð0;Gs2
gÞ ,

Ei e
iid

Nð0; s2
EÞ, Aj e

iid

Nð0; s2
AÞ, and eij e

iid

Nð0;s2
e
Þ: The random

effects g ¼ ðg1; . . . ; gJÞ9 are correlated such that model (4) allows bor-

rowing information across Aj accessions; thus predicting accession

performance in environments where the lines were not observed is

possible. As previously mentioned, gj approximates the true genetic

values of the Aj accession.

Main effect and interaction model 3 (M3): In this study, a

Gaussian process with a covariance function structured based on

a reaction norm model is used to model the interaction between

markers and environments. Jarquín et al. (2014) showed that the

covariance structure is the Hadamard product of two covariance

structures, one describing the relationships between lines based on

genetic information, and the other relating the environments. Ge-

netic similarity could be based on a genomic relationship matrix or

Figure 1 Plot of the (A) first vs. second principal component (PC1 vs. PC2) from the marker data for Mexican landraces; (B) first vs. third principal
component (PC1 vs. PC3) from the marker data for Mexican landraces; (C) second vs. third principal component (PC2 vs. PC3) from the marker data for
Mexican landraces; (D) cumulative variance of the various principal components; (E) first vs. second principal component (PC1 vs. PC2) from the marker
data for Iranian landraces; (F) first vs. third principal component (PC1 vs. PC3) from the marker data for Iranian landraces; (G) second vs. third principal
component (PC2 vs. PC3) from the marker data for Iranian landraces; (H) cumulative variance of the various principal components.
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on a pedigree relationship matrix; environmental similarities

could be approximated by using environmental covariates (when

available) (Jarquín et al. 2014).

The response of the trait is measured in the jth accession in the ith

environments (yij) and explained by including the randommain effects

of model (2), Ei, Aj, and gj, plus the random effects of the interaction

between the ith environment (EiÞ and the jth genomic (gj) Egij. This

model is obtained by extending model 2 (Equation 4) to introduce a

new random effect due to interaction (Egij). Thus, predictions can be

obtained with the model:

yij ¼ mþ Ei þ Aj þ gj þ Egij þ eij (5)

where Ei, Aj and gj have already been defined, EgeNð0; ðZgGZ
9

gÞ�

ðZEZ
9

EÞs
2
EgÞ is the genome’s interaction with the environment, where

Zg is the incidence matrix for the effects of the genetic values of the

genotypes, s2
Eg is the variance component of Eg and ‘∘’ stands for the

Hadamard product between two matrices. Matrix ZE is the incidence

matrix for environments. Note that in Equation (5), the interaction

term Egij approximates the interaction of the gj accession with the

ith environment (Ei).

As discussed in Jarquín et al. (2014) and Pérez-Rodríguez and de los

Campos (2014), the model of Equation (5) uses the covariance patterns

induced by a bilinear reaction norm where the intercepts are implicitly

Figure 1 Continued.
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accounted for by the main effects of accessions and the environments,

while the slopes are implicitly modeled by the interaction term. The

intercepts and the slopes are treated as independent.

Main effect and interaction model 4 (M4): Model 4 is similar to

model 3 but includes the interaction of the jth accession with the ith

environment, EAij, such that

yij ¼ mþ Ei þ Aj þ gj þ EAij þ Egij þ eij (6)

where the term EAij denotes the interaction of the jth accession in the

ith environment with EAeNð0; ðZAIZ
9

AÞ�ðZEZ
9

EÞs
2
EAÞ; where ZA and

ZE are the incidence matrices for accessions and environments, re-

spectively, and s2
EA is the variance component of EAij.

Model prediction using random cross-validation: The models were

fitted in a cross-validation setting to estimate prediction accuracy. For

traits evaluated in one environment using the single-environment

GBLUP model, we made 30 random cross-validation partitions with

20% of all accessions in the training set (TRN20) and 80% of the

accessions in the testing set (TST80).

For traitsDTH andDTMmeasured in two environments (D andH)

using the G · E model, we followed Burgueño et al. (2012) and

Jarquín et al. (2014), and considered the prediction of the performance

ofMexico and Iranian accessions that have not been evaluated in any field

trials (CV1). The CV1 partition was obtained by assigning accessions

to folds; hence, when the phenotype of an accession is predicted,

the corresponding training set contains no record of this accession.

Depending on the trait, for the Mexican collections about 7380 (90%)

and 6560 (80%) accessions were predicted, and for the Iranian collection

about 1800 (90%) and 1600 (80%) accessions were predicted. For the

random cross-validation, a TRN20-TST20 scheme was employed with

30 random partitions. For the 10% and 20% diversity and prediction

core sets, the prediction was directly computed for the specific core type

and size.

Model prediction using 10% and 20% diversity and prediction

reference core sets: The other prediction assessment problems we

studied were those posed by using 10% and 20% reference core sets

as training populations to predict the remaining 90% and 80% of the

Mexican and Iranian landraces, respectively, for the core sets based on

diversity or core sets based onprediction. For these predictionproblems,

the correlation reported for traits DTH andDTHmeasured in D andH

environments is that obtained between the predicted values from the

four G · E models, and the observed DTH and DTM values in D and

H environments and across both environments. For traits measured in

a single environment, the reported correlation is that obtained between

the predicted values computed using GBLUP trained with 10% and

20% of the two types of reference core sets and the observed values for

90% and 80% of Mexican and Iranian landraces.

Software

The models described above were all fitted using the BGLR R-package

(Pérez-Rodríguez and de los Campos 2014; de los Campos and Pérez-

Rodríguez 2014). This package can handle both molecular marker and

pedigree data in parametric and semi-parametric contexts, and allows

including different numbers of random effects with user-defined co-

variance matrices.

