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Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease 

progression. 
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Context Summary: 

 

Key objective: Identifying the Smoldering Multiple Myeloma (SMM) patients who will eventually 

progress to overt malignancy can allow for early intervention to prevent end-organ damage and 

potentially achieve long-term remission. Current risk models are based on solely clinical markers 

and often lack precision and accuracy to predict progression. We hypothesized that genomics 

can improve the prediction of progression from SMM to overt Multiple Myeloma (MM). 

 

Knowledge generated: Most genetic alterations have already occurred by the time of SMM 

diagnosis, suggesting that next-generation sequencing (NGS) can be used at that stage for reliable 

prognostication. Alterations in the MAPK and DNA repair pathways or MYC are independent risk 

factors of progression, whose addition to current clinical risk models significantly improves 

prediction of progression.  

 

Relevance: Clinical-grade NGS at the SMM stage can be utilized to identify patients at high risk 

of progression to MM, who might benefit from early intervention approaches for better 

outcomes.  
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Abstract 

 

Background Smoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma 

(MM) with a 10% annual risk of progression. Various prognostic models exist for risk 

stratification; however, those are based on solely clinical metrics. The discovery of genomic 

alterations underlying disease progression to MM could improve current risk models. 

 

Methods We used next-generation sequencing to study 214 SMM patients. We performed whole 

exome sequencing (WES) on 166 tumors, including 5 with serial samples, and deep targeted 

sequencing on 48 tumors.  

 

Results We observed that most of the genetic alterations necessary for progression have already 

been acquired by the diagnosis of SMM. Particularly, we found that alterations of the MAPK 

pathway (KRAS and NRAS SNVs), the DNA repair pathway (deletion 17p, TP53 and ATM SNVs), 

and MYC (translocations or CNVs) were all independent risk factors of progression after 

accounting for clinical risk staging. We validated these findings in an external SMM cohort, 

showing that indeed patients who have any of these three features have higher risk of 

progressing to MM. Moreover, APOBEC-associated mutations were enriched in patients who 

progressed and associated with a shorter time to progression in our cohort. 

 

Conclusions SMM is a genetically mature entity whereby most driver genetic alterations have 

already occurred, suggesting the existence of a right-skewed model of genetic evolution from 

MGUS to MM. We identified and externally validated genomic predictors of progression that 

could identify patients at high risk of progression to MM, and thus improve on the precision of 

current clinical models. 
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Introduction: 
 

Multiple Myeloma (MM) is an incurable plasma cell malignancy with significant inter- and intra-

patient heterogeneity. It is almost always preceded by asymptomatic precursor stages, namely 

monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple 

myeloma (SMM) [1, 2]. SMM patients have a higher risk of progression to MM (10%/year),  

compared to MGUS (1%/year) [3], although some patients progress rapidly, others remain in an 

MGUS-like state for years.  

Current prognostic models do not fully capture SMM progression risk, as patients who are 

considered to be intermediate or low risk by those criteria can still progress. This might be 

because these models are based mainly on tumor burden markers and may not adequately 

reflect the underlying biology that may be critical for disease progression. Thus, there is an urgent 

need for novel prognostic markers that can more accurately identify SMM patients who are at 

risk of progression and could benefit from early treatment.  

 Herein, we studied 214 SMM patient samples to comprehensively characterize the 

genomic landscape of SMM and identify biomarkers of progression MM. 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

Methods 

 

We used next-generation sequencing technologies to study 214 patients with SMM at time of 

diagnosis, including 5 serial samples. We performed whole exome sequencing (WES) on 72 

matched tumor-normal samples and 94 tumor-only samples, and targeted deep sequencing on 

48 samples. Patients who presented at diagnosis with MM symptoms, including hypercalcemia, 

renal impairment, anemia, or bone lytic lesions (CRAB), or had any myeloma-defining event were 

excluded from the analysis[4].  Light-chain and non-secretory SMM patients were included, as 

they are understudied subtypes and their biology needs to be understood more. All samples were 

obtained after written informed consent, according to the Declaration of Helsinki. Time-to-event 

endpoints are estimated using the method of Kaplan and Meier. Differences in survival curves 

were assessed using log-rank tests. Median follow-up was calculated using the reverse Kaplan-

