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Abstract

Background: In contrast to currently used single nucleotide polymorphism (SNP) panels, the use of whole-genome

sequence data is expected to enable the direct estimation of the effects of causal mutations on a given trait. This

could lead to higher reliabilities of genomic predictions compared to those based on SNP genotypes. Also, at each

generation of selection, recombination events between a SNP and a mutation can cause decay in reliability of

genomic predictions based on markers rather than on the causal variants. Our objective was to investigate the

use of imputed whole-genome sequence genotypes versus high-density SNP genotypes on (the persistency of)

the reliability of genomic predictions using real cattle data.

Methods: Highly accurate phenotypes based on daughter performance and Illumina BovineHD Beadchip genotypes

were available for 5503 Holstein Friesian bulls. The BovineHD genotypes (631,428 SNPs) of each bull were used to

impute whole-genome sequence genotypes (12,590,056 SNPs) using the Beagle software. Imputation was done using

a multi-breed reference panel of 429 sequenced individuals. Genomic estimated breeding values for three traits were

predicted using a Bayesian stochastic search variable selection (BSSVS) model and a genome-enabled best linear

unbiased prediction model (GBLUP). Reliabilities of predictions were based on 2087 validation bulls, while the

other 3416 bulls were used for training.

Results: Prediction reliabilities ranged from 0.37 to 0.52. BSSVS performed better than GBLUP in all cases. Reliabilities of

genomic predictions were slightly lower with imputed sequence data than with BovineHD chip data. Also, the reliabilities

tended to be lower for both sequence data and BovineHD chip data when relationships between training animals were

low. No increase in persistency of prediction reliability using imputed sequence data was observed.

Conclusions: Compared to BovineHD genotype data, using imputed sequence data for genomic prediction produced

no advantage. To investigate the putative advantage of genomic prediction using (imputed) sequence data, a training set

with a larger number of individuals that are distantly related to each other and genomic prediction models that

incorporate biological information on the SNPs or that apply stricter SNP pre-selection should be considered.

Introduction

Genomic selection is increasingly applied in breeding

programs for livestock and plant species, e.g. [1–4].

Genomic selection relies on the prediction of genomic

estimated breeding values (GEBV) of individuals or

lines using marker genotype information only, by applying

genomic prediction models that are based on training

individuals that have both phenotypic and genotypic data.

In most breeding programs, single nucleotide poly-

morphism (SNP) marker panels are used. With SNP

panels, the level of linkage disequilibrium (LD) between

SNPs and the actual causal variant (e.g. SNP, insertion,

deletion, etc.) influences the reliability of genomic

prediction. In this paper, these causal variants will be

considered as quantitative trait loci (QTL). At each

generation of selection, recombination events between

a SNP and the QTL can cause a decay in the reliability

of genomic predictions [5]. Typically, a decrease in reli-

ability of GEBV prediction in cattle with 50k SNP geno-

types has been observed when the additive-genetic
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relationships between training animals and validation

animals decrease [6, 7]. Moreover, this decay in reliability

was greater when the size of the training set was smaller

[6]. This decay could become a problem for dairy cattle

since sons from young bulls that are selected on their

GEBV without daughter information are now entering

breeding programs. These sons’ GEBV are estimated based

on a training set of progeny-tested bulls that are two

generations older (i.e. their grand sires) and therefore the

reliability of their genomic breeding values will be lower

compared with those of the previous generation.

On average, increasing the number of SNPs in a panel

increases the level of LD between a SNP and a QTL and

this should be beneficial for genomic prediction. Studies

using real data, have shown that genomic prediction

using an array with approximately 777,000 (imputed)

SNPs resulted in a small gain in genomic prediction reli-

ability compared to an array with approximately 50,000

SNPs [8–10]. However, even with 777,000 SNPs, pre-

dictions still depend on LD between SNPs and QTL. In

contrast to the SNP panels currently used, whole-

genome sequence data are expected to include the

causal mutations that underlie QTL [11], which means

that predictions should no longer depend on LD

between SNPs and QTL. Inclusion of the causal muta-

tions allows the effect of the QTL on a given trait to be

estimated directly, which should increase the reliability

of genomic predictions compared to using SNP geno-

types, as well as the persistency of the reliability of

predictions across generations and even across breeds

[11–13].

However, identifying the QTL and obtaining a higher

persistency of reliabilities of genomic predictions over

generations probably requires a large training set of

thousands of sequenced individuals. Without a large

number of training individuals, QTL effects might be

estimated with too much error and thus, there will be

little advantage of using sequence data [14]. Sequen-

cing many individuals is still too expensive but instead

imputed sequence data can be used, especially since

many animals that are genotyped using SNP panels are

available in livestock populations.

The 1000 bull genome project [15] aims at sequencing

a number of key ancestor bulls in the beef and dairy

cattle population at medium coverage. These sequenced

animals can be used as reference animals to impute

other animals that are genotyped with 50k or 777k SNP

panels to the whole-genome sequence level. A reliability

of 0.83 was obtained for imputation from 777k SNP

panels to sequence data with a reference set of 91

Holstein Friesian animals with whole-genome sequence

data [16]. Moreover, adding individuals of other breeds

in a relatively large reference set will further increase

imputation accuracy. In particular, it was reported that

low MAF (minor allele frequency) variants that segre-

gate in other breeds can benefit from combining differ-

ent breeds together [17, 18]. Therefore, imputation to

sequence data using SNP genotypes is an attractive and

cost-effective approach to obtain a large training set of

sequenced individuals, and to investigate the benefit of

using sequence data for relevant populations.

