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Abstract 

Background:  Sea lice have significant negative economic and welfare impacts on marine Atlantic salmon farming. 

Since host resistance to sea lice has a substantial genetic component, selective breeding can contribute to control of 

lice. Genomic selection uses genome-wide marker information to predict breeding values, and can achieve markedly 

higher accuracy than pedigree-based methods. Our aim was to assess the genetic architecture of host resistance to sea 

lice, and test the utility of genomic prediction of breeding values. Individual lice counts were measured in challenge 

experiments using two large Atlantic salmon post-smolt populations from a commercial breeding programme, which 

had genotypes for ~33 K single nucleotide polymorphisms (SNPs). The specific objectives were to: (i) estimate the herit-

ability of host resistance; (ii) assess its genetic architecture by performing a genome-wide association study (GWAS); 

(iii) assess the accuracy of predicted breeding values using varying SNP densities (0.5 to 33 K) and compare it to that of 

pedigree-based prediction; and (iv) evaluate the accuracy of prediction in closely and distantly related animals.

Results: Heritability of host resistance was significant (0.22 to 0.33) in both populations using either pedigree or 

genomic relationship matrices. The GWAS suggested that lice resistance is a polygenic trait, and no genome-wide 

significant quantitative trait loci were identified. Based on cross-validation analysis, genomic predictions were more 

accurate than pedigree-based predictions for both populations. Although prediction accuracies were highest when 

closely-related animals were used in the training and validation sets, the benefit of having genomic-versus pedigree-

based predictions within a population increased as the relationships between training and validation sets decreased. 

Prediction accuracy reached an asymptote with a SNP density of ~5 K within populations, although higher SNP den-

sity was advantageous for cross-population prediction.

Conclusions: Host resistance to sea lice in farmed Atlantic salmon has a significant genetic component. Phenotypes 

relating to host resistance can be predicted with moderate to high accuracy within populations, with a major advan-

tage of genomic over pedigree-based methods, even at relatively sparse SNP densities. Prediction accuracies across 

populations were low, but improved with higher marker densities. Genomic selection can contribute to lice control in 

salmon farming.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic selection (GS) involves the prediction of indi-

vidual breeding values for complex traits by combining 

statistical methods with genome-wide single nucleotide 

polymorphism (SNP) data. Relationships between SNPs 

and traits of interest are first determined within a refer-

ence (or training) population, and then they are used to 

identify selection candidates with high genetic merit 

in the absence of phenotype records [1, 2]. �e feasibil-

ity of GS schemes depends on the availability of a high-

quality SNP genotyping platform and on extensive trait 

records collected in the reference populations. Due to the 
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increased availability of high-density SNP chips and the 

development of genotyping-by-sequencing for several 

economically important livestock and aquaculture spe-

cies (e.g. [3–7]), GS has become a widely used approach, 

particularly for traits of economic and welfare impor-

tance (e.g. disease resistance). �e accuracy of predicted 

breeding values based on genomic data is expected to be 

substantially higher than that based on pedigree records 

alone, but depends on many variables, including the 

genetic architecture of the trait, SNP density, sample size, 

and the degree of relationship between the reference and 

validation sets [8, 9].

In Atlantic salmon farming, ectoparasitic copepods, 

commonly known as sea lice (specifically Lepeophtheirus 

salmonis in Europe and Caligus rogercresseyi in Chile), are 

the primary threat to sustainable production, and have a 

negative economic, animal welfare, and environmental 

impact. Symptoms of L. salmonis infection include skin 

lesions, osmotic imbalance, and increased susceptibility 

to other infections as a result of host immune suppression 

and skin damage [10]. Frequent chemical treatments are 

required to control louse infections on commercial farms 

and result in large annual costs, potential environmental 

damage, and a high prevalence of drug-resistant lice [10, 

11]. However, there is encouraging evidence from chal-

lenge trials that revealed heritabilities of approximately 

0.2 to 0.3 for lice resistance, as measured by counts of lice 

on the fish (e.g. [11–14]),  which highlights host genetic 

variation in resistance to lice. �erefore, selective breed-

ing to improve host resistance to lice in farmed salmon 

populations is an increasingly important component of 

disease control [9, 11]. Given the importance of the sea 

lice issue to the salmon industry, this trait is also a high 

priority candidate for GS to accelerate the production of 

stocks with increased resistance.

�e quantitative genetic models that underpin GS can 

be broadly split into two categories based on the assump-

tions that underlie the genetic architecture of the trait. 

�e first category assumes an even distribution of the 

genetic variance across the genome and includes genomic 

best linear unbiased prediction (GBLUP) methods. �e 

second category allows for heterogeneity in the contri-

bution of the markers to the genetic variance, which is 

typically modelled using Bayesian methods (e.g. [15]). 

While the Bayesian methods (e.g. Bayes B) are generally 

more accurate than GBLUP on simulated data, particu-

larly when the number of quantitative trait loci (QTL) 

that underlie the genetic variance is small [8], prediction 

accuracy using ‘experimental’ data in livestock breeding 

schemes is often very similar with either of these two 

methods [16]. Genomic prediction using these mod-

els relies both on capturing linkage disequilibrium (LD) 

between SNPs and QTL and on accurate estimates of 

realised genetic relationships between individuals [9, 17]. 

In typical farm animal populations, prediction accuracy 

depends largely on the latter [18], but the persistency 

of prediction accuracy across generations and between 

unrelated populations depends on the LD between SNPs 

and QTL [2, 9, 17]. For most commercial aquaculture 

breeding programmes, the availability of large full-sib 

families facilitates extensive trait measurements on indi-

viduals that are closely related to the selection candidates. 

