
ABSTRACT: In livestock, genomic selection (GS) has 
primarily been investigated by simulation of purebred 
populations. Traits of interest are, however, often mea-
sured in crossbred or mixed populations with uncertain 
breed composition. If such data are used as the training 
data for GS without accounting for breed composition, 
estimates of marker effects may be biased due to popu-
lation stratification and admixture. To investigate this, 
a genome of 100 cM was simulated with varying marker 
densities (5 to 40 segregating markers per cM). After 
1,000 generations of random mating in a population of 
effective size 500, 4 lines with effective size 100 were 
isolated and mated for another 50 generations to cre-
ate 4 pure breeds. These breeds were used to generate 
combined, F1, F2, 3- and 4-way crosses, and admixed 
training data sets of 1,000 individuals with phenotypes 
for an additive trait controlled by 100 segregating QTL 
and heritability of 0.30. The validation data set was a 
sample of 1,000 genotyped individuals from one pure 
breed. Method Bayes-B was used to simultaneously 
estimate the effects of all markers for breeding value 
estimation. With 5 (40) markers per cM, the correla-
tion of true with estimated breeding value of selection 

candidates (accuracy) was greatest, 0.79 (0.85), when 
data from the same pure breed were used for training. 
When the training data set consisted of crossbreds, the 
accuracy ranged from 0.66 (0.79) to 0.74 (0.83) for the 
2 marker densities, respectively. The admixed training 
data set resulted in nearly the same accuracies as when 
training was in the breed to which selection candidates 
belonged. However, accuracy was greatly reduced when 
genes from the target pure breed were not included in 
the admixed or crossbred population. This implies that, 
with high-density markers, admixed and crossbred pop-
ulations can be used to develop GS prediction equations 
for all pure breeds that contributed to the population, 
without a substantial loss of accuracy compared with 
training on purebred data, even if breed origin has not 
been explicitly taken into account. In addition, using 
GS based on high-density marker data, purebreds can 
be accurately selected for crossbred performance with-
out the need for pedigree or breed information. Results 
also showed that haplotype segments with strong link-
age disequilibrium are shorter in crossbred and admixed 
populations than in purebreds, providing opportunities 
for QTL fine mapping.
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INTRODUCTION

Genomic selection (GS; Meuwissen et al., 2001) is 
a form of marker-assisted selection that uses marker 
genotypes and phenotypes in a training population to 
simultaneously estimate effects of a large number of 

markers across the genome for the purpose of predict-
ing breeding values (BV) of selection candidates based 
on their marker genotypes. The accuracy of GS de-
pends on the amount of linkage disequilibrium (LD) 
between QTL and markers and the number of records 
available to estimate marker effects. Most commercial 
beef cattle populations consist of animals with different 
and often unknown breed compositions. The presence 
of an unknown population structure has raised concerns 
about using admixed or crossbred populations as train-
ing data for GS, yet these are the populations that are 
most relevant as the target for genetic improvement of 
purebreds (Dekkers, 2007).

Admixture is the presence of multiple genetically 
distinct subgroups within a population (Wang et al., 
2005). Numerous studies (e.g., Rabinowitz, 1997; Flint-
Garcia et al., 2003; Hirschhorn and Daly, 2005) have 
reported that admixture can produce spurious associa-
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tions and seriously elevate false discovery rates in QTL 
detection. Several methods have been proposed to ad-
dress this problem (e.g., Kennedy et al., 1992; Spielman 
et al., 1993; Pritchard et al., 2000; Meuwissen et al., 
2002; Price et al., 2006; Yu et al., 2006).

Ideally, however, if all QTL that explain genetic vari-
ation in the trait of interest were included in the model, 
it would not be necessary to explicitly account for pedi-
gree or breed composition in the analysis. Thus, pro-
vided high-density SNP are used and analyzed simulta-
neously, as in GS, pedigree and breed composition need 
not be explicitly modeled. The objective of this work, 
therefore, was to evaluate accuracy of GS with high-
density markers for predicting BV of purebred animals 
based on estimates of marker effects in a crossbred or 
admixed population, without explicitly accounting for 
pedigree or breed composition.

