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Abstract

Genomic Selection (GS) is a new breeding method in which genome-wide markers are

used to predict the breeding value of individuals in a breeding population. GS has been

shown to improve breeding efficiency in dairy cattle and several crop plant species, and

here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed

a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation

on a population of 363 elite breeding lines from the International Rice Research Institute's

(IRRI) irrigated rice breeding program and herein report the GS results. The population was

genotyped with 73,147 markers using genotyping-by-sequencing. The training population,

statistical method used to build the GS model, number of markers, and trait were varied to

determine their effect on prediction accuracy. For all three traits, genomic prediction models

outperformed prediction based on pedigree records alone. Prediction accuracies ranged

from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using

subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for ge-

nomic selection in this collection of rice breeding materials. RR-BLUP was the best perform-

ing statistical method for grain yield where no large effect QTL were detected by GWAS,

while for flowering time, where a single very large effect QTL was detected, the non-GSmul-

tiple linear regression method outperformed GSmodels. For plant height, in which four mid-

sized QTL were identified by GWAS, random forest produced the most consistently accu-

rate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic
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architecture and population structure, could become an effective tool for increasing the effi-

ciency of rice breeding as the costs of genotyping continue to decline.

Author Summary

Genomic selection is a promising breeding technique that aims to improve the efficiency

and speed of the breeding process. While it has been shown to be effective in crops such as

wheat and corn, it has not yet been applied to rice breeding. Genome-wide association

studies (GWAS), by contrast, are used to identify genes or QTLs that underlie traits of im-

portance to breeding such as yield, flowering time, or plant height, and has been per-

formed successfully in rice. Here, we experiment with applying genomic selection in

conjunction with GWAS to a rice breeding program at the International Rice Research In-

stitute in the Philippines and show that genomic selection can result in more accurate pre-

dictions of breeding line performance than pedigree data alone and that GWAS results can

inform the results of GS. Our results suggest that GS could be an effective tool for increas-

ing the efficiency of rice breeding.

Introduction

Over the next 30 years, the production of staple cereal grains including wheat, maize, and rice

must to be doubled to keep pace with global population and income growth. At the same time,

agriculture, in general, is imperiled by human-induced climate change, and plant breeders and

farmers together must contend with increased biotic and abiotic stresses that are the direct re-

sult of climate unpredictability. Breeding rice varieties adapted to the Asian tropics is already a

challenging and resource-intesive endeavor. The number of bacterial, fungal, viral and insect

pests for tropical irrigated rice outnumber those for other major cereals. For non-irrigated rice,

abiotic stresses such as flooding and drought also negatively affect production [1,2,3]. Rice

breeders must therefore consider a large number of simple and quantitative traits in combina-

tion when developing new lines while, at the same time, maintaining and improving quality

and ensuring yield improvements over existing varieties. Using coventional breeding methods,

this process is extremely time consuming—on average, it takes up to ten years for elite varieties

to be developed and identified [4].

The majority of public sector rice breeding programs in Asia still use conventional breeding

schemes. By far, the most common way of breeding is the pedigree method, which involves vi-

sual selection and trait screening over several successive generations [2]. With advances in rice

molecular genetics and genomics, however, other potentially faster breeding methods are being

developed. Marker assisted selection (MAS), in which a small number of molelcular markers

are used to tag genes-of-interest, has been implemented for rice improvement, but its overall

impact on enhancing the efficiency of breeding has been limited [5]. MAS has been successfully

used in rice to incorporate major genes and/or large-effect quantitative trait loci (QTLs) con-

trolling abiotic stresses such as submergence, salinity and drought into new varieties [6]. How-

ever, most traits of interest to rice breeders are not controlled by just a few large-effect genes,

but by many genes of small effect and/or by a combination of major and minor genes. MAS is

far less suitable for these types of trait genetic architectures, so its utility to rice breeders is lim-

ited. Epistatic interactions and the effects of genetic background in rice furthermore make mo-

lecular breeding even more complicated.
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Genomic selection (GS), introduced in 2001 by Meuwissen and colleagues, presents a new

alternative to traditional MAS that has enormous potential to actually improve gain per selec-

tion in a breeding program per unit time, and thus breeding efficiency. In a GS breeding sche-

ma, genome-wide DNAmarkers are used to predict which individuals in a breeding

population are most valuable as parents of the next generation of offspring [7]. These estimated

values, termed the genome estimated breeding values (GEBVs), are output from a model of the

relationship between the genome-wide markers and phenotypes of the individuals undergoing

selection. The GEBVs are then used to select the best parents for making new crosses. The GS

model itself is developed from a training population that resembles the population under selec-

tion (also referred to as the testing population); it is both genotyped and phenotyped, while the

testing population is genotyped only. The testing population genotypes are then entered into

the model to calculate the GEBVs of all the individuals in the population, even those that have

not been phenotyped. Thus, the key difference between GS and traditional MAS is that geno-

typing is not limited to a selected set of markers that tag putative genes, but rather breeding

value is predicted based on all available marker data to avoid ascertainment bias and informa-

tion loss. Including all markers in the model regardless of effect size also makes it possible for

the first time to track and select for small effect genes/QTL in addition to large effect genes/

QTL. Statistical shrinkage, Bayesian, and/or machine learning methods are used to fit the

many thousands of effects [7,8].

The advantage of GS over the widely-used traditional pedigree breeding method is thus one

of breeding efficiency. Gain from selection during GS is proportional to GEBV accuracy. As a

result, when GEBV accuracy is high enough, GS can reduce breeding time by increasing the

proportion of high-performing offspring in a breeding population, thus accelerating gain from

selection [9,10]. GS has been most successfully implemented in dairy cattle breeding, where its

efficiency is proven: the replacement of progeny testing with the genotyping of young bulls has

cut generation interval time in half [11]. Genetic heterogeneity is also low for Holstein-Friesian

cattle, and GxG and GxE effects are limited, which makes prediction of breeding value simpler

[5]. In plant breeding, these interactions present a challenge, as does the presence of structure

within and between breeding populations, but GS still holds the potential to improve breeding

efficiency. In temperate crops GS can accelerate gain from selection per unit time beyond that

gained by the overall population improvement described above through the use of off-season

nurseries [12,13], while in tropical crops like rice, GS can be used with one or more cycles of

rapid generation advance [14] for a similar gain.

In plants most applied GS experiments to date have been in maize and small grains, and it is

quickly generating interest as a breeding tool for those crops. High GEBV accuracies for grain

yield and a variety of other quantitative traits have been obtained for both maize and wheat bi-

parental and double haploid populations using experimental cross-validation [15,16], and GS

has been demonstrated to outperform marker assisted recurrent selection (MARS) in at least

one maize breeding program [17]. Moderate cross-validation prediction accuracies have also

been obtained for yield and a variety of other traits in diverse germplasm collections and breed-

ing populations of maize, wheat, oat, and barley [18,19,20,21,22,23]. Preliminary genomic se-

lection research has also been published on several other crop plants including cassava,

sugarcane, and sugar beet [24,25,26,27].

Several recent studies in maize, however, advise caution regarding the presence of hidden or

known structure or family relatedness within a breeding population or germplasm collection

when estimating GS accuracy. Windhausen et al (2012) found that within a diversity panel of

255 maize lines from eight distinct breeding populations any predictive ability in the dataset

was a byproduct of the population structure, while Riedelsheimer et al (2013) found mean ac-

curacies of 0% when trying to predict individuals in biparental families using data trained on
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the progeny of an unrelated cross [28,29]. To accurately predict the phenotypes of individuals

in their biparental crosses, Riedelsheimer et al found it necessary to train the model using full

sibs of the validation individuals, or half sibs representing both parents of the cross [28].