Meier method. Time to progression (TTP) was measured from date of diagnosis to date of 

documented progression to MM. Cox modeling was performed to assess the impact of a MM 

driver on clinical outcome measures. Statistical analysis is described in detail in Supplemental 

methods.  
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Results 

 

The genomic landscape of SMM 

The median age in our cohort was 62 (range: 34 - 85) years. Patients were stratified into Low, 

Intermediate, and High risk groups based on the Mayo 2008 criteria [5] as well as the revised 

Mayo 2018 criteria [6]. (Supp. Table 1).  

 

The genomic landscape of the entire cohort is illustrated according to single nucleotide variants 

(SNVs), somatic copy number alterations (SCNAs), and translocations, and the patients were 

divided according to their clinical risk stage in Figure 1. Immunoglobulin heavy chain (IgH) 

translocations commonly seen in MM were present in 76 patients (36%), as identified by 

Fluorescence in Situ Hybridization (FISH), while SCNAs were the most common genomic 

alterations, and were present in 189 patients (88%). Hyperdiploidy (HRD), i.e. with 48 or more 

chromosomes in the genome, was found in 55% of patients; hypodiploidy, defined as less than 

45 chromosomes, was found in only 10 patients (4.6%), and whole genome doubling (ploidy > 

2.5) in six (2.8%). The median mutation density in SMM patients was 1.4 mutation/Mb, and single 

nucleotide variations (SNVs) in genes significantly mutated in MM were present in 118 patient 

samples (55%).  Forty-six percent of those had alterations in the MAPK pathway (KRAS, NRAS, 

BRAF, and PTPN11). DNA repair pathway alterations (TP53 and ATM SNVs and deletion 17p) were 

found in 21 (10%). SNVs in genes of NFkB, protein processing, and cell cycle pathways were found 

in 22%, 21%, and 6.7% patients, respectively.  Bi-allelic inactivation events affecting TP53, RB1, 

CDKN2C, ZNF292, DIS3, or FAM46C were present in only 6% patients. Copy number neutral loss 

of heterozygosity (LOH) was observed in 44 patients (27%), with chromosome 16 being most 

frequently affected (20%), followed by chromosomes 1 (16%) and 6 (11%). Of note, 36 LOH 

events were clonal, and 31 events were subclonal. No significant focal amplifications were 

discovered in our dataset (n = 166), by GISTIC2. However, four focal deletions were considered 

significant: del 1p22.1, del 6q27, del 14q24.3, and del 14q32.31, all containing putative tumor 

suppressors (Supp. Figure 1). In fact, patients with del 1p22.1 and del 14q24.3 had a shorter TTP 

(p = 0.009 and 0.02, respectively) (Supp. Figure 2). Of note, the most common MM whole 
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chromosome and arm level CNAs, including gains of 1q and chromosomes 3, 5, 7, 9, 11, 15, 19, 

and 21, as well as deletions of 13q and 16q were significant events (Supp. Figure 1). In terms of 

alteration co-occurrence, we observed that HRD often significantly co-occurred with mutations 

in KRAS and NRAS, while t(11;14) was significantly mutually exclusive with HRD and gain of 1q 

(Figure 4A). On the other hand, t(4;14) co-occurred with mutations in DIS3, BRAF, del 13q and 

gain of 1q. Deletion of 13q was shown to co-occur infrequently with HRD and rarely with NRAS; 

however, it co-occurred frequently with del 16q and gain 1q. Our analysis also showed that 

deletion 1p frequently co-occurred with deletions 8p and 17p.  

