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Pacific oysters are a key aquaculture species globally, and genetic improvement via

selective breeding is a major target. Genomic selection has the potential to expedite

genetic gain for key target traits of a breeding program, but has not yet been evaluated

in oyster. The recent development of SNP arrays for Pacific oyster (Crassostrea gigas)

raises the opportunity to test genomic selection strategies for polygenic traits. In this

study, a population of 820 oysters (comprising 23 full-sibling families) were genotyped

using a medium density SNP array (23 K informative SNPs), and the genetic architecture

of growth-related traits [shell height (SH), shell length (SL), and wet weight (WW)] was

evaluated. Heritability was estimated to be moderate for the three traits (0.26 ± 0.06

for SH, 0.23 ± 0.06 for SL and 0.35 ± 0.05 for WW), and results of a GWAS indicated

that the underlying genetic architecture was polygenic. Genomic prediction approaches

were used to estimate breeding values for growth, and compared to pedigree based

approaches. The accuracy of the genomic prediction models (GBLUP) outperformed

the traditional pedigree approach (PBLUP) by ∼25% for SL and WW, and ∼30% for

SH. Further, reduction in SNP marker density had little impact on prediction accuracy,

even when density was reduced to a few hundred SNPs. These results suggest that

the use of genomic selection in oyster breeding could offer benefits for the selection of

breeding candidates to improve complex economic traits at relatively modest cost.

Keywords: genomic selection, Pacific oyster, growth, GBLUP, SNP array

INTRODUCTION

Pacific oyster (Crassostrea gigas) is the most cultivated oyster species worldwide and has been
introduced to many countries for aquaculture production (Troost, 2010). Global production of
this species reached ∼0.6 M tones in 2016 (FAO, 2018). Given its importance, several selective
breeding programs based on family and mass selection have been conducted for the improvement
of economically important traits such as body weight, growth rate, survival and yield (Langdon
et al., 2003; Evans and Langdon, 2006; Li et al., 2011; deMelo et al., 2016), showing an improvement
of the target traits after 1–5 generations. As with other aquaculture species, the recent development
of genomic tools opens up the possibility for incorporating genetic markers into breeding programs
via genomic selection, resulting in improved selection accuracy and genetic gain (Goddard and
Hayes, 2007).
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In recent years, substantial effort has been put toward the
development of genomic resources for Pacific oyster, which
include a reference genome assembly (Zhang et al., 2012), genetic
marker databases including microsatellites (Li et al., 2003; Sekino
et al., 2003) and SNPs (Sauvage et al., 2007; Fleury et al., 2009;
Wang J. et al., 2015) and low density linkage maps, containing
both microsatellites and SNPs (Hubert and Hedgecock, 2004;
Hedgecock et al., 2015). The recent development of two oyster
SNP arrays; a combined-species medium density array for Pacific
oyster and European flat oyster (O. edulis) (Gutierrez et al., 2017)
and a high density array for Pacific oyster (Qi et al., 2017);
raises the opportunity of rapidly collecting genotype data for
many 1000s of SNP markers dispersed throughout the genome.
Moreover, a high density linkage map containing ∼20 K SNPs
has recently been created and aligned with the physical reference
genome assembly (Gutierrez et al., 2018).

A limited number of quantitative trait locus (QTL) mapping
studies have been performed to examine the genetic basis of
growth related traits in Pacific oyster (Hedgecock et al., 2007;
Guo et al., 2012; Wang and Li, 2017), generally indicating
that these traits are polygenic in nature. With the recently
developed genotyping resources, GWASmight have the potential
to address some of the drawbacks that QTL mapping (based on
linkage) has, particularly related to marker density. Moreover,
GWAS are based on a population level linkage disequilibrium
between markers and QTL, which could potentially facilitate
the application of marker-assisted selection (MAS) in breeding
programs. However, MAS based on polygenic traits is likely to
be ineffective due to capturing only a small proportion of the
genetic variation in the trait. Therefore, genomic selection may
be a promising avenue for incorporating markers into shellfish
breeding. In genomic selection, genome-wide SNP markers
are used to generate a genomic relationship matrix which is
utilized to predict genomic estimated breeding values (GEBVs)
for individuals without phenotypes, based on training of the
genomic prediction equation in a reference population with both
phenotypes and genotypes (Goddard and Hayes, 2007). Given
that genomic selection can be used to accurately predict breeding
values even in the absence of trait or pedigree information, it may
have high potential for oysters where routine pedigree recording
can be difficult for two reasons. The first is that maintaining
physically separate families is logistically difficult and expensive,
and tagging of juvenile oysters is challenging. The second is
that genotyping errors for traditional marker assays such as
microsatellites are common, and several examples of incorrect
pedigree assignment have been described, thought to be due to
the high frequency of null alleles, ranging from 16 to 51% (Launey
and Hedgecock, 2001; Hedgecock et al., 2004; Reece et al., 2004).
Encouraging, the use of SNPs from the oyster SNP array platform
was shown to be successful in the parental assignment in a limited
number of Pacific oyster families (Gutierrez et al., 2018). The
advantages of genomic selection over traditional pedigree-based
approaches in terms of accuracy of the predictions observed for
both livestock and aquaculture species for polygenic traits have
been described for several aquaculture species (Ødegård et al.,
2014; Tsai et al., 2015; Dou et al., 2016; Palaiokostas et al., 2016;
Correa et al., 2017; Vallejo et al., 2017a). However, despite the

importance of Pacific oyster to global aquaculture, no studies
have yet evaluated the potential of genomic selection for breeding
value prediction in this species.

The primary aim of the current study was to evaluate
the potential use of genomic prediction in a population of
Pacific oysters derived from a commercial hatchery. Several
growth-related traits were evaluated as exemplar polygenic traits,
including shell length (SL), shell height (SH), and wet weight
(WW). The impact of SNPmarker density on genomic prediction
accuracy was evaluated, alongside strategies for selecting low
density panels for potential improvement of genotyping cost-
efficiency.