These limitations will likely also apply to rice, which is subject to deep population structure

and is often bred in large, inter-related pedigree schemas. Rice is also frequently admixed, and

many varieties contain introgressions from different subpopulations [30,31,32]. The work of

Guo et al., (2014) evidences this need to control for subpopulation structure when performing

GS in rice. In a rice diversity panel, Guo et al. (2014) found that*33% of the genomic herita-

bility was explained by subpopulation structure, and that controlling for subpopulation struc-

ture when performing cross-validation significantly decreased prediction accuracy. When

prediction was performed within a specific subpopulation, however, structure was found to

have little effect on prediction accuracy [33]. This is fortunate for breeding programs, which

generally work within a particular subpopulation, although introgressions are frequent.

Genetic architecture must also be taken into account when considering the implementation

of genomic selection. GWAS results in maize have consistently found most agronomic traits to

be controlled by many genes of small effect [34,35,36,37]. In rice, by contrast, many GWAS

and QTL mapping studies have found large effect QTLs for agronomic traits, including grain

yield, flowering time, plant height, aluminum tolerance, grain yield under drought stress, and

submergence tolerance [38,39,40,41,42,43,44]. The difference in the genetic architecture be-

tween maize and rice, as well as the difference in the genetic architecture of different rice traits,

could be expected to affect the relative efficacy of different genomic selection statistical

methods.

To the best of our knowledge, no research on performing GS in a rice breeding population

has yet been published. Here we report the results of performing GWAS and GS cross-valida-

tion using data on a collection of 363 elite breeding lines from the International Rice Research

Institute's (IRRI's) irrigated rice breeding program. To assess GS accuracy, we performed five-

fold cross validation to predict grain yield, flowering time, and plant height in the 2012 wet and

dry season in Los Baños, Philippines and compared our prediction results using GS to those

using only pedigree information as well as a traditional MAS model. For the GS models, the

training population composition, marker number, and the statistical method for the calculation

of GEBVs were varied to determine their effect on rice GS accuracy. Finally the GWAS results

published in a companion paper allowed us to analyze the effect of genetic architecture on GS

prediction accuracy [45].

Results and Discussion

Genotyping and fold design

384-plex Genotyping-by-sequencing (GBS) was used to discover and call SNPs on 369 ad-

vanced inbred breeding lines from IRRI's irrigated rice breeding program (methods). SNP call-

ing was performed using the TASSEL3.0 GBS pipeline with physical alignment to the MSU

v6.0 Nipponbare rice reference genome using Bowtie2 [46,47]. The resulting SNP data were

imputed using the TASSEL 3.0 FastImputationBitFixedWindow plugin [48]. After imputation,

SNPs with call rates< 90% were removed along with monomorphic markers to obtain a fil-

tered SNP dataset containing 73,147 SNPs. Individuals with missing data> = 60%, a total of

six individuals, were dropped for a total of 363 genotyped lines (materials and methods).

The majority of the 363 lines were known a priori from breeding records to belong to the

indica or indica-admixed subpopulation groups. In order to identify outlier individuals belong-

ing to the japonica or japonica-admixed groups, principle components analysis (PCA) was per-

formed using the 73,147 SNPs. Thirty one outliers were identified and excluded based on this
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analysis (S1 Fig.). After removing these 31 outliers, the resulting PCA suggested no remaining

subpopulation stratification within the dataset. Family structure, however, was presumed to

still exist. As the presence of close relatives (e.g. full sibs) across training and testing folds in a

cross-validation experiment can artificially inflate prediction accuracies, it was necessary to

also control for this family structure. To do so, the remaining 332 lines were clustered using a

partitioning around k-medoids algorithm (PAMK) based on the genotype matrix. k = 87 was

found to be the most statistically favorable number of clusters in the dataset based on average

silhouette width (S2 Fig.). Individuals in the same cluster (of 87) were then assigned to the

same fold of 5 to form the five folds used for cross-validation. The most closely related individ-

uals were thus placed within the same fold, making it impossible for them to be spread across

training and testing groups [26] (materials and methods).

Phenotypes

Four years of grain yield (kg/ha), flowering time (days to 50% flowering), and plant height (cm)

data and related phenotypic covariates were curated from historical breeding trial records

taken at a single location in Los Baños, Philippines for years 2009–2012, two seasons per year,

dry and wet, with the exception of plant height in the 2009 wet season, which was not available

(materials and methods). As the genotyped lines represent a subset of a working breeding pro-

gram, substantial missing data are present in years 2009–2010 for all traits (S1 Table). Such

an unbalanced design is typical of breeding trial data and to be expected in the practical imple-

mentation of GS. Correlations among years/seasons were calculated for all three traits using the

trait least squares means. For grain yield, the 2011 and 2012 data were more tightly correlated

than the earlier year data. Flowering time and plant height data was well correlated for all four

years and seasons (S3 Fig.) (see methods).

Narrow-sense heritabilities were calculated on a per line basis for each trait for both valida-

tion seasons—the 2012 dry season (2012 DS) and the 2012 wet season (2012 WS) and ranged

from 0.31–0.32 for grain yield, 0.30–0.35 for plant height, and 0.32–0.44 for flowering time

(Table 1) (materials and methods). Heritabilities for all three traits were slightly higher in the

dry season than the wet season.

Cross validation using 73,147 markers

Five-fold cross validation was performed using the full set of 73,147 markers to predict grain

yield, flowering time, and plant height in the 2012 dry and wet seasons. The year and season

data included in the training population were varied to determine which combinations of

years/seasons were the most predictive of the 2012 dry and wet season (total of twelve different

Table 1. Trait heritabilities.

Trait Season h2

YLD DS 2012 0.3213

PH DS 2012 0.3546

FL DS 2012 0.4378

YLD WS 2012 0.3059

PH WS 2012 0.3036

FL WS 2012 0.3254

Narrow-sense heritabilities (h2) for the two validation season, 2012 dry season (DS 2012) and the 2012 wet

season (WS 2012). YLD = grain yield, FL = days to 50% flowering, PH = plant height.

doi:10.1371/journal.pgen.1004982.t001
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combinations). The GEBV accuracies were calculated as the correlation of predicted GEBV

and observed phenotypes in the validation population.

Six statistical methods widely demonstrated to produce accurate genomics-assisted breeding

models in a variety of crops were selected from the literature to test using our rice data. The se-

lected methodologies were chosen to represent the variety of available approaches, and includ-

ed one linear, parametric, and frequentist method: rrBLUP, one linear, parametric, and

Bayesian method: Bayesian LASSO (BL), one non-linear semi-parametric method: Reproduc-

ing Kernel Hilbert Spaces (RKHS), and one non-linear machine learning method: Random

Forest (RF) [19,23,49,50]. Multiple Linear Regression (MLR), in which a subset of significant

markers are chosen to fit a linear model, has been shown to be effective for traits with a very

simple genetic architecture, and served as our non-GS method control [51]. Finally, kinship

BLUP was used to predict GEBV based on the pedigree A-matrix alone (ped) (methods) [52].

We estimated accuracies using three experiment types (CV1, CV2, and CV3). CV1 accuracies

were calculated using training populations that included data from the validation year/season, i.e,

if the validation population consisted of the 2012 dry season, then data on individuals from the

2012 dry season were included in the training population, excluding data on any individuals in

the validation fold. However, this is likely to upwardly bias accuracy estimates by confounding

GxE and line effects [21], so we worked to obtain an estimate of this bias by performing two

other types of experiments. For CV2 accuracies we excluded the validation year/season from the

training population. By removing these data from the training population, however, we introduce

a different confounding factor to our accuracy estimate—a smaller training population size. We

therefore performed cross validation experiment 3 (CV3) in which the data from the validation

year/season were retained in the training population, but the equivalent data from the respective

2011 season were not included in the training population. The overall estimate of bias for a given

permutation was subsequently estimated as accuracy of CV3—accuracy of CV2 [26] (materials

and methods). The bias estimates were found to be very small and consistent for all tested traits

and permutations (Table 2, S2–S4 Tables). It can thus be concluded that for the population and

statistical methods tested here bias as a result of including data from the validation year/season in

the training population is not a significant concern.