Many methods are available for genomic prediction,

most of which are based on linear regression (see [19]

for review). These methods can differ in the underlying

assumptions about the distribution of SNP effects.

With a genome-enabled best linear unbiased predic-

tion (GBLUP) model it is assumed that the a priori

variance of SNP effects is equal, so a large number of

SNPs, each with a small effect, are fitted in the model

(infinitesimal model). Consequently, it is expected that

GBLUP does not take full advantage of sequence data,

since it will allocate the same variance to SNPs without

effect and to those that are causal, although only a very

small proportion of the SNPs is expected to be causal.

Alternatively, methods such as BayesB [20], BayesC

[21] and Bayesian stochastic search variable selection

(BSSVS) [22, 23] assume that the a priori variance of

the effects of many SNPs is very small or zero, while it

is large for only a few SNPs. Because of this mixture of

the prior distributions of SNP effects, these methods

could benefit from sequence data. Simulation studies

using bovine sequence data confirmed this expectation,

e.g. [11–13]. However, Ober et al. [24] concluded that

predictions from BayesB were not better than predic-

tions from a method equivalent to GBLUP when using

real sequence genotypes of Drosophila melanogaster,

although the size of the training set size (~120 obser-

vations) was relatively small. Moreover, the advantage

of Bayesian methods over GBLUP was shown to be

greatly influenced by the size and distribution of the

simulated QTL effects [11–13].

Since the use of whole-genome sequence data for

genomic prediction in livestock populations, and its im-

pact on the reliability of genomic prediction and persist-

ency across generations have been mainly studied with

simulated data, the objective of this study was to investi-

gate (the persistency of ) the reliability of genomic pre-

dictions based on imputed whole-genome sequence

genotypes versus 777k SNP genotypes for real dairy

cattle data.

Methods

Phenotypes

De-regressed proofs and associated weights (effective

daughter contributions, EDC) were available for somatic

cell score (SCS), interval between first and last insemination

(IFL), and protein yield (PY) for 5503 Holstein Friesian

bulls provided by CRV (Arnhem, the Netherlands).
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De-regressed proofs (DRP) were calculated according

to VanRaden et al. [25]:

DRP ¼ PAþ EBV−PAð Þ �
EDCEBV

EDCprog

� �
;

where EBV is the estimated breeding value of a bull for

a trait available from the national evaluations, and PA is

the parent average of the bull for that trait. Effective

daughter contribution, EDCEBV, represents the effective

number of daughters with phenotypes that contributed

to the estimated breeding value of a bull [26] and was

calculated according to VanRaden and Wiggans [27] as

α ∗ RELEBV/(1 − RELEBV), where RELEBV is the published

reliability for EBV and α = (4 − h2)/h2, where h2 is the her-

itability of the trait. EDCprog = EDCEBV − EDCPA, where

EDCPA = αRELPA/(1 − RELPA) and RELPA = (RELsire +

RELdam)/4 [27]. As the number of daughters with pheno-

typic information for a trait increases, the reliability of the

EBV of a bull and EDCEBV increase. The average EDCEBV

(and its range) for animals in the training set was equal to

266 (24–971) for SCS, 643 (47–4851) for IFL, and 245

(24–693) for PY. The pedigree information for the 5503

bulls in this study included 39,917 animals.

Genotypes

In total, 551 bulls were genotyped with the Illumina

BovineHD BeadChip (Illumina Inc., San Diego, CA) and

the other 4952 bulls were genotyped with a 50k SNP

panel and imputed to BovineHD (734,403 SNPs). Imput-

ation from the 50k to the BovineHD SNP panel was

performed with Beagle 3.3.0 [28, 29], using a reference

set of 1333 animals genotyped with the BovineHD SNP

panel. For this first step, the error rate of imputation

was low [30]. For each bull, BovineHD genotypes were

subsequently imputed to whole-genome sequence geno-

types with Beagle version 4 [31]. The following default

parameter settings in Beagle were used: five iterations

for initial burn-in, five iterations for phasing, and five

iterations for imputation. Imputation was performed for

sliding windows of 24,000 SNPs in the sequence data,

with an overlap of 3000 SNPs between sliding windows.

No pedigree information was used in the imputation

procedure. The sex chromosomes were excluded.

Whole-genome sequence data (28,336,153 SNPs) of

429 animals that were provided by the 1000 bull ge-

nomes project (Run 3.0) were used as reference data for

imputation. All these animals, except two, were males

and originated from 15 dairy and beef breeds (1 to 121

animals per breed), among which there were four major

breeds, with 121 Holstein, 87 Simmental, 54 Angus, and

43 Brown Swiss animals. Each animal was sequenced with

the Illumina HiSeq System (Illumina Inc., San Diego, CA).