�erefore, within-population genomic prediction will 

capitalise on realised genetic relationships, and the role 

of LD between SNPs and QTL may be less crucial [9, 18]. 

However, for salmon with a discrete 3-or 4-year genera-

tion interval, accuracy of prediction across adjacent year 

groups with limited genetic connectivity between them 

will depend more on LD, and is likely more challenging.

Family-based selective breeding programmes for 

Atlantic salmon have traditionally focused on economi-

cally important traits that can be easily measured on the 

selection candidates (e.g. growth) and on traits that can 

be measured on close relatives (e.g. full and half siblings), 

such as disease resistance and processing traits. Studies 

of GS in aquaculture using both simulated and ‘experi-

mental’ data have suggested that genomic prediction can 

result in more accurate breeding values than traditional 

pedigree-based approaches (e.g. [9, 19–21]). However, 

the cost-efficiency of GS is critical; both high-density 

SNP arrays and extensive collection of trait data can be 

prohibitively expensive for routine genomic evaluations. 

�erefore, knowledge of the optimal design of reference 

populations and of the required SNP density is impor-

tant, as well as quantification of the benefit that can be 

expected from the implementation of GS.

�e objectives of this study were to (i) estimate the her-

itability of host resistance to sea lice using both genomic 

and pedigree-based methods, (ii) analyse the genetic 

architecture of host resistance by performing a GWAS, 

(iii) assess the accuracy of genomic prediction using vari-

ous SNP densities up to 33 K SNPs and compare it to that 

of pedigree-based prediction, and (iv) test genomic pre-

diction accuracies in closely and more distantly related 

reference and validation populations.

Methods
Animals and challenge experiment

�e animals used in the study originated from a commer-

cial Atlantic salmon breeding programme (Landcatch, 

UK). Due to the 4-year generation interval, the breeding 

program consists of four sub-populations (referred to 

as year groups), two of which were studied. Full details 

for population I (2007 year group, n = 624) were previ-

ously described in Tsai et  al. [21]. Briefly, this popula-

tion consisted of 531 genotyped offspring with complete 
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phenotype and genotype information, derived from 

61 nucleus families (30 sires and 59 dams). �e fami-

lies in population I were reared in separate tanks until 

approximately 9  months post-hatch, at which time they 

were mixed. Population II (2010  year group, n  =  874) 

comprised 151 families (98 sires and 188 dams), with 

588 offspring that were phenotyped and genotyped. 

�e families in population II were mixed at first feed-

ing and reared in a single common tank. �e lice chal-

lenge trials were conducted at the Marine Environmental 

Research Laboratory (Machrihanish, UK) in 2007 and 

2010, respectively. �e challenge protocols were similar 

for both populations; the fish (approximately 1 year post-

hatching) were challenged in a single tank with a mod-

erate dose of copepodid larvae (90 to 96 larvae per fish) 

and then monitored daily until most lice had moulted 

into chalimus I. Sampling and measurements began on 

day 7 post-challenge and lasted 1 and 4.5 days for popula-

tions I and II, respectively (for population I, lice counts 

were shown to be stable between 7 and 17  days post-

challenge [11]). Prior to lice counting, fish were eutha-

nized with benzocaine as described in Gharbi et al. [11]. 

Phenotypes including weight (g), length (mm), and sea 

lice count [number of sea lice per fish, measured using a 

stereo-microscope (Olympus SZ-40)] were recorded for 

each fish. An adipose fin clip was collected and stored in 

ethanol for DNA extraction. For population I, pedigree 

information for each individual was traced by using pas-

sive integrated transponder (PIT) tags. For population II, 

a standard parentage assignment panel of 108 SNPs was 

screened on a Sequenom platform (DNA LandMarks 

Inc., Canada) to construct the pedigree.

All animals were reared in accordance with relevant 

national and EU legislation concerning health and wel-

fare. �e challenge experiment was performed by the 

Marine Environmental Research Laboratory (Machrihan-

ish, UK) under approval of the ethics review committee 

of the University of Stirling (Stirling, UK) and accord-

ing to Home Office license requirements. Landcatch are 

accredited participants in the RSPCA Freedom Foods 

standard, the Scottish Salmon Producers Organization 

Code of Good Practice, and the EU Code-EFABAR Code 

of Good Practice for Farm Animal Breeding and Repro-

duction Organizations.

SNP genotyping

DNA was extracted from fin tissue samples using the 

DNeasy 96 tissue DNA extraction kit (Qiagen, UK). Pop-

ulation I was genotyped with an Affymetrix Axiom SNP 

array that included ~132 K SNPs [22] and population II 

was genotyped with the custom Affymetrix Axiom ~35 K 

array described in Tsai et al. [21]. �is 35 K array is used 

for routine genomic evaluations and includes a subset of 

high-quality SNPs of the 132 K array that were selected 

based on having a good distribution throughout the 

genome and minimal LD between pairs of SNPs [21]. Sex 

of the fish was predicted by using the Y-specific probes 

on the 132 K array, as described by Houston et al. [22]. 

Filtering of SNP data was performed using the Plink soft-

ware [23], excluding SNPs with Mendelian errors, SNPs 

with a minor allele frequency (MAF) lower than 0.1 and 

SNPs with a proportion of missing genotypes greater 

than 0.03. Finally, approximately 33 K SNPs were retained 

for analyses in both populations.