Grain yield. The highest prediction accuracies for grain yield in both the 2012 dry and wet

seasons were 0.31, when the training populations consisted of data from all four years (2009–

2012), both seasons per year. The peak dry season accuracy was obtained when rrBLUP was

used to build the model, and the peak wet season accuracy was obtained when RF was used

(Table 2, S2 Table). In general, however, prediction accuracies did not significantly vary de-

pending on the combination of years or seasons in the training population (α = 0.05). These

results indicate that the most recent and complete years (2011, 2012) are also the most predic-

tive, but that adding data from earlier years to the training population and utilizing both

seasons of data (as opposed to using only the dry season to predict the dry season or only the

wet seasons to predict the wet season) can marginally increase accuracy (Table 2, S2 Table).

These results make sense given the strong correlations between the wet and dry seasons within

the same year and the weak correlations between the earlier and later years for grain yield

(S3 Fig.). The lower relative importance of the earlier year data could also be due to the large

proportion of missing data in the earlier years.

The statistical method used to build the prediction model had a significant effect on accura-

cy. RR-BLUP, Random Forest, and RKHS all performed significantly better than pedigree

alone. RR-BLUP and RF, specifically, outperformed pedigree prediction by an average of

*8%. Similar results have been documented in CIMMYT wheat populations where genetic

markers have been found to add 7.7%-35.7% to the accuracy of grain yield predictions over a

pedigree-only model depending on the population and environment [52]. The modest gains in
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accuracy of using markers to predict breeding value in our rice population suggest that larger

training populations may be necessary to better model the effects of Mendelian segregation on

yield, in addition to effects due to family relationships [53].

Table 2. Summary of best performing GS experiments for predicting grain yield (YLD), flowering
time (FL), and plant height (PH) in the 2012 dry season (2012 DS) and the 2012 WS (2012 WS)

Trait TP VP stat method accuracy

YLD 2009–2011 all 2012 DS A RR-BLUP 0.3044

YLD 2009–2011 all 2012 DS A RKHS 0.2596

YLD 2009–2011 all 2012 DS A RF 0.2458

YLD 2009–2011 all 2012 DS B ped 0.2146

YLD 2009–2011 all 2012 DS C BL 0.1358

YLD 2009–2011 all 2012 DS D MLR -0.0599

YLD 2009–2011 all 2012 WS A RF 0.3136

YLD 2009–2011 all 2012 WS A RR-BLUP 0.2852

YLD 2009–2011 all 2012 WS A RKHS 0.2399

YLD 2009–2011 all 2012 WS B ped 0.1904

YLD 2009–2011 all 2012 WS C BL 0.0876

YLD 2009–2011 all 2012 WS D MLR 0.0095

FL 2009–2011 DS only 2012 DS D MLR 0.6270

FL 2009–2011 DS only 2012 DS A RF 0.6093

FL 2009–2011 DS only 2012 DS A RR-BLUP 0.4919

FL 2009–2011 DS only 2012 DS A RKHS 0.4865

FL 2009–2011 DS only 2012 DS C BL 0.4536

FL 2009–2011 DS only 2012 DS B ped 0.3997

FL 2010–2011 all 2012 WS D MLR 0.5400

FL 2010–2011 all 2012 WS A RF 0.4187

FL 2010–2011 all 2012 WS A RKHS 0.3872

FL 2010–2011 all 2012 WS A RR-BLUP 0.3808

FL 2010–2011 all 2012 WS C BL 0.3237

FL 2010–2011 all 2012 WS B ped 0.2071

PH 2009–2011 DS only 2012 DS A RF 0.3411

PH 2009–2011 DS only 2012 DS A RR-BLUP 0.2926

PH 2009–2011 DS only 2012 DS A RKHS 0.2807

PH 2009–2011 DS only 2012 DS C BL 0.1886

PH 2009–2011 DS only 2012 DS D MLR 0.1132

PH 2009–2011 DS only 2012 DS B ped 0.2079

PH 2009–2011 all, 2012 DS 2012 WS D MLR 0.3174

PH 2009–2011 all, 2012 DS 2012 WS A RF 0.3000

PH 2009–2011 all, 2012 DS 2012 WS A RR-BLUP 0.2530

PH 2009–2011 all, 2012 DS 2012 WS A RKHS 0.2179

PH 2009–2011 all, 2012 DS 2012 WS C BL 0.0908

PH 2009–2011 all, 2012 DS 2012 WS B ped 0.1600

TP = Training population, all = both dry and wet seasons for each year, DS only = dry seasons only for

each year. VP = validation population. Accuracy = correlation of the predicted GEBV and the phenotype in

the validation population, where the training population included the validation season/year for individuals

not in the validation fold. Statistical methods not connected by the same letter performed significantly

different from each other across experiments by pairwise students t (α = .05).

doi:10.1371/journal.pgen.1004982.t002
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Some of the marker models performed worse than pedigree prediction. Bayesian LASSO

performed significantly worse than prediction based on pedigree alone, while MLR performed

worst of all. It is worth noting that the GWAS for grain yield in this population (unlike the

GWAS for flowering time or plant height) did not identify any large effect QTL [45], which

could explain why choosing a subset of markers to predict GEBV performed so poorly relative

to the genomic selection methods (Table 2, S2 Table).

Flowering time. The prediction accuracies for flowering time were higher than those for

grain yield at 0.63 and 0.54 for the best performing experiments in the 2012 dry and wet sea-

sons, respectively. For the dry season, the most predictive training population was composed of

the 2009–2011 data, dry seasons only, while for the wet season, the best training population in-

cluded all seasons from 2010–2011. The prediction accuracies for flowering time in the 2012

dry season were significantly higher than those for the 2012 wet season across statistical meth-

ods and experiments (p< 0.0001), but the differences in the performance of different training

populations were not significant within a given validation population (Table 2, S3 Table).

Unlike for grain yield, the best accuracies for predicting flowering time for both seasons

were obtained using MLR. In fact, MLR significantly outperformed all other statistical methods

and was more accurate than pedigree alone by 22% and 33% for the dry and wet seasons, re-

spectively (Table 2, S3 Table). The higher accuracies for prediction of flowering time relative to

predictions for yield, and also of the dry season predictions over the wet season predictions,

can be explained by the higher trait heritabilities for flowering time of the 2012 dry season rela-

tive to the 2012 wet season (Table 1), and by the strong correlation in the phenotype data for

all years and seasons (S3 Fig.). The outstanding performance of MLR, on the other hand, is

best explained by the genetic architecture of flowering time. Multiple large effect QTL have

been cloned for flowering time [43,44], and the GWAS performed on this population identified

a single very large effect QTL on chromosome 3 that explained more than 40% of the variation

in flowering time [45]. These results are also consistent with results for prediction of heading

date using MLR versus GS in wheat [51]. Of the genomic selection methods tested (MLR is a

non-GS method), random forest performed the best by a significant margin, and was the next

best method of predicting flowering time after MLR. This is worth noting as the random forest

algorithm is also effective at capturing large-effect QTL [54].

Overall, these results suggest that the presence of large effect QTL for specific traits in rice

could improve the prediction accuracy of those traits, although it remains to be seen whether

genomic selection models will be the most practical means of obtaining those predictions. One

promising avenue of research would be to model the large effect QTL as fixed effects using a ge-

nomic selection method such as rrBLUP [55].

Plant height. The accuracies for plant height were similar to those for grain yield, 0.34 for the

dry season when the 2009–2011 dry seasons served as the training population, and 0.32 for the

wet season when all seasons and years served as the training population (Table 2, S4 Table). These

results further suggest that heritability has an important effect on accuracy. Both grain yield and

plant height had similar heritabilities, and similar prediction accuracies (Tables 1, 2, S4 Table.)