Data availability

The complete phenotypic and genotypic data sets for Mexican and

Iranian landraces can be downloaded from the link: http://genomics.

cimmyt.org/mexican_iranian/traverse/. The Iranian directory contains

the following data sets: G.RData, dth_dtm_cores.RDta, standarized-

Data_dth_dtm.RData, and the standarizedData_univariate.RData. The

Mexican directory has one root directory, Toshare, that includes two

sub-directories, G·E.Data and Univariate; the G·EData sub-directory

has two files, standarizedData_dth_dtm.RData and standarizedData_

core.RData, whereas the Univariate sub-directory has two files: Cores

and data.Univariate.

RESULTS

Traits evaluated in a single environment

Prediction accuracy for random cross-validation (TRN20-TST80):

Genomic heritabilities of the traits (h2Þwere substantially higher for the
Iranian landraces than for the Mexican landraces (Table 1), but this

varies depending on the trait. For both collections, the prediction ac-

curacies of the GBLUP model trained in one single optimum environ-

ment under random cross-validation TRN20-TST80, and adjusted for

population structure, produced correlations of around 0.40-0.65 (ex-

cept for PHT, 0.166, for the Iranian collection) (Table 2). For Mexican

landraces, TRN20-TST80 correlations ranged from 0.407 (PHT) to 0.677

(TKW), whereas for Iranian landraces, prediction accuracies for TRN20-

TST80 ranged from0.166 (PHT) to 0.662 (GL).When not accounting for

population structure, prediction accuracy increased and ranged from

0.451 (PHT) to 0.767 (TKW) for Mexican accessions and from 0.260

(PHT) to 0.688 (GW) for Iranian accessions (Table A1, Appendix).

Prediction accuracy for the 10% and 20% diversity and prediction

reference core sets: The prediction accuracies of the GBLUP model

trained with 10% and 20% diversity, and prediction core sets of the

Mexican and Iranian collections are shown inTable 2. It is interesting to

note that the correlations between observed and predicted values for

the 20% core size (either diversity and/or prediction cores) of theMexican

landraces were slightly lower than for the random cross-validation

TRN20-TST80 partition of the entire population (an exception was

PHT, 20% diversity core). For example, for the Mexican collection,

grain yield per square meter (GYSM) was predicted by TRN20-TST80

with an accuracy of 0.460, whereas the diversity and prediction cores

sizes predicted GYSM within a range of 0.422 and 0.451 (Table 2).

Trait TKW was predicted by the 10% and 20% diversity and pre-

diction core sets with accuracies ranging from 0.644 to 0.663, whereas

partition TR20-TST80 predicted this trait with an accuracy of 0.677.

Interestingly, prediction accuracies of the 20% diverse and prediction

core sets were only slightly higher than accuracies of the 10% diverse

and prediction core sets and very similar to those achieved by random

cross-validation TRN20-TST80. Therefore, for the Mexican collec-

tions, prediction accuracies from TRS20-TST80, and 10% and 20%

diversity and prediction core sets were similar.

Regarding the prediction accuracy of the Iranian reference core sets,

the correlations for TRN20-TST80 ranged from relatively high for GL

(0.662) to low for PHT (0.116) (Table 2). Theprediction accuracy for the

10% diversity core ranged from 0.112 (PHT) to 0.593 (GL), whereas for

the 20% diversity core, accuracies ranged from 0.182 (PHT) to 0.647

(GL). However, for the Iranian collection, the 10% and 20% diversity

and prediction core sizes tended to have slightly lower prediction ac-

curacy than those observed in the Mexican collection (Table 2); for

some traits, the prediction core gave lower accuracy than the diversity

core for both sizes (10% and 20%).

The correlations increased when not accounting for population

structure (Table A1, Appendix) in the TRN20-TST80, 10%, and 20%
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diversity and prediction core subsets for single environment traits. Pre-

diction accuracies increased up to 0.767 for TKW inMexican landraces,

and up to 0.688 for GW. In general, the 10% and 20% diversity core sets

achieved prediction accuracies similar to those of the TRN20-TST80

random partition. However, the 10% and 20% prediction cores did not

outperform the diversity core sets or the cross-validation TRN20-

TST80.

Traits evaluated in drought and heat environments

Descriptive statistics: Box-plots of traits DTH and DTM in D and H

environments are depicted in Figure 2,A andB forMexican and Iranian

landraces, respectively. Mexican and Iranian landraces in environment

D planted in November headed and matured later than the ones in

environment H, which were planted in April. For Mexican landraces,

the range in DTM-D and DTM-H was large, ranging from 80 days

(DTM-H) to 125 days (DTM-D); similar differences were found in

Iranian landraces for DTM-D and DTM-H. In both sets of landraces,

traits DTH-D and DTH-H tended to have a smaller range of values

than DTM-D and DTM-H.

Sample phenotypic correlations: Sample phenotypic correlations

among the four trait-environment combinations for Mexican and

Iranian landraces show that the correlations among traits (DTH-D,

DTH-H, DTM-D, and DTM-H) for Mexican landraces are high, ranging

from 0.5919 (for DTH-D vs.DTH-H) to 0.8276 (for DTH-H vs.DTM-H)

(data not shown). For Iranian landraces, sample phenotypic correlations

among the four trait-environment combinations are lower than those

obtained for Mexican landraces, ranging from 0.3459 (for DTH-D vs.

DTM-H) to 0.7939 (for DTH-D vs. DTM-D) (data not shown).

Variance component estimates: Table 3 gives estimates of the variance

components of the four models (M1–M4) for the full data sets of

Mexican and Iranian landraces, for each of the traits (DTH and

DTM) across environments D and H. The variance of the accessions

(A) captures the difference between the accessions. The genomic var-

iance (G) accounts for only the genetic effects captured by markers.

Similarly, the interaction variance component of G · E (genomic ·

environment) quantifies the interaction between the genomic effects

and the environments.

The aim is to study the ability of the different models to predict the

performance of the nonphenotyped accessionwithin each environment,

after accounting for the odd term environmental mean effect (Jarquín

et al. 2014). Therefore, the proportional contribution of each random

effect to within-environment variance is expressed relative to the total

variance corrected by the variance due to the main effects of the

environments.