Genetic parameters for lice resistance

Data normalization

�e raw data for lice counts showed a positively skewed 

distribution (See Additional file 1: Figure S1), thus to nor-

malize this distribution, we transformed the data using 

a previously applied approach that also accounts for an 

approximation of the surface area of the fish [13]:

where LC is the number of lice counted on the fish (plus 

1 to avoid a computation error since some fish may have 

zero lice), (BW)2/3 is an approximation of the whole sur-

face of the skin of each individual, where BW represents 

the body weight (g) at the time of the sea lice challenges. 

A moderate correlation of 0.35 was found between body 

surface and lice count.

Estimation of genetic parameters

�e heritability of host resistance to sea lice count (and 

of weight and length traits) was estimated using both 

genomic and pedigree-based analyses for the two popu-

lations. Only fish with complete phenotype and genotype 

records were included, resulting in 531 and 588 fish in 

populations I and II, respectively. Heritabilities were esti-

mated by ASReml 3.0 [24] using genomic and pedigree-

based relationship matrices (G-matrix and A-matrix, 

respectively) with the following mixed model:

where y is a vector of observed phenotypes, µ is the overall 

mean of phenotype records, b is the vector of fixed effects, 

a is a vector of additive genetic effects distributed as 

~N
(

0,Gσ
2
a

)

 or N
(

0,Aσ
2
a

)

 where σ2a is the additive (genetic) 

variance, G and A are the genomic and pedigree relation-

ship matrices, respectively. X and Z are the corresponding 

incidence matrices for fixed and additive effects, respec-

tively, and e is a vector of residuals. If the SNPs applying 

sex as the fixed effect did not surpass the genome-wide 

significance threshold (Bonferroni correction (0.05/N), 

where N represents the number of QC-filtered SNPs 

(1)loge LD = loge

(

(LC + 1)/(BW)2/3
)

,

(2)y = µ + Xb + Za + e,



Page 4 of 11Tsai et al. Genet Sel Evol  (2016) 48:47 

across the entire genome), it was omitted from subse-

quent analyses. �e genomic relationship matrix was con-

structed by the Genabel R package [25] using the method 

of VanRaden [26] and then inverted by applying a stand-

ard R function (https://www.r-project.org/). Narrow sense 

heritability was estimated as the ratio of additive genetic 

variance to total phenotypic variance. Phenotypic correla-

tions between traits were estimated using ASReml 3.0 [24] 

and genetic correlations were estimated using bivariate 

analyses implemented in ASReml 3.0 [24] as well.

Genome‑wide association study

�e two-step ‘GRAMMAR’ approach was used to per-

form the GWAS using the GenABEL R Package [25]. �e 

GWAS was performed in each population separately, 

and on the two populations combined. First, model 

(2) was applied to adjust the lice count data based on 

fixed (year group in the combined analysis) and poly-

genic effects (relationships between animals as meas-

ured by the genomic relationship matrix). Subsequently, 

the mmscore method [27] of GenABEL was applied to 

measure the association between individual SNPs and 

the residuals from model (2) (which are corrected for 

family relatedness). Significance thresholds were calcu-

lated using a Bonferroni correction to obtain genome-

wide (0.05/number of all quality-control filtered SNPs, 

~33  K) and chromosome-wide (0.05/number of SNPs 

on the corresponding chromosome) thresholds, respec-

tively. For the SNPs that were closest to chromosome-

wide significance (i.e. those with the lowest P values), 

allele substitution effects were estimated using model (2) 

in ASReml 3.0 [24] by including the fixed effects of SNP 

genotype and population. �e additive effect (a) of the 

SNP was calculated as half the difference between the 

predicted phenotypic means of the two homozygotes, 

i.e. (AA − BB)/2, and the dominance effect (d) was cal-

culated as AB − [(AA + BB)/2], where the AB represents 

the predicted phenotypic mean of the heterozygote. �e 

additive genetic SNP variance (σ 2

SNP
) was estimated using 

the following equation:

where p and q are the frequency of the major and minor 

alleles at the SNP, respectively. �e proportion of vari-

ance explained by the SNP is then given by:

where σ 2
a  is the total additive genetic variance of the trait 

when no SNP effects are included in the model.

Assessment of genomic prediction

�e utility of genomic prediction for resistance to lice 

was assessed by cross-validation analyses under various 

(3)σ 2
SNP = 2pq(a + d(q − p))2,

(4)σ 2
SNP/σ 2

a ,

scenarios (see below) in which (i) varying SNP densi-

ties (0.5, 1, 5, 10, 20 K (all chosen at random), and 33 K 

(full dataset)) and (ii) varying degrees of relationships 

between training and validation sets were applied.

Scenario (i): Random selection

Within each population (which correspond to discrete 

‘year groups’ of a commercial Atlantic salmon breeding 

programme), cross-validation analysis was performed 

by selecting five random non-overlapping training and 

validation sets as described previously [21]. At each SNP 

density (0.5  to  33  K SNPs), GBLUP was applied to pre-

dict the masked phenotypes of the validation sets and the 

resulting prediction accuracy was compared to that of 

pedigree-based BLUP (PBLUP), as described above. �e 

average accuracy across the five cross-validation repli-

cates for each SNP density was computed.

Scenario (ii): Sibling

Within each population, training and validation sets were 

established such that both sets contained representatives 

of each family. �e same cross-validation analyses were 

performed as for Scenario (i).