For predicting plant height, however, MLR was sometimes the best-performing statistical

method, as was the case for the most accurate wet season experiment, described above, but for

other experiments, MLR was the worst-performing method, as for the best performing dry sea-

son experiment, described above. Due to the inconsistent performance of MLR, the prediction

method with the best performance over all experiments was random forest (Table 2, S4 Table).

Across all experiments, random forest outperformed pedigree prediction by an average of

13.3%, an improvement in the performance of marker based prediction relative to pedigree

prediction that is squarely in between the improvements seen for grain yield and plant height

(Table 2, S4 Table).
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These results suggest that large marker effects help to make up the genetic architecture for

plant height, but that plant height genetic architecture is more complicated than the genetic

architecture of flowering time. This inference is borne out by the GWAS results for plant

height—four large effect QTL were identified, explaining*74% of the total variation [45].

While these effects are large, they are not as dramatic as the one super-QTL found for flowering

time on chromosome three, which may explain the difference in the performance of MLR for

the two traits. As for flowering time, future research in predicting plant height could explore

fitting these QTL in linear models as fixed effects.

GS using marker subsets

In order to determine the necessary number of markers for performing GS in a rice population

of this type, we selected differently sized SNP subsets from the 73,147 SNP set. The subsets

were selected in two ways: 1. to be evenly distributed across the genome (see materials and

methods for details) or 2. at random. Ten selections were made for each subset size and type

(i.e. random versus distributed), and five-fold CV was performed using each selection in com-

bination with all five marker based models (materials and methods). For each trait, cross vali-

dation was run for both validation populations, with years 2009–2011, both seasons per year,

serving as the training population. (Fig. 1, S4 Fig., S5 Table, S6 Table).

For all three traits and both validation seasons, it is clear from the marker subset results that

73,147 markers is more than is necessary to capture the QTL segregating in this population.

For almost all traits, there was no significant difference in the best-performing GS method for a

given trait or validation season when 7,142 SNPs (approximately 1 SNP for every 0.2 cM) were

used versus when 13,101 SNPs (1 SNP for every 0.1 cM) or the full 73,147 SNPs were used.

This was true for the randomly chosen SNPs as well as for the evenly distributed SNPs, howev-

er the accuracy variances were higher for the randomly chosen SNPs, so it is our recommenda-

tion that SNPs be evenly distributed across the genome when possible (Fig. 1, S4 Fig., S5 Table,

S6 Table). Although it is possible that the variation in the call rates and minor allele frequencies

of the randomly selected SNPs also contributed to the larger variations in accuracy in the ran-

dom SNP subsets, it is still thought that the position of the SNPs was the most important con-

tributor to prediction accuracy.

For all three traits and both validation seasons, prediction accuracies dropped significantly

faster with decreasing numbers of markers when the markers were chosen at random versus

when they were evenly distributed throughout the genome. The drop-off in prediction accura-

cy when random selections of SNPs were used was particularly acute for flowering time and

plant height and is attributable to the presence of large-effect QTL for these traits; As the num-

ber of randomly chosen SNPs decreases, the odds of capturing the effect of any one QTL also

decreases. The prediction results for grain yield, by contrast, did not differ as dramatically be-

tween the randomly and evenly distributed subsets as did those for flowering time and plant

height. These results suggest that the genetic architecture for grain yield is more in line with an

infinitesimal model, i.e., that there are many small effect QTL throughout the genome, and are

in agreement with the grain yield GWAS results [45]. It thus follows that the effect of choosing

SNPs at random would not be as detrimental for grain yield as it is for flowering time or plant

height when accuracy crucially depends on capturing specific regions that explain a high pro-

portion of the phenotypic variance.

At fewer than 7,142 SNPs, accuracies began to decrease for most traits and statistical meth-

ods, although the extent to which accuracies decayed depended on the prediction method used,

the trait, and the validation season. For grain yield in the 2012 dry season, for example, there

was no significant difference in the performance of rrBLUP at any marker set> = 3076
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Fig 1. Mean accuracies of cross-validation for prediction of grain yield (Kg/ha) (top row), flowering time (days to 50% flowering) (middle row), and
plant height (cm) (bottom row) in the 2012 dry season, using 10 selections of SNP subsets either distributed evenly throughout the genome (right
column) or chosen at random (left column) and five different statistical methods, error bars constructed using 1 standard error from themean. The
training population consisted of data from years 2009–2011, both seasons per year.

doi:10.1371/journal.pgen.1004982.g001
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markers. For random forest, however, there was no significant difference in prediction accura-

cy all the way down to sets of markers> = 316 (random or distributed). While it would not be

advisable to use such a small number of markers, as the smaller the number of markers, the

larger the variation in prediction accuracy, these results do suggest that for grain yield, at least,

random forest works better with smaller numbers of markers than does rrBLUP. The results

for plant height were very similar to those for grain yield. For flowering time, when SNPs were

evenly distributed, variances in accuracy were very small, again, most likely as a result of the

super-QTL on chromosome three. These very small variances meant that for both MLR and

random forest, accuracies were significantly lower for fewer than 7142 SNPs (distributed) or

1553 SNPs (random).

Taken collectively, these results suggest that using*1 SNP every 0.2 cM (*6–7K SNPs),

could be ideal for performing genomic selection in inbred rice breeding populations like the

one at IRRI. Opportunely, two Infinium 6K SNP fixed arrays have recently been developed for

use within specific rice breeding/research programs [56]. Fixed arrays have established advan-

tages in rice, including robust allele calling, cost-effectiveness per data point, and speed of gen-

otyping turn-around [56]. 6–12K fixed arrays could thus prove to be the most affordable and

efficient means of genotyping for GS in rice, especially for smaller breeding programs with less

genotyping informatics expertise. The best strategy, however, will likely be to have multiple

genotyping platforms available and the flexibility to switch between them as needed. Genotyp-

ing turn-around time is ultimately key for GS because genotypes must be available in time for

selections and the next generation of crossing. It should be noted that depending on the plat-

form, genotyping individuals with more markers than is necessary could be detrimental to

breeding progress if it overloads the bioinformatics and computational capacities of a breeding

program.

A GWAS-GS joint venture

The matrix of genotypes and phenotypes on a breeding population provides the opportunity to

perform GWAS in addition to testing any GS models that are available. This paper describes

the GS-side of a joint GS-GWAS project on a single rice breeding population, and is the first

study to suggest that GWAS on a set of breeding lines might provide information about both

the genetic architecture of the traits-of-interest and the population structure of the breeding

materials. Specifically, our results on performing GS for grain yield, plant height, and flowering

time demonstrate that performing GWAS using the inputs to GS can reveal the presence of

large-effect QTL segregating in a breeding population, which can then be modeled accurately

using GS.

The future of GS in rice

Our results are promising for the implementation of GS in rice improvement. For all traits test-

ed, GS outperformed prediction based on pedigree alone with the use of a reasonable number

of markers (*7000) suggesting that genomic selection is accessible for moderately-resourced

public programs with minimal bioinformatics capacities. For yield, which appears to be con-

trolled by many genes of small effect [45], RR-BLUP was the most computationally efficient of

the best performing statistical methods. For plant height and flowering time, however, the

highest accuracies were obtained using random forest and/or MLR, which suggests the pres-

ence of both large and small effect QTL for these traits, a hypothesis that is also supported by

the GWAS results [45].

Currently, the most commonly used methods of rice improvement are pedigree breeding

and traditional marker assisted selection, which mainly track large effect QTL. Our results
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suggest that genomic selection will make it possible for the first time to track, accumulate, and

select for small effect QTL using genetic markers in addition to large effect QTL. One promis-

ing strategy is to build GS models in which large effect QTL are fit as fixed effects to capture

the variance of large-effect QTL along with small effect QTLs located throughout the genome

[55]. Future experiments in rice genomic selection should focus on building these models.