Alignment, variant calling, and quality controls were as

described by Daetwyler et al. [15]. The average number of

sequence genotypes was equal to 9.6 per animal and

ranged from 3.0 to 44.5. To assess the accuracy of geno-

type calling, concordance with BovineHD genotypes was

calculated as the proportion of identical genotypes between

the BovineHD and sequence data and ranged from 67.5 to

99.9 % (on average 94.8 %) for the 303 animals with

BovineHD genotypes. After correcting sequence geno-

types with Beagle, average concordance increased to

98.3 % (range: 74.1–99.9 %). Note that most animals in

this whole-genome sequence dataset were only used as

reference animals for imputation and not for genomic

prediction, except for 57 bulls that had genotypes in

both datasets.

After imputation, non-informative SNPs were removed

from the dataset, i.e. SNPs with less than two alleles,

SNPs with a minor allele frequency lower than 0.005

and SNPs with an estimated imputation reliability lower

than 0.05 (only for the imputed sequence data). Imput-

ation reliability was predicted by Beagle software as the

estimated squared correlation between the estimated

allele dosage (0∗P(AA) + 1∗P(AB) + 2∗P(BB)) and the

true allele dosage (estimated from posterior genotype

probabilities) [32]. In general, the imputation reliability

predicted by Beagle gives a good indication of the true

reliability for imputation from BovineHD to sequence

data [16]. The thresholds for these selection criteria

were chosen so that monomorphic SNPs and SNPs

that are likely to be imputed incorrectly were removed.

To evaluate the effect of imputation on genomic predic-

tion, a third genotype panel (ImputedHD) was generated

by randomly selecting SNPs from the imputed sequence

data. The number of selected SNPs per chromosome was

the same as for the BovineHD genotype dataset, and did

not include SNPs that were in the BovineHD genotype

dataset.

Genomic prediction

GEBV for the three traits were predicted based on two

sets of genotypes: the original BovineHD genotypes and

imputed whole-genome sequence genotypes. In both

cases, the most likely genotypes were used for predic-

tion. Genomic prediction was performed using two types

of linear regression models: GBLUP and BSSVS.

GBLUP

The GBLUP model was:

y ¼ 1μþ Zgþ e;

where y is the vector of de-regressed proofs of all indi-

viduals, μ is the overall mean, 1 is a vector of ones, Z is

an incidence matrix that links records to bulls, g is a

matrix of the genomic breeding values of all individuals,
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and e contains the random residuals. Genomic breeding

values were assumed to be distributed as g|GRM,

σg
2 ~ N(0, GRMσg

2), where GRM is the genomic relation-

ship matrix, and σg
2 is the additive genetic variance

picked up by the markers. Diagonal and off-diagonal

values of the GRM were calculated following Yang et al.

[33] as:

Gjk ¼
1

N

X
i
Gijk ¼

1

N

X
i

xij−2pi
� �

xik−2pið Þ

2pi 1−pið Þ
;

where Gijk is the estimated relationship between individ-

uals j and k at locus i, and N is the number of SNPs.

The SNP genotypes (xi) were coded as 0, 1 or 2, and pi
is the allele frequency of the allele for which the homo-

zygote genotype was coded as 2. Residual effects were

assumed to be distributed as e|D, σe
2 ~ N(0,Dσe

2), where D

is a diagonal matrix containing 1/EDCEBV on the diago-

nals, and σe
2 is the residual variance.

After calculation of the genomic relationship matrix, the

GBLUP model was fitted using the ASReml 4 software

[34]. ASReml software was used to estimate variance

components (restricted maximum likelihood estimation,

REML), with BLUP of the random effects as ‘byproducts’.

Therefore, it might be more appropriate to call this

method GREML. However, since our main objective

was to predict genomic values; we used the terminology

GBLUP.

BSSVS

The BSSVS model [23] was:

y ¼ 1μþ Ζuþ Xαþ e;

where u is a vector that contains the polygenic effects of

all bulls (u|A, σu
2 ~ N(0,Aσu

2), where A is the numerator

relationship matrix derived from the pedigree), X is a

matrix that contains the allele dosage (0, 1, or 2) for all

SNPs (rows) for all bulls (columns), α is a vector that

contains the (random) allele substitution effects for all

SNPs. The prior for μ was a constant and both σu
2 and σe

2

had a flat, uninformative prior distribution.

An important aspect of the BSSVS is that the prior

distribution for each allele substitution effects for each

locus j (αj) depends on the variance for the allele substi-

tution effects (σα
2) and the QTL indicator Ij, which is

sampled for each locus j and takes the value 0 (1) if the

SNP was included in the model with a small (large) effect:

αjjI j; σ
2
α
¼ eN 0;

σ
2
α

100

� �
when I j ¼ 0

eN 0; σ
2
α

� �
when I j ¼ 1:

8
<
:

The prior distribution for Ij was: p(Ij) = Bernoulli(1 − π).

For both the BovineHD and the imputed sequence data-

sets, the same number of SNPs (885) was assumed to have

a large effect, therefore π was assigned a value equal to

(ntotal − 885)/ntotal, where ntotal is the total number of SNP

effects. The prior distribution for σα
2 was: p(σα

2) = χ
− 2(va, Sa

2),

with va = 4.2 degrees of freedom [20, 21], and scale

parameter S2a ¼
σ
∼ 2
α va−2ð Þ
va

, where σ∼2
α
¼ 100

100þπ 1−100ð Þ

� �
σ
2
g

ntotal
[19].