MATERIALS AND METHODS

Source of Oysters
The population used in this study were derived from crosses
between broodstock from a commercial oyster hatchery
(Guernsey Sea Farms, United Kingdom) and were a subset of the
samples used for analysis of resistance to Ostreid Herpesvirus,
as described in Gutierrez et al. (2018). There were two sets of
oyster crosses used in the study. The first comprised three pair
crosses that were created at Cefas (from 3 sires and 2 dams) and
then reared in separate tanks. Larvae were held in 5 L tanks with
daily water renewal, daily feeding and constant aeration. Post
settling (at roughly 2 weeks) these were moved to 10 L tanks
with a constant flow of water and feed. Spat were handled every
2–3 weeks, when the tanks were cleaned. Feed was provided
at the rate recommend in the manual for hatchery culture of
bivalve mollusc, according to the spat density and water volume
of each tank. Larvae were fed a mix of Chaetoceros, T-Isochrysis
and Pavlova algae. The remaining crosses (from 14 sires and 14
dams) were obtained as spat from a mass spawning at Guernsey
Sea Farms (GSF). Prior to settling, larvae were held in upwelling
2 L bottle system, with aeration and constant supply of feed
according to standard hatchery procedure. Post settling, oysters
were held at GSF for 3 weeks then delivered overnight to Cefas
where they were held on mesh upwelling system in a large 60 L
tank, with a constant flow of water.

For both groups of oysters reared at Cefas (from larval stage
for the first group, from post-settlement stage for the second
group), spat were handled every 2–3 weeks, when the tanks
were cleaned. The oysters were drip fed a constant supply of
mixed food including Pavlova, T-Isochrysis and Tetraselmis.
Throughout the experiment, all sea water was filtered, UV
treated, mixed to a salinity of 25 ppt with RO water, and aerated
prior to use. Feed was provided at the rate recommend in the
manual for hatchery culture of bivalve mollusc, according to the
density of each tank. On several occasions, where algal stocks
were low, food was supplemented with shellfish diet 1,8001.
Measurements were taken at approximately 6 months. The
differences in early life environment may have affected growth
rate and were therefore accounted for in the statistical model
described below. Parental assignment was performed as described

1http://reedmariculture.com/
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in Gutierrez et al. (2018), resulting in the identification of 23
different full-sibling families in the population. All animals were
reared in accordance with the United Kingdom Home Office
regulations regarding the use of animals in experiments. The trial
was carried out at the Centre for Environment, Fisheries and
Aquaculture Science (Cefas, United Kingdom).

Phenotypic Measurements
Shell measurements (SL and SH) were taken following a standard
protocol for the measurement of oyster shells (Galtsoff, 1964).
Wet weight (WW) was recorded during the DNA extraction
procedures where the whole animal (excluding shell) was used.

SNP Array Genotyping
Genome-wide SNP data were generated using the recently
developed Affymetrix SNP array for oysters (Gutierrez et al.,
2017), as described in Gutierrez et al. (2018). Briefly, genomic
DNA was extracted from the whole oyster (minus the shell) using
the RealPure genomic DNA extraction kit (Valencia, Spain),
quantified on a Qubit fluorometer (Invitrogen) and the DNA
integrity was checked on a 1% agarose gel. Array genotyping
was carried out at Edinburgh Genomics, and quality control was
performed using the Axiom Analysis Suite v2.0.0.35, following
the “best practices workflow” with a sample and SNP call
threshold of 90%. These settings resulted in 23,388 SNPs classified
as good quality and therefore retained for downstream analyses.
Post-filtering, the final dataset comprised 820 individuals with
genotype and phenotype data.

Genetic Parameter Estimation
Genetic parameters for the resistance traits were estimated using
a linear mixed model approach fitting animal as a random effect
using ASReml 4 (Gilmour et al., 2015) with the following model:

y = Xb + Zu + e (1)

where y is the observed trait, u is the vector of additive genetic
effects, b is the vector of fixed effect of tank, e is the residual
error, andX and Z the corresponding incidence matrices for fixed
effects and additive genetic effects, respectively. The (co)variance
structure for the genetic effect was calculated either using the
pedigree matrix (A) (i.e., u∼N(0, Aσa

2) or genomic matrix (G)
N(0, Gσa

2), where σ
2 is the genetic variance. Hence, the narrow

sense heritability was estimated by the additive genetic variance
and total phenotypic variance, as follows:

h2 = σ
2
a/σ

2
p (2)

where σ
2
a is the additive genetic variance and σ

2
p is the total

phenotypic variance which is a sum of σa
2 + σe

2
. The genomic

relationship matrix used for the analysis was obtained according
to VanRaden (2008) using the GenABEL package (Aulchenko
et al., 2007) and inverted using a standard “R” function. The fixed
effect of “tank” partially accounted for the differences in early
life conditions between the pair-cross and batch-spawned oysters,
which were held in separate tanks at Cefas during post-settlement
rearing.

Genome-Wide Association Studies
The GWAS were performed for the three growth-related
traits using two approaches, first using the GenABEL package
(Aulchenko et al., 2007) in R and also genomic BLUP analysis
implemented in BLUPF90 software (Misztal et al., 2002). The
genotype data was filtered as part of quality control by using
the check.markers module to exclude SNPs with a minor
allele frequency (MAF) <0.05, call rate <0.90 and significantly
deviated from Hardy–Weinberg Equilibrium <1 × 10−6, leaving
13,278 SNPs for downstream analyses. Association analyses were
performed using the family-based score test for association
(FASTA) using the mmscore function (Chen and Abecasis, 2007)
with the mixed linear model (MLM) approach used to avoid
potential false positive associations due to population structure.
Genotype data were used to calculate the genomic kinship matrix
which was fitted in the model alongside the top four principal
components as covariates to account for population structure.
The genome-wide significance threshold was set to 3.76 × 10−6

as determined by Bonferroni correction (0.05/N), where N
represents the number of QC-filtered SNPs across the genome,
while the suggestive threshold was set as 3.76 × 10−5 (0.5/N),
i.e., allowing 0.5 false positive per genome scan. For the BLUPF90
approach, the same data previously filtered by GenABEL were
used. Model (1) was fitted using the genomic (G) relationship
matrix that was created according to VanRaden (2008). In this
case, windows of 10 adjacent (not overlapping) SNPs based on the
linkage map position were created using POSTGSF90 (Aguilar
et al., 2014). It has been shown that the use of a higher number of
SNPs (as SNPwindows) in the analysis of quantitative traits could
capture the QTL effect more accurately than a single SNP (Habier
et al., 2011). Even though recent studies have argue that the use of
a higher number of markers in the window should provide better
power for the detection of QTL (Wang H. et al., 2014; Gonzalez-
Pena et al., 2016; Vallejo et al., 2017b). We chose to only use
10 consecutive SNPs (as windows) to reduce the possibilities of
wrong SNP position, given that numerous assembly errors have
been described within the oyster genome (Hedgecock et al., 2015;
Gutierrez et al., 2018), and therefore the SNP order may not be
fully accurate.