While genomic selection has yet to be integrated into applied breeding programs in rice as it

has in maize and wheat, it would be feasible to undertake small pilot programs within specific

rice breeding programs, especially for irrigated rice where growing environments are generally

more uniform. Such pilot programs are needed, in particular, to determine when and how to

incorporate genomic selection into existing breeding programs. An example of an irrigated rice

breeding pipeline that incorporates genomic selection is presented in Fig. 2. Parents are select-

ed and crossed and the resulting F1 progeny fixed over seven generations with selection of fam-

ilies for heritable traits. Traditionally, selection during pedigree line fixation would be based

only on phenotype. Here, we propose incorporating selection based on GEBV at least once dur-

ing fixation, as resources allow. Early generation GEBV-based selection would help to avoid

eliminating families that carry beneficial rare or recessive alleles and would increase the pro-

portion of top performers that are advanced to the observational yield trials (OYT). Late-gener-

ation selection based on GEBVs could be used to select fixed lines to advance to the OYT. The

top lines advanced to the OYT based on GEBV could be used simultaneously as parents of the

next generation of breeding (Fig. 2).

From the OYT, the best performing lines could be identified and advanced to the replicated

yield trials (RYT) by a combination of phenotypic and genomic selection. Phenotypic selection

by the breeder has the potential to compensate for the fact that the GS model is always a gener-

ation or more behind the current breeding population. This means that any favorable new

GxG interactions will not be captured by the model and cannot be selected by GEBV alone. In

species where the majority of the genetic variation under selection is controlled by many addi-

tive, small effect loci, this should not be a problem. However, in rice and other inbreeding

crops, the genetic architecture of many important agronomic traits contains important non-

additive features and transgressive variation is common [41,43,57,58,59,60]. The selected lines

from the RYT are subsequently advanced to the multi-environment trials (MET) where the

GEBVs can be used to select parents for the next generation of hybridization. In order to build

or update the genomic selection model at any stage of selection, a training set consisting of a

fraction of the breeding population (*300 individuals) representing different families would

need to be both phenotyped and genotyped. The rest of the lines would be genotyped only to

calculate the GEBVs (Fig. 2).

The above genomic selection models would ideally account for multiple environments and

GxE interactions, however current programs such as the one at IRRI and many other national

breeding institutes do not make use of multi-environment data until very late stages of the

breeding process, after the population has already been reduced to a manageable number of

lines. Thus, even GS models that do not account for multiple environments, like those pre-

sented here, are of use to plant breeders and have the potential to improve breeding outcomes.

The data from the Multi-environment trials on the IRRI breeding lines used in this experiment

is currently being accumulated and vetted and will be a subject for future GS research.

In order to fully exploit the benefits of GS, however, new rice breeding schemes will need to

be implemented to further reduce the breeding cycle and increase genetic gain. Heffner et al.

(2010) proposed a GS scheme for winter wheat using rapid generation advance (RGA) to gen-

erate F5 lines, and multi-location field trials to test F5-derived material, which was further used

to train the GS model [13]. A similar scheme should also be effective for rice and a modified

scheme is currently being implemented at IRRI within the irrigated breeding program.

Accuracy of Genomic Selection in Rice

PLOS Genetics | DOI:10.1371/journal.pgen.1004982 February 17, 2015 12 / 25



Fig 2. Example of irrigated rice breeding pipeline that incorporates genomic selection. Parents are selected and crossed to create an F1 population.
*20,000 F1 lines are fixed over 7–8 generations with selection of families for heritable traits with*25% of the pedigree lines eventually selected for entry
into the observational yield trial (OYT). GEBVs can be used at two or more generations during fixation as resources permit to perform selection. Here we
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By using the genotype and phenotype inputs from pilot programs for both GS and GWAS,

the accuracy of GS models could be improved while, at the same time, helping to answer basic

biological questions about the genes underlying agronomic traits of interest. Ultimately, in

order for genomic selection to be of practical use, it must be possible to select lines with combi-

nations of phenotypes that are routinely measured by breeders, such as disease and insect resis-

tance and grain quality. GEBVs could be used to select for traits that are either difficult or

expensive to phenotype or are late in development (e.g. panicle or post-harvest traits), while

phenotypic selection, such as in the OYT and RYT in Fig. 2, could be used for other important

variety parameters. The use of multi-variate GS models or selection indices as GS phenotypes

are other potential solutions to this problem, but both require additional research and compu-

tational/statistical inputs to implement.

In practice, determination of whether GS can cost-effectively increase genetic gains relative

to utilizing pedigree data alone or simply phenotyping more lines requires a careful consider-

ation of the relative cost of phenotyping compared to genotyping plus line development [61].

For GS to provide increased genetic gain in a pedigree breeding program, the prediction ap-

proach must either increase accuracy relative to phenotyping or permit a substantial increase

in selection intensity. It is possible to increase selection intensity through the use of rapid gen-

eration advance, as mentioned above, but the selection intensity increase must be very large be-

cause the response of genetic gains to increasing selection is logarithmic rather than linear.

In this study, GEBV accuracy for yield averaged about 0.3 for the most effective prediction

methods (Table 2). The corresponding accuracy for phenotypic selection is the square root of

heritability, or about 0.55 for evaluation in a single three-replicate trial (Table 1). An accuracy

of 0.3 corresponds to a heritability for yield evaluation of 0.1, which is roughly the accuracy

achievable by screening for yield in a single unreplicated irrigated rice trial at IRRI (e.g. Bernier

et al., 2007). Currently, the cost of phenotyping a single rice plot for yield and genotyping via

GBS is roughly equivalent ($20-$30), so there is no clear advantage for GS over simply pheno-

typing more materials in unreplicated trials. However, genotyping costs are likely to continue

to drop, whereas phenotyping costs are generally steady or rising. Furthermore, continued re-

finement of GS models by incorporating fixed effects and accumulation of high quality data

over years and environments is expected to increase GEBV accuracy. As a result, we predict

that in the near future, GS will become a cost-effective means of performing line selection

in rice.

Materials and Methods

Plant material

369 elite breeding lines were selected for genotyping from the International Rice Research In-

stitute (IRRI) irrigated rice breeding program based on the planned inclusion of the lines in the

2011 Multi-Environment Testing Program and presence in the 2011 and 2012 Replicated Yield

Trials (RYT) at IRRI (Los Baños). Approximately half of the lines were also included in the

2009–2010 RYTs at IRRI (S1 Table). The other lines were promoted from the observational

yield trial (OYT) to the RYT in 2011.

propose using GEBVs at the F3 and F6 generations. GEBVs are also used to select the fixed lines from the F8 to advance to the OYT. The top lines
advanced to the OYT based on GEBV are cycled back into the crossing block in order to continue to improve the population. From the OYT, the best
performing lines based on phenotype are advanced to the replicated yield trials (RYT), and the best performing lines from the RYT are advanced to the multi-
environment trials (MET). Lines from the MET are then selected based on GEBV as parents for the next generation of recurrent selection. Models are built at
each stage in which GEBVs are used for selection based on a subset of the lines in the population (*300 individuals representing different families) that are
both genotyped and phenotyped to form the training set. The rest of the individuals in the population are genotyped only in order to calculate GEBVs.

doi:10.1371/journal.pgen.1004982.g002
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Phenotyping

Phenotypes for the replicated yield trials (RYT) were used for all the experiments and curated

from the IRRI database for years 2009–2012, including wet and dry seasons each year. All of

the RYT breeding lines, of which our selected 369 lines are a subset, were grown in a random-

ized complete block design with three replicates in the same field location at IRRI every season

and year. The following data were curated for each year, with the exception that plant height

data was not available for the 2009 wet season:

• plant height: the actual measurement in cm from soil surface to tip of tallest panicle (awns

excluded)

• flowering time: days to when 50% of flowers were visible in whole plot

• maturity date: days to when 85% of grains on panicle were mature

• number of effective tiller or panicle per plant: count of the number of panicles on each plant

• lodging score: percent of plants that lodged

• grain yield (kg/ha): grain yield from a representative plot was harvested and weighed, from

this sample the grain yield per hectare was calculated from an inner harvested area of the

plot excluding border rows

• rep: replication number of observation

The plant height, flowering time, and grain yield phenotypes were selected for prediction

using the genomic selection models.