 

 

The clonal architecture and phylogeny of SMM 

We observed heterogeneity in the clonality of mutations affecting recurrently mutated genes in 

MM. Certain genes (TP53, KLHL6, DIS3, MAX, NFKBIA, and CCND1) carried clonal alterations more 

frequently, while other genes were more frequently subclonal (FAM46C, NFKB2, LTB, and TRAF3), 

likely representing later events in disease course (Figure 2C). Interestingly, mutations in KRAS, 

NRAS, and BRAF were subclonal in 64%, 70%, and 86% of patients, respectively.  In contrast, our 

analysis showed that SCNAs were clonal in most of the cases, especially trisomies of odd-

numbered chromosomes that were clonal in 98%, with the exception of trisomies 9, 19 and 21 

which were found to be subclonal in a few cases (Figure 2B). Moreover, Del 13q, 14q, 16q, and 

gain 1q were also clonal in 78, 76, and 72, and 68%, respectively. This data suggests that SCNAs 

are founder events in SMM, while SNVs in the MAPK pathway participate in tumor progression. 

 

We next analyzed serial samples from five patients, sampled at two timepoints of at least one 

year apart (range: 1-8 years).  We observed evidence of clonal heterogeneity in all five of them, 

indicating that clonal branching has already happened at the smoldering stage. While copy 

number abnormalities were mostly clonal in all five samples, we observed evidence of subclonal 

copy number events in three patients (SMM_060: Del 13q/Del 1p, SMM_002: Del 17p, 

SMM_093: Del 14q, Del 20p) (Figure 3A-C); all these events were associated with significant 

clonal expansion at the late timepoints, suggesting that copy number events have strong driving 
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potential and eventually become clonal, even when acquired during progression. The majority of 

alterations present at progression were already present at the SMM stage; however, in one out 

of five patients (SMM_060) sampled with a 5-year interval, there was evidence of a newly 

acquired subclone carrying a KRAS mutation, as well as Del13q/Del1p, during progression. In 

another case (SMM_064), a subclone carrying mutations in KRAS, TP53, CDKN2C, and DIS3 

appeared to have occurred during progression; however, both timepoints had low tumor purity 

precluding such conclusion. In one case that has not progressed (SMM_077) and was sampled 

twice at the SMM stage with an 8-year interval, no new alterations or increase in tumor burden 

was observed (Figure 3D), suggesting that the presence of clonal branching and heterogeneity is 

not enough to lead to disease progression; instead, either the functional impact of genomic 

alterations or tumor cell-extrinsic factors. In all five cases, we observed changes in the cancer cell 

fraction (CCF) of subclones. 

 

Identifying genomic predictors of progression from SMM to MM 

To define biomarkers of progression, we used a subset of patients (n = 85) who did not receive 

any treatment before progression to MM. Their baseline characteristics are reported in Supp. 

Table 2. Median follow-up time for all patients was 6.2 years. Median TTP was 3.9 years. In this 

cohort, 53 patients (62%) have progressed, while 32 (38%) remained asymptomatic. The genomic 

landscape is illustrated according to progression status in Supp. Figure 3.  

Patients harboring MYC aberrations (translocations or amplifications) had the shortest median 

TTP (8.4 vs. 51.6 months, p < 0.001), followed by those with MAPK pathway mutations (14.4 vs. 

60 months, p < 0.001), and DNA repair pathway alterations (15.6 vs. 50.4 months, p = 0.004)  

(Figure 4). Moreover, t(4;14), as well as del(1p), del(8p) and biallelic deletions events (including 

TP53, RB1, DIS3, MAX, and CDKN2A), were associated with shorter TTP (Supp. Figure 4). 

MAPK pathway mutations and MYC alterations were associated with higher bone marrow 

infiltration at time of diagnosis (p = 0.001 and < 0.001, respectively). MAPK pathway mutations 

were the only alteration that significantly correlated with M protein levels (p < 0.001), while none 

of these high-risk genomic alterations correlated with FLCr (Supp Figure 5). Interestingly, 

although not a high-risk feature, t(11;14) was associated with the light-chain SMM subtype (p = 
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0.002) and lower M-protein levels compared to other primary events (Supp. Table 3A, 3B and 

Supp. Figure 6). 