MATERIALS AND METHODS

No live animals were used for this study, and there-
fore, institutional animal care and use committee ap-
proval was not required.

Population

A base population of unrelated individuals was sto-
chastically simulated and used as the ancestral popu-
lation of 4 pure breeds that were used to create ad-
mixed and crossbred populations (Figure 1). The base 
population was randomly mated for 1,000 generations, 
including selfing, with an effective size (Ne) of 500. 
To simulate the 4 purebred populations (referred to as 
breeds A, B, C, and D hereafter), at generation zero, 
4 independent random samples of 100 animals were 
drawn from the base population, and each was ran-
domly mated (including selfing) for another 53 genera-
tions, with Ne of 100.

Breeds A and B were then crossed to produce an 
F1 (AB) population. Mating (AB) with breeds A and 
B created backcrosses (AB)A and (AB)B, which were 
again backcrossed to A or B to create crossbred popula-
tions [(AB)A]A, [(AB)A]B, [(AB)B]A, and [(AB)B]B. 
An F2 population, (AB)2, was created by inter-mating 
the (AB) F1. Similarly, breeds C and D were used to 
create corresponding crossbred populations.

In beef cattle, commercial animals are often produced 
by mating purebred sires to crossbred dams of hetero-

Figure 1. Schematic representation of the simulated population history (Ne = effective population size) and the different types of crossbred 
and admixed populations that were simulated. A54 and B54 represent purebred training populations; AB is an F1 training population; A+B is 
a training population consisting of individuals from breeds A and B; (AB)2 is an F2 training population; (AB)A, (AB)B, [(AB)A]A, [(AB)A]B, 
[(AB)B]A, and [(AB)B]B are different back-cross populations; [(Adm_AB)B] and [(Adm_ABCD)B] are admixed training populations of 2 and 4 
breeds; BVal is the validation population. As of generation 54, arrows are not shown for simplicity of the picture.

Genomic selection in admixed populations 33

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ja
s
/a

rtic
le

/8
8
/1

/3
2
/4

7
4
0
4
6
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



geneous breed composition. To simulate such a popula-
tion, an admixed population of 2 breeds [(Adm_AB)
B] was created by first putting dams from breed A and 
all crossbreds involving breeds A and B in the same 
group and then mating them to sires from breed B. 
An admixed population of 4 breeds [(Adm_ABCD)B] 
was formed by mating dams from all breeds, excluding 
breed B, and all of the crosses involving the 4 breeds to 
sires from breed B. Further, 3-way and 4-way crosses 
were made by crossing (AB) with C and (AB) with 
(CD). To create the combined population, 2 random 
samples of equal size from purebreds A and B were put 
together into a single population. In the remainder, this 
latter population will be referred to as the combined_
AB population, in contrast to the admixed populations 
described previously, which include purebreds and their 
crosses.

Each of the purebreds A and B, the (AB), (AB)2, 
(AC), (AB)C, (AB)(CD) crossbreds, combined_AB, 
and admixed data sets was used as a training popula-
tion consisting of 1,000 animals for estimating marker 
effects. These animals were created by mating ran-
domly sampled individuals from the appropriate paren-
tal lines, each of size 100. Thus, on the average, each 
sire (and dam) had 10 offspring in the training data 
set. Because the objective was to determine how well 
marker effects estimated in the various training popula-
tions predicted BV of purebred individuals, a separate 
generation of purebred population B was used for vali-
dation. To generate the validation population of size 
1,000, in generation 50 a sample of 1,000 animals was 
drawn from breed B and randomly mated for another 4 
generations (BVal in Figure 1).

To evaluate the impact of breed differences on the 
accuracy of GS, a second scenario was also considered, 
in which breeds were separated in generation 25 rather 
than generation 0 (Figure 1), such that breeds were 
diverged for only 25 instead of 50 generations. To main-

tain the same level of LD, effective population size was 
reduced from 500 to 100 in generation 0, as before.