Genotyping

DNA extraction. Young leaf tissue was collected from each of the 369 breeding lines from

plants grown in Gutterman Greenhouse in Ithaca, NY. DNA was extracted using the Qiagen

96-plex DNeasy kit as per the Qiagen fresh leaf tissue 96-plex protocol (www.qiagen.com/HB/

DNeasy96Plant).

Library preparation. 384-plex genotyping-by-sequencing (GBS) libraries were prepared

using the protocol by Elshire et al. 2011 [62], as described previously in Spindel and Wright

et al 2013 [63].

GBS data analysis. SNPs were discovered and called from the raw 384-plex GBS data using

the TASSEL3.0 GBS pipeline with physical alignment to the MSU version 6.0 Nipponbare rice

reference genome using Bowtie2, as described in Spindel and Wright et al 2013 [47,63,64] (S5

Fig.). The IRRI breeding materials genotyped here are a collection of multi-parent related and

unrelated inbred lines, so the GBS-PLAID algorithm for imputation, which was developed spe-

cifically for imputation of biparental rice mapping populations, was not useful [63]. Imputation

of missing data was instead performed using the TASSEL3.0 FastImputationBitFixedWindow

plugin with default settings [48]. The algorithm works by dividing the entire SNP dataset into

small SNP windows, then identifying the most similar inbred line within each window to fill

the missing data. The algorithm takes advantage of small IBD regions shared between pairs of

inbred lines in the collection; if the window from the closest neighbor has more than 5% differ-

ence from the line being imputed, the data point is left as missing [48]. The imputation error

rate using this algorithm was estimated for each chromosome in our dataset by masking a frac-

tion of the un-imputed allele calls and comparing the imputed and actual calls. The average im-

putation error rate across the twelve rice chromosomes was estimated in this way to be less

than 1%.
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SNPs that still had 10% or more data missing after imputation (or call rates of< 90%) were

removed from the dataset along with all monomorphic SNPs, for a total SNP set of 73,147

SNPs. After the SNP filtering described above, individuals with more than 60% missing data

were dropped from the dataset, which resulted in the removal of six individuals that failed se-

quencing for the total of 363 genotyped lines used throughout the study (S5 Fig.).

The final dataset was then transformed from nucleotide genotype coding (i.e., 'A', 'C', 'T',

'G') to numeric coding (1, 0, -1 for class I homozygotes, heterozygotes, and class II homozy-

gotes, respectively) to facilitate statistical analysis. The minimal remaining missing data were

filled using the numeric genotype means of each line in order to perform PCA and genomic se-

lection modeling (S5 Fig.).

Subpopulation and family structure analysis and cross-validation fold
design

The majority of the 363 lines were characterized a priori from pedigree records to belong to the

indica or indica-admixed subpopulation groups. In order to identify outlier individuals belong-

ing to the japonica or japonica-admixed groups, principle components analysis (PCA) was per-

formed in R (version 3.0.1) using the imputed 73,147 SNPs, with remaining missing data filled

using the line means. The first principal component of high density SNP data in rice can sepa-

rate the indica and japonica subgroups [30], so by plotting the first four principal components

using JMP Pro 10, 13 japonica outliers were identified as a tight cluster that was pulled apart

from the rest of the 350 lines (S1A Fig.). These 13 lines were removed from the dataset, and a

second PCA was performed using the same methodology as the first to identify any admixed

outliers, i.e, outlier lines containing greater percentages of japonica derived SNPs. By plotting

the first four principal components of the second PCA, another 18 lines were judged on a visual

basis to be outliers and removed from the dataset, leaving a total of 332 lines to be used for the

cross-validation experiments (S1B Fig.). A third PCA was performed using the remaining 332

to confirm that there were no additional subpopulation outliers.

It was also known from studying the breeding program pedigrees that differing degrees of

family relatedness existed within the remaining 332 lines, including half sibs, full sibs, parents

and offspring, and unrelated lines. The presence of highly related individuals in the dataset

could have the effect of artificially inflating prediction accuracy if the most closely related indi-

viduals are randomly assigned to different folds, and one of those folds is then used as training,

while the other is used as testing. Or, in other words, the training fold could end up as unusual-

ly predictive of the testing fold if, for example, a pair of full sibs is split across training and test-

ing folds. To control for this possibility when designing our folds, we performed a partitioning

around k-medoids analysis (pamk) using the R fpc package (function pamk) with the 73,147

SNPs. k values from 2 to 332 were tested to determine the most statistically probable k-value by

average silhouette width (S2 Fig.). The largest average silhouette width was found to occur at

k = 87 (S2A Fig.). Individuals found within same cluster of 87 were then assigned to the same

fold, making it impossible for the most closely related individuals to be split across training

and testing folds. Full clusters were assigned to one of five folds randomly, controlling only for

cluster size in order to produce three folds of 66 individuals and two folds of 67 individuals. A

similar procedure was used by Ly et al., 2013 [26].

Cross-validation experimental design

For each cross validation experiment, one of the five folds served as the validation fold, and the

other four folds served as the training folds. The process was repeated five times so that each

fold served once as the validation fold, resulting in predicted GEBV values for all individuals.
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Accuracy was assessed as the mean Pearson Correlation of the predicted GEBV and observed

phenotype in the validation population.

The cross validation experiments shown in Table 3 were performed in order to test all logi-

cal combinations of years and seasons in the training and validation populations. Note that a

year's wet season was never used to predict the same year's dry season because in Southeast

Asia, the dry season arrives first chronologically. We did, however, predict the 2012 wet season

both with and without the 2012 dry season present in the training population. We tested sce-

narios in which both seasons per year were included in the training population as well as sce-

narios where only the data from the seasons matching the validation population were included

in the training data (e.g., using only the wet season data to predict the wet season). We also

sought to test scenarios using only more recent year data in the training population (e.g. only

2011, or 2010–2011) and scenarios using more historical year data in the training population

(e.g. 2009–2011) (Table 3).

Inclusion of validation population year/season in training population

Cross validation experiment 1 (CV1) accuracies were calculated for all experiments with the

validation year/season included in the training population, excluding individuals in the valida-

tion fold. Including the validation year/season in the training population can bias accuracies

upwards by confounding GxE and line effects, however, so in order to obtain an estimate of

this bias, we also performed cross validation experiments 2 and 3 (CV2, CV3) for CV permuta-

tions 1–5, see above table. For CV2, we excluded the validation year/season from the training

population. These results are not directly comparable to those in which the training population

contained the validation year/season (CV1), however, because the training population for CV2

is smaller than was used for CV1 and training population size can have an important effect on

prediction accuracy. For this reason, we performed CV3, in which we included the validation

year/season in the training population, but removed the equivalent seasons from 2011, e.g., for

the first cross-validation permutation in the above table, CV2 would not include the 2012 dry

season in the training population, and CV3 would include the 2012 dry season but would not

include the 2011 dry season. Thus, the estimate of bias can be calculated for a given CV permu-

tation experiment as CV3 accuracy minus the CV2 accuracy [26]. The bias was only estimated

Table 3. CV experiments.