Scenario (iii): Non‑sibling

Within each population, training and validation sets were 

established such that full siblings were not included in 

either set (i.e. different full-sibling families were used for 

training and validation sets). �e resulting training and 

validation sets were more distantly related than for Sce-

narios (i) and (ii), although they did contain some half-

sibs. �e same cross-validation analyses were performed 

as for Scenarios (i) and (ii).

Scenario (iv): Across populations

To assess prediction accuracy across populations per year 

group, population I was used as the training set and pop-

ulation II as the validation set, and vice versa. �e same 

genomic prediction and cross-validation analyses were 

performed as for Scenarios (i) to (iii), but pedigree-based 

prediction was not possible since genetic links between 

the two populations were absent from the available 

pedigree.

Cross‑validation

�e five-fold cross-validation analyses for each scenario 

described above were performed using the methods 

described in Tsai et  al. [21]. Briefly, for the within-pop-

ulation analyses, populations I and II were each divided 

into a training (80  %) and validation (20  %) set. Pheno-

types (i.e. lice counts) of the samples in the validation 

sets were then masked and GBLUP or pedigree-based 

BLUP (PBLUP) was applied to predict the phenotypes 

https://www.r-project.org/
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of the masked individuals using model (2) implemented 

in ASReml 3.0 [24]. �e Pearson correlation coefficient 

of the estimated breeding values (EBV) [either genomic 

EBV (GEBV) or pedigree-based EBV (PEBV)] with the 

adjusted phenotype of the masked validation set. Accu-

racy was calculated as the correlation divided by the 

square root of the heritability using all individuals, and 

then averaged across the five replicates (Figs. 2, 3).

Results
General statistics and genetic parameters of resistance 

to lice and growth

Estimated heritability for lice count was moderate (~0.3) 

and relatively consistent when using a pedigree relation-

ship matrix (Table  1). Estimates of heritability for the 

growth-related traits (weight and length) were higher 

(~0.6), in line with previous estimates [21]. �e two 

growth traits had high positive phenotypic and genetic 

correlations with each other (~0.93 to 0.96), and corre-

lations of the growth traits with lice count were either 

equal to zero or slightly negative (Table 2).

Genome‑wide association study

�e results of the GWAS suggest that lice resistance is a 

polygenic trait, with no SNPs surpassing the Bonferroni-

corrected significance thresholds (Fig.  1). Indeed, when 

each population was analysed separately, there was lit-

tle overlap between regions that had the lowest P values 

(Fig.  1a, b). When the two populations were combined 

(Fig. 1c), SNPs with the lowest P values were located on 

chromosomes 1, 3, 9 and 23. �e estimated proportion of 

additive genetic variance explained by these SNPs ranged 

from ~2 to 6 % each. �e quantile–quantile (Q–Q) plots 

for each GWA analysis are in Figure S2 (See Additional 

file 2: Figure S2).

Accuracy of predicted breeding values

�e putative polygenic architecture of lice resistance in 

these populations means that genomic prediction may 

be a practical and effective method of predicting breed-

ing values for lice resistance, which was tested using 

cross-validation analyses under different scenarios in 

which varying SNP densities and varying levels of relat-

edness between training and validation sets were applied 

(see “Methods” for details). Accuracy of prediction using 

the genomic relationship matrix (GBLUP) was generally 

higher than that using the pedigree relationship matrix 

(PBLUP). Greater SNP density tended to improve predic-

tion accuracy, but the asymptote was generally reached at 

~5 K SNPs for both populations (Fig. 2).

�e results of genomic prediction under the “random 

selection” (where training and validation sets were cho-

sen at random), and “sibling” (where full siblings from 

each family were deliberately included in both the train-

ing and validation sets) scenarios were very similar for 

both populations (Fig.  2a–d). �erefore, including ani-

mals that share close relationships did not improve the 

accuracy of genomic predictions for these populations, 

which indicates that “random selection” will result in the 

presence of several closely-related fish across the training 

and validation datasets by chance. In both cases, GBLUP 

resulted in more accurate predictions of lice count in the 

validation data than PBLUP, with a relative advantage of 

approximately 27 % for population I and 10 % for popu-

lation II (Fig.  2a–d). Increasing marker density to more 

than ~5  K randomly chosen SNPs had little impact on 

prediction accuracy, which may be expected when the 

training and validation sets are closely related [9].

When the training and validation sets were less related, 

predictions of both pedigree- and genomic-based meth-

ods were less accurate, as expected. In the “non-sibling” 

scenario (where no full-siblings were included in both 

Table 1 General statistics and  heritability estimates 

for lice count and growth traits

SD is the standard deviation and SE is the standard error

a Heritability was estimated based on the G-matrix/A-matrix

b The lice count data (number of lice per �sh) used here was without data 

adjustment

c The results are from Tsai et al. [21]

Population I Population II

Mean (SD) Heritabilitya 
(SE)

Mean (SD) Heritabilitya 
(SE)

Liceb 25.8 (12.3) 0. 33 (0.08)/0.27 
(0.08)

18.3 (9.1) 0. 22 (0.06)/0.27 
(0.08)

Length 214.2 (16.1)c 0. 61 (0.07)/0.51 
(0.11)c

206.2 (14.3) 0. 51 (0.07)/0.50 
(0.10)

Weight 112.0 (21.0)c 0. 61 (0.07)/0.49 
(0.10)c

89.9 (19.9) 0. 50 (0.07)/0.50 
(0.10)

Table 2 Estimates of  genetic and  phenotypic correlations 

between  lice count and  growth traits in  populations I 

and II

Genetic correlation Phenotypic correlation

Lice Length Weight

Population I

Lice – −0.04 −0.06

Length 0.10 – 0.96

Weight 0.11 0.96 –

Population II

Lice – −0.1 −0.1

Length −0.3 – 0.93

Weight −0.3 0.95 –
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the training and validation sets), accuracies of predic-

tion obtained with both GBLUP and PBLUP were sub-

stantially lower than those in the previous two scenarios. 