The conditional posterior densities of the BSSVS model

are described in Additional file 1 (See Additional file 1).

The additive genetic variance (σg
2) was estimated as the

sum of the posterior mean variances explained by the SNPs

(σSNP
2 ) and estimated variance of the polygenic effect in-

cluded in the BSSVS model (σu
2), where σ2SNP ¼

X
j¼1

ntotal
α
2
j .

The BSSVS model was implemented using Gibbs sampling,

using right-hand-side updating as described in [23], and

was run in three chains per trait of 80,000 cycles, with the

first 10,000 cycles disregarded for burn-in. Burn-in length

was chosen based on a preliminary study using a similar

dataset [35]. Convergence of the BSSVS model was moni-

tored by plotting the total SNP variance for each cycle of

the Gibbs sampler (See Additional file 2: Figure S1). For

each trait, the results (variances and BLUPs) of three

chains were combined.

Pedigree BLUP

For comparison, BLUP based on pedigree information

only was also performed. Following the notation above,

the model was:

y ¼ 1μþ Zuþ e:

Similar to GBLUP, the BLUP model was applied using

ASReml 4 software [34].

Prediction reliability

The reliability of genomic prediction was evaluated by

assigning all 5503 bulls to either the training or valid-

ation set based on year of birth, according to the proto-

col used to validate genomic prediction in practice. Bulls

born before 2001 (3416 bulls) were assigned to the train-

ing set and bulls born between 2001 and 2008 (2087

bulls) to the validation set. The validation animals were

split into smaller subgroups (see below) to ensure that

the number of animals in these subgroups was sufficient,

and a relatively large number of validation animals were

chosen. Reliability of genomic prediction was calculated

for the validation animals as the squared correlation

between de-regressed proof and the EBV for the differ-

ent traits. Furthermore, the regression coefficient of

the DRP on the EBV was calculated to evaluate the bias

of predictions. A regression coefficient of 1 indicates

no bias.

Persistency of the reliability of genomic prediction

across generations was evaluated by splitting the valid-

ation bulls into three non-overlapping groups based on
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the presence of close relatives in the training set. The

first group consisted of 1643 bulls with their sire and

maternal grandsire in the training set (SMGS); the

second group consisted of 113 bulls with their sire in

the training set, but no maternal grandsire (SIRE); and

the third group consisted of 329 bulls with no sire in the

training set, but had one or both grandsires in the train-

ing set (GS). Two animals had no sire and no grandsires

in the training set, and therefore were excluded from

these analyses.

Results

Descriptive results

After editing SNPs for MAF and imputation reliability,

the final BovineHD and ImputedHD genotype dataset

consisted of 631,428 SNPs and the imputed sequence

genotype dataset of 12,590,056 SNPs. In the final data-

sets, the average minor allele frequency (MAF) was

equal to 0.27 with a median of 0.28 for the BovineHD

dataset, 0.17 with a median of 0.13 for the ImputedHD

dataset and 0.19 with a median of 0.16 for the imputed

sequence dataset. The distribution of SNPs across the

different classes of MAF is in Fig. 1. Imputation reliabil-

ity estimated by Beagle was on average 0.77 and ranged

from 0.05 to 1.00, with a median of 0.89. Across predic-

tion methods, the additive genetic variance (sum of poly-

genic and total SNP variance for BSSVS; SNP variance

for GBLUP; polygenic variance for BLUP) ranged from

17.0 to 20.2 for SCS, from 15.9 to 19.6 for IFL and from

285.4 to 341.1 for PY (Table 1). As expected for de-

regressed proofs, estimates of residual variance were very

small, and therefore heritability estimates for all traits

were close to 1 (Table 1).

Prediction reliabilities

Prediction reliabilities ranged from 0.26 to 0.52 on

average (Table 1). Overall, reliabilities were highest for

SCS and lowest for IFL, except for pedigree-based

BLUP, for which PY had the lowest reliability. For all

traits, pedigree-based BLUP gave the lowest reliabilities

and GBLUP performed less well than BSSVS. For both

genomic prediction methods, reliabilities were highest

when the BovineHD genotype data was used. Correlations

between predicted breeding values using the different

datasets and different genomic prediction methods were

high and ranged from 0.95 to 1.00 (See Additional file 3:

Table S1). For SCS, the coefficients of regression of the

original phenotypes on the predicted breeding values were

close to 1.00 (ranged from 0.96 to 1.05; Table 1). For IFL

and PY, a slight overestimation of the breeding values was

observed, since the regression coefficients ranged from

0.82 to 0.97 (Table 1). Using imputed sequence data, the

overestimation for IFL and PY was less than when using

BovineHD data, i.e. the regression coefficients were closer

to 1.00. Plots of the de-regressed proofs versus the GEBV

(for the two methods using the three types of data) for the

2087 validation animals and three traits are in Figures S2,

S3 and S4 (See Additional file 2: Figures S2, S3 and S4).

To evaluate the reliability of genomic predictions

across generations, the validation bulls were divided

into groups based on the presence of (grand)parents in

the training set: sire and maternal grandsire (SMGS);

only sire (SIRE); no sire, but one or two grandsires

(GS). As expected, in most cases, the SMGS group had

the highest prediction reliability and the GS group the

lowest (Table 2). Overall, across those groups, the lar-

gest decay in prediction reliability was found for IFL.