Mexican landraces: Thegenomic (G) randommaineffect, theG · E

variances, and the residual variance explained the largest proportion of

DTH and DTM variances within environments. The G main effect

explained up to 28.15% (M4) of the variance for trait DTH, and up to

37.38% (M2) for traitDTM(Table 3). The residual variances also explained

a relatively large proportion—33.56% for DTH, and 26.56% for DTM

(both for M3)—of the within-environment variance for both traits.

The estimated variance due to accession (A) for all traits andmodels

was much lower than the variance associated with G, suggesting that

genomic markers are able to capture a sizable proportion of the total

variability due to the main effects of accessions. Estimates frommodels

M3 andM4 for DTH show that roughly 26–28% of within-environment

variability can be explained by the main effects of markers (G), 24–26%

by G · E interaction terms, and 25–34% by residuals (unaccounted

factors). For DTM, the variance components of models M3 and M4

show that 33.65–35.01% of within-environment variability can be

explained by main effects of markers, 19.58–20.96% by G · E, and

19.63–26.56% by residuals (Table 3). For both traits, the proportion of

within-environment variation that is explained by G · E is not negligi-

ble and indicates the importance of considering such interactions in

models for genomic-enabled prediction.

Iranian landraces: The magnitudes of the G variance component

formodelsM3 andM4were similar, and explained 19.94% (modelM3)

of the within-environment variance for DTH and 31.65% (M3) for

DTM. The G · E and residual variances also explained a large pro-

portion of the within-environment variances for both traits (Table 3).

These results suggest that markers are able to capture a sizable

n Table 2 Accounting for population structure

Trait TRN20-TST80
10% Diversity

Core
20% Diversity

Core
10% Prediction

Core
20% Prediction

Core

Mexican landraces
Plant height (PHT) 0.407 (0.006) 0.359 0.412 0.353 0.405
Thousand-kernel weight (TKW) 0.677 (0.007) 0.644 0.654 0.652 0.663
Test weight (TW) 0.498 (0.008) 0.457 0.478 0.462 0.497
Grain hardness (GH) 0.458 (0.008) 0.404 0.450 0.420 0.458
Grain protein (GP) 0.516 (0.009) 0.471 0.497 0.461 0.512
SDS sedimentation (SDS) 0.571 (0.007) 0.542 0.539 0.4531 0.553
Grain yield per square meter (GYSM) 0.460 (0.006) 0.434 0.451 0.422 0.451

Iranian landraces
Plant height (PHT) 0.166 (0.027) 0.112 0.182 0.141 0.154
Thousand-kernel weight (TKW) 0.519 (0.017) 0.463 0.468 0.445 0.475
Test weight (TW) 0.437 (0.020) 0.392 0.399 0.391 0.379
Grain hardness (GH) 0.528 (0.017) 0.447 0.520 0.386 0.463
Grain protein (GP) 0.412 (0.023) 0.417 0.408 0.385 0.386
Grain length (GL) 0.662 (0.016) 0.593 0.647 0.612 0.628
Grain width (GW) 0.502 (0.019) 0.417 0.475 0.419 0.443
SDS sedimentation (SDS) 0.390 (0.021) 0.352 0.377 0.305 0.369

Mean correlation between predicted and observed values across 30 random cross-validation partitions (SD in parentheses) for a training set of 20% (TRN20) and a
testing set of 80% (TST80), of the total Mexican and Iranian collections for several traits measured in a single environment using the GBLUP model. Correlation using
10% diversity and prediction cores, and 20% diversity and prediction cores as training sets to predict the remaining 90% and 80% of the collections.
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proportion of the variability due to the main effects of accessions. For

both traits, the G · E component explained a sizable percentage of the

within-environment variance.

Estimates from model M3 for trait DTH in Iranian landraces indi-

cate that roughly 20% of the within-environment variability can be ex-

plained bymain effects ofmarkers (G), and 42.77%by interaction terms

(G · E), with a residual explaining 28.23%. For trait DTM, the vari-

ance components of model M3 indicated that 31.65% of the within-

environment variability can be explained by main effects of markers,

30% by G · E interaction terms, and 24.71% by residuals (Table 3).

Similar to theMexican landraces, for DTHandDTM, the proportion of

within-environment variation that is explained by G · E is not neg-

ligible, and indicates the importance of considering such interactions in

models for genomic-enabled prediction.

Estimates of variance components for analyses not accounting for

population structure are shown in Table A2 (Appendix). The variance

components do not change much when not accounting for population

structure vs. variance component estimates when accounting for pop-

ulation structure (Table 3).

Assessing model prediction accuracy by random cross-validation

(TRN20-TST80):

Prediction of Mexican landraces across environments: The

average GS accuracy of the four models for TRS20-TSN80 for both

traits clearly shows that models M3 and M4 gave the highest accuracy

across both environments (Table 4), where prediction accuracies of

models M3 and M4 were almost equal for traits DTH and DTM (i.e.,

0.59–0.60). This was expected due to the small variance component of

A and A · E as compared with the variances of G and G · E (Table

3). When not accounting for population structure, prediction accura-

cies of M3 and M4 models reached 0.74–0.76 for DTHA and DTM for

TRN20-TST80 (Table A3, Appendix).

Prediction of Iranian landraces across environments: The aver-
age GS accuracy of the fourmodels for cross-validations TRN20-TST80

for both traits across environments are reported inTable 4. Results show

that, in general, correlation values were lower than those achieved for

Mexican landraces for all trait-environment combinations. As with the

Mexican landraces, models M3 and M4 gave the highest accuracy for

both traits across both environments. Prediction accuracies for traits

DTM and DTH were similar. Models M3 and M4 reached up to 0.551

and 0.548 prediction accuracy, respectively, for DTM and DTM under

partition TRN20-TST80. Without accounting for population structure,

prediction accuracies of M3 and M4 models reached 0.58–0.60 for

DTH and DTM under cross-validation TRN20-TST80 (Table A3,

Appendix).