However, the benefit of genomic prediction was greatest 

under this scenario, with prediction accuracies increasing 

fivefold (population I) and 2.5-fold (population II) relative 

to pedigree-based prediction accuracies. Perhaps surpris-

ingly, there was little benefit from increasing SNP density 

above ~5 K SNPs under this scenario as well (Fig. 2e, f ). 

When the accuracy of genomic prediction was assessed 

across the two populations (corresponding to 2  year 

groups of the Landcatch broodstock), accuracies were 

markedly lower (0.05–0.11) than with all of the within-

population scenarios (0.34–0.61). Increasing SNP density 

did seem to yield incremental (albeit small) increases in 

prediction accuracies when predicting across populations 

(Fig. 3), which suggested that this scenario was likely to 

benefit most from a high-density SNP array. However, 

these two populations were probably too small to achieve 

high prediction accuracy for these distantly-related ani-

mals, and a more thorough test of across-population pre-

diction in salmon should use larger sample sizes.

Discussion
Genomic selection is an increasingly important compo-

nent of modern aquaculture breeding schemes, with sim-

ulated and applied studies highlighting its benefits over 

pedigree-based selection [9, 28]. However, the substantial 

cost of genome-wide genotyping means that the traits 

targeted by GS are likely to be those of high economic 

Fig. 1 Manhattan plots of the genome-wide association study for populations I (a), II (b), and I and II combined (c). Top markers are close to 

chromosome-wide significance (α < 0.05) but do not pass the threshold
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value, particularly those that cannot be easily meas-

ured on the selection candidates themselves. Currently, 

sea lice present the largest threat to the sustainability of 

salmon farming, which relies heavily on expensive and 

potentially environmentally-damaging chemical treat-

ments [10]. Host resistance to sea lice has consistently 

been shown to have a substantial genetic component 

[11]. �erefore, resistance to lice is an ideal candidate 

trait for the application of GS. In our study, lice count 

data and genome-wide SNP genotypes were collected 

for two pedigreed salmon populations from a commer-

cial breeding programme to assess the utility of genomic 

a
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Fig. 2 Accuracy of genomic and pedigree-based prediction within populations. Comparison of prediction accuracy (Y-axis) of two populations 

using increasing SNP densities from 0.5 to 33 K (X-axis) assessed by cross-validation analyses. “Random Selection” involved random assignment of 

individuals to training and validation sets (a) and (b); “Sibling” involved assigning full siblings from each family to both the training and validation 

sets (c) and (d); and “Non-sibling” involved avoidance of full-sibling animals in the training and validation sets (e) and (f). Panels a, c and e represent 

results for population I and panels b, d, and f represent those for population II
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prediction of host resistance to sea lice under different 

scenarios, including a comparison to predictions based 

on pedigree records alone.

�e heritability of resistance to lice was estimated at 

~0.3 and 0.2 in populations I and II, respectively, which 

is similar to the findings of Gharbi et al. [11] (~0.3) and 

Gjerde et  al. [29] (~0.2 to 0.3), and slightly higher than 

those of Ødegård et  al. [9] (~0.13 to 0.14). However, it 

should be noted that the challenge experiments that are 

reported in Gharbi et  al. [11], Gjerde et  al. [13], and in 

our study, were all conducted in controlled tanks condi-

tions, whereas the study of Ødegård et al. [9] was based 

on challenges in a sea-cage environment, which may 

display greater environmental variation. Furthermore, it 

should be noted that the higher heritability estimates for 

all traits in population I may be due in part to confound-

ing between genetic and common environmental effects 

due to the family-specific rearing of the fry (compared 

to population II, for which individuals were mixed into a 

single tank as first feeding fry).

�e GWAS indicated that host resistance to lice likely 

has a polygenic architecture, with no major QTL segre-

gating in these populations (Fig. 1). �erefore, it is likely 

that individual QTL for lice resistance explain only a 

small percentage of the genetic variance, and a propor-

tion of the QTL may be population-specific. As such, 

GBLUP and similar methods of genomic prediction are 

likely to be suitable for predicting breeding values for 

host resistance to lice, particularly within populations.

�e degree of the genetic relationships between train-

ing and validation sets is critical for the efficacy of 

genomic prediction. In our study, genomic prediction 

was found to be highly effective and showed a signifi-

cant advantage in terms of accuracy over pedigree-based 

methods within populations (which correspond to year 

groups of a salmon breeding programme, Fig.  2). �e 

accuracy of prediction and the relative advantage of 

genomic prediction were lower for population II than 

for population I (Fig.  2), which may reflect the lower 

estimated heritability in this population because a low 

heritability can contribute to low prediction accuracy 

[20, 30]. Also, the family structure of population II was 

potentially less amenable to accurate prediction since 

it comprised a larger number of smaller families, which 

decreased the chance of having useful numbers of full 

siblings in the training and validation sets. Prediction 

accuracies were highest when training and validation 

sets were closely related, as was shown with the “Ran-

dom selection” and “Sibling” scenarios. In addition, these 

results showed that deliberately including highly-related 

animals (i.e. full siblings) in the training and validation 

sets yielded little advantage over random assignment. 

