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Abstract 

Background: Advancements in cancer therapeutics have resulted in increases in cancer-related survival; how-

ever, there is a growing clinical dilemma. The current balancing of survival benefits and future cardiotoxic harms of 

oncotherapies has resulted in an increased burden of cardiovascular disease in breast cancer survivors. Risk stratifica-

tion may help address this clinical dilemma. This study is the first to assess the association between a coronary artery 

disease-specific polygenic risk score and incident coronary artery events in female breast cancer survivors.

Methods: We utilized the Studies in Epidemiology and Research in Cancer Heredity prospective cohort involv-

ing 12,413 women with breast cancer with genotype information and without a baseline history of cardiovascular 

disease. Cause-specific hazard ratios for association of the polygenic risk score and incident coronary artery disease 

(CAD) were obtained using left-truncated Cox regression adjusting for age, genotype array, conventional risk factors 

such as smoking and body mass index, as well as other sociodemographic, lifestyle, and medical variables.

Results: Over a median follow-up of 10.3 years (IQR: 16.8) years, 750 incident fatal or non-fatal coronary artery events 

were recorded. A 1 standard deviation higher polygenic risk score was associated with an adjusted hazard ratio of 1.33 

(95% CI 1.20, 1.47) for incident CAD.

Conclusions: This study provides evidence that a coronary artery disease-specific polygenic risk score can risk-stratify 

breast cancer survivors independently of other established cardiovascular risk factors.

Keywords: Polygenic risk score, Breast cancer, Coronary artery disease, Coronary heart disease, Cardiovascular 
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Introduction
�ere were approximately 2.1 million new cases of inci-

dent female breast cancer in 2018 globally, accounting for 

25% of cancer cases in women [1]. Long-term survival has 

improved for women over the past 30 years as advances 

in cancer therapy have resulted in reduced cancer-

specific mortality. Consequently, mortality from other 

causes has become more important [2], with cardiovas-

cular disease (CVD) being the leading cause of death in 

older women who survive breast cancer [3]. �is is partly 

due to the effect of cytotoxic chemotherapies and radio-

therapy which are associated with an increase in cardio-

vascular morbidity and mortality [4–7]. In this paper, we 

focus on coronary artery disease (CAD), the most com-

mon type of CVD. Particularly for long-term survivors 

at higher CAD risk due to risk factors unrelated to their 

cancer and cancer therapy,  adverse effects of therapy are 

likely to accumulate and thus become relatively more 
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important. It seems likely that risk factors associated with 

CAD in the general population will also be associated 

with CAD in cancer survivors, but empirical evidence is 

needed, particularly in those treated with chemotherapy 

or radiotherapy. Multiple lifestyle and environmental risk 

factors have well-established CAD associations including 

smoking, body mass index (BMI), total cholesterol, type 1 

and type 2 diabetes, and hypertension [8].

Inherited genetic variation is also known to affect risk: 

genome-wide association studies (GWAS) have iden-

tified many common genetic variants associated with 

CAD, and polygenic risk scores (PRS) have been shown 

to provide useful CAD risk discrimination [9–11]. Poly-

genic risk scores are an aggregation of genomic vari-

ant information and GWAS-derived weights reflecting 

magnitude of association for a condition of interest [12]. 

�e motivation behind using a PRS is based on the com-

mon variant-common disease hypothesis, where much 

of the genetic risk for common adult-onset diseases can 

be attributed to the cumulative effect of many common 

variants with small effect sizes rather than rare variants 

with large effect sizes [13]. Within research assessing 

clinical utility of polygenic risk scores, most of the evi-

dence appears to come from the study of CAD. While 

the consensus for the clinical utility of CAD PRS is still 

unclear [14–17], CAD PRS is potentially poised to add 

accuracy to clinical risk predictions, define populations 

who would most benefit from statin prescriptions, and 

estimate lifetime risk trajectories [18]. It still remains an 

open question as to whether existing CAD PRS can be as 

predictive in non-European populations, but there has 

been some research that has  sought to validate existing 

PRS in a cohort of South Asian participants [19]. �ere 

are currently no studies quantifying the performance of 

CAD PRS for risk prediction in breast cancer survivors 

and, furthermore, whether polygenic risk scores inter-

act with oncotherapy for breast cancer. Polygenic risk 

scores in combination with other risk factors may be use-

ful in identifying women with breast cancer in whom the 

adverse effects of treatment may outweigh the benefits. 