Moreover, for IFL, the decay in prediction reliability was

larger with both ImputedHD data and imputed sequence

data (in both cases, the decay was equal to −35 % for

GS compared to SMGS) than with BovineHD data

(−25 % for GS compared to SMGS). For SCS and PY,

this difference was much smaller (Table 2). Overall,

there was no clear benefit of using sequence data on

BovineHD
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Fig. 1 Distribution of minor allelic frequencies (MAF) among 5503 individuals for different genotype panels
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the persistency of reliability across generations, even

when BSSVS was used.

Individual SNP effects

For both genomic prediction methods, the (persistency

in) reliabilities were highest when BovineHD genotype

data were used compared to imputed sequence data.

However, the additive genetic variances explained when

imputed sequence data or BovineHD data was used were

similar (Table 1). In Figs. 2, 3 and 4, the individual SNP

effects are plotted (as % of σg
2) for BSSVS using BovineHD

data, ImputedHD data, and imputed sequence data. These

Manhattan-plots do not show similar genome-wide asso-

ciation results as typically seen from single-SNP analyses.

Instead, the Manhattan-plots represent the variances ex-

plained by a single SNP, conditional on fitting all other

SNPs simultaneously. Therefore, SNP effects are much

smaller than those obtained when only one SNP is fitted.

Still, the figures show that when BovineHD data and

ImputedHD data are used for SCS and PY, it is possible to

detect some regions on the genome that explain greater

levels of variance, e.g. on chromosomes 15 and 22 (SCS)

and chromosome 14 (PY). For BovineHD data, 26 SNPs

had a SNP variance greater than 0.003 %, with a max-

imum of 0.05 %, most of these SNPs were located in a

1.8 Mb region at the beginning of chromosome 14. With

imputed sequence data, no clear region could be detected

with large SNP effects on the traits, but it should be noted

that with imputed sequence data, there are 20 times more

SNPs. For a fair comparison with BovineHD data, SNPs in

the imputed sequence data were grouped in windows of

20 neighboring SNPs and the sum of the variances of the

neighboring SNPs per window was plotted. However, still

we did not detect any clear regions with an increased level

of explained variance (results not shown).

Discussion

Our objective was to investigate the reliability of

genomic prediction based on imputed whole-genome se-

quence genotypes versus high-density SNP genotypes

using real cattle data. Our hypothesis was that the use of

sequence data in genomic prediction would result in

higher reliability and higher persistency of reliability

across generations. The rationale was that sequence data

include the causal mutations that underlie QTL and that

the effects of these mutations are estimated directly and

not via effects of associated SNPs. This has been shown

using simulated data [11–13] but not yet with real data.

Contrary to our expectation, the results did not show a

higher (persistency of ) reliability of genomic prediction

using imputed sequence data compared to BovineHD

SNP genotypes, although a relatively large training data-

set with highly accurate phenotypes based on many

daughters was used. While we did not expect a large

gain in prediction reliability, we did expect to see a small

gain as has been reported in studies comparing genomic

prediction using 50,000 and 777,000 SNPs [8–10].

Moreover, studies that used simulated whole-genome

sequence data have claimed an increase in reliability

using sequence data, e.g. [11]. The main improvement

we expected was for persistency of reliability, when

comparing the reliability observed in the lower related

validation subset (GS) compared to more closely related

validation sets. However, no increase in persistency of

reliability was observed with imputed sequence data

compared to the BovineHD data. In this study, our

approaches were close to those used for genomic pre-

diction in dairy cattle, including a training set of closely

related animals, a pre-imputation step, and standard

genomic prediction methods. Apparently, these ap-

proaches are not optimal to capitalize on the potential

provided by sequence data. Below, we will discuss

several factors that can explain this result.

Dataset

Our results did not show an advantage of using imputed

sequence data compared to BovineHD genotype data for

Table 1 Estimates of genetic parameters

Trait Genotype data Method σg
2 h2 b (a) r2 (b)

SCS Pedigree BLUP 20.22 0.97 1.00 0.33

BovineHD GBLUP 16.97 0.90 0.96 0.52

BovineHD BSSVS 18.55 0.95 0.99 0.52

ImputedHD GBLUP 17.41 0.93 1.00 0.50

ImputedHD BSSVS 18.37 0.98 1.05 0.51

Sequence GBLUP 17.09 0.93 1.03 0.49

Sequence BSSVS 18.82 0.98 1.04 0.50

IFL Pedigree BLUP 19.60 1.00 0.92 0.27

BovineHD GBLUP 15.90 0.94 0.83 0.39

BovineHD BSSVS 18.01 0.99 0.92 0.40

ImputedHD GBLUP 16.29 0.95 0.86 0.37

ImputedHD BSSVS 17.20 1.00 0.97 0.39

Sequence GBLUP 16.13 0.96 0.88 0.37

Sequence BSSVS 17.71 1.00 0.95 0.39

PY Pedigree BLUP 341.05 1.00 0.82 0.26

BovineHD GBLUP 295.05 0.94 0.86 0.47

BovineHD BSSVS 306.53 0.99 0.89 0.48

ImputedHD GBLUP 307.33 0.97 0.89 0.44

ImputedHD BSSVS 285.36 1.00 0.95 0.45

Sequence GBLUP 300.68 0.98 0.92 0.44

Sequence BSSVS 293.73 1.00 0.95 0.45

Estimates of additive genetic variance (σg
2), heritability (h2), regression coefficient