 

Developing a genomic model for prediction of progression to MM 

We searched for independent risk factors of progression from SMM to MM to develop a genomic 

model for prediction of progression (Supp. Table 4). Four genomic features were independent 

predictors of progression: MYC aberrations, alterations in the DNA repair and MAPK (KRAS, NRAS 

SNVs) pathways, and t(4;14) translocation (Supp. Figure 7C). Of note, in a multivariable model 

accounting for the Mayo 2018 clinical risk stratification, all but t(4;14) were independent risk 

factors of progression (Figure 4D). Thus, our model is predicated upon these three genomic 

alterations (GA).  

 

Patients with one or more of the high-risk GA had significantly shorter TTP (1.2 vs. 7.2 years, 

respectively, p < 0.001) (Figure 5C). Moreover, patients with 0, 1, or ≥2 high-risk factors, had a 

significantly different TTP (Supp. Figure 7A). Of note, in our cohort, patients with any of these 

high-risk alterations, regardless of their clinical risk group, progressed even faster than patients 

who are considered high-risk by Mayo 2018 model (1.3 vs. 3.4 years, p = 0.006). Moreover, 

clinically intermediate and high-risk patients with these genomic alterations had significantly 

shorter TTP (2.6 vs 9.3 years, p = 0.004 and 1.2 vs 3.5 years, p = 0.001, respectively). (Figure 5A, 

5B). Of note, these results are independent of the clinical model used, Mayo 2008 or 2018 (Supp. 

Figure 8A, 8B). Interestingly, high-risk GA were found in patients described as low risk by both 

models, in whom they conferred a significantly increased risk of progression (Supp. Figure 8C, 

8D). Importantly, our genomic model improved the prediction of progression when added to the 

Mayo 2008 or 2018 models ( p < 0.001, C-statistic: 0.66 vs 0.75 and 0.72 vs 0.77, respectively) 

(Table 1 and Supp. Table 5).  

 

External validation of the genomic prediction model 

To test the robustness and generalizability of our model, we validated it in an external cohort of 

72 patients with SMM, whose tumor DNA had been previously sequenced [7]. Forty-seven 
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patients in this cohort progressed to MM with a median TTP of 5 years. The cohort’s 

characteristics are summarized in Supp Table 5. Again, we found that patients with any of the 

high-risk GA (n = 47) had a higher risk of progression (2.5 vs. 10 years, p = 0.001) (Figure 5D). 

Similarly, patients with 0, 1, or ≥2 high-risk factors had different risks of progression (Supp. Figure 

7B). Moreover, low, intermediate and high-risk patients, as defined by the Mayo 2018 model, 

with high-risk GA had shorter TTP (9.7 vs. not reached, p = 0.028, and 2.3 vs. 6.9 years, p = 0.01, 

respectively) (Supp. Figure 9A, 9B). These findings held true, when we used the Mayo 2008 model 

as well (Supp. Figure 9C, 9D). Importantly, in a multivariate analysis accounting for clinical risk 

group in this cohort, the genomic model was an independent risk factor of progression; when 

combined with the 2008 or 2018 clinical models, the genomic model performed better than the 

clinical model alone (p < 0.001 and 0.001, C-statistic: 0.57 vs 0.66 and 0.61 vs 0.67, respectively) 

(Table 1 and Supp. Table 6). 

 

Analysis of mutational signatures in SMM and their impact on progression: 

We analyzed our WES data for specific mutational signatures that play an important role in 

myeloma pathogenesis and development: aging (COSMIC SBS1 and SBS5), adenosine-induced 

deaminase (AID), and APOBEC signatures. As expected, the majority of mutations were 

associated with aging signatures, while there was roughly equal contribution of AID (n = 217) and 

APOBEC (n = 250) signatures.  Among myeloma recurrently mutated genes, the majority of events 

were attributable to aging signatures. However, we observed APOBEC-associated mutations in 

fourteen MM driver genes, and AID-associated mutations in eleven (Supp. Figure 10E). Of note, 

all three mutations in ZNF292 were attributed to APOBEC, and t(14;16) had a significantly higher 

number of APOBEC mutations compared to the rest of the cohort (p = 0.005). 