Genomic Prediction
For the estimation of genomic prediction values, the genotype
data was filtered to allow markers with a (MAF) >0.01, which
resulted in a higher number of markers in the analysis (16,079
SNPs). Estimated breeding values were obtained using either
pedigree-based BLUP (PBLUP) or Genomic best linear unbiased
prediction (GBLUP) using the linear model described above. The
accuracy of genomic selection was estimated by fivefold cross
validation (training set 80%, validation set 20%), which were
repeated five times. Phenotypes from the validation population
were masked and breeding values were estimated using ASReml
4 using the linear mixed model described above (1). Prediction
accuracy was calculated as the correlation between the predicted
EBVs of the validation set and the actual phenotypes divided
by the square root of the heritability estimated in the validation
population [∼r(y1, y2)/h]. Mean prediction accuracy values
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obtained from the different sets were computed and compared
between the pedigree and genomic approaches.

Two different strategies for evaluating the potential of lower
marker densities for genomic prediction were applied. First, the
low density SNP panel for use in the computing the genomic
relationship matrix was selected by a progressive increase of the
MAF threshold from 0.01 to 0.475 resulting in a progressive
reduction in number of markers (as shown in Table 2); Secondly,
the low density SNP panel was selected using a strategy of random
“thinning” of SNPs from the full dataset (15, 10, 5, 2.5, 1, and
down to 100 SNPs).

Data Availability
Genotype data corresponding to these samples has already
been made publicly available as Supplementary Material by
Gutierrez et al. (2018). The combined-species medium density
SNP array for oysters can be ordered from Thermo Fisher
Scientific (Waltham, CA, United States).

RESULTS AND DISCUSSION

Trait Summary and Heritability
The mean and standard deviation values for the growth-related
traits were 11.27 ± 2.9, 34.94 ± 28.33, and 8.3 ± 1.97 for
SH, WW, and SL, respectively. The genetic correlation between
the traits was high >0.9 for all traits and the phenotypic
correlation slightly lower (Table 1). Moderate heritability values
were estimated for all traits, ranging from 0.20 (pedigree-based)
for length, to 0.35 for weight (G-matrix based), as shown in
Table 1. Previous studies have described significant heritability
values for growth traits in Pacific oyster, albeit these estimates
range in magnitude. For instance, Dégremont et al. (2007)
reported the heritability estimates for weight that ranged from
0.07 to 0.15 in 6–8 months old C. gigas, while Kong et al.
(2015) and Lannan (1972) reported values for weight at ∼0.35 in
older samples of the same species. Other studies have reported
heritability estimates for weight ranging from 0.1 to 0.5 in
C. gigas (Hedgecock et al., 1991; Sheridan, 1997; Langdon et al.,
2003; Evans and Langdon, 2006). Our results are consistent
with heritability estimates described for shell measurements,
e.g., Li et al. (2011) reported values of 0.149–0.402 for SH in
C. gigas at 12 months of age, while Kong et al. (2015) described
estimates of 0.49 for SH and 0.36 for SL, and Xu et al. (2017)
reported heritability values of 0.18 for SH and 0.25 for SL.
These results imply that growth can potentially be improved by
selective breeding. Most oyster breeding programs are focused
on increasing flesh weight, but since a high genetic correlation
between the three analyzed traits (>0.90) was observed, selection
(either pedigree or genomic based) for any one of the traits
is likely to co-select for improvement of the other traits. High
genetic and phenotypic correlations between these traits have also
been observed previously (Kong et al., 2015), and (combinations
of) these traits can be used to predict soft-body WW which is a
main breeding objective for oysters (Wang X. et al., 2014).

It should be noted that the oysters used to assess early-life
growth in the current were potentially influenced by differences

in early life environment, and by the fact that they were survivors
of an OsHV-1 challenge experiment (Gutierrez et al., 2018).
However, there was no evidence of genetic correlation between
the traits of survival and the growth-related traits (data not
shown), which is consistent with the findings of Dégremont et al.
(2007). The early life conditions of the batch-spawned oysters
and the laboratory spawned oysters were different, and this was
partially accounted for by the inclusion of the fixed effect of
“tank” in the statistical model (since the batch-spawned and
pair-cross oysters were held in separate tanks at Cefas post-
settlement). While this fixed effect was not significant, these early
life differences may have impacted on the results, since genotype
by environment interaction has been shown to be important for
growth traits in Pacific oyster (Langdon et al., 2003; Dégremont
et al., 2007). In addition, the disease challenge experiment
may have had a minor influence on size, since growth during
challenge may not be the same trait as growth in the absence
of disease challenge. While the traits measured may not be a
reliable indicator of oyster growth under commercially relevant
conditions, they were heritable and polygenic and therefore
served purpose for testing genomic prediction approaches.

Genome-Wide Association Studies
(GWAS)
There was no significant or suggestive association detected by
GenABEL between any SNP and any of the three analyzed
traits (Supplementary Table S1 and Supplementary Figure S1).
Additionally, the proportion of variance explained (PVE) by
each SNP was low (∼2%) highlighting the absence of any major
QTL controlling growth traits in this population. Moreover,
BLUPF90 analysis based on consecutive (not overlapping) SNP
windows did not detect major QTL in any of the three traits,
although a suggestive QTL was detected for SL in a window that
explained 1.48% of the genetic variance and located on LG 1
(48.61 cM) (Supplementary Table S2 and Supplementary Figure

S2), Worth noting that 2 windows located at LG 7 (73.23 cM) and
LG 6 (39.94–40.82 cM) were found among the 10 highest scores
for the three analyzed traits. These results suggest a polygenic
nature of growth-related traits in Pacific oyster, controlled by

TABLE 1 | Genetic parameter estimates for the growth-related traits in the Pacific

oyster samples.