�e aim of this study was to evaluate the association of 

a published coronary artery disease polygenic risk score 

[10] and incident CAD outcomes in a cohort of women 

with breast cancer.

Methods
Study cohort

�e Studies in Epidemiology and Research in Cancer 

Heredity (SEARCH) cohort is a population-based pro-

spective study based in the Eastern Region of England, 

which was served by the East Anglian Cancer registry 

until 2002 and the Eastern Region Cancer Intelligence 

Unit from 2002 to 2016. Recruitment of patients was 

conducted from June 1996 to December 2016. Inci-

dent breast cancer cases were all cases diagnosed under 

the age of 70  years from July 1996 to December 2016. 

Patients completed a self-administered questionnaire 

upon recruitment, which included questions about 

personal information, reproductive history, and other 

medical history. Tumor characteristics were obtained 

from the national cancer registry. Follow-up was ascer-

tained through death registration with the most recent 

update provided by  Public Health England on May 

31st, 2020. �is provides the causes of death recorded 

on parts 1  and 2 of the death certificate. �e SEARCH 

dataset was restricted to female breast cancer cases 

who had complete genotype information (n = 12413) 

for this study. �e final analytic sample contained 8946 

participants after removing those of  non-European 

ancestries (n = 15) and those who experienced an event 

before diagnosis (n = 3452).

Linkage of the SEARCH cohort to hospital episodes 

statistics (HES) data was used to identify incident CAD 

events. HES data comprises a record for each finished 

consultant episode (FCE), which is a period of care for 

a patient under a single consultant at a single hospital 

[20]. Diagnoses coded for each FCE include all diag-

noses noted in the clinical record. Variables of interest 

included the time (years) between diagnosis and hos-

pital admission and the ICD-10 diagnosis code. �e 

recorded episode time, admission time, or operation 

time elapsed since diagnosis with breast cancer in HES 

was considered the time of the event. For individuals 

with multiple records in which CAD was one of the 

clinical diagnoses, the earliest time to event was used 

as the analytical  time to event. Prevalent disease at 

baseline was defined as an event occurring before diag-

nosis (encoded as negative time) and these times were 

excluded from the analysis.

Genotype data

A total of 12413 individuals from the SEARCH cohort 

were genotyped in two batches: batch I was geno-

typed on the Illumina Infinium iCOGS array (n = 8404) 

and batch II on the Illumina Infinium OncoArray 

(n = 4009). Both chips provide genome-wide coverage 

of common variants with 211115 SNPs on the iCOGS 

array [21] and 533631 SNPs on the OncoArray [22]. 

Genotyping QC was performed as previously described 

[21, 22]. Genotypes were then phased using SHAPEIT 

and imputed into the 1000 Genomes Project reference 

panel (version 3) using IMPUTE version 2 for iCOGS 

and OncoArray.
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Calculating PRS and quality control

�e polygenic risk score (PRS) used in this study was 

derived by Inouye et  al. and is called metaGRS (hence-

forth referred to as PRS), which consists of approximately 

1745180 variants (a detailed description of its deriva-

tion can be found in their Additional file) [10]. �e set 

of SNPs and their corresponding weights for PRS were 

taken from the Polygenic Score Catalogue, which is an 

open database of published polygenic risk scores [23]. 

�e PRS was calculated as a weighted sum of all the effect 

alleles carried using the imputed allele dosages and the 

published SNP effect sizes (log relative risk). Scores for 

each sample individual were generated using Plink 2.0 

software [24]. SNPs with imputation quality scores of 

less than 0.3 and ambiguous strand SNPs (A/T and G/C 

pairs)  were excluded. Multi-allelic SNPs with only two 

common alleles were treated as bi-allelic. All scores were 

standardized to zero-mean and unit variance.