 

AID-associated mutations were observed in most of the patients with no significant difference 

between progressors and non-progressors (p > 0.99) (Supp. Figure 10A). However, we found 

APOBEC to be significantly enriched in patients who progressed, after accounting for total 

mutation burden (p = 0.029) (Supp. Figure 10B). Patients with versus those without APOBEC-

associated mutations and those with more than the median number of APOBEC mutations (2.5) 
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had shorter TTP (Supp. Figures 10C, 10D). Interestingly, although approximately 40% of APOBEC-

associated mutations were clonal, patients with more than 50% subclonal APOBEC-associated 

mutations were enriched for progressors (p = 0.046). Although APOBEC can be an early event in 

certain patients, this data indicate that continuous activity may underlie disease progression.  
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Discussion: 

In this study, we leveraged next-generation sequencing technology to analyze diagnostic tumor 

samples of 214 SMM patients. We observed that SMM has similar genetic make-up to newly 

diagnosed MM, with similar mutation density and clonal heterogeneity. Although most of the 

SCNAs were clonal, del 1p and del 17p were mainly subclonal, suggesting that not all SCNAs are 

acquired early in a single catastrophic event, and that in some cases the clonal CNA profile could 

reflect the serial acquisition of certain SCNAs that eventually grew into clonal status. Indeed, in 

three of our patients with serial samples available, some clonal SCNAs at progression were 

subclonal at SMM diagnosis. On the other hand, SNVs affecting the most common MM drivers 

were mainly subclonal, suggesting they are acquired later during disease progression. 

Nevertheless, mutations in KLHL6, TP53, DIS3, and MAX were mostly clonal, indicating that in 

certain instances driver mutations can perhaps be acquired early and drive clonal expansion.   

 

Taken together, these findings indicate that MM disease progression, from tumorigenesis all the 

way to smoldering and overt MM, is likely governed by the serial acquisition of genetic 

alterations, most of which will have been acquired by the time of SMM diagnosis.  It should 

however be noted that in all five patients with serial samples, we found evidence of clonal 

evolution, with subclone CCFs changing over time, which argues against the existence of a static 

model of progression in which the exact same clonal composition is observed in both the SMM 

and the MM stage [8]. Based on our findings, we can expect some new driver alterations to be 

acquired between SMM diagnosis and progression to MM in a few patients; however, for the 

majority of patients, the tumor’s genetic make-up will have been largely shaped by the time of 

SMM diagnosis. This “right-skewed” model of MM genetic evolution, whereby the bulk of genetic 

alterations have already occurred by the time of SMM diagnosis, allows for reliable 

prognostication based on genetic biomarkers discovered at SMM diagnosis.  

 

Given these observations, we asked whether we could leverage diagnostic SMM samples to 

identify genomic predictors of progression that reflect an aggressive underlying biology and act 

independently of tumor burden. Specifically, we analyzed 85 untreated patients, excluding those 
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who had been treated on SMM clinical trials. We found that mutations affecting genes in the 

MAPK and DNA repair pathway, as well as MYC translocations or amplifications, were all 

associated with a higher risk of progression to MM, even after accounting for the two currently 

used clinical risk stratification models. Namely, SMM patients who carried any of the above 

alterations were at higher risk of progression, compared to those in the same clinical risk group 

without them. Furthermore, we successfully validated our model in an external cohort of SMM 

patients. In both cohorts, the genetic model improved the prediction of progression when added 

to the current clinical models, as assessed by both a likelihood ratio test and the C-statistic, 

suggesting that these genetic biomarkers are robust and can be reliably used for improved 

prognostication.  

 

In an era where clinical-grade NGS is available in many centers, we could envision the 

stratification of SMM patients being based on both clinical and genomic biomarkers. One of the 

limitations of the current clinical models is dichotomizing continuous variables, such as M 

protein, FLC ratio and others, which decreases the accuracy and predictability of such models. 