SH SL WW

Mean (s.d) 11.27 (2.9) 8.3 (1.9) 34.94 (28.3)

HERITABILITYb

G-matrix 0.26 (0.05) 0.23 (0.06) 0.35 (0.05)

A-Matrix 0.23 (0.12) 0.20 (0.11) 0.31 (0.13)

CORRELATIONa

SH – 0.83 (0.01) 0.78 (0.02)

SL 0.95 (0.04) – 0.74 (0.02)

WW 0.92 (0.06) 0.90 (0.06) –

aGenetic correlation was estimated based on the genomic relationship matrix and

values are shown below the diagonal, while phenotypic correlation values are

shown above the diagonal. bHeritability was estimated based on the genomic

relationship matrix (G-matrix) and the pedigree.
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FIGURE 1 | Mean accuracies for GBLUP and PBLUP for the three analyzed traits. WW, wet weight; SH, shell height; SL, shell length.

many loci with small effects as it has been observed in many
aquaculture species such as Atlantic salmon (Gutierrez et al.,
2015; Tsai et al., 2015; Yoshida et al., 2017), rainbow trout
(Wringe et al., 2010), common carp (Palaiokostas et al., 2018),
grouper (Yu et al., 2018), turbot (Sánchez-Molano et al., 2011),
Asian seabass (Wang L. et al., 2015), and also oysters (Guo et al.,
2012; Li and He, 2014).

To inform a strategy for deployment of genetic markers
in commercial aquaculture breeding programs, it is important
to first define the genetic architecture of the target trait(s) in
question. Marker assisted selection (MAS) is most appropriate
when major QTL explain a high proportion of genetic variation
in the trait, enabling use of a small panel of QTL-linked markers
to supplement pedigree-based selection. A good example of
this is resistance to the Infectious Pancreatic Necrosis virus
(IPNV) in Atlantic salmon, where most genetic variation is
explained by a single QTL (Houston et al., 2008; Moen et al.,
2009). However, most growth-related traits (and other traits of
economic importance to aquaculture production) are polygenic,
and therefore genomic selection incorporating all markers to
predict breeding values is likely to be a more effective approach.

Genomic Prediction
Genomic prediction accuracy for the three traits were tested using
genotype information from 16,076 markers that passed the QC
filter (MAF >0.01, CallRate >0.9). Animals were randomly split
into training (80%) and validation (20%) sets for cross-validation,
and this was repeated five times. The genomic prediction
accuracy results highlighted that the higher prediction accuracies

were obtained using the genomic information (G-matrix) than
using the pedigree information (A-matrix) (Figure 1), with an
increase of ∼25% for WW (from 0.54 PBLUP to 0.67 GBLUP)
and SL (from 0.44 PBLUP to 0.54 GBLUP) to ∼30% for SH (from
0.47 PBLUP to 0.60 GBLUP). These results are in agreement
with published literature which shows the increase in breeding
value prediction accuracy using genomic vs. pedigree prediction
in aquaculture species, e.g., Atlantic salmon (Ødegård et al., 2014;
Yoshida et al., 2017; Barría et al., 2018; Robledo et al., 2018),
rainbow trout (Vallejo et al., 2017a; Yoshida et al., 2018), sea
bream (Palaiokostas et al., 2016). For growth traits in particular,
studies in Atlantic salmon (Tsai et al., 2015), common carp
(Palaiokostas et al., 2018), and Pacific white shrimp (Wang et al.,
2017) have reported an increase in the prediction accuracies by
the use of genomic information. The results of the current study
highlight the potential of genomic selection for economic traits in
oysters, albeit the cost may be prohibitively expensive and more
cost-effective genotyping strategies may be required for feasibility
of commercial application.

To evaluate the effect of marker density on genomic prediction
accuracy, two strategies of obtaining lower density SNP panels
were applied. The first used progressive increase of minor allele
frequency (MAF) threshold, resulting in progressive decrease
in SNP number (as described in Robledo et al. (2018). The
second involved choosing subsets of SNPs for the low density
panels at random. Using both approaches, significant reduction
in SNP density had little impact on prediction accuracy until
marker densities dropped below ∼2,500 SNPs. With the MAF
approach, the genomic prediction accuracies obtained using the
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FIGURE 2 | Prediction accuracy for the trait of SH when using PBLUP compared to GLUP using a range of different marker densities.

lower density SNP panels ranged from 0.59 (MAF >0.05; 13,337
SNPs) to 0.52 (MAF > 0.475; 474 SNPs) (Table 2 and Figure 2).
Using the random subsets the prediction accuracies ranged from
0.59 (15,000 SNPs) to 0.52 (100 SNPs). In all cases, the genomic
prediction significantly outperformed pedigree prediction, even
for low SNP densities, which has positive implications for future
use of low-cost low-density SNP panels for genomic selection.
The oyster genome is of a moderate size ∼0.6 gb (Zhang et al.,
2012) and that could be related to the low number of markers
needed to high prediction accuracies. Additionally, it is important
to note that since this a relatively small sample set that contains
a relatively limited number of families of known structure, a high
level of relatedness between the training and validation sets is
expected. A total of 23 nuclear families were included in the

study, for which 15 dams and 16 sires were effective breeders,
and resulted in a mix of full sibling and half sibling families
(see Supplementary File S1). This may result in high levels of
linkage disequilibrium across large chromosome segments, which
could influence the genomic prediction accuracy estimates at
low SNP densities. Nonetheless, this may be representative of
typical aquaculture breeding schemes that utilize large full-sib
families for “sib testing,” and where genomic prediction estimates
with low density markers can give high prediction accuracy
(Lillehammer et al., 2013; Tsai et al., 2015). Current limitations
of the use of genomic selection in aquaculture companies relate
to the cost of phenotype recording and genotyping, and the latter
could be eased by the use of low cost genotyping which is directly
related to number of SNPs to be typed. Our results suggest that

TABLE 2 | Genomic prediction values obtained for SH using decreasing marker densities.