Genome

To make the simulation computationally feasible, a 
genome consisting of 1 chromosome of 100 cM with 100 
segregating QTL and different marker densities was 
simulated (Table 1). To end up with the required num-
ber of segregating loci after 1,000 generations, about 3 
times as many biallelic loci were simulated with start-
ing allele frequencies of 0.5 and a reversible random 
mutation rate of 2.5 × 10−5. Each locus was a marker 
locus or a QTL. A binomial map function was used to 
simulate recombination, and interference was allowed 
by setting the maximum number of uniformly and inde-
pendently distributed crossovers on the chromosome to 
be 4 (Karlin, 1984). To make a marker panel, 500, 1,000, 
2,000, or 4,000 marker loci were drawn at random from 
segregating loci, minor allele frequency (MAF) ≥ 0.10, 
at generation 53 after pooling all 4 breeds into a single 
cohort. As a result, markers were not evenly dispersed 
along the chromosome, and some of them may not be 
segregating in all training populations.

Phenotypes

To create phenotypic values for each training popula-
tion, 100 QTL were randomly picked from the set of 
segregating QTL in that population. This was done in 
generation 54 for breed B, (AB), and combined_AB, in 
generation 56 for (AB)2, 3- and 4-way cross data sets, 
and in generation 57 for the admixed training data sets 
(Figure 1). Note that QTL with MAF <0.10 in each 
breed will have an intermediate allele frequency in the 
combined_AB, crossbreds, or admixed training popula-
tions. The QTL were additive, and their effects were 
sampled from a gamma distribution with shape and 

Table 1. The parameters used for the simulation program 

Item

Genome size 100 cM
Number of chromosomes 1
Marker density per cM 5, 10, 20, or 40
Number of segregating QTL 100
Mutation rate of QTL or marker locus 2.5 × 10−5

Minor allele frequency ≥0.10
Distribution of additive QTL effects Gamma (shape = 0.4; scale = 1/1.66)
Prior distribution for variance of nonzero marker effects (σ2

gi) χ−2 (ν = 4.234, S = 0.0429)
π1 0.950 for marker density ≤20 and 0.975 for marker density of 40 per cM
Population size  
 Generations −1,000 to 0 Ne

2 = 500
 Generations 0 to 53 Ne = 100
 Generation ≥54 N3 = 1,000
Heritability 0.30
Residual variance 1.00

1π is probability (σ2
gi = 0) for Bayes-B method.

2Effective population size.
3Number of phenotypic or genotypic records, or both.

Toosi et al.34
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scale parameters of 0.4 and 1/1.66, respectively. This 
provides us with an L-shaped distribution of QTL ef-
fects, which Hayes and Goddard (2001) and Xu (2003) 
suggest is close to the real distribution of the QTL 
effects. With equal probability, 1 of the 2 alleles was 
chosen to be positive or negative. To keep the genetic 
variance constant across training populations, the ef-
fect of each QTL was scaled in each replicate. This was 
done to ensure that each training data set had the same 
genetic variance, such that this could not contribute to 
differences between training data sets.

The scaled QTL effects then were summed over all 
QTL genotypes for each individual to compute its true 
BV. With this setting, each training population received 
a different set of QTL affecting phenotypes, although 
the number of segregating QTL and the genetic vari-
ance were the same for all training populations. Finally, 
a standard normal deviate was added to each true BV 
to provide the phenotype of an individual for a quanti-
tative trait with heritability 0.30.

It should be mentioned that here the whole genetic 
variance is assigned to a single chromosome, whereas 
in reality the total genetic variance is distributed to 
all chromosomes (30 chromosomes in the case of cattle, 
for instance). In this study, a short genome was chosen 
to reduce computational costs. An additional data set 
with a total of 5,000 markers and 100 QTL on 5 chro-
mosomes, each of length 1 morgan, was simulated to 
examine the impact of genome size on our results. The 
analysis was run for the training populations of pure-
bred B, [(Adm_ABCD)B], combined_AB and 4-way 
crossbred only, with 96 replicates.

Estimation of Marker Effects

Method Bayes-B of Meuwissen et al. (2001) was used 
to estimate effects of markers in the training data using 
the model: y = 1µ + Σi xigi + e, where y is the vector 
of phenotypic values of individuals in the training data, 
µ is a single unknown population mean, 1 is a vector 
of ones, xi is a column vector containing the genotypes 
(0, 1, or 2) of each individual at locus i, gi is the ran-
dom unknown allele substitution effect for marker i, 
and e is a random vector of unknown residuals with 
ei ~N(0,σ2

e). In method Bayes-B conditional on σ2
gi, 

the gi has a point mass at 0, when σ2
gi = 0 and has a 

N(0,σ2
gi) distribution when σ2

gi > 0. Further, the prior 
for σ2

gi is a mixture distribution with a point mass at 
0 with probability π and an inverted chi-squared dis-
tribution with known parameters ν = 4.234 and S = 
0.0429, with probability (1 − π). 