Using our genomic model helped to better stratify by identifying biologically aggressive group 

that is as important a predictor as increased tumor burden. And while MAPK/DNA repair pathway 

alterations and MYC aberrations should certainly be part of the  prognostic genomic features, 

based on the results from this and other studies [7], there are more features that appear to be 

significant predictors of progression suggesting that larger cohorts are necessary to assess their 

impact. Such candidates include gene expression signatures in SMM [9], Del 1p, Del 8p and 

APOBEC activity.   

 

In conclusion, sequencing a large cohort of SMM patients has allowed us to understand that SMM 

is a genetically mature tumor with slight differences from overt myeloma, suggesting a right-

skewed model of genetic evolution from MGUS to MM, whereby most driver genetic alterations 

have already occurred by the SMM stage. Therefore, we believe that sequencing patients’ tumors 

at the time of SMM diagnosis represents an improved strategy for identifying patients at high 

risk of progression who could benefit from early intervention.  
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Tables and Figures Legends: 

 

Figure 1: The genomic profile of the 214 SMM patients divided into SNVs (upper 6 panels), SCNAs 

(yellow panel), and translocations (bottom panel). The risk stratification according to Mayo 2018 

risk model (low, intermediate, and high-risk colored as red, green and blue, respectively). 

 

Figure 2: A) Correlation matrix of the 214 patients demonstrating the significant associations and 

co-occurrence of different MM drivers (adjusted p < 0.05). The size of the bubble corresponds to 

the odds ratio. The blue color indicates negative correlations, while the red color depicts positive 

ones. (B) The clonal proportions of recurrent SCNAs and (C) SNVs across the samples. 

 

Figure 3: Fish plots of 4 SMM cases with two serial samples at different timepoints. In figures 2A-

C, timepoints correspond to time of SMM diagnosis and time of progression to MM. In figure 2D, 

both timepoints are at the SMM stage, as the patient has not progressed to date.   

 

Figure 4: Kaplan-Meier curves for analysis of TTP in patients with: A) MAPK pathway mutations 

(KRAS and NRAS). B) MYC alterations, including translocation and amplifications. C) DNA repair 

pathway alterations (deletion 17p, TP53 and ATM SNVs). D) Forest plots of multivariate cox-

regression of the genomic alterations and clinical the clinical risk model. 

 

Figure 5: A) Kaplan-Meier curves of clinically high-risk patients with or without the high-risk 

genomic alterations B) Kaplan-Meier curves of clinically intermediate-risk patients with or 

without the high-risk genomic alterations. C) Kaplan-Meier curves of patients with or without the 

high-risk genomic alterations in the Dana-Farber multicenter cohort D) Kaplan-Meier curves of 

patients with or without the high-risk genomic alterations in the Mayo Clinic validation cohort. 

 

Table 1: Performance of the clinical models with and without the genetic model. Improvement 

in goodness of fit was assessed with a likelihood ratio test. The genetic model significantly 

improved the fit of the clinical-only models. A global assessment of each model was also assessed 
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using a C-statistic for censored survival data[10]. The statistic for each time-to-event model is 

reported with a 95% confidence interval. Values range between 0.5 to 1 indicating a poor to 

perfect model. 
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Figure 1. The genomic landscape of the full SMM cohort (n=214).  
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Table 1 :  

 

 

Model Likelihood ratio test 

statistic 

Chi-square 

p-value 

C-statistic (95% CI) 

 

Primary cohort 

 

Mayo 2008  32.02 <0.001 0.66 (0.57 - 0.74) 

Mayo 2008 + Genetic model 0.75 (0.65 - 0.86) 

Mayo 2018  20.46 <0.001 0.72 (0.64 - 0.80) 

Mayo 2018 + Genetic model 0.77 (0.70 - 0.85) 

 

Validation Cohort 

 

Mayo 2008  12.62 <0.001 0.57 (0.47 - 0.67) 

Mayo 2008 + Genetic model 0.66 (0.56 - 0.76) 

Mayo 2018  10.19  0.001 0.61 (0.49 - 0.74) 

Mayo 2018 + Genetic model 0.67 (0.56 - 0.77) 

 