Assessing model prediction accuracy by 10% and 20% diversity and

prediction core sets:

Mexican landraces across environments:ModelsM3andM4gave

thebestpredictionaccuracyacross environments forDTHandDTMfor

the 10% and 20% diversity and prediction reference core sets.When the

10% and 20% diversity and prediction core sets of Mexican landraces

were used to predict the remaining 90% and 80% of the Mexican

accessions, correlations using models M3 and M4 for DTH and

DTM ranged from 0.555 (10% diversity core DTH) to 0.584 (20%

prediction core DTM) (Table 4). The accuracy obtained using the

diversity core sets and the prediction core sets were very similar.

On average across environments, there is a slight decrease in pre-

diction accuracy (about 4%) when the size of the core decreases from 20

to10%.Also, theprediction accuracyof the 20%diversity andprediction

core sets forM3 andM4 (0.58) were similar to the prediction accuracies

obtained from random cross-validation TRN20-TST80 across environ-

ments (around 0.596). These results confirmed that the 20% diverse

and prediction core sizes produced good accuracy when predicting the

remaining 80%ofMexican landraces. For theMexican landraces, a clear

increase in prediction accuracy of models M3 and M4 was achieved

when not accounting for population structure, with prediction accura-

cies ranging from0.717 to0.758 forboth sizes of diversity andprediction

cores (Table A3, Appendix).

Iranian landraces across environments: Models M3 andM4 had

the highest prediction accuracies in all cases, i.e., TRN20-TST80,

10% and 20% diversity and prediction core sets (Table 4). For the

10% prediction core set, model M3 gave correlations of 0.5111 and

0.5021 for DTH and DTM, respectively, whereas for the 20% pre-

diction core set, these correlations were 0.5446 and 0.5194,

respectively. Prediction accuracies of the 10% and 20% diversity

and prediction core sets were similar to each other and to those

achieved by TRN20-TST80.

The prediction accuracies of the 20% diversity core set of Iranian

landraces observed in Table 4 for models M3 and M4 are at a similar

Figure 2 Box-plot of days to heading (DTH) and days to maturity (DTM) measured in drought (D) and heat (H) environments for (A) Mexican
landraces and (B) Iranian landraces.
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level (0.55) as the prediction accuracies obtained for TRN20-TST80.

Those obtained for the 20% prediction core were slightly lower than

those of the diversity core. These results indicate that the diversity and

prediction core subsets of 20% size are good predictors of the remaining

Iranian accessions, and could be useful for incorporating genomic pre-

diction when introgressing exotic germplasm into elite adapted

germplasm. For Iranian accessions, the analysis not accounting

for population structure gave superior accuracies of models M3 and

M4 over those used when accounting for population structure (Table

A3, Appendix) and the 10% and 20% predictive core sets were as good

as the 10% and 20% diversity core sets at predicting the testing set.

Also, the differences in prediction accuracy between the 10% and 20%

diversity and prediction core sets were small.

DISCUSSION
In this research, we studied genome-enabled prediction accuracy in two

different collections of gene bank accessions, one Mexican and one

Iranian. Prediction accuracy obtained without accounting for popula-

tion structure was always higher (15–20%) than prediction accuracy

obtained when accounting for population structure. However, in both

cases, the prediction accuracy for highly heritable traits in wheat gene

bank accessions ranged from intermediate to high. These results may

stimulate the application of genomic prediction in gene bank evaluation

and germplasm enhancement programs to speed up the process of

introgressing diversity into elite germplasm. In general, results of this

study are in agreement with the simulation study by Gorjanc et al.

(2016) of maize genetic resources, in the sense that prebreeding can

start directly from the large genetic diversity in gene bank landraces.

Furthermore, the relatively high accuracies obtained from the 10% and

20% core sets (diversity and prediction) indicate that the methods used

to form these core sets resulted in reference training sets that are rep-

resentative of the whole collection, and can predict the remaining pop-

ulation fairly accurately.

Prediction accuracy of the random cross-validation
scheme vs. the diverse core set and the prediction
core set

The TRN20:TRT80 analyses represent a random selection of lines for

the training population. This set always produced higher accuracy than

did the diversity andprediction core sets (Table 4 andTable 5). For traits

measured in one environment, when accounting for population struc-

ture, the prediction accuracy of the 20% diversity and 20% prediction

core sets were, on average, about 1.2–2.8% lower forMexican and Iranian

landraces, and almost 8.7% lower for the 20% prediction core of the

Iranian collection when compared to the results of TRN20:TRT80 (Table

5). On average, the decrease in prediction accuracy of the 10% prediction

core set vs. TRN20-TST80 was greater (10.3% and 14.9%) than the

percent change in accuracy of the 20% diversity for Mexican and Iranian

collections (2.7% and 2.8%). The percent change in accuracy of the 20%

prediction core vs. TRN20-TST80 was lower than the percent change in

accuracy of the 20% diversity core for the Mexican collection.

For traits measured in two environments (DTH and DTM), in four

cases, the 10% and 20% prediction cores had a smaller reduction in their

correlations with respect to the TRN20-TST80 set, than those observed

for the 10% and 20% diversity core sets for the Mexican and Iranian

collections (Table 5) (6.5 vs. 7.5 7.6 vs. 12.1 5.11 vs. 8.30 1.2 vs. 6.5).

The main advantage of the 10% and 20% diversity and prediction

core sets over the random cross-validation is that they generate in one

time a good prediction training set. The random cross-validation

partitions explore and sample the entire correlation space between

observed and predicted values (i.e., some of these correlations are low

or even negative, indicating a low training-testing relationship, while

others are high, indicating a close relationship between training-testing

sets), while the core sets focus directly on the subset that will produce

high correlations between training-testing sets.