The probability π is assumed known. Based on pre-
liminary analyses with several different π values, π was 
set equal to 0.95, except for a density of 40 markers per 
cM, for which π was increased to 0.975. A Markov chain 
Monte-Carlo (MCMC) of length 10,000 cycles with a 
burn-in period of 1,000 cycles was conducted. Conver-
gence of the MCMC chain was examined using the R 
package CODA (Plummer et al., 2006).

Validation of Genomic Prediction

Once estimates of marker effects were obtained from 
the training data set (posterior means from the MCMC 
chain), the estimated BV of individual k (GEBVk) in 
the validation data set (generation 54 of population 
Bval) was computed as

 GEBV x gk
ik ii 1

m
=

=å ˆ , 

where xik and ĝ
i
 are the genotype and the estimated ef-

fect of genotype at locus i, respectively, and m is the 
total number of markers. Accuracy was calculated as 
the correlation between the estimated and true BV of 
individuals in the validation data. This accuracy was 
used to compare performance of the different scenarios 
and training populations. All scenarios were replicated 
160 times, and results were averaged across replicates. 
Mean accuracies from alternate training populations 
were compared by the LSD test using the JMP software 
package (JMP, SAS Institute Inc., Cary, NC).

LD and Between Breed Diversity

To evaluate the extent and magnitude of LD in the 
training populations and its impact on accuracy, LD 
between pairs of SNP markers were estimated using r2 
(Hill and Robertson, 1968). Only markers with a MAF 
≥0.1 were considered in this analysis. The power to 
detect LD between 2 loci is minimal when at least one 
of them has an extreme allele frequency (Goddard et 
al., 2000). Further, to evaluate the persistence of LD 
phase across training and validation populations, the 
correlations of r between the 2 populations were calcu-
lated for different distances between loci (Goddard et 
al., 2006).

To assess and compare the decline of LD with dis-
tance in different training populations, a nonlinear re-
gression model was fitted to the observed r2 between 
marker pairs in each training population. The model 
used was based on the Sved (1971) equation.

 r 1/ bd e
ij
2

ij ij
= +( )+1 4 , 

where r
ij
2 is the observed LD between markers i and j in 

the training data, b is a coefficient that describes the 
decline of LD with distance in the training data, dij is 
distance in morgans between markers i and j, and eij is 
the random residual that was assumed normally dis-
tributed.

The level of genetic diversity present in the simulat-
ed breeds was investigated using Wright’s F-statistics 
(Wright, 1965) FIT, FST, and FIS, as implemented in the 
program Fstat (Goudet, 2001). Genotypes at 200 loci 
from a random sample of 100 individuals from each of 
the 4 simulated breeds from generation 53 were used to 
estimate F-statistics. Significance levels for the F-sta-
tistics and related variance components were obtained 
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from 20,000 permutations and from jackknife over loci 
(with different loci as resampling units), as provided by 
the Fstat program.

RESULTS AND DISCUSSION

Accuracy of Genomic Selection

Correlations between estimated and true BV for in-
dividuals in the validation data set (population Bval, 
Figure 1) for different training populations and marker 
densities are shown in Table 2. Training in the same 
breed as the validation population (B54) resulted in the 
greatest accuracy in all cases. Accuracies tended to be 
less if populations other than the validation breed were 
used for training, but reductions in accuracy were not 
significant in some cases and depended on the breed 
composition of the training population. Based on dif-
ferences in accuracies, the training populations can be 
divided into 4 groups: (1) purebred B and admixed 
populations, (2) 2-breed combined_AB and crossed 
populations, (3) 3- and 4-way crosses, and (4) purebred 
A and AC. Training in the admixed populations re-
sulted in similar accuracies as training in the purebred 
B population (group 1). The largest drop in accuracy 
compared with group 1 was for training populations 
in group 4, which included no contribution from the 
validation breed B. Averaged over all marker densities, 
relative to the accuracy of training and validating in 
the same breed, accuracy dropped by 46% when val-
idation was in a different breed, whereas training in 
crossbred AC and validating in breed B resulted in a 
drop in accuracy of 35%. Populations in groups 2 and 3 
had accuracies intermediate to those of groups 1 and 4. 
Comparing accuracies for populations in groups 2 and 
3, as the number of breeds contributing to the train-
ing population increased, the accuracy dropped more. 
Whereas training in group 2 populations resulted in 