CAD events

Incident coronary artery disease events were defined 

as a composite endpoint of unstable angina, myocar-

dial infarction, or death due to complications follow-

ing myocardial infarction according to the International 

Statistical Classification of Diseases and Related Health 

Problems 10th Revision (ICD-10) (Additional file  1: 

Table S1). �is composite endpoint was chosen to maxi-

mize the number of incident cases, and no differential 

effects were observed between predictor variables and 

different definitions of incident CAD events (Additional 

file 1: Table S2).

Statistical analyses

All statistical analysis was performed using R 4.0.0 [25]. 

We investigated the association between PRS on the 

composite primary endpoint of the first incident coro-

nary event using cause-specific Cox proportional haz-

ards regression. We identified the presence of competing 

risks of non-CAD death (Additional file  1: Figure S1) 

and thus performed Cox regression treating competing 

events as censored [26]. Along the same vein, cumulative 

incidence curves are presented instead of Kaplan–Meier 

curves because Kaplan–Meier curves are known to rep-

resent upward-biased incidence estimates in the presence 

of competing risks [26]. Time zero was date of diagnosis 

with patients entering the at-risk cohort at date of study 

enrolment (left truncation). Participants were right cen-

sored on the date of first occurrence of a  CAD  event, 

death from a cause other than coronary artery disease 

or last follow-up. Schoenfeld residuals for variables used 

in modelling and time were assessed for any significant 

departure from the proportional hazards assumption 

using the “cox.zph” function in the survival package [27]. 

A Wald test was performed to assess whether failure 

events were independent of left truncation [28]. Regres-

sion models were sequentially adjusted, first using only 

continuous PRS as the main exposure variable adjusted 

for age at diagnosis (years, continuous), genotype assay 

(Oncoarray, iCOGs) and eight genetic principal compo-

nents (PCs), and then including sequential adjustments 

for conventional risk factors: BMI (kg/m [2], continuous), 

smoking status (never, past, current); sociodemographic 

variables: drinking status (past, current), education level 

(below GSCE, GSCE, A-level, graduate), index of multi-

ple deprivation (IMD) (continuous); medical variables: 

age at menarche (years, continuous), thyroid disease 

(binary), parity (ordinal), hormone replacement ther-

apy (binary); and oncotherapy variables: chemotherapy 

(binary), radiotherapy (binary), and hormone therapy 

(binary). Note that we did not have available data on 

baseline measurement for blood pressure, cholesterol, 

lipid-lowering medications, diabetes, or familial history.

�e models were fit to the same subsample of cohort 

participants with increasingly more complete covariates 

to allow for more consistent comparison of the impact of 

adjustments and reduce the potential for selection bias in 

the scenario of outset restriction to participants with the 

most complete information on adjustment covariates.

We additionally assessed possible variation of the asso-

ciation of PRS with CAD according to smoking status and 

BMI level based on interaction tests. We also assessed the 

incremental improvement in CAD risk prediction from 

the addition of PRS to models including combinations of 

age, BMI, smoking, and other baseline covariates.

We calculated the net reclassification improvement 

and incremental discrimination index using the ncirens 

package to explore the potential clinical utility of PRS 

in women with breast cancer. More details about these 

calculations can be found in the Additional file. All con-

fidence intervals are shown at the 95% level. All p values 

are 2-tailed.

Results
Genotyped participant characteristics

�e study cohort of women with breast cancer comprised 

12413 participants who had complete genotype informa-

tion. �e mean age at diagnosis was 54.6, and almost all 

participants were of European ancestries. �e median 

[5th, 95th percentiles] time from diagnosis to entry into 

the study was 1.8 years [0.4, 4.3], and the median follow-

up time was 10.3 years [2.6, 19.4]. A total of 750 individu-

als experienced a CAD event during follow-up. Out of 

the genotyped participants, 9496 (77%) received adjuvant 

hormonal therapy, 8773 (71%) received radiotherapy, and 

4735 (38%) received adjuvant chemotherapy. A summary 
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Table 1 Genotyped participant characteristics by incident CAD outcome observed during follow-up

Mean (SD) is presented for continuous variables. n/N (%) is presented for categorical variables. Median [p25, p75] is presented for count variables

SEARCH Experienced incident CAD Did not 

experience 

incident CAD

N = 12,413 N = 750 N = 11,663

Age at diagnosis 54.6 (8.9) 59.9 (7.1) 54.2 (8.9)