Method Approach SNP N Accuracy Approach SNP N Accuracy

PBLUP Pedigree – 0.47

GBLUP MAF 0.01 16,076 0.6 Random 16,076 0.6

GBLUP MAF 0.05 13,337 0.59 Random 15,000 0.59

GBLUP MAF 0.1 10,167 0.59 Random 10,000 0.59

GBLUP MAF 0.15 7,738 0.59 Random 5,000 0.57

GBLUP MAF 0.25 4,768 0.58 Random 2,500 0.59

GBLUP MAF 0.35 2,664 0.57 Random 1,000 0.56

GBLUP MAF 0.45 898 0.55 Random 100 0.52

GBLUP MAF 0.475 474 0.52
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low density SNP panels, as few as several hundred SNPs, may
be sufficient to achieve the asymptote of prediction accuracy in
a mixed family population of oysters that may be typical of an
oyster breeding population.

CONCLUSION

A recently developed medium density SNP array was used to
evaluate the efficacy of different strategies for genomic prediction
in a population of oysters derived from a commercial hatchery.
Three growth-related traits were analyzed as exemplar polygenic
traits (which was confirmed by GWAS). The three traits were
found to be moderately heritable and showed high genetic
correlation. Prediction accuracy for all traits was substantially
higher using genomic prediction than pedigree-based prediction.
Reduction in SNP marker density had little impact on prediction
accuracy when the lower density SNP panels were chosen at
random, implying only a fraction of the SNPs are required to
obtain a marked increase in accuracy relative to pedigree-based
prediction. These results suggest that the use of cost-effective
genomic selection in oyster breeding could bring major benefits
for the selection of polygenic traits, and may have commercial
value for traits which are difficult to measure e.g., disease
resistance.

AUTHOR CONTRIBUTIONS

AG and RH conceived the study. TB and RH designed
the experimental structure. TB established and performed
the experimental challenge. AG performed DNA extractions,
genotype processing, and parentage assignment. AG and
OM performed the quantitative genetic analyses. All authors
contributed to drafting the manuscript.

FUNDING

The authors gratefully acknowledge funding from BBSRC
and NERC under the United Kingdom Aquaculture Initiative
(BB/M026140/1 and NE/P010695/1) in addition to BBSRC
Institute Strategic Program Grants (BBS/E/D/20002172
and BBS/E/D/30002275). Edinburgh Genomics was partly
supported through core grants from NERC (R8/H10/56), MRC
(MR/K001744/1), and BBSRC (BB/J004243/1).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2018.00391/full#supplementary-material

REFERENCES

Aguilar, I., Misztal, I., Tsuruta, S., Legarra, A., and Wang, H. (2014). “PREGSF90 –

POSTGSF90: computational tools for the implementation of single-step

genomic selection and genome-wide association with ungenotyped individuals

in BLUPF90 programs,” in Proceedings of the 10th World Congress of Genetics

Applied to Livestock Production, Vancouver, BC. doi: 10.1093/bioinformatics/

btm108

Aulchenko, Y. S., Ripke, S., Isaacs, A., and Van Duijn, C. M. (2007). GenABEL: an

R library for genome-wide association analysis. Bioinformatics 23, 1294–1296.

doi: 10.1534/g3.118.200053

Barría, A., Christensen, K. A., Yoshida, G. M., Correa, K., Jedlicki, A., Lhorente,

J. P., et al. (2018). Genomic predictions and genome-wide association study

of resistance against Piscirickettsia salmonis in coho salmon (Oncorhynchus

kisutch) using ddRAD sequencing. G3 8, 1183–1194. doi: 10.1534/g3.118.

200053

Chen, W.-M., and Abecasis, G. R. (2007). Family-based association tests for

genomewide association scans. Am. J. Hum. Genet. 81, 913–926. doi: 10.1186/

s12711-017-0291-8

Correa, K., Bangera, R., Figueroa, R., Lhorente, J. P., and Yáñez, J. M.

(2017). The use of genomic information increases the accuracy of breeding

value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic

salmon (Salmo salar). Genet. Sel. Evol. 49:15. doi: 10.1186/s12711-017-

0291-8

deMelo, C. M. R., Durland, E., and Langdon, C. (2016). Improvements in desirable

traits of the Pacific oyster, Crassostrea gigas, as a result of five generations of

selection on the West Coast, USA. Aquaculture 460, 105–115. doi: 10.1016/j.

aquaculture.2006.10.025

Dégremont, L., Ernande, B., Bédier, E., and Boudry, P. (2007). Summer mortality

of hatchery-produced Pacific oyster spat (Crassostrea gigas). I. Estimation

of genetic parameters for survival and growth. Aquaculture 262, 41–53.

doi: 10.1038/srep19244

Dou, J., Li, X., Fu, Q., Jiao, W., Li, Y., Li, T., et al. (2016). Evaluation of the

2b-RAD method for genomic selection in scallop breeding. Sci. Rep. 6:19244.

doi: 10.1038/srep19244

Evans, S., and Langdon, C. (2006). Direct and indirect responses to selection on

individual body weight in the Pacific oyster (Crassostrea gigas). Aquaculture

261, 546–555.

FAO (2018). Food and Agriculture Organization Statistical Yearbook. Rome: FAO.

doi: 10.1186/1471-2164-10-341

Fleury, E., Huvet, A., Lelong, C., De Lorgeril, J., Boulo, V., Gueguen, Y., et al.

(2009). Generation and analysis of a 29,745 unique Expressed Sequence Tags

from the Pacific oyster (Crassostrea gigas) assembled into a publicly accessible

database: the GigasDatabase. BMC Genomics 10:341. doi: 10.1186/1471-2164-

10-341

Galtsoff, P. S. (1964). The American oyster Crassostrea virginica (Gmelin). US Fish

Wildlf. Serv. Fish. Bull. 64, 1–480. doi: 10.1111/j.1439-0388.2007.00702.x

Gilmour A., Gogel, B., Cullis, B., Welham S., and Thompson R. (2015). ASReml

User Guide Release 4.1 Structural Specification. Hemel Hempstead: VSN

International Ltd.

Goddard, M. E., and Hayes, B. J. (2007). Genomic selection. J. Anim. Breed. Genet.