(b), and prediction reliability (r2) for somatic cell score (SCS), interval between first

and last insemination (IFL), and protein yield (PY) using four types of data and

two prediction methods. aStandard error of the regression coefficient ranged

from 0.02 to 0.03; bstandard error of the prediction reliability was 0.02
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genomic prediction. Using imputed sequence data, both

genomic prediction methods missed some QTL or QTL

regions e.g. (Figs. 2, 3 and 4). A reason for this could be

the structure of the dataset. Animals in the training set

used in this study were closely related to each other. For

example, the training set included 2878 father-son rela-

tionships. Close relationships between animals cause

long range LD between a SNP and the QTL. Long range

LD is useful for genomic prediction of animals that are

closely related to those of the training population. How-

ever, when the aim is to find the precise location of QTL

based on sequence data, long-range LD between the

training animals is unfavorable, for instance to increase

accuracy of genomic prediction across generations or

populations. In a simulation study using dairy cattle

data, it was concluded that using a training set with

animals that have a low average relationship is benefi-

cial for genomic prediction [7]. Altogether, a training

set with less related individuals (e.g. multiple breeds)

might be required to increase the advantage of using

sequence data for genomic prediction. However, be-

cause of the way breeding programs operate currently

and because relationships contribute significantly to

prediction accuracy, in practice, it may not be possible

to avoid this problem, other than by using training

populations that include multiple breeds or lines.

In this study, 3416 individuals were used to estimate

the effects of over 12 million SNPs. Thus, the number of

SNPs (p) was much larger than the number of observa-

tions (n), which might be a second limitation of the

current training set. With a dataset that is too small, the

QTL effects might be estimated with too much error,

which reduces the advantage of using sequence data

compared to SNP genotypes for genomic prediction

[14]. The Manhattan plots in Figs. 2, 3 and 4 suggest

that the effect of the potential QTL was spread across

multiple SNPs. Increasing the number of individuals in

the training dataset or pre-selecting SNPs based on

other sources of information [36] might be necessary to

increase prediction reliability based on sequence data,

as reported by Hayes et al. [37]. These authors obtained

a very small increase of 2 % in prediction reliability

using imputed sequence data compared to BovineHD.

However, they applied strict a-priori filtering steps for

the SNPs and ended up with around 1.7 million variants,

which is a factor 7 less than in our study. Also, their

Table 2 Estimated prediction reliability per pedigree group

Trait Genotype data Method SMGSa SIREb (% of SMGS) GSc (% of SMGS)

SCS Pedigree BLUP 0.35 0.33 (94 %) 0.23 (67 %)

BovineHD GBLUP 0.53 0.50 (95 %) 0.45 (85 %)

BovineHD BSSVS 0.53 0.51 (95 %) 0.46 (86 %)

ImputedHD GBLUP 0.51 0.52 (101 %) 0.42 (83 %)

ImputedHD BSSVS 0.52 0.52 (102 %) 0.44 (85 %)

Sequence GBLUP 0.50 0.53 (104 %) 0.43 (85 %)

Sequence BSSVS 0.51 0.53 (103 %) 0.44 (87 %)

IFL Pedigree BLUP 0.29 0.16 (55 %) 0.15 (51 %)

BovineHD GBLUP 0.40 0.34 (85 %) 0.30 (75 %)

BovineHD BSSVS 0.42 0.34 (80 %) 0.31 (74 %)

ImputedHD GBLUP 0.39 0.32 (81 %) 0.25 (65 %)

ImputedHD BSSVS 0.41 0.31 (75 %) 0.27 (65 %)

Sequence GBLUP 0.39 0.32 (83 %) 0.25 (65 %)

Sequence BSSVS 0.41 0.32 (78 %) 0.27 (65 %)

PY Pedigree BLUP 0.30 0.30 (101 %) 0.24 (81 %)

BovineHD GBLUP 0.48 0.48 (100 %) 0.45 (95 %)

BovineHD BSSVS 0.49 0.49 (101 %) 0.45 (91 %)

ImputedHD GBLUP 0.45 0.43 (96 %) 0.41 (91 %)

ImputedHD BSSVS 0.47 0.47 (100 %) 0.41 (88 %)

Sequence GBLUP 0.45 0.45 (99 %) 0.42 (93 %)

Sequence BSSVS 0.46 0.45 (98 %) 0.42 (90 %)

Estimates of prediction reliability for somatic cell score (SCS), interval between first and last insemination (IFL), and protein yield (PY). Validation animals were

divided based on the presence of relatives in the training set: sire and maternal grandsire (SMGS); only sire (SIRE); no sire, but one or two grandsires (GS).
aStandard error of prediction reliability for the SMGS set was 0.02; bstandard error of prediction reliability for the SIRE set ranged from 0.06 to 0.08; cstandard error

of prediction reliability for the SMGS set ranged from 0.03 to 0.05
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training set consisted of 16,214 bulls and cows, compared

to the 3416 bulls used here. Thus, to benefit from the ad-

vantage of using sequence data compared to BovineHD

genotype data for genomic prediction, it is necessary to

aim for a large training set with a small average relation-

ship between the animals, and possibly to pre-select SNPs

based on functional information.