Received adjuvant chemotherapy 4735 (38%) 202 (27%) 4533 (39%)

Received adjuvant radiotherapy 8773 (71%) 535 (71%) 8238 (71%)

Received adjuvant hormonal therapy 9496 (77%) 580 (77%) 8916 (76%)

Histopathological grade /10859 /10207 /652

Well Differentiated 2088 (19%) 132 (20%) 1956 (19%)

Moderately Differentiated 5364 (49%) 351 (54%) 5013 (49%)

Poorly/Undifferentiated 3407 (31%) 169 (26%) 3238 (32%)

Tumor maximum diameter (mm)* 17 [11, 24] 15.5 [10, 23] 17 [11, 24]

(Missing) 2655 156 2499

Number of nodes excised* 8 [4, 14] 8 [4,13] 8 [4, 14]

(Missing) 2934 170 2764

Number of nodes involved* 0 [0, 1] 0 [0, 1] 0 [0, 1]

(Missing) 3219 198 3021

ER Status /9150 /548 /8602

Negative 1474 (16%) 80 (15%) 1394 (16%)

Positive 7676 (84%) 468 (85%) 7208 (84%)

Highest level of education received /11196 /666 /10530

Below GSCE 2376 (21%) 238 (36%) 2138 (20%)

GSCE or similar 5721 (51%) 322 (48%) 5399 (51%)

A-level or similar 1493 (13%) 54 (8.1%) 1439 (14%)

Graduate 1606 (14%) 52 (7.8%) 1554 (15%)

Index of Multiple Deprivation 13.7 (9.4) 15.1 (10.1) 13.6 (9.3)

Age at menarche 12.8 (1.6) 12.8 (1.7) 12.8 (1.5)

(Missing) 1463 73 1390

Number of full-term pregnancies* 2 [1, 2] 2 [1, 3] 2 [1, 2]

(Missing) 5 0 5

Height (cm) 204 (167) 190 (138) 205 (168)

Weight (kg) 109 (171) 107 (157) 109 (172)

BMI (kg/m2) 26.8 (5.2) 28.6 (5.6) 26.7 (5.2)

(Missing) 830 39 791

Received hormonal replacement therapy 4762/11888 (40%) 381/728 (52%) 4381/11160 (39%)

Smoking history /11815 /719 /11096

Never 6363 (54%) 305 (42%) 6058 (55%)

Past 3534 (30%) 262 (36%) 3272 (29%)

Current, in last year 1918 (16%) 152 (21%) 1766 (16%)

Alcohol Consumption /12413 /750 /11663

Past 4290 (35%) 341 (45%) 3949 (34%)

Current 8123 (65%) 409 (55%) 7714 (66%)

Ethnicity /11980 /731 /11249

European 11,955 (~ 100%) 730 (~ 100%) 11,225 (~ 100%)

African 1 (< 0.1%) 0 1 (< 0.1%)

Asian 2 (< 0.1%) 1 (0.1%) 1 (< 0.1%)

Southeast Asian 0 0 0

Other 22 (0.2%) 0 22 (0.2%)

Thyroid disease 1288/11874 (11%) 115/724 (16%) 1173/11150 (11%)
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of other lifestyle, medical treatment, breast cancer, and 

medical history characteristics is presented in Table  1. 

Summary information is provided for the full SEARCH 

cohort (n = 15,755) and participants who died from 

breast cancer in the Additional file 1: Table S3.

Association of PRS and incident CAD

Age-adjusted models were initially assessed to under-

stand individual associations of each variable with inci-

dent CAD survival (Table  2). �ere was no evidence of 

a departure from the proportional hazards assumptions 

for any of the variables modelled, and left truncation was 

found to be independent (Additional file  1: Table  S4). 

�ere was no association between PRS and breast can-

cer-specific survival (HR 1.02; 95% CI 0.96–1.08).

�e sample size for the multivariate model was 8946 

with a total of 432 events after including only partici-

pants who experienced an event after entry into the study 

and had European ancestry (Fig. 1). �e hazard ratio for 

incident CAD per 1 SD higher PRS adjusted only for age 

at diagnosis, genotype  array, and eight genetic PCs was 

1.36 (95% CI 1.23–1.51). Adjusting for conventional risk 

factors of smoking status and BMI resulted in minimal 

attenuation (Table 3,  HRmodel2 = 1.34; 95% CI 1.21–1.49). 