124, 323–330. doi: 10.3389/fgene.2016.00203

Gonzalez-Pena, D., Gao, G., Baranski, M., Moen, T., Cleveland, B. M.,

Kenney, P. B., et al. (2016). Genome-wide association study for identifying

loci that affect fillet yield, carcass, and body weight traits in rainbow

trout (Oncorhynchus mykiss). Front. Genet. 7:203. doi: 10.3389/fgene.2016.

00203

Guo, X., Li, Q., Wang, Q. Z., and Kong, L. F. (2012). Genetic mapping and

QTL analysis of growth-related traits in the pacific oyster. Mar. Biotechnol. 14,

218–226. doi: 10.1007/s10126-011-9405-4

Gutierrez, A. P., Bean, T. P., Hooper, C., Stenton, C. A., Sanders, M. B., Paley,

R. K., et al. (2018). A genome-wide association study for host resistance to

ostreid herpesvirus in pacific oysters (Crassostrea gigas). G3 8, 1273–1280.

doi: 10.1534/g3.118.200113

Gutierrez, A. P., Turner, F., Gharbi, K., Talbot, R., Lowe, N. R., Peñaloza, C.,

et al. (2017). Development of a medium density combined-species SNP array

for pacific and European oysters (Crassostrea gigas and Ostrea edulis). G3 7,

2209–2218. doi: 10.1534/g3.117.041780

Gutierrez, A. P., Yáñez, J. M., Fukui, S., Swift, B., and Davidson, W. S.

(2015). Genome-wide association study (GWAS) for growth rate and age at

Frontiers in Genetics | www.frontiersin.org 7 September 2018 | Volume 9 | Article 391

https://www.frontiersin.org/articles/10.3389/fgene.2018.00391/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2018.00391/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btm108
https://doi.org/10.1093/bioinformatics/btm108
https://doi.org/10.1534/g3.118.200053
https://doi.org/10.1534/g3.118.200053
https://doi.org/10.1534/g3.118.200053
https://doi.org/10.1186/s12711-017-0291-8
https://doi.org/10.1186/s12711-017-0291-8
https://doi.org/10.1186/s12711-017-0291-8
https://doi.org/10.1186/s12711-017-0291-8
https://doi.org/10.1016/j.aquaculture.2006.10.025
https://doi.org/10.1016/j.aquaculture.2006.10.025
https://doi.org/10.1038/srep19244
https://doi.org/10.1038/srep19244
https://doi.org/10.1186/1471-2164-10-341
https://doi.org/10.1186/1471-2164-10-341
https://doi.org/10.1186/1471-2164-10-341
https://doi.org/10.1111/j.1439-0388.2007.00702.x
https://doi.org/10.3389/fgene.2016.00203
https://doi.org/10.3389/fgene.2016.00203
https://doi.org/10.3389/fgene.2016.00203
https://doi.org/10.1007/s10126-011-9405-4
https://doi.org/10.1534/g3.118.200113
https://doi.org/10.1534/g3.117.041780
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Gutierrez et al. Genomic Prediction in Pacific Oyster

sexual maturation in Atlantic salmon (Salmo salar). PLoS One 10:e0119730.

doi: 10.1371/journal.pone.0119730

Habier, D., Fernando, R. L., Kizilkaya, K., and Garrick, D. J. (2011). Extension

of the bayesian alphabet for genomic selection. BMC Bioinformatics 12:186.

doi: 10.1186/1471-2105-12-186

Hedgecock, D., Cooper, K., and Hershberger, W. (1991). Genetic and

environmental components of variance in harvest body size among pedigreed

Pacific oysters Crassostrea gigas from controlled crosses. J. Shellfish Res. 10,

516.

Hedgecock, D., Li, G., Hubert, S., Bucklin, K., and Ribes, V. (2004). Widespread

null alleles and poor cross-species amplification of microsatellite DNA loci

cloned from the Pacific oyster, Crassostrea gigas. J. Shellfish Res. 23, 379–386.

doi: 10.1016/j.aquaculture.2007.07.085

Hedgecock, D., Perry, G. M. L., and Voigt, M. L. (2007). Mapping heterosis QTL in

the Pacific oyster Crassostrea gigas. Aquaculture 272, S267–S268. doi: 10.1534/

g3.115.019570

Hedgecock, D., Shin, G., Gracey, A. Y., Den Berg, D. V., and Samanta, M. P. (2015).

Second-generation linkage maps for the pacific oyster Crassostrea gigas reveal

errors in assembly of genome scaffolds. G3 5, 2007–2019. doi: 10.1534/g3.115.

019570

Houston, R. D., Haley, C. S., Hamilton, A., Guy, D. R., Tinch, A. E., Taggart,

J. B., et al. (2008). Major quantitative trait loci affect resistance to infectious

pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178, 1109–1115.

doi: 10.1534/genetics.104.027342

Hubert, S., and Hedgecock, D. (2004). Linkage maps of microsatellite DNA

markers for the pacific oyster Crassostrea gigas. Genetics 168, 351–362.

doi: 10.1111/are.12205

Kong, N., Li, Q., Yu, H., and Kong, L. F. (2015). Heritability estimates for growth-

related traits in the Pacific oyster (Crassostrea gigas) using a molecular pedigree.

Aquac. Res. 46, 499–508. doi: 10.1016/S0044-8486(02)00621-X

Langdon, C., Evans, F., Jacobson, D., and Blouin, M. (2003). Yields of cultured

Pacific oysters Crassostrea gigas Thunberg improved after one generation of

selection. Aquaculture 220, 227–244.

Lannan, J. E. (1972). Estimating heritability and predicting response to selection

for the Pacific oyster, Crassostrea gigas. Proc. Natl. Shellfish Assoc. 62, 62–66.

Launey, S., and Hedgecock, D. (2001). High genetic load in the pacific oyster

Crassostrea gigas.Genetics 159, 255–265. doi: 10.1046/j.1471-8286.2003.00406.x

Li, G., Hubert, S., Bucklin, K., Ribes, V., and Hedgecock, D. (2003).