�is likely reflects the typical family structure of com-

mercial salmon breeding populations, which consist 

of large full sibling families (thousands of fish per fam-

ily) that result in close relationships between selection 

candidates and test individuals. However, the benefit of 

using genomic prediction over pedigree-based predic-

tion was largest under the “Non-sibling” scenario, in 

which training and validation sets were established such 

that no full-siblings were included (i.e. the sets were less 

related than would be expected by chance, Fig. 2). Pre-

diction across populations or year groups (for which 

genetic relationships are more distant) was substantially 

less effective, with relatively low prediction accuracies 

(Fig. 3). �is may reflect, in part, inadequate sample size 

of the populations, or possibly differences in the experi-

mental procedures between the two studies. However, 

our findings imply that either the GBLUP analyses did 

not efficiently capture short range LD between SNPs and 

QTL for resistance to sea lice, and/or that the QTL were 

population-specific. �erefore, in commercial salmon 
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Fig. 3 Accuracy of genomic prediction across populations. Based on setting population I as the training set and population II as the validation set 

and vice versa. Accuracy of prediction (Y-axis) for the two populations was estimated using increasing SNP density from 0.5 to 33 K (X-axis)



Page 9 of 11Tsai et al. Genet Sel Evol  (2016) 48:47 

breeding schemes, regular phenotype data collection on 

animals that are closely-related to the selection candi-

dates, combined with medium- or low-density (and cost) 

SNP panel genotyping appears to be the most effective 

means of using genomic prediction for resistance to lice. 

�is strategy is supported by results from previous simu-

lation studies (e.g. [28]).

Using data collected from a challenge trial per-

formed in a sea cage environment, Ødegård et  al. [9] 

also showed that genomic prediction of breeding val-

ues for lice resistance was more accurate compared 

to pedigree-based prediction. As in our study, the 

observed improvements depended partly on SNP den-

sity with ~32 (1 K SNPs) and 51 % (220 K SNPs) higher 

reliabilities than those obtained from predictions based 

on pedigree records alone [9]. Interestingly, increasing 

SNP density above a threshold of around 5 K SNPs had 

little impact on accuracy of prediction in both studies 

(Fig.  2, [9]). �is may reflect the relatively close rela-

tionships between the training and validation sets, 

since higher SNP density did slightly improve the accu-

racy of cross-population predictions, as shown in our 

study, up to ~33  K SNPs (the highest density tested) 

(Fig.  3). However, it seems unlikely that linkage alone 

is underpinning the predictions, since predictions with 

low SNP densities (<1 K) and predictions based on an 

IBD (identity-by-descent) genomic relationship matrix 

were less accurate [9]. �erefore, short or long range 

LD between SNP and QTL alleles may be an impor-

tant component of prediction. Obviously, such LD can 

be captured by a relatively sparse SNP set, a finding 

that may be related to the relatively close relationships 

between training and validation sets, recent population 

admixture [9], or slower decay of LD due to the lack of 

male recombination in male salmon across much of the 

genome [31, 32].

A difference between simulation studies and those 

performed on experimental data is often observed in 

genomic prediction studies. Previous simulation studies 

indicated that the accuracy of breeding value prediction 

can reach values of 0.8 to 1.0 if the reference population 

size is sufficiently large (e.g. more than 100,000) [2, 33]. 

However, in practice, due to financial and practical limi-

tations, research programs that use ‘experimental’ data 

usually involve the analysis of relatively small reference 

populations [9, 21, 34]. It is likely that if we had used 

larger population sizes, higher accuracies of prediction 

would have been obtained, particularly for predictions 

across the two distantly-related populations (subject to 

sufficient SNP density). As such, cost-effective means 

of generating high-density SNP data remain a relevant 

goal, and genotype imputation is likely to be increasingly 

important, particularly now that the majority of the 

Atlantic salmon reference genome has been assembled 

and ordered onto chromosomes (Genbank assembly 

accession GCA_000233375.4, [35]). Genotyping-by-

sequencing may be crucial for reaching such high SNP 

density at moderate cost and its potential for genomic 

prediction in livestock has already been reported [36]. 

With a high SNP density across large sample sizes, one 

may expect to capture LD between SNPs and QTL, and 

co-segregation of chromosome segments among related 

individuals, although the resolution of mapping causa-

tive variants may be hampered by the strong relation-

ship structure in the population. Within populations/

year groups, the requirement in terms of SNP density 

for accurate prediction is clearly lower and as few as 

1 to 5 K informative SNPs are sufficient. However, while 

this points to the potential utility of cheaper and lower 

density genotyping platforms in aquaculture breeding, 

it is important to keep in mind that SNP informative-

ness can vary between populations.

Conclusions
Genomic prediction is an effective method for predicting 

breeding values for host resistance to sea lice in Atlantic 

salmon populations from a commercial breeding pro-

gramme. �e GWAS results suggested that lice resist-

ance is a polygenic trait. Cross-validation tests of genomic 

prediction highlighted the substantial improvements in 

prediction accuracy compared to that of pedigree-based 

prediction. �e accuracy of GBLUP was highest when 

training and validation sets were closely related but the 

relative advantage over pedigree-based prediction within 

a population was largest when relationships were more 

distant. Relatively low SNP densities (from 1 to 5 K SNPs) 

were sufficient for accuracy to reach the asymptote under 

most of the scenarios tested. Prediction accuracy is gen-

erally much lower across distantly-related populations, 

although a trend was evident that increased marker den-

sity was advantageous in such situations. �erefore, larger 

population sample sizes and high-density SNP genotypes 

are probably necessary to improve across-population pre-

diction. Given the economic importance of resistance to 

sea lice, and the efficacy of genomic prediction, it is likely 

that selective breeding for this trait using genomic data 

will become an important component of sea lice control.
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after data normalization. Panels (a) and (c) represent results for population 

I, and panel (b) and (d) represent results for population II.