Adjusting for other sociodemographic, lifestyle, and 

medical variables did not substantially change the HR of 

PRS  (HRmodel5 = 1.33; 95% CI 1.20–1.47). A similar mag-

nitude HR was found for another polygenic risk score, 

GRS49K [9]  (HRmodel5 = 1.31; 95% CI 1.19–1.44). Den-

sity distributions for both standardized PRS and GRS49K 

can be found in Figure S2 in Additional file 1. �ere was 

no evidence that—with the inclusion or PRS and other 

mediator variables—chemotherapy, radiotherapy, or 

hormone therapy was associated with incident CAD 

in this study. A  sensitivity analysis for follow-up only 

after one year, assuming a lag time to account for treat-

ment completion within one year of diagnosis, was per-

formed. Using model 5, the association between PRS and 

CAD remained largely unchanged (HR = 1.33, 95% CI 

1.20–1.48).

Interaction of PRS and conventional risk factors

Interactions between PRS and established cardiovascu-

lar risk factors, log(BMI) and smoking, were added sepa-

rately to a model containing genotype array, eight genetic 

PCs, log(BMI), smoking, education level, drinking, par-

ity, hormone replacement therapy (Table 4). �e baseline 

mediators were selected based on multivariate results 

(Table  3, Model 5). �e interaction effect between PRS 

and log(BMI) scaled to the mean was not significant at 

the 95% confidence level. Addition of an interaction term 

between PRS and smoking status slightly attenuated the 

effect of PRS, and the interaction effect between being 

a past smoker and the PRS approached nominal signifi-

cance (P = 0.069). �e joint hazard ratios are presented in 

Table 5.

Interaction of PRS and oncotherapy

�e hazard ratios of the interaction terms between PRS 

and radiotherapy, PRS and chemotherapy, and PRS and 

anti-hormone therapy were 1.15 (0.92, 1.43), 0.93 (0.74, 

1.16), and 1.15 (0.90, 1.46) respectively in a model con-

taining genotype array, eight genetic PCs, log(BMI), 

smoking, education level, drinking, parity, and hormone 

replacement therapy (Additional file 1: Tables S6–S7).

Ability of PRS to risk-stratify incident CAD in breast cancer 

survivors

Figure 2 shows the cumulative risk of CAD by PRS quin-

tile. Women in the lowest quintile of risk reached 5% 

cumulative incidence at 15.1 years compared to 8.9 years 

for women in the highest quintile of risk.

Table 2 Age-adjusted univariate associations of baseline 

characteristics and incident CAD

All univariable models were �t to the same sample. All models adjusted for age, 

genotype array, and 8 genetic PCs

* Education reference category is below GSCE

† Smoking reference category is never-smokers

†† Drinking reference category is past-drinkers

Variable Hazard Ratio (95% CI) P value

PRS 1.36 (1.23, 1.50) 6.0 ×  10–10

Sociodemographic

Log(IMD) 1.25 (1.08, 1.45) 1.9 ×  10–3

Education Level*

GSCE or similar 0.65 (0.51, 0.82) 2.0 ×  10–4

A-level or similar 0.60 (0.42, 0.85) 3.8 ×  10–3

Graduate 0.50 (0.34, 0.74) 4.6 ×  10–4

Lifestyle

Log(BMI) 5.11 (3.05, 8.6) 6.1 ×  10–10

Smoking†

Past 1.44 (1.16, 1.78) 8.2 ×  10–4

Current 1.93 (1.50, 2.51) 4.8 ×  10–7

Drinking†† 0.63 (0.51, 0.76) 1.6 ×  10–6

Medical

Age at menarche 0.98 (0.92, 1.05) 0.56

Parity (number of full-term preg-
nancies)

1.12 (1.05, 1.21) 7.6 ×  10–4

Hormone replacement therapy 1.17 (0.96, 1.42) 0.11

Thyroid disease 1.16 (0.87, 1.54) 0.29

Oncotherapy

Chemotherapy 1.02 (0.81, 1.28) 0.87

Radiotherapy 0.93 (0.75, 1.16) 0.53

Hormone therapy 0.84 (0.66, 1.07) 0.15
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�e discrimination of the PRS alone measured by the 

c-index was somewhat less than that of a model with BMI 

and smoking combined (0.73 vs. 0.74, P = 0.048) after 

adjusting for age, genotype array, and genetic PCs (Fig. 3). 