Pre-imputation step

Apart from the size and structure of the training dataset,

the quality of the pre-imputation step could also impact

the advantage of using sequence data for genomic pre-

diction. To really benefit from imputed whole-genome

sequence data compared to BovineHD data, imputation

accuracy should be greater than the LD (measured as

r2) between a BovineHD SNP and the QTL. To test the

possible effect of imputation, genomic prediction using

a dataset of randomly selected SNPs from the imputed

sequence data (ImputedHD) was compared with gen-

omic prediction using the BovineHD dataset. Depend-

ing on the trait and method, a reduction of 0.01 to 0.03

in prediction reliability was found. A reduction in the

Fig. 2 Manhattan plot with estimated SNP effects (% of σg
2) for somatic cell score (SCS) using the BSSVS model. Estimated SNP effects (% of σg

2)

based on the BSSVS model for somatic cell score using BovineHD data (a), ImputedHD data (b), and imputed sequence data (c)
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reliability of GEBV with imputed genotypes has also

been reported for studies on dairy cattle that used im-

putation from a few hundred SNPs to 50k SNPs, e.g.

[38–42], which showed that the magnitude of the im-

putation errors was larger and the reliability of genomic

prediction was lower compared to imputation from a

3k or 6k panel to a 50k panel. It has also been shown

that the influence of imputation errors depends on the

trait studied, e.g. traits that are influenced by a few

large QTL were more affected than traits that are

influenced by many QTL [38]. Moreover, van Binsber-

gen et al. [16] reported that the accuracy of imputation

from BovineHD to sequence data ranged from 0.77 to

0.83 when the number of animals per breed ranged

from 45 to 91. In this study, since 429 individuals from

multiple breeds were used as reference animals, the

accuracy of imputation was expected to be higher

[16–18]. Although the accuracy of imputation was

relatively high, imputation errors will have some effect.

However, based on the results with the ImputedHD data,

Fig. 3 Manhattan plot with estimated SNP effects (% of σg
2) for interval between first and last lactation (IFL) using the BSSVS model. Estimated

SNP effects (% of σg
2) based on the BSSVS model for interval between first and last lactation using BovineHD data (a), ImputedHD data (b), and

imputed sequence data (c)
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we believe that the errors in the pre-imputation step were

probably a small factor in the reduction of the advantage

of using sequence data compared to BovineHD data for

genomic prediction.

The reason why imputation can reduce the accuracy

of prediction is that imputed genotypes are called with

increased uncertainty. In this study, SNPs that were

likely to be imputed incorrectly were removed from the

genotype dataset, using a low threshold of 0.05 for esti-

mated imputation reliability to minimize the risk of

removing potential causal mutations. With such a low

threshold, there is still uncertainty about the genotype

calling of imputed SNPs and potential causal mutations,

although the mean imputation reliability was equal to

0.77. To take the effect of uncertainty in genotype call-

ing on imputation accuracy into account, we considered

the possibility of using the genotype probability instead

of the most likely genotype for genomic prediction,

which is expected to increase the reliability of genomic

prediction [40]. However, using genotype probabilities,

Fig. 4 Manhattan plot with estimated SNP effects (% of σg
2) for protein yield (PY) using the BSSVS model. Estimated SNP effects (% of σg

2) based

on the BSSVS model for protein yield using BovineHD data (a), ImputedHD data (b), and imputed sequence data (c)
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saved as real or double precision values, would in-

crease computation requirements by a factor 4 or even

8 compared to using the integer values (0, 1, and 2)

used in our study. With the currently available re-

sources, using genotype probabilities was not feasible.

Genomic prediction methods

A third reason why imputed sequence information did not

improve prediction reliability could be parameterization of

the BSSVS model. In the BSSVS model used here, we as-

sumed that the prior distribution for αj depended on the

variance σα
2 and the QTL indicator Ij, which was sampled

for each SNP taking a value of 0 if the SNP was included

in the model with a small
σ
2
α

100

� �
effect or 1 if the SNP was

included with a large effect (σα
2). With imputed sequence

data, each cycle included about 12 million SNPs with a

small effect. Combined together, these small SNP effects

might explain a very large part of the variance and, thus,

the larger QTL remained undetected by the model. A way

to decrease the variance explained by the SNPs with a

small effect could be to include only SNPs with large

effects and set all other SNP effects to zero as:

αjjπ; σ
2
α
¼

0 when I j ¼ 0

eN 0; σ
2
α

� �
when I j ¼ 1:

�

This model is also known as BayesC [21]. Compared

to BSSVS, BayesC will save computing time, since, in

each cycle, for a large proportion of the SNPs, part of

the calculations can be skipped as soon as Ij is sampled

to be 0. Also, instead of two distributions, with large and

(close to) zero effects, it might be useful to derive SNP

effects from more distributions, which is done in

methods such as BayesR [8].