Additional �le 2: Figure S2. Quantile-quantile (Q-Q) plot for the GWAS 

analysis. Description: Three Q-Q plots are given in the file including popu-

lation I (A), population II (B) and populations I and II combined (C).

http://dx.doi.org/10.1186/s12711-016-0226-9
http://dx.doi.org/10.1186/s12711-016-0226-9


Page 10 of 11Tsai et al. Genet Sel Evol  (2016) 48:47 

Authors’ contributions

RDH and SCB (the author, Stephen C. Bishop, unfortunately passed away 

before completion of the manuscript) were responsible for the overall experi-

mental design; JEB, JBT, MJS and KG designed experiments and collected data; 

AET, AH, and DRG provided phenotype and pedigree data; HYT, OM, RPW and 

RDH analysed data; HYT and RDH prepared the manuscript. All authors read 

and approved the final manuscript.

Author details
1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Univer-

sity of Edinburgh, Midlothian EH25 9RG, UK. 2 Landcatch Natural Selection Ltd., 

15 Beta Centre, Stirling University Innovation Park, Stirling FK9 4NF, UK. 3 Insti-

tute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK. 4 Edinburgh 

Genomics, Ashworth Laboratories, King’s Buildings, University of Edinburgh, 

Edinburgh EH9 3JT, UK. 5 Institute of Biodiversity, Animal Health and Compara-

tive Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK. 

Acknowledgements

The authors gratefully thank the Edinburgh Genomics facility for SNP array 

genotyping, and Bill Roy and Matt Tinsley at the Marine Environmental 

Research Laboratory for assistance with trait data collection. This project 

received funding from the Technology Strategy Board (TP 5771-40299), Inno-

vate UK (45266-329178), and Biotechnology and Biological Sciences Research 

Council (BBSRC) Grants (BB/H022007/1, BB/J004235/1 and BB/J004324/1). JBT 

and JEB were partly supported by the MASTS pooling initiative (The Marine 

Alliance for Science and Technology for Scotland) for the completion of this 

study. MASTS is funded by the Scottish Funding Council (Grant reference 

HR09011) and contributing institutions. HYT is supported by funding from the 

Ministry of Education, Taiwan.

Competing interests

The authors declare that they have no competing interests.

Received: 8 February 2016   Accepted: 17 June 2016

References

 1. Habier D, Fernando RL, Garrick DJ. Genomic BLUP decoded: a look into 

the black box of genomic prediction. Genetics. 2013;194:597–607.

 2. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total 

genetic value using genome-wide dense marker maps. Genetics. 

2001;157:1819–29.

 3. Wilkinson S, Wiener P, Archibald AL, Law A, Schnabel RD, McKay SD, et al. 

Evaluation of approaches for identifying population informative markers 

from high density SNP chips. BMC Genet. 2011;12:45.

 4. Riggio V, Matika O, Pong-Wong R, Stear MJ, Bishop SC. Genome-wide 

association and regional heritability mapping to identify loci underlying 

variation in nematode resistance and body weight in Scottish Blackface 

lambs. Heredity (Edinb). 2013;110:420–9.

 5. Bermingham ML, Bishop SC, Woolliams JA, Pong-Wong R, Allen AR, 

McBride SH, et al. Genome-wide association study identifies novel loci 

associated with resistance to bovine tuberculosis. Heredity (Edinb). 

2014;112:543–51.

 6. Gutierrez AP, Yáñez JM, Fukui S, Swift B, Davidson WS. Genome-wide 

association study (GWAS) for growth rate and age at sexual maturation in 

Atlantic salmon (Salmo salar). PLoS One. 2015;10:e0119730.

 7. Yáñez JM, Newman S, Houston RD. Genomics in aquaculture to better 

understand species biology and accelerate genetic progress. Front Genet. 

2015;6:128.

 8. Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of 

genetic architecture on genome-wide evaluation methods. Genetics. 

2010;185:1021–31.

 9. Odegård J, Moen T, Santi N, Korsvoll SA, Kjøglum S, Meuwissen THE. 

Genomic prediction in an admixed population of Atlantic salmon (Salmo 

salar). Front Genet. 2014;5:402.

 10. Frazer LN, Morton A, Krkosek M. Critical thresholds in sea lice epi-

demics: evidence, sensitivity and subcritical estimation. Proc Biol Sci. 

2012;279:1950–8.

 11. Gharbi K, Matthews L, Bron J, Roberts R, Tinch A, Stear MJ, et al. The con-

trol of sea lice in Atlantic salmon by selective breeding. J R Soc Interface. 

2015;12:0574.

 12. Kolstad K, Heuch PA, Gjerde B, Gjedrem T, Salte R. Genetic variation in 

resistance of Atlantic salmon (Salmo salar) to the salmon louse Lepeoph-

theirus salmonis. Aquaculture. 2005;247:145–51.

 13. Gjerde B, Ødegård J, Thorland I. Estimates of genetic variation in the 

susceptibility of Atlantic salmon (Salmo salar) to the salmon louse 

Lepeophtheirus salmonis. Aquaculture. 2011;314:66–72.