Characterization of 79 microsatellite DNA markers in the Pacific oyster

Crassostrea gigas.Mol. Ecol. Notes 3, 228–232. doi: 10.1007/s12562-011-0369-0

Li, Q., Wang, Q., Liu, S., and Kong, L. (2011). Selection response and realized

heritability for growth in three stocks of the Pacific oysterCrassostrea gigas. Fish.

Sci. 77, 643–648. doi: 10.1371/journal.pone.0111707

Li, Y., and He, M. (2014). Genetic mapping and QTL analysis of growth-related

traits in Pinctada fucata using restriction-site associated DNA sequencing. PLoS

One 9:e111707. doi: 10.1371/journal.pone.0111707

Lillehammer, M., Meuwissen, T. H. E., and Sonesson, A. K. (2013). A low-marker

density implementation of genomic selection in aquaculture using within-

family genomic breeding values. Genet. Sel. Evol. 45:39. doi: 10.1186/1297-

9686-45-39

Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., and Lee, D. (2002).

“BLUPF90 and related programs (BGF90),” in Proceedings of the 7th World

Congress on Genetics Applied to Livestock Production, Montpellier. doi: 10.1186/

1471-2164-10-368

Moen, T., Baranski, M., Sonesson, A. K., and Kjøglum, S. (2009). Confirmation and

fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in

Atlantic salmon (Salmo salar): population-level associations between markers

and trait. BMC Genomics 10:368. doi: 10.1186/1471-2164-10-368

Ødegård, J., Moen, T., Santi, N., Korsvoll, S. A., Kjøglum, S., and Meuwissen,

T. H. E. (2014). Genomic prediction in an admixed population of Atlantic

salmon (Salmo salar). Front. Genet. 5:402. doi: 10.3389/fgene.2014.00402

Palaiokostas, C., Ferraresso, S., Franch, R., Houston, R. D., and Bargelloni, L.

(2016). Genomic prediction of resistance to pasteurellosis in gilthead sea bream

(Sparus aurata) using 2b-RAD sequencing. G3 6, 3693–3700. doi: 10.1534/g3.

116.035220

Palaiokostas, C., Kocour, M., Prchal, M., and Houston, R. D. (2018). Accuracy of

genomic evaluations of juvenile growth rate in common carp (Cyprinus carpio)

using genotyping by sequencing. Front. Genet. 9:82. doi: 10.3389/fgene.2018.

00082

Qi, H., Song, K., Li, C., Wang, W., Li, B., Li, L., et al. (2017). Construction and

evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas).

PLoS One 12:e0174007. doi: 10.1371/journal.pone.0174007

Reece, K. S., Ribeiro, W. L., Gaffney, P. M., Carnegie, R. B., and Allen,

J. S. K. (2004). Microsatellite marker development and analysis in the eastern

oyster (Crassostrea virginica): confirmation of null alleles and non-mendelian

segregation ratios. J. Hered. 95, 346–352. doi: 10.1093/jhered/esh058

Robledo, D., Matika, O., Hamilton, A., and Houston, R. D. (2018). Genome-wide

association and genomic selection for resistance to amoebic gill disease in

Atlantic salmon. G3 8, 1195–1203. doi: 10.1534/g3.118.200075

Sánchez-Molano, E., Cerna, A., Toro, M. A., Bouza, C., Hermida, M., Pardo,

B. G., et al. (2011). Detection of growth-related QTL in turbot (Scophthalmus

maximus). BMC Genomics 12:473. doi: 10.1186/1471-2164-12-473

Sauvage, C., Bierne, N., Lapègue, S., and Boudry, P. (2007). Single Nucleotide

polymorphisms and their relationship to codon usage bias in the Pacific oyster

Crassostrea gigas. Gene 406, 13–22. doi: 10.1016/j.gene.2007.05.011

Sekino, M., Hamaguchi, M., Aranishi, F., and Okoshi, K. (2003). Development

of novel microsatellite DNA markers from the pacific oyster Crassostrea gigas.

Mar. Biotechnol. 5, 227–233. doi: 10.1007/s10126-002-0104-z

Sheridan, A. K. (1997). Genetic improvement of oyster production—a critique.

Aquaculture 153, 165–179. doi: 10.1016/S0044-8486(97)00024-0

Troost, K. (2010). Causes and effects of a highly successful marine invasion: case-

study of the introduced Pacific oyster Crassostrea gigas in continental NW

European estuaries. J. Sea Res. 64, 145–165. doi: 10.1016/j.seares.2010.02.004

Tsai, H.-Y., Hamilton, A., Tinch, A. E., Guy, D. R., Gharbi, K., Stear, M. J., et al.

(2015). Genome wide association and genomic prediction for growth traits in

juvenile farmed Atlantic salmon using a high density SNP array. BMCGenomics

16:969. doi: 10.1186/s12864-015-2117-9

Vallejo, R. L., Leeds, T. D., Gao, G., Parsons, J. E., Martin, K. E., Evenhuis, J. P., et al.

(2017a). Genomic selection models double the accuracy of predicted breeding

values for bacterial cold water disease resistance compared to a traditional

pedigree-based model in rainbow trout aquaculture. Genet. Sel. Evol. 49:17.

doi: 10.1186/s12711-017-0293-6

Vallejo, R. L., Liu, S., Gao, G., Fragomeni, B. O., Hernandez, A. G., Leeds, T. D., et al.

(2017b). Similar genetic architecture with shared and unique quantitative trait

loci for bacterial cold water disease resistance in two rainbow trout breeding

populations. Front. Genet. 8:156. doi: 10.3389/fgene.2017.00156

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions.

J. Dairy Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

Wang, H., Misztal, I., Aguilar, I., Legarra, A., Fernando, R. L., Vitezica, Z., et al.

(2014). Genome-wide associationmapping including phenotypes from relatives

without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler

chickens. Front. Genet. 5:134. doi: 10.3389/fgene.2014.00134

Wang, J., and Li, Q. (2017). Characterization of novel EST-SNP markers

and their association analysis with growth-related traits in the Pacific

oyster Crassostrea gigas. Aquac. Int. 25, 1707–1719. doi: 10.1007/s10499-017-

0142-1

Wang, J., Qi, H., Li, L., Que, H., Wang, D., and Zhang, G. (2015). Discovery

and validation of genic single nucleotide polymorphisms in the Pacific oyster

Crassostrea gigas. Mol. Ecol. Resour. 15, 123–135. doi: 10.1111/1755-0998.