As discussed above, the two sizes (20% and 10%) of the Mexican and

Iranian landrace core sets gave different prediction accuracies, with the

n Table 3 Accounting for population structure in Mexican and Iranian landraces

Estimated Variance Component Percentage of Within-Environment Variance

E A G A · E G · E Res. A G A · E G · E Res.

Mexican landraces
Days to Heading

M1:E + A 1.137 0.025 0.038 39.43 60.56
M2:E + A + G 0.814 0.004 0.015 0.034 8.23 27.94 63.81
M3:E + A + G + G · E 0.690 0.006 0.013 0.013 0.017 13.34 26.48 26.60 33.56
M4:E + A + G + G · E + A · E 0.635 0.006 0.014 0.005 0.012 0.012 12.06 28.15 10.80 23.85 25.12

Days to Maturity
M1:E + A 1.075 0.124 0.120 50.83 49.16
M2:E + A + G 0.747 0.014 0.078 0.116 6.84 37.38 55.76
M3:E + A + G + G · E 0.622 0.037 0.066 0.041 0.052 18.81 33.65 20.96 26.56
M4:E + A + G + G · E + A · E 0.566 0.035 0.069 0.015 0.038 0.039 18.04 35.01 7.72 19.58 19.63

Iranian landraces
Days to Heading

M1:E + A 1.122 0.046 0.139 24.92 75.08
M2:E + A + G 0.816 0.012 0.042 0.12 7.13 23.92 68.95
M3:E + A + G + G · E 0.702 0.014 0.031 0.067 0.044 9.06 19.94 42.77 28.23
M4:E + A + G + G · E + A · E 0.595 0.013 0.034 0.016 0.059 0.036 8.02 21.43 10.04 37.56 22.95

Days to Maturity
M1:E + A 1.103 0.03 0.041 42.26 57.74
M2:E + A + G 0.853 0.008 0.021 0.037 12.11 32.05 55.84
M3:E + A + G + G · E 0.733 0.008 0.019 0.018 0.015 13.62 31.65 30.02 24.71
M4:E + A + G + G · E + A · E 0.637 0.007 0.019 0.006 0.015 0.013 11.96 32.26 9.54 24.72 21.51

Estimated variance components for four models (M1–M4) and percentage of within-environment variance accounted for by each random effect of the corresponding
model using the full data for two traits, days to heading (DTH) and days to maturity (DTM). E, environment; A, accession; G, genomic (marker); A · E, accession ·

environment; G · E, genomic · environment; Res. residual.
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20% core set being slightly better than the 10% core set. These results

confirm the hypothesis that phenotyping and genotyping a small number

of accessions andgenotyping the entire population cangive relatively high

prediction accuracies, thereby prompting the application of GS to predict

the trait value gene bank accessions for traits with relatively high heri-

tability. The results of this study indicate that one could phenotypically

evaluate only 20% of germplasm bank accessions using the reference core

set of accessions for GS model training and then the values of the rest of

the collection. The 20% core sets of theMexican landraces were still large

(n . 1600), while the 20% core sets of the Iranian landraces were rel-

atively small (n . 400). However, genomic prediction of traits with low

heritability will likely require using training sets of greater size, and pre-

diction accuracy would not be expected to reach values as high as those

found in this study for highly heritable traits.

As breeding programs begin to implement GS, maintaining genetic

variance will be increasingly important because GS has been shown to

lead to faster lossesof genetic variance compared tophenotypic selection

(Jannink 2010; Rutkoski et al. 2015). Although starting with high ge-

netic variance will not prevent its rapid loss, it will allow starting the

breeding process at higher levels of allelic diversity and genetic variance

while ensuring good prediction accuracies.

Breeders can use predicted values developed from the core set to

identifyadiverse setofaccessionswithdesiredvalues, anduse themtostart

a prebreeding project. Breederswill likely select only lineswith the desired

trait value based on phenotypes or GEBVs to initiate a prebreeding

program. For example, breeders may only select lines with the highest

yield (actual or predicted). It is possible that the GS model built on the

entire phenotypically and genetically diverse core set will not predict the

value of the progeny fromamore restricted set of selectedparents. TheGS

model may need to be retrained with this subset of parents.

Prediction accuracy of the diverse core sets vs. the
prediction core sets

For genomic selection (GS), a good training set of individuals to be

genotyped and phenotyped is crucial for predicting the value of candi-

dates in the testing set. Therefore, designing a core training population

that both maximizes genetic diversity and increases the accuracy of GS

models is a key issue as phenotyping becomes more expensive. The

method used in this study to form the diversity core was developed by

Franco et al. (2006) using all the markers, and with the objective of

maximizing allele diversity. The method proposed by Akdemir et al.

(2015) to approximate the prediction error variance (PEV) as a re-

liability measure based solely on the first 100 principal components

of the marker data was used to select the prediction core sets. Our

results indicated very similar prediction accuracies were obtained when

using the diversity vs. the prediction core set (Table 5). Better prediction

accuracy of the 10% prediction core over the 10% diversity core was

clear for the Iranian collection for the traits across two environments

when accounting for population structure (–5.3), than when not ac-

counting for population structure (–3.48). The 20% diversity core was

superior to the 20% prediction core for traits in one environment (5.9

and 19.5). For the rest of the comparisons, differences in prediction

accuracy between the diversity and prediction core set were negligible,

ranging from –1.3 to 2.4. These results indicated similar prediction

accuracies for both kinds of cores, regardless of their size.

Diversity of the diversity and prediction core sets

Franco et al. (2006) described and applied three diversity indices to

compare the diversity of different core sets formed using markers: the

Shannon diversity index, the expected proportion of heterozygous loci,

and the number of effective alleles. We applied these indices on the

diversity and prediction core sets to compare their genetic diversity.