 14. Houston RD, Bishop SC, Guy DR, Tinch AE, Taggart JB, Bron JE, et al. 

Genome wide association analysis for resistance to sea lice in Atlantic 

salmon: application of a dense SNP array. In: Proceedings of the 10th 

World congress of genetics applied to livestock production: 17–22 

August 2014; Vancouver. 2014. https://asas.org/docs/default-source/

wcgalp-proceedings-oral/265_paper_9597_manuscript_751_0.

pdf?sfvrsn=2.

 15. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian 

alphabet for genomic selection. BMC Bioinformatics. 2011;12:186.

 16. Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM. 

Genomic prediction in animals and plants: Simulation of data, validation, 

reporting, and benchmarking. Genetics. 2013;193:347–65.

 17. Habier D, Fernando RL, Dekkers JCM. The impact of genetic relation-

ship information on genome-assisted breeding values. Genetics. 

2007;177:2389–97.

 18. Wientjes YCJ, Veerkamp RF, Calus MPL. The effect of linkage disequilib-

rium and family relationships on the reliability of genomic prediction. 

Genetics. 2013;193:621–31.

 19. Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, et al. 

Evaluation of genomic selection training population designs and geno-

typing strategies in plant breeding programs using simulation. Crop Sci. 

2014;54:1476–88.

 20. Vela-Avitúa S, Meuwissen THE, Luan T, Ødegård J. Accuracy of genomic 

selection for a sib-evaluated trait using identity-by-state and identity-by-

descent relationships. Genet Sel Evol. 2015;47:9.

 21. Tsai HY, Hamilton A, Tinch AE, Guy DR, Gharbi K, Stear MJ, et al. Genome 

wide association and genomic prediction for growth traits in juvenile 

farmed Atlantic salmon using a high density SNP array. BMC Genomics. 

2015;16:969.

 22. Houston RD, Taggart JB, Cézard T, Bekaert M, Lowe NR, Downing A, et al. 

Development and validation of a high density SNP genotyping array for 

Atlantic salmon (Salmo salar). BMC Genomics. 2014;15:90.

 23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 

PLINK: a tool set for whole-genome association and population-based 

linkage analyses. Am J Hum Genet. 2007;81:559–75.

 24. Gilmour AR, Gogel BJ, Cullis BR, Thompson R. ASReml user guide. 4th ed. 

Hemel Hempstead: VSN International Ltd; 2014.

 25. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for 

genome-wide association analysis. Bioinformatics. 2007;23:1294–6.

 26. VanRaden PM. Efficient methods to compute genomic predictions. J 

Dairy Sci. 2008;91:4414–23.

 27. Chen WM, Abecasis GR. Family-based association tests for genomewide 

association scans. Am J Hum Genet. 2007;81:913–26.

 28. Sonesson AK, Meuwissen THE. Testing strategies for genomic selection in 

aquaculture breeding programs. Genet Sel Evol. 2009;41:37.

 29. Gjerde B, Pante MJR, Baever�ord G. Genetic variation for a vertebral 

deformity in Atlantic salmon (Salmo salar). Aquaculture. 2005;244:77–87.

 30. Nirea KG, Sonesson AK, Woolliams JA, Meuwissen THE. Strategies for 

implementing genomic selection in family-based aquaculture breeding 

schemes: double haploid sib test populations. Genet Sel Evol. 2012;44:30.

 31. Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, et al. A 

dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals 

extended chromosome homeologies and striking differences in sex-

specific recombination patterns. BMC Genomics. 2011;12:615.

 32. Gonen S, Lowe NR, Cezard T, Gharbi K, Bishop SC, Houston RD. Linkage 

maps of the Atlantic salmon (Salmo salar) genome derived from RAD 

sequencing. BMC Genomics. 2014;15:166.

 33. Daetwyler HD, Villanueva B, Woolliams JA. Accuracy of predicting the 

genetic risk of disease using a genome-wide approach. PLoS One. 

2008;3:e3395.

 34. Calus MPL. Genomic breeding value prediction: methods and proce-

dures. Animal. 2010;4:157–64.

https://asas.org/docs/default-source/wcgalp-proceedings-oral/265_paper_9597_manuscript_751_0.pdf%3fsfvrsn%3d2
https://asas.org/docs/default-source/wcgalp-proceedings-oral/265_paper_9597_manuscript_751_0.pdf%3fsfvrsn%3d2
https://asas.org/docs/default-source/wcgalp-proceedings-oral/265_paper_9597_manuscript_751_0.pdf%3fsfvrsn%3d2


Page 11 of 11Tsai et al. Genet Sel Evol  (2016) 48:47 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 35. Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A, et al. 

Sequencing the genome of the Atlantic salmon (Salmo salar). Genome 

Biol. 2010;11:403.

 36. Gorjanc G, Cleveland MA, Houston RD, Hickey JM. Potential of genotyp-

ing-by-sequencing for genomic selection in livestock populations. Genet 

Sel Evol. 2015;47:12.


	Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Animals and challenge experiment
	SNP genotyping
	Genetic parameters for lice resistance
	Data normalization
	Estimation of genetic parameters

	Genome-wide association study
	Assessment of genomic prediction
	Scenario (i): Random selection
	Scenario (ii): Sibling
	Scenario (iii): Non-sibling
	Scenario (iv): Across populations
	Cross-validation


	Results
	General statistics and genetic parameters of resistance to lice and growth
	Genome-wide association study
	Accuracy of predicted breeding values

	Discussion
	Conclusions
	Authors’ contributions
	References