12278

Wang, L., Wan, Z. Y., Bai, B., Huang, S. Q., Chua, E., Lee, M., et al. (2015).

Construction of a high-density linkage map and fine mapping of QTL for

growth in Asian seabass. Sci. Rep. 5:16358. doi: 10.1038/srep16358

Wang, Q., Yu, Y., Yuan, J., Zhang, X., Huang, H., Li, F., et al. (2017). Effects of

marker density and population structure on the genomic prediction accuracy

for growth trait in Pacific white shrimp Litopenaeus vannamei. BMC Genet.

18:45. doi: 10.1186/s12863-017-0507-5

Wang, X., Liu, T., Liu, Y., and Feng, P. (2014). An arithmetic index based on shell

height, length, and width, for potential selection of soft-body wet weight in

pacific oyster, Crassostrea gigas. Isr. J. Aquac. 66:4.

Wringe, B. F., Devlin, R. H., Ferguson, M. M., Moghadam, H. K., Sakhrani, D.,

and Danzmann, R. G. (2010). Growth-related quantitative trait loci in domestic

and wild rainbow trout (Oncorhynchus mykiss). BMCGenet. 11:63. doi: 10.1186/

1471-2156-11-63

Frontiers in Genetics | www.frontiersin.org 8 September 2018 | Volume 9 | Article 391

https://doi.org/10.1371/journal.pone.0119730
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1016/j.aquaculture.2007.07.085
https://doi.org/10.1534/g3.115.019570
https://doi.org/10.1534/g3.115.019570
https://doi.org/10.1534/g3.115.019570
https://doi.org/10.1534/g3.115.019570
https://doi.org/10.1534/genetics.104.027342
https://doi.org/10.1111/are.12205
https://doi.org/10.1016/S0044-8486(02)00621-X
https://doi.org/10.1046/j.1471-8286.2003.00406.x
https://doi.org/10.1007/s12562-011-0369-0
https://doi.org/10.1371/journal.pone.0111707
https://doi.org/10.1371/journal.pone.0111707
https://doi.org/10.1186/1297-9686-45-39
https://doi.org/10.1186/1297-9686-45-39
https://doi.org/10.1186/1471-2164-10-368
https://doi.org/10.1186/1471-2164-10-368
https://doi.org/10.1186/1471-2164-10-368
https://doi.org/10.3389/fgene.2014.00402
https://doi.org/10.1534/g3.116.035220
https://doi.org/10.1534/g3.116.035220
https://doi.org/10.3389/fgene.2018.00082
https://doi.org/10.3389/fgene.2018.00082
https://doi.org/10.1371/journal.pone.0174007
https://doi.org/10.1093/jhered/esh058
https://doi.org/10.1534/g3.118.200075
https://doi.org/10.1186/1471-2164-12-473
https://doi.org/10.1016/j.gene.2007.05.011
https://doi.org/10.1007/s10126-002-0104-z
https://doi.org/10.1016/S0044-8486(97)00024-0
https://doi.org/10.1016/j.seares.2010.02.004
https://doi.org/10.1186/s12864-015-2117-9
https://doi.org/10.1186/s12711-017-0293-6
https://doi.org/10.3389/fgene.2017.00156
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3389/fgene.2014.00134
https://doi.org/10.1007/s10499-017-0142-1
https://doi.org/10.1007/s10499-017-0142-1
https://doi.org/10.1111/1755-0998.12278
https://doi.org/10.1111/1755-0998.12278
https://doi.org/10.1038/srep16358
https://doi.org/10.1186/s12863-017-0507-5
https://doi.org/10.1186/1471-2156-11-63
https://doi.org/10.1186/1471-2156-11-63
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Gutierrez et al. Genomic Prediction in Pacific Oyster

Xu, L., Li, Q., Yu, H., and Kong, L. (2017). Estimates of heritability for growth

and shell color traits and their genetic correlations in the black shell strain

of pacific oyster Crassostrea gigas. Mar. Biotechnol. 19, 421–429. doi: 10.1007/

s10126-017-9772-6

Yoshida, G. M., Bangera, R., Carvalheiro, R., Correa, K., Figueroa, R., Lhorente,

J. P., et al. (2018). Genomic prediction accuracy for resistance against

Piscirickettsia salmonis in farmed rainbow trout. G3 8, 719–726. doi: 10.1534/

g3.117.300499

Yoshida, G. M., Lhorente, J. P., Carvalheiro, R., and Yáñez, J. M. (2017). Bayesian

genome-wide association analysis for body weight in farmed Atlantic salmon

(Salmo salar L.). Anim. Genet. 48, 698–703. doi: 10.1111/age.12621

Yu, H., You, X., Li, J., Zhang, X., Zhang, S., Jiang, S., et al. (2018). A genome-

wide association study on growth traits in orangespotted grouper (Epinephelus

coioides) with RAD-seq genotyping. Sci. China Life Sci. 61, 934–946.

doi: 10.1007/s11427-017-9161-4

Zhang, G., Fang, X., Guo, X., Li, L., Luo, R., Xu, F., et al. (2012). The oyster genome

reveals stress adaptation and complexity of shell formation. Nature 490, 49–54.

doi: 10.1038/nature11413

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Gutierrez, Matika, Bean and Houston. This is an open-access

article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 9 September 2018 | Volume 9 | Article 391

https://doi.org/10.1007/s10126-017-9772-6
https://doi.org/10.1007/s10126-017-9772-6
https://doi.org/10.1534/g3.117.300499
https://doi.org/10.1534/g3.117.300499
https://doi.org/10.1111/age.12621
https://doi.org/10.1007/s11427-017-9161-4
https://doi.org/10.1038/nature11413
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction
	Introduction
	Materials and Methods
	Source of Oysters
	Phenotypic Measurements
	SNP Array Genotyping
	Genetic Parameter Estimation
	Genome-Wide Association Studies
	Genomic Prediction
	Data Availability

	Results and Discussion
	Trait Summary and Heritability
	Genome-Wide Association Studies (GWAS)
	Genomic Prediction

	Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References