a 6% decrease of accuracy, the decrease in accuracy 
when using the 3- and 4-way crosses for training was 
on average about 10%. Interestingly, within group 2, 
differences in accuracy were not practically significant. 
Comparing groups 1, 2, and 3, the 3- and 4-way cross-
bred training populations showed the least accuracy of 
prediction.

Marker Density

Accuracy generally increased with marker density 
(Table 2). The increase was most noticeable when train-
ing in A, AC, and in the 3-way and 4-way crosses. Thus, 
the effect of marker density was more pronounced when 
the training population had a lesser contribution of the 
breed that comprised the validation population (breed 
B in this case). Increasing marker density from 5 to 20 
markers per cM improved accuracy by 35, 20, 10, and 
10% for groups 4, 3, 2, and 1, respectively. However, 
increasing marker density from 20 to 40 per cM did not 
improve accuracy as much, except for group 4 training 
data sets, which showed an additional increase of 11% 
in the accuracy. Table 2 shows that with the level of 
LD and the amount of breed divergence simulated in 
this study, marker densities as low as 5 markers per cM 
were sufficient for accurate prediction of BV without 
explicitly accounting for pedigree or breed composition 
in the crossbred and admixed training populations, as 
long as the target breed contributed to the training 
population.

The Effect of Time Since Divergence  
of Breeds

Table 3 shows the effect of the number of genera-
tions of random mating after isolation (referred to as 
time since divergence, TSD) on the accuracy of GEBV. 
As expected, TSD did not significantly affect accuracy 

Table 2. Average accuracy of estimated breeding values in the validation data set 
(pure breed B) from genomic selection with different training data sets and marker 
densities (number of SNP per cM)1 

Group Training data set

Marker density

5/cM 10/cM 20/cM 40/cM

1 B 0.79a 0.83a 0.84a 0.85a

1 (Adm_AB)B 0.77ab 0.81ab 0.84a 0.84ab

1 (Adm_ABCD)B 0.76bc 0.80ab 0.84a 0.84ab

2 (A+B) 0.71e 0.76de 0.80cd 0.79d

2 (AB) 0.74cd 0.78cd 0.82b 0.82c

2 (AB)2 0.72de 0.77d 0.81bc 0.83bc

3 (AB)C 0.66f 0.75ef 0.77e 0.79d

3 (AB)(CD) 0.67f 0.72f 0.79de 0.79d

4 A 0.34h 0.45h 0.48g 0.54f

4 (AC) 0.43g 0.50g 0.58f 0.64e

a–hValues with different letters within a column are significantly different (P < 0.05). Based on 160 repli-
cates.

1B is the purebred B; (Adm_AB)B and (Adm_ABCD)B are admixtures of 2 and 4 breeds; (A+B) is the 
combined_AB; (AB) is the F1; (AB)2 is the F2; (AB)C is the 3-way cross; (AB)(CD) is the 4-way crossbred; A 
is purebred A; and (AC) is cross of breeds A and C.

Toosi et al.36
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when the purebred B population was used as training 
data, but accuracies significantly increased for all other 
training data sets when TSD was reduced from 50 to 
25. The maximum increase in accuracy was observed 
when using group 4 populations [A or (AC)] for train-
ing to predict breed B, for which accuracies increased 
by 62 and 42%, respectively. Considering Tables 2 and 
3, for both values of TSD, training in the admixed 
populations (group 1) resulted in a greater accuracy 
than training in the crossbred populations (groups 2 
and 3).