�e addition of PRS made little practical improvement 

to a model including genotype array, eight genetic PCs, 

BMI, smoking status, education level, drinking, IMD, 

age at menarche, parity, hormone replacement therapy, 

and thyroid disease (0.757 vs. 0.764, P = 0.052). �e total 

proportion of CAD and non-CAD cases that was reclas-

sified was 22% and 11% respectively. �e net proportion 

of CAD and non-CAD cases assigned to a higher risk cat-

egory was 12% and 5.6% respectively for a 10-year CAD 

incidence risk (Additional file 1: Table S8).

Discussion
Based on a large cohort of British women with breast 

cancer, we have provided evidence that a CAD polygenic 

risk score developed for the general population can be 

generalized to breast cancer patients, with an estimated 

33% higher CAD risk per 1 SD higher PRS (HR = 1.33, 

95% CI 1.20, 1.47), independent of established cardio-

vascular risk factors (age, smoking, BMI), oncothera-

pies and other variables associated with cardiovascular 

risk (education level) in a cohort of British women with 

breast cancer. Our results support previous evidence 

that the association of PRS and CAD risk may operate 

through molecular pathways that do not overlap with 

those of traditional risk factors such as smoking and BMI. 

�is is consistent with the original PRS analysis which 

found only a modest attenuation for PRS when adjust-

ing for BMI, smoking status, as well as diabetes, hyper-

tension, family history of heart disease, and cholesterol 

levels (HR: 1.58 per SD; 95% CI 1.55–1.61 unadjusted; 

HR: 1.48 per SD; 95% CI 1.45–1.51 adjusted) [10]. Several 

other studies also found only modest attenuation of CAD 

polygenic risk scores when adjusting for variables such as 

lipid treatment at baseline, cholesterol, and systolic blood 

pressure [9, 19, 29].

However, we note that there was an almost significant 

interactive effect between being a past smoker and the 

PRS. Since PRS is known to be correlated to certain con-

ventional CAD risk factors [10, 30], it is plausible that 

some fraction of incident CAD risk explained by PRS may 

be dependent on smoking status. While this paper is not 

expressly predictive in nature, we note that the addition 

of PRS may not have provided additional risk discrimina-

tion on top of BMI and smoking because by middle age, 

the genes that compose this risk score may have already 

exerted their influence, and thus the PRS would not be 

expected to add discriminatory ability.

Fig. 1 Flow diagram of selection of study cohort
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�e PRS improves risk discrimination in breast can-

cer survivors. For instance, we found an over twofold HR 

for CAD in a comparison of individuals in the top versus 

bottom one-fifth of the risk score distribution. Further-

more, when considering 10-year risk of incident CAD 

following breast cancer diagnosis, we found that 5.6% 

of lower risk participants who did not have a recorded 

CAD event were reclassified to a higher risk group with 

the addition of PRS to the baseline model (Additional 

file  1: Table  S5). While the change is discrimination is 

small, this may result in meaningful risk reclassification 

in clinical decision-making between the harms and bene-

fits of chemotherapy. Further work is required to evaluate 

whether such reclassification would justify the additional 

cost of genotyping.

We acknowledge the limitation of how treatment 

(chemotherapy, radiotherapy, and anti-hormone ther-

apy) was coded as dichotomous variable (whether or 

not a patient received treatment). �e loss of informa-

tion about other treatment aspects (e.g. dose, duration, 

type) may have contributed to measurement error that 

resulted in the associations reported in our paper. Fur-

thermore, the association of the interaction of PRS and 

chemotherapy is likely explained by selection bias, where 

healthy patients are more likely to undergo chemother-

apy. More granular data will be required to further assess 

these associations.