Experiment Numbers

TP VP

2012DS 2012WS

2009–2011 AS 1 3

2009–2011 AS, 2012DS 2

2009–2011 DS 4

2009–2011 WS 5

2011 AS 6 7

2011 AS, 2012 DS 8

2010–2011 AS 9 10

2010–2011 AS, 2012 DS 11

2010 WS, 2011 AS 12

*AS = all seasons, DS = dry season only, WS = wet season only

doi:10.1371/journal.pgen.1004982.t003
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for the first five CV permutations because the bias estimates turned out to be small and similar

to each other for all five CV permutations.

Calculation of adjusted phenotypes for validation folds and correlation
analyses

For all three traits, multiple years, seasons, and replicate yield entries existed along with the

previously described covariates for all 332 individuals. In order to build genomic selection

models, it was necessary to convert these raw yields into a single, adjusted yield for each indi-

vidual. Adjusted yields, plant heights, or days to flowering were calculated for each year/season

combination by fitting an initial linear model of the observations y, by line ID (GHID) x1, and

phenotype covariates described above (e.g. lodging) x2. . .n for the given Year x Season in JMP.

Non-significant covariates as determined by an F-test (α> = 0.05) or covariates that resulted

in singularities were removed, and the model re-fit. When all covariates included in the model

were statistically significant, the least squares mean yield for each line ID was exported as the

adjusted yield. Missing phenotype data were coded as null data for the above analysis, or, in

other words, no imputation or numeric filling of phenotypic values was performed.

The least square means for each year and season were also used to calculate a correlation

matrix for each trait (S3 Fig.).

Calculation of adjusted phenotypes for training folds

For each experiment, adjusted yields were calculated for each of the five training folds separate-

ly by fitting a linear model for each training fold as described above with the difference that

data from all years and seasons for a particular CV experiment was including in the x matrices

for all lines not in the validation fold. Year, season, and a year x season interaction were also in-

cluded as covariates in the model, and subject to the same significance requirements as the

other model covariates.

Genomic selection and pedigree modeling

Six statistical methods were used for each experiment, including four genomic selection meth-

ods: RR-BLUP, Bayesian LASSO (BL), Reproducing Kernel Hilbert Spaces (RKHS), and Ran-

dom Forest (RF), and two non-genomic selection methods: Multiple Linear Regression (MLR)

and Pedigree-BLUP (PED). The four genomic selection methods were chosen based on their

demonstrated success in accurately predicting GEBV in variety of crops and because they rep-

resent the different types of statistical methodologies used to build GS models, i.e., Linear

parametric methods (RR-BLUP, BL), non-linear semi-parametric methods (RKHS), non-line-

ar, non-parametric methods (RF), as well as Frequentist methods (RR-BLUP, RKHS), Bayesian

methods (BL), and machine learning methods (RF) [19,23,49,50,65,66,67]. For an overview of

the methods, see Lorenz et al., 2011[8].

Multiple linear regression using a subset of markers derived from single marker regressions

(MLR), another linear, parametric statistical method was the fifth statistical method tested to

predict breeding value, and served as our used as a non-GS marker-based prediction control.

For each fold, single marker regression was run for all markers and p-values determined for

each marker by f-test. Note that this is the statistical equivalent of a crude GWAS. Linear mod-

els were then tested using 1 through the first 100 most significant markers, and the model with

the best fit was returned. The returned model was then used to calculate the accuracy for the

given fold. For the marker subset experiments where the number of markers (p) was less than

100, models were tested using 1 through p markers. MLR has been shown to be effective for
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agronomic traits with very simple genetic architectures, but is otherwise not expected to per-

form well [51].

Prediction based on pedigree alone was the sixth statistical method and was performed in

order to determine if a.) the fold design method properly controlled for family structure within

the dataset, and b.) if GS could outperform prediction based on pedigree alone [52].

All statistical modeling was done in R. For the pedigree models an A-matrix was calculated

using a three-generation pedigree file for all individuals in the training and validation popula-

tions using a custom R function. The models themselves were calculated using package rrBLUP

(function kin.BLUP). RR-BLUP models were also calculated using package rrBLUP (function

kinship.BLUP). RKHS models were calculated using kinship.BLUP, K.method = "GAUSS",

modified so that parameter theta was always equal to 2.5, as per guidelines in the BGLR pack-

age documentation [68]. Random Forest was performed using package randomForest (func-

tion randomForest). Bayesian LASSO was performed using package BLR (function BLR).

Narrow sense heritabilities were calculated for each trait on a per line basis using the

rrBLUP package, function mixed.solve, with the least square means for the complete validation

populations used as input. The narrow sense heritabilities were calculated as the additive genet-

ic variance divided by the total phenotypic variance. The set of 73,147 SNPs was used for all ex-

periments with the exception of the marker subset experiments described below.

The cross-validation results were analyzed using ANOVA and pairwise student's t to

determine:

a. significant difference in the accuracy of prediction of the two validation populations across

statistical methods, i.e., where yi (accuracy) = μ + xijβj + εij, and i is one RYT experiment

and stat method for validation population j (e.g. xi = CV experiment 1 for method RR-

BLUP and j = validation population 2012 DS).

b. significant difference in the performance of the six statistical methods across the different

experiments, i.e., where yi (accuracy) = μ + xijβj + εij, and i is one RYT experiment for stat

method j (e.g. xi = CV experiment 1 and j = RR-BLUP).

c. significant difference in the performance of each experiment across statistical methods,

after excluding the three worst-performing statistical methods (Bayesian LASSO, MLR, and

pedigree only), i.e., where yi (accuracy) = μ + xijβj + εij, and i is one statistical method for

RYT experiment j (e.g. xi = RR-BLUP and j = CV experiment 1) (Table 1, S2–S4 Tables).

Cross validation using random and distributed SNP subsets

Distributed. To select subsets of SNPs that were evenly distributed across the genome, 11 bin

parameters were selected: 25Kb (0.1 cM), 50 Kb (0.2 cM), 120 Kb (.5 cM), 240Kb (1 cM),

480 Kb (2 cM), 840 Kb (3.5 cM), 1200 Kb (5 cM), 1800 Kb (7.5 cM), 2400 Kb (10 cM), 3600 Kb

(15 cM), 4800 Kb (20 cM). For each bin parameter, all SNPs in the 73,147 SNP set were placed

into bins according to the bin parameter. To select subsets of SNPs for a given bin size, the

SNPs in each bin were sorted first by minor allele frequency, largest to smallest, and then by

call rate, largest to smallest. Ten selections of SNPs were made for each bin size—the first sub-

set consisted of the top ranked SNP in each bin, i.e., the SNP with the highest MAF and call

rate, the second subset consisted of the second ranked SNP in each bin, and so on for the top

ten SNPs in each bin. If a bin had fewer than ten SNPs, then the top SNP in each bin was cho-

sen for all ten selections.

Each subset was then used as the genotype matrix to perform five-fold cross-validation

using the same folds as for the original RYT cross validation experiments. The RYT 2012 wet
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season and the RYT 2012 dry season served as the validation populations and RYT years 2009–

2011, all seasons, served as the training population. The five marker-dependent statistical

methods tested previously were used once more: RR-BLUP, RKHS, Random Forest, Bayesian

LASSO, and MLR. Accuracy was calculated for each of the ten selections (for each bin parame-

ter) as previously. A mean accuracy, standard deviation, and standard error for each bin pa-

rameter were also calculated by averaging the cross-validation results of the 10 selections for

each bin parameter (S5 Table).

The average accuracies with standard error as the error bars were plotted versus the number

of SNPs in each subset (as determined by the bin size parameter) using JMP (Figs. 1, S4). The

results for full 73,147 SNP set were included on these plots as a reference, although these accu-

racies are not averages. ANOVA and pairwise students were used to test for significant differ-

ence in the performance of the five statistical methods across the different bin parameter sizes,

and for significant differences in the performance of the various bin parameter sizes (and thus

total SNP number) across the five statistical methods (S5–S6 Tables).