In termsofdiversitymeasured through theShannonDiversity Index,

the expected heterozygosity (with two alleles, the maximum is 0.5)

and the number of effective alleles (the maximum value is 2 for two

alleles), the two types of cores gave very similar values. For example,

for theMexican collection, the expected heterozygositywas around 0.23

for the diversity cores of both sizes, and 0.22 for the prediction cores of

both sizes; the number of effective alleles for both core types of collec-

tions was around 1.4, and the Shannon Diversity Index was 0.48 for the

diversity core and 0.49 for the prediction core. For the Iranian collec-

tions, the expected heterozygosity was around 0.19 for both types of

n Table 4 Accounting for population structure in Mexican and Iranian landraces

Trait Modela TRN20-TST80
10% Diversity

Core
20% Diversity

Core
10% Prediction

Core
20% Prediction

Core

Mexican collection
DTH M1:E + A 0.002 (0.009) 20.005 0.004 20.005 20.001

M2:E + A + G 0.508 (0.005) 0.461 0.489 0.477 0.503
M3:E + A + G + G · E 0.599 (0.004) 0.559 0.580 0.565 0.597
M4:E + A + G + G · E + A · E 0.600 (0.004) 0.555 0.579 0.568 0.597

DTM M1:E + A 0.001 (0.000) 20.008 0.003 0.002 0.003
M2:E + A + G 0.527 (0.005) 0.482 0.511 0.484 0.513
M3:E + A + G + G · E 0.596 (0.004) 0.558 0.584 0.553 0.586
M4:E + A + G + G · E + A · E 0.596 (0.004) 0.558 0.581 0.558 0.584

Iranian collection
DTH M1:E + A 0.001 (0.023) 0.010 20.014 0.005 20.003

M2:E + A + G 0.403 (0.035) 0.344 0.389 0.389 0.397
M3:E + A + G + G · E 0.552 (0.033) 0.504 0.551 0.511 0.544
M4:E + A + G + G · E + A · E 0.551 (0.034) 0.496 0.545 0.514 0.548

DTM M1:E + A 0.000 (0.021) 0.013 0.003 20.009 0.004
M2:E + A + G 0.450 (0.052) 0.371 0.450 0.400 0.419
M3:E + A + G + G · E 0.551 (0.029) 0.493 0.551 0.502 0.519
M4:E + A + G + G · E + A · E 0.548 (0.026) 0.485 0.542 0.506 0.525

Mean correlation across 30 random partitions between observed and predicted values of four models for two traits, days to heading (DTH) and days to maturity (DTM),
across two environments (their standard deviation, SD), for 20% training (TRN20) and 80% testing (TST80) sets of the total number of accessions in the Mexican and
Iranian collections for four models (M1–M4). Correlations between observed and predictive values for 10% and 20% diversity and prediction core sets.
a

Models: E, Environment; A, accession; G, genomic relationship; A · E, accession · environment interaction; G · E, genomic · environment interaction.
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core sets, and the number of effective alleles was 1.30, with a Shannon

Diversity Index of around 0.5. These results indicated that forming

diversity and/or prediction cores gave stability to the values of the

genetic distances among accessions, and thus more diverse alleles

were collected in both types of cores.

Genomic prediction under population structure

In general, when accounting for population structure, genomic pre-

dictionaccuracydecreases. Inanimal andhumanpopulations,fitting the

first few initial principal components from analysis of marker data to

adjust phenotypic values is a common practice for accounting for

population structure. Daetwyler et al. (2015) pointed out that account-

ing for spurious population structure (such as that originated from

admixtures without affecting relatedness) is required; however, they

recognized that this is not easy. Also in breeding populations, high

prediction accuracy for small training populations can be caused by

population structure. Sallam et al. (2015) argued that structure in train-

ing populations of great size could also reduce genomic prediction

accuracy.

In general, population structure is important when assessing genomic

prediction in stratified populations (Windhausen et al. 2012), especially

those comprised of gene bank landrace accessions. The population struc-

ture of these landrace collections is expected to be stronger than what can

be found in a standard breeding program. The first five principal com-

ponents accounted for about 25% of the global molecular variance in

each landrace set and were used to adjust the phenotypic data for pop-

ulation structure. This seems to be an acceptable number of principal

components, and was also suggested by Gou et al. (2014). Five principal

components is a reasonable number to account for population structure

because using an excessive number of principal componentsmay remove

useful genetic relationships between individuals in the training and test-

ing sets (Daetwyler et al. 2015).

Also, it shouldbementioned thatGBLUPmodelscapturepopulation

structures and substructures within and between families because

regressing phenotypic values on all marker values is equivalent to

regressing the phenotypes on all principal components derived from

molecular data (de los Campos et al. 2010; Janss et al. 2012). The

different degrees of genetic similarities and dissimilarities between

landrace accessions could also be the result of a combination of dif-

ferent factors such as population structure, substructure, and subtle

complex relationships due to additive · additive interaction (epistasis);

these factors are captured by marker differences and consequently

accounted for by genomic regression GBLUP models (Crossa et al.

2013).

In a recent article, de losCampos et al. (2015) developed quantitative

genetic models that account for stratified genetic populations. Rather

than dealing with stratification as a confounding effect and thus de-

veloping methods that correct for stratification, such as using marker-

derived principal components as fixed covariables, these authors

proposed that the approach, from a quantitative genetic perspective,

should regard population structure as a modifier effect (not as a con-

founding effect). They argued that differences in allele frequency

between marker-derived groups (population structure) induce hetero-

geneity of allele substitution effects at different loci. Also, different

linkage disequilibrium between markers and QTL may cause hetero-

geneity of marker effects (population structure).

Germplasm enhancement of wheat: the way forward

Our results show that for the two populations of landraces included in

this study, genomic predictionswere generally of amagnitude that could

be very useful for predicting the value of other accessions in the gene

bank, and that could be useful in breeding. This occurred despite

pronounced population structure and G · E. The first application of

this approach would be to predict the value of all genotyped accessions

in a gene bank, and then phenotype those that have the highest pre-

dicted value to verify their value in breeding. Once their value has been

verified, a breeder could begin prebreeding following several strategies.