Table 3 Hazard ratios for incident CAD events in sequential models adjusted for baseline mediators

* All models were �t on the same sample. Model 1 represents the “baseline” model of PRS adjusted for age, genotype array and 8 genetic PCs. Model 2 is model 1 

additionally adjusted for conventional risk factors of BMI and smoking. Model 3 is Model 2 additionally adjusted for other sociodemographic variables. Model 4 is 

Model 3 additionally adjusted for medical variables. Model 5 is Model 4 additionally adjusted for oncotherapies

Variable Model 1
(n = 8946;
d = 432)*

Model 2 Model 3 Model 4 Model 5 Model 5
P value

PRS 1.36
(1.23, 1.51)

1.34
(1.21, 1.49)

1.34
(1.21, 1.48)

1.33
(1.20, 1.48)

1.33
(1.20,1.47)

7.6 ×  10–9

Age at diagnosis 1.10
(1.09, 1.13)

1.10
(1.09, 1.13)

1.10
(1.08, 1.12)

1.10
(1.08, 1.12)

1.10
(1.08, 1.12)

2.6 ×  10–32

Log(BMI) – 4.70
(2.79, 7.92)

3.59
(2.10, 6.10)

3.59
(2.08, 6.20)

3.62
(2.09, 6.24)

3.6 ×  10–6

Past smoker – 1.35
(1.08, 1.67)

1.35
(1.08, 1.68)

1.33
(1.06, 1.65)

1.32
(1.06, 1.64)

0.011

Current smoker – 1.88
(1.45, 2.45)

1.74
(1.33, 2.28)

1.70
(1.30, 2.22)

1.70
(1.30, 2.22)

9.1 ×  10–5

GSCE education – – 0.73
(0.58, 0.93)

0.74
(0.58, 0.93)

0.74
(0.58, 0.94)

0.011

A-level education – – 0.75
(0.52, 1.07)

0.77
(0.53, 1.10)

0.77
(0.54, 1.10)

0.15

Graduate education – – 0.68
(0.45, 1.02)

0.69
(0.46, 1.04)

0.69
(0.46, 1.04)

0.074

Drinking – – 0.71
(0.57, 0.86)

0.71
(0.58, 0.87)

0.72
(0.58, 0.88)

9.3 ×  10–4

Log(IMD) – – 1.09
(0.94, 1.26)

1.08
(0.93, 1.25)

1.08
(0.93, 1.25)

0.29

Age at menarche - – – 0.99
(0.93, 1.06)

0.99
(0.93, 1.06)

0.86

Parity - – – 1.08
(0.99, 1.16)

1.08
1.00, 1.17)

0.049

Hormone replacement therapy - – – 1.20
(0.98, 1.46)

1.20
(0.98, 1.46)

0.068

Thyroid disease - – – 1.02
(0.77, 1.36)

1.03
(0.77, 1.37)

0.85

Chemotherapy – – – – 0.98
(0.77, 1.24)

0.86

Radiotherapy – – – – 0.91
(0.73, 1.14)

0.42

Hormone therapy – – – – 0.87
(0.68, 1.11)

0.25
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�e role that PRS may play in breast cancer clinical 

care is currently unclear, but fundamentally, PRS may be 

used to help estimate the lifetime risk of cardiovascular 

disease in a breast cancer survivor. �is may have two 

clinically useful benefits: (1) facilitate earlier detection 

of cardiovascular risk in breast cancer survivors to help 

them more effectively manage cardiovascular risk factors 

earlier to reduce future cardiovascular risk and (2) aid in 

treatment decision-making when considering the nega-

tive cardiotoxic effects of their treatment regiments.