Random. Ten random selections of SNPs were chosen from the 73,147 SNP set for 15 sub-

set sizes: 24, 48, 65, 83, 96, 109, 161, 212, 316, 448, 781, 1553, 3076, 7142, 13101 using a pseu-

do-random numbers generator. Subset sizes 83, 109, 161, 212, 316, 448, 781, 1553, 3076, 7142,

and 13101 were chosen to match the number of SNPs in the distributed SNP subsets described

above. The additional SNP subset sizes were included to improve resolution.

Cross validation experiments and analysis were performed for the random subsets as de-

scribed above for the distributed subsets (Fig. 1, S4 Fig., S6 Table).

Supporting Information

S1 Fig. Plots of the first four principle components of selected elite breeding lines using

73,147 SNPs. (A) Initial principle components analysis (PCA) using 363 lines to identify 13 ja-

ponica outliers (purple). (B) PCA on remaining 350 lines after removing 13 outliers identified

in A. An additional 18 outliers (purple) were subsequently identified and excluded.

(EPS)

S2 Fig. Partitioning around K-medoids analysis of remaining 332 genotyped lines after re-

moval of subpopulation outliers. Plot shows the number of clusters versus the average silhou-

ette distance (asw). Maximum asw occurs at k = 87, suggesting this is the most statistically

probable number of clusters within the 332 lines.

(EPS)

S3 Fig. Cell plots showing the least square mean correlations for grain yield (top), flowering

time (middle) and plant height (bottom) for each year and season.

(EPS)

S4 Fig. Mean accuracies of cross-validation for prediction of grain yield (Kg/ha) (top row),

flowering time (days to 50% flowering) (middle row), and plant height (cm) (bottom row)

in the 2012 wet season, using 10 selections of SNP subsets either distributed evenly

throughout the genome (right column) or chosen at random (left column) and five differ-

ent statistical methods, error bars constructed using 1 standard error from the mean. The

training population consisted of data from years 2009–2011, both seasons per year.

(EPS)

S5 Fig. Diagram of genotyping process. 384-plex GBS was used to discover and call SNPs on

369 elite inbred rice lines from the IRRI irrigated rice breeding program. SNPs were discovered

and called from the raw GBS data using TASSEL3 with physical alignment to the MSU version
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6 Nipponbare rice reference genome using Bowtie2 (yellow boxes). Imputation of missing data

was then performed using the TASSEL3 fastimputationbitfixedwindow plugin as it was well

suited to this collection of multi-parent inbred lines in which many regions across the lines

were identical by descent (methods). After imputation, custom python scripts (green boxes)

were used to remove SNPs with call rates< 90%, remove monomorphic SNPs, drop individu-

als with more than 60% missing data, and finally, convert the ACTG nucleotide calls to numer-

ic coding (i.e., homozygote class I = 1, homozygote class II = -1, heterozygote = 0). After

genotypes were converted to numeric format, remaining missing genotype values were filled

using the numeric line mean.

(EPS)

S1 Table. Summary of missing data for the remaining 332 genotyped lines (after outlier re-

moval) by year and season.

(DOCX)

S2 Table. Complete GS cross-validation results for grain yield in the 2012 dry season (2012

DS) and the 2012 wet season (2012WS) using 73,147 SNPs. TP = Training population, all =

both dry and wet seasons for each year, DS only = dry seasons only for each year, WS only =

wet seasons only for each year. VP = validation population. Accuracy = correlation of the pre-

dicted GEBV and the phenotype in the validation population, where the training population

included the validation season/year for individuals not in the validation fold. Accuracy exp

type 2 = correlation of the predicted GEBV and the phenotype in the validation population,

where the validation year/season is not included in the training population. Accuracy exp type

3 = correlation of the predicted GEBV and the phenotype in the validation population, where

the validation year/season is included in the training population, but the equivalent set of data

is removed from year 2011. Bias estimate = Accuracy exp type 3 minus Accuracy exp type

2. Statistical methods not connected by the same letter performed significantly different from

each other across experiments by pairwise students t (α = .05).

(XLSX)

S3 Table. Complete GS cross-validation results for flowering time in the 2012 dry season

(2012 DS) and the 2012 wet season (2012WS) using 73,147 SNPs. TP = Training population,

all = both dry and wet seasons for each year, DS only = dry seasons only for each year, WS

only = wet seasons only for each year. VP = validation population. Accuracy = correlation of

the predicted GEBV and the phenotype in the validation population, where the training popu-

lation included the validation season/year for individuals not in the validation fold. Accuracy

exp type 2 = correlation of the predicted GEBV and the phenotype in the validation population,

where the validation year/season is not included in the training population. Accuracy exp type

3 = correlation of the predicted GEBV and the phenotype in the validation population, where

the validation year/season is included in the training population, but the equivalent set of data

is removed from year 2011. Bias estimate = Accuracy exp type 3 minus Accuracy exp type

2. Statistical methods not connected by the same letter performed significantly different from

each other across experiments by pairwise students t (α = .05).

(XLSX)

S4 Table. Complete GS cross-validation results for plant height in the 2012 dry season

(2012 DS) and the 2012 wet season (2012WS) using 73,147 SNPs. TP = Training population,

all = both dry and wet seasons for each year, DS only = dry seasons only for each year, WS

only = wet seasons only for each year. VP = validation population. Accuracy = correlation of

the predicted GEBV and the phenotype in the validation population, where the training popu-

lation included the validation season/year for individuals not in the validation fold. Accuracy
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exp type 2 = correlation of the predicted GEBV and the phenotype in the validation population,

where the validation year/season is not included in the training population. Accuracy exp type

3 = correlation of the predicted GEBV and the phenotype in the validation population, where

the validation year/season is included in the training population, but the equivalent set of data

is removed from year 2011. Bias estimate = Accuracy exp type 3 minus Accuracy exp type

2. Statistical methods not connected by the same letter performed significantly different from

each other across experiments by pairwise students t (α = .05).

(XLSX)

S5 Table. Complete GS cross-validation results using distributed subsets of SNPs for pre-

diction of grain yield, flowering time, and plant height in the 2012 dry and wet seasons.

Distribution of SNPs was based on a bin parameter, i.e., the genome was divided into bins of a

certain size, then ten subsets of SNPs were selected by choosing the SNPs in each bin with the

largest minor allele frequencies and highest call rates. Training population = RYT 2009–2011

all. Cells in the SNP number column (within a particular trait and validation season) not con-

nected by the same letter indicate a significant difference in the mean CV accuracy for this bin

size for a given statistical method by pairwise student's t, α = 0.05 (each validation population

and statistical method were run separately). Cells in the stat method column not connected by

the same letter (within a particular trait and validation season) indicate a significant difference

in the performance of this statistical method (versus the other four statistical methods) for a

given bin size by pairwise student's t, α = 0.05 (each validation population and SNP number

were run separately). All traits and validation seasons were also run separately.

(XLSX)

S6 Table. Complete GS cross-validation results using random subsets of SNPs for predic-

tion of grain yield, flowering time, and plant height in the 2012 dry and wet seasons. For

each number of random SNPs, ten random subsets of the 73,147 SNP set were chosen. Training

population = RYT 2009–2011 all. Cells in the SNP number column (within a particular trait

and validation season) not connected by the same letter indicate a significant difference in the

mean CV accuracy for this bin size for a given statistical method by pairwise student's t, α =

0.05 (each validation population and statistical method were run separately). Cells in the stat

method column not connected by the same letter (within a particular trait and validation sea-

son) indicate a significant difference in the performance of this statistical method (versus the

other four statistical methods) for a given bin size by pairwise student's t, α = 0.05 (each valida-

tion population and SNP number were run separately). All traits and validation seasons were

also run separately.

(XLSX)
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