Amajor decision would bewhether to initiate a prebreeding population

by crossing among the accessions themselves or whether to cross the

chosen accessions to elite materials. The former is a conversion ap-

proach (improve the value of exotic germplasm until it becomes elite),

while the latter is an introgression approach. The genetic values mod-

eled within the landrace populations are only relevant within those

populations, and thus would only be useful in a conversion strategy.

Using an introgression strategy will require crossing the best accessions

to elite materials, and developing a newmodel of the genetic effects that

would be used to predict the value of future progeny. Gorjanc et al.

(2016) compared these strategies after cycles of simulated selection and

found that crossing only among landraces (conversion) maintained the

most diversity (relative to the elite gene base), but produced a low rate

of improvement of genetic merit (relative to the elite base). In contrast,

the introgression strategy (crossing landraces with elites followed by

n Table 5 Average percent change in prediction accuracy of 10% and 20% diversity and prediction cores vs. prediction accuracy of
random cross-validation TRN20-TST80 (first four columns) and percent change in prediction accuracy between 10% diversity core vs. 10%
prediction core, and between 20% diversity core vs. 20% prediction core for traits measured in one or in two environments for Mexican
and Iranian collections

Trait-Collectiona
10%

Diversity
10%

Prediction
20%

Diversity
20%

Prediction
10% Diversity vs.

10% Prediction
20% Diversity vs.

20% Prediction

Accounting for population structure
One environment -Mexican collection 8.0 10.3 2.7 1.2 2.4 21.6
One environment -Iranian collection 13.1 14.9 2.8 8.7 1.2 5.9
Two environments -Mexican collection 7.5 6.5 3.0 1.2 21.3 21.9
Two environments -Iranian collection 12.1 7.6 0.9 3.3 25.3 2.4

Not accounting for population structure
One environment -Mexican collection 4.1 4.7 0.9 0.9 0.6 20.1
One environment -Iranian collection 7.5 25.5 1.94 9.5 1.9 19.5
Two environments -Mexican collection 2.51 2.72 0.59 0.63 0.13 0.03
Two environments -Iranian collection 8.30 5.11 0.81 1.46 23.48 0.63

a
Traits evaluated in one environment when accounting for population structure (from Table 2), traits evaluated in two environments when not accounting for
population structure (from Table 4), traits evaluated in one environment when not accounting for population structure (from Table A1), traits evaluated in two
environments when not accounting for population structure (from Table A3).
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selection) retained less diversity after cycles of selection but produced

greater genetic merit relative to the elite base, and a greater rate of gain.

Their results did show that genomic selection was effective at improv-

ing genetic merit with either strategy.

Further research is required to clarify several aspects of using genomic

selection in prebreeding. Work is underway at CIMMYT to do multiple

introgressions of a large number of landraces into elite materials with a

large number of parents and progenies that have been initially genotyped

andphenotyped.Thiswill provide excellent populations to explore theuse

of genomic prediction for capturing the value present in gene banks.

Conclusions

Results of this study indicate that genomic-enabled prediction of large

wheat gene bank collections comprisingMexican and Iranian landraces

for highly heritable traits may be a valuable tool for germplasm

enhancement. Prediction accuracies based on random cross-validation

partitions of traits related to wheat grain quality measured in one

environment were intermediate to relatively high (from 0.4 to 0.6) for

Mexican (7 traits) and Iranian (8 traits) landraces. Reference diversity

and prediction core sets of sizes 10% and 20% of the total number of

accessions gave good prediction accuracy, especially cores of size 20%

that achieved similar prediction accuracies as those obtained by

random cross-validation set (TRT20-TST80). Core sets of 10% had

a substantial decrease in prediction accuracy (up to 16%) as compared

with the prediction accuracy of the 20% core sets.

Traits DTH and DTM were evaluated in drought and heat envi-

ronments. Genomic models including genomic · environment (G ·

E) interaction gave substantial and consistent increases in prediction

accuracy over the main effect models though the accession · environ-

ment interaction did not account for much variability. For Mexican

landraces, models including G · E had the highest prediction accura-

cies, reaching correlations of 0.59–0.60 for both traits when 80% or 90%

of the total number of accessions were predicted across environments

when accounting for population structure. Iranian landraces had sim-

ilar but slightly lower prediction accuracies. When not accounting for

population structure, traits DTH and DTM for a large number of

Mexican accessions were predicted with accuracies of 0.7–0.75.

This study used extensivewheat landrace data stored in theCIMMYT

gene bank, and has shown promising results in terms of prediction

accuracies of highly heritable traits that should stimulate further research

on utilizing gene bank accessions with high-density markers for future

application of genomic prediction in germplasm enhancement programs.
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APPENDIX

n Table A1 Not accounting for population structure

Trait TRN20-TST80
10% Diversity

Core
20% Diversity

Core
10% Prediction

Core
20% Prediction

Core

Mexican landraces
Plant height (PHT) 0.451 (0.006) 0.409 0.463 0.401 0.454
Thousand-kernel weight (TKW) 0.767 (0.004) 0.747 0.756 0.752 0.752
Test weight (TW) 0.687 (0.004) 0.668 0.677 0.671 0.687
Grain hardness (GH) 0.617 (0.006) 0.586 0.614 0.596 0.613
Grain protein (GP) 0.733 (0.004) 0.715 0.729 0.710 0.729
SDS sedimentation (SDS) 0.599 (0.006) 0.573 0.570 0.563 0.584
Grain yield per square meter (GYSM) 0.570 (0.005) 0.556 0.568 0.540 0.564