�is is especially important in breast cancer patients 

who face the unique challenge of needing to maximize 

gains from cancer treatment while also minimizing its 

cardiotoxic effects. More women are surviving breast 

cancer with an increase in 5-year survival for early stage 

breast cancer from 79% in 1990 to 88% in 2012 [31] (there 

were an estimated 3.4 million breast cancer survivors in 

the US in 2015 [32]), so cardiovascular mortality may 

become an increasingly important concern. Bradshaw 

et al. showed that there is nearly a twofold increase in the 

incidence of CVD for long-term breast cancer survivors 

around 7  years after diagnosis [4]. Several large rand-

omized trials have provided evidence of the association 

between chemotherapy, radiotherapy, hormone therapy 

Table 4 Hazard ratios for incident CAD events in interaction 

models adjusted for baseline mediators

Baseline mediators include age, genotype array, 8 genetic PCs, log(BMI), 

smoking, education level, drinking, parity, hormone replacement therapy

* log(BMI) was scaled to its mean

Interaction Model Hazard Ratio (95% CI) P value

With BMI*

PRS 1.31 (1.18, 1.46) 1.5 ×  10–7

log(BMI) 1.24 (1.12, 1.37) 2.0 ×  10–5

PRS*log(BMI) 1.07 (0.97, 1.18) 0.17

With smoking

PRS 1.24 (1.06, 1.44) 4.0 ×  10–3

Past smoker 1.26 (1.00, 1.58) 0.044

Current smoker 1.72 (1.31, 2.27) 9.1 ×  10–5

PRS*past smoker 1.23 (0.98, 1.53) 0.069

PRS*current smoker 1.03 (0.79, 1.34) 0.82

Fig. 2 Cumulative risk of CAD by quintiles of metaGRS truncated at 20 years post-diagnosis
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and increased risk of cardiovascular events [33, 34]. For 

instance, Darby et  al. showed that the rate of CAD was 

proportional to the average dose of ionizing radiation 

during radiotherapy for breast cancer, with increases in 

rate continuing as long as 20  years post-exposure [35]. 

�is is particularly important for women diagnosed at a 

relatively young age who begin treatment and may then 

have increased risk of CVD mortality. It suggests that 

breast cancer survivors may benefit from a PRS assess-

ment and should be closely monitored for development 

of cardiovascular risk factors following diagnosis and 

subsequent treatment. In our study, cumulative inci-

dence curves of incident CAD events did not appear to 

be substantially different when stratified by oncotherapy 

status (Additional file 1: Figure S3), which suggests that 

more granular data on treatment data, such as dosage, 

frequency, or duration, is needed to better assess the 

interplay between drug cardiotoxicity and genetic car-

diovascular susceptibility. PRS may help clinicians and 

their patients make decisions about whether the benefits 

of adjuvant chemotherapy and other oncotherapies out-

weigh the risks.

Table 5 Joint hazard ratios for incident CAD events in 

interaction models adjusted for baseline mediators

Baseline mediators include age, genotype array, 8 genetic PCs, log(BMI), 

smoking, education level, drinking, parity, hormone replacement therapy

* log(BMI) was scaled to its mean

Interaction model Joint hazard ratio (95% CI)

With BMI* 1 Unit Increase in PRS

log(BMI) (Reference) 1.31 (1,18, 1.46)

1 Unit Increase in log(BMI) 1.40 (1.24, 1.58)

With smoking

Never (Reference) 1.24 (1.06, 1.44)

Past smoker 1.52 (1.29, 1.79)

Current smoker 1.27 (1.03, 1.58)

Fig. 3 Training C-indices for conventional risk factors and metaGRS
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Limitations

�ere are some limitations in interpreting the current 

findings. �e association between PRS and incident CAD 

could not be adjusted for important risk factors such as 

diabetes, hyperlipidaemia, family history of cardiovascu-

lar disease, and hypertension because these data were not 

collected. It is worth noting; however, that the PRS used 

in this study has been shown in other cohorts to provide 

additional predictive benefit over standard cardiovascu-

lar risk prediction algorithms such as the Framingham 

risk score, which include such metabolic risk factors [9]. 

Treatment data were limited to whether the patient had 

received chemotherapy, radiotherapy, and anti-hormone 

therapy. Data on specific drugs or doses received were 

not available. Genotype data were available for predomi-

nantly participants of white European ancestry, which 

suggests the need for studies in people of other ancestries 

to maximize generalizability. Furthermore, the observa-

tional nature of these data limits any inference that might 

be drawn relating to the association between therapy and 

outcome.

Conclusion
Cardiovascular disease is an important long-term risk 

among women who survive breast cancer. �is risk is 

increased by some breast cancer therapies. Compre-

hensive risk models for cardiovascular disease have the 

potential to help in the clinical management of this risk 

and may improve long-term outcomes for these women.
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The online version contains supplementary material available at https:// doi. 
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