It was assumed that both genotype panels had the

same number of underlying QTL, i.e. the chosen π was

larger for the imputed sequence dataset compared to the

BovineHD dataset. However, due to LD between closely

linked SNPs, the number of SNPs with a large effect

might be larger for imputed sequence data than for the

BovineHD data. Therefore, it might be better to use the

same π for analyses using imputed sequence data as that

for BovineHD analyses. Ultimately, the combination of

the chosen π value and the parameterization of the

model defines a priori the distribution of the effects [43],

and thereby controls the posterior distribution of the

effects. For instance, a study based on a 50k genotype

dataset showed that the maximum SNP variances

achieved with BSSVS with a π value of 0.999 were up

to ten times as large as those achieved with BayesC

with a π value of 0.9 [44]. To overcome this, π could

be treated as unknown [21].

Due to the computation requirements of genomic

prediction applied to imputed sequence data, it was

unrealistic to test many different settings and models.

For example, with the BSSVS model, one chain of

80,000 cycles took approximately 85 days on a High

Performance Linux cluster containing Intel(R) Xeon(R)

CPU E5-2660 with a clock speed of 2.20 GHz. GBLUP

was less time demanding (~6 h), but required ~600 GB

of RAM to store the genotypes. Due to efficient storing

of the genotypes in the right-hand-side algorithm [23],

the BSSVS model required less memory (~32 GB of

RAM). These large computer requirements prevent

fine tuning of the models used, but, at the same time,

empirical studies have shown only small differences in

prediction accuracy between available linear models

[19]. The size of the training set used and the relation-

ships between the individuals are probably more im-

portant factors than the choice of the model [19].

Therefore, it might be more beneficial to focus on the

properties of the training set, than to test many differ-

ent settings and models.

With 12 million SNPs, convergence of the Gibbs

sampler can be rather low. Convergence of the BSSVS

model was visually inspected by plotting the total SNP

variance for each cycle of the Gibbs sampler (See

Additional file 1). The pattern of the estimated SNP

variance components across the cycles appeared to be

quite stable. For a simple check, EBV were also calcu-

lated after 40,000 cycles and 60,000 cycles. For the

three traits analyzed here, the correlation between

these EBV and the final EBV after 80,000 cycles was

higher than 0.999 (results not shown). Based on these

assessments, we believe that the model did converge

and that the potential impact of Monte Carlo errors

was probably small.

It should be noted that in contrast to the GBLUP

model, the BSSVS model includes pedigree data and

uses a spike-slab prior for the SNP-effects, i.e. priors

are mixtures of two densities: one with small variance

(the spike) and one with large variance (the slab). The

GBLUP model was based on equally weighted markers

and did not include the pedigree separately. Therefore,

the comparison between BSSVS and GBLUP involves

not only two different models but also two different

input sets and this could make interpretation of the re-

sults difficult. However, we tested the GBLUP model by

including a polygenic component for SCS using the

three types of genotype data (See Additional file 3:

Table S2). Due to the high correlation between the

pedigree-based relationship matrix and genomic rela-

tionship matrix, the model had difficulties to converge.

Including a polygenic component gave less residual

error variance and therefore a slightly higher heritabil-

ity. In addition to a higher heritability, the model also

introduced more bias in predictions. However, predic-

tion reliabilities were similar to those obtained with the
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GBLUP model without a polygenic component. Due to

the convergence issues and similar prediction reliabilities,

the GBLUP model without a polygenic component was

used in this study.

SNP pre-selection

As shown in Table 1, predictions using imputed se-

quence data had similar additive genetic variance as pre-

dictions using the BovineHD data but, at the same time,

the Manhattan plots using the sequence data in Figs. 2,

3 and 4 did not reveal any regions with large effects.

This suggests that the effect of the potential QTL was

spread across multiple SNPs that were in high LD with

the QTL. A way to overcome this problem is to pre-

select SNPs based on annotation information or their

putative regulatory role [37, 45]. Incorporation of this

biological information has shown potential for the detec-

tion of QTL [45] but did not result in higher reliability

of genomic prediction [37]. Improving the accuracy of

this biological information might improve detection of

QTL and also increase the prediction reliability [37].

To test if reliability of genomic prediction increased by

giving certain SNPs a higher prior, we included some

SNPs as fixed effects in the GBLUP model. For SCS, the

three SNPs (on chromosomes 6, 15, and 22) that ex-

plained the most variance in the BovineHD analysis

(Fig. 2) were selected. For PY, a SNP in DGAT1 (diac-

ylglycerol O-acyltransferase 1) (Chr14:1802266) was se-

lected, since DGAT1 is known to have a major effect

on milk production traits in Holstein Friesian cattle

[46, 47]. For SCS, the prediction reliability did not

change. However, for PY the prediction reliability in-

creased from 0.47 to 0.51 for the BovineHD data and

from 0.44 to 0.49 for the imputed sequence data. This

suggests that pre-selecting SNPs and treating them as

fixed effects or giving them a high prior might improve

prediction reliability. However, this will be true only

for SNPs that have a substantially large effect on the

trait, such as DGAT1.

Conclusions

Our results did not show an advantage of using im-

puted sequence data compared to BovineHD genotype

data for genomic prediction. To investigate whether

using (imputed) sequence data compared to BovineHD

genotype data can be an advantage for genomic predic-

tion, the use of a large set of animals with small average

relationships, along with other properties of the train-

ing set used, should be considered. Genomic prediction

models that incorporate biological information of the

SNPs, or use a stricter SNP pre-selection procedure,

might also increase the advantage of using (imputed)

sequence data for genomic prediction.
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