Iranian landraces
Plant height (PHT) 0.260 (0.023) 0.207 0.271 0.1540 0.224
Thousand-kernel weight (TKW) 0.598 (0.014) 0.560 0.557 0.4751 0.548
Test weight (TW) 0.567 (0.013) 0.532 0.554 0.3790 0.534
Grain hardness (GH) 0.618 (0.013) 0.575 0.610 0.4628 0.522
Grain protein (GP) 0.493 (0.017) 0.497 0.484 0.3864 0.471
Grain length (GL) 0.683 (0.013) 0.626 0.667 0.6281 0.626
Grain width (GW) 0.688 (0.012) 0.645 0.669 0.4432 0.645
SDS sedimentation (SDS) 0.456 (0.017) 0.427 0.445 0.3689 0.3938

Mean correlation between predicted and observed values across 30 random cross-validation partitions (SD in parentheses) for a training set of 20% (TRN20) and a
testing set of 80% (TST80), of the total Mexican and Iranian collections for several traits measured in a single environment using the GBLUP model. Correlation using
10% diversity and prediction cores and 20% diversity and prediction cores as training sets to predict the remaining 90% and 80% of the collections.

n Table A2 Not accounting for population structure in Mexican and Iranian landraces

Estimated Variance Component Percentage of Within-Environment Variance

E A G A · E G · E Res. A G A · E G · E Res.

Mexican landrace
Days to Heading

M1:E + A 1.127 0.051 0.038 57.35 42.64
M2:E + A + G 0.804 0.004 0.015 0.033 8.15 28.87 62.97
M3:E + A + G + G · E 0.680 0.006 0.013 0.013 0.016 13.05 27.20 26.54 33.18
M4:E + A + G + G · E + A · E 0.625 0.005 0.014 0.005 0.011 0.012 11.74 29.05 10.71 23.60 24.88

Days to Maturity
M1:E + A 1.034 0.230 0.106 68.39 31.60
M2:E + A + G 0.711 0.012 0.071 0.102 6.88 38.16 54.95
M3:E + A + G + G · E 0.587 0.032 0.061 0.036 0.046 18.16 34.78 20.79 26.24
M4:E + A + G + G · E + A · E 0.531 0.030 0.064 0.013 0.034 0.034 17.29 36.35 7.75 19.20 19.39

Iranian landraces
Days to Heading

M1:E + A 1.075 0.038 0.041 48.35 51.65
M2:E + A + G 0.821 0.008 0.021 0.036 12.00 32.74 55.26
M3:E + A + G + GE 0.727 0.008 0.019 0.018 0.015 13.41 32.13 29.99 24.47
M4:E + A + G + G · E + A · E 0.649 0.007 0.020 0.006 0.015 0.013 11.65 32.84 9.47 24.59 21.44

Days to Maturity
M1:E + A 1.055 0.064 0.138 31.64 68.36
M2:E + A + G 0.778 0.012 0.043 0.118 7.11 24.57 68.14
M3:E + A + G + GE 0.686 0.014 0.032 0.067 0.043 8.93 20.46 42.80 27.81
M4:E + A + G + G · E + A · E 0.603 0.012 0.034 0.015 0.058 0.035 7.82 21.91 9.94 37.38 22.95

Estimated variance components for four models and percentage of within-environment variance accounted for by each random effect of the corresponding model
using the full data for two traits, days to heading (DTH) and days to maturity (DTM). E, environment; A, accession; G, genomic (marker); A · E, accession · envi-
ronment; G · E, genomic · environment; Res., residual.
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n Table A3 Not accounting for population structure in Mexican and Iranian landraces

Trait Modela TRN20-TST80
10% Diversity

Core
20% Diversity

Core
10% Prediction

Core
20% Prediction

Core

Mexican collection
DTH M1:E + A 0.000 (0.010) 20.012 0.013 20.009 0.001

M2:E + A + G 0.696 (0.004) 0.676 0.692 0.677 0.689
M3:E + A + G + G · E 0.738 (0.004) 0.718 0.732 0.718 0.735
M4:E + A + G + G · E + A · E 0.739 (0.004) 0.717 0.732 0.720 0.735

DTM M1:E + A 20.002 (0.009) 20.016 0.009 20.004 0.005
M2:E + A + G 0.737 (0.003) 0.721 0.735 0.717 0.733
M3:E + A + G + G · E 0.762 (0.003) 0.745 0.759 0.740 0.757
M4:E + A + G + G · E + A · E 0.762 (0.003) 0.746 0.758 0.742 0.756

Iranian collection
DTH M1:E + A 20.003 (0.021) 0.015 0.008 20.015 0.019

M2:E + A + G 0.525 (0.088) 0.475 0.521 0.503 0.516
M3:E + A + G + G · E 0.600 (0.056) 0.552 0.600 0.553 0.577
M4:E + A + G + G · E + A · E 0.598 (0.052) 0.544 0.591 0.558 0.581

DTM M1:E + A 20.001 (0.023) 0.0035 20.0086 0.000 0.009
M2:E + A + G 0.469 (0.106) 0.4396 0.4557 0.469 0.475
M3:E + A + G + G · E 0.587 (0.032) 0.5406 0.5889 0.549 0.581
M4:E + A + G + G · E + A · E 0.587 (0.030) 0.5337 0.5841 0.556 0.584

Mean correlation across 30 random partitions between observed and predicted values of four models for two traits, days to heading (DTH) and days to maturity (DTM),
across two environments (standard deviation in parentheses), for 20% training (TRN20) and 80% testing (TST80) sets of the total number of accessions in the Mexican
and Iranian collections for four models (M1–M4). Correlations between observed and predictive values for 10% and 20% diversity and prediction core sets.
a

Models: E, Environment; A, accession; G, genomic relationship; A · E, accession · environment interaction; G · E, genomic · environment interaction.

1834 | J. Crossa et al.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2016

	Genomic Prediction of Gene Bank Wheat Landraces
	José Crossa
	Diego Jarquin
	Jorge Franco
	Paulino Pérez-Rodríguez
	Juan Burgueño
	See next page for additional authors
	Authors


	GGG029637 1819..1834