The above results were based on one chromosome of 
1 morgan to make the simulation computationally fea-
sible. To determine if the simulated genome size affects 
the main conclusions, an additional data set with a 
total of 5,000 markers and 100 QTL on 5 chromosomes, 
each of length 1 morgan, was simulated. The analysis 
was run for the training populations of purebred B, 
[(Adm_ABCD)B], combined_AB, and 4-way crossbred 
only. The corresponding accuracies for this scenario 
were 0.80, 0.77, 0.72, and 0.71, respectively. These val-
ues are comparable with the accuracies presented in the 
Table 2 for the scenario of 10 markers per cM.

Extent of LD and Differentiation  
Between Breeds

To explain the differences in accuracy between the 
groups described earlier and shown in Table 2, LD in 
the different training populations was examined by com-
paring the average distances between flanking markers 
at different levels of r2 (Table 4). There were significant 
differences in the extent of LD between the training 
populations. Figure 2 depicts how LD decayed with 
distance in different training populations and shows 

significant differences in the rate of breakdown of LD 
between the populations. Note that for all training data 
sets, average LD was between the expected LD based 
on Sved’s (1971) formula for effective population sizes 
of 100 and 500. The slowest and the steepest rates of 
decline of LD were in the purebred and the 4-way cross-
training populations, respectively. The combined_AB 
and the 2-way crosses had a slower rate of decay of LD 
than the 3-way crosses. Nonlinear regression was used 
to estimate a coefficient that describes the rate of decay 
of LD with distance in each training population, based 
on the Sved (1971) formula. Resulting estimates of rate 
of decay of LD are shown in Table 4. In Sved (1971), 
the rate of decay constant was an estimate of the effec-
tive population size, but this assumes a closed random 
mating population with constant historical effective 
population size. The interpretation is not valid for the 
populations analyzed here because effective population 
size was not constant for the purebred population and 
the other populations also represented crosses and ad-
mixtures. Nevertheless, the estimated constants give a 
good indication that the effective number of founders 
and, therefore, the extent and decline of LD with dis-
tance, differed substantially between populations.

Wright’s F-statistics were used to quantify the 
amount of divergence between the simulated breeds in 
generation 53. The estimated FIT, FST, and FIS were 
0.240 (SE = 0.011), 0.236 (SE = 0.011), and 0.005 (SE 
= 0.004), respectively, when breed separation was in 
generation 0.

Training data sets consisting of a purebred, a 2-breed 
combined, several crossbreds, and admixed populations 
were compared for their ability to accurately predict 
true BV of selection candidates in a purebred popula-
tion using GS. In the following, the main focus will be 
on crossbred, combined, and admixed populations.

Accuracy of Genomic Selection

In Table 2, all types of training populations performed 
remarkably well, except when another pure breed was 
used for training or when the training data consisted 
of a cross that did not include the target breed (AC). 
The admixed training populations resulted in nearly 
the same accuracies as when training was in the breed 
to which selection candidates belonged (breed B).

Extent of LD

Based on results presented in Table 4, when consid-
ering the average distance between pairs of adjacent 
markers that had r2 ≥ 0.1, there was more extensive LD 
in the crossbred, combined_AB, and admixed popula-
tions than in the purebred population. The extent of 
LD is proportional to the age of the LD generating 
event (Reich et al., 2001). In a subdivided or crossbred 
population, like the combined_AB and the F1 training 
populations, LD is composed of 2 parts (Nei and Li, 

Table 3. The impact of time since divergence of breeds 
on the accuracy of genomic selection when training in 
different data sets with 5 markers per cM on a 1-mor-
gan genome1 

Training data set

Time since divergence

25 50

B 0.80ab 0.80ab

(Adm_AB)B 0.80a 0.77bcd

(Adm_ABCD)B 0.79abc 0.76de

(A+B) 0.76cde 0.71g

(AB) 0.77bcd 0.74ef

(AB)2 0.78abcd 0.72fg

(AB)C 0.73efg 0.66h

(AB)(CD) 0.75def 0.67h

A 0.55j 0.34l

(AC) 0.61i 0.43k

a–lValues with different letters within and across columns are signifi-
cantly different (P < 0.05). Based on 160 replicates.

1B is the purebred B; (Adm_AB)B and (Adm_ABCD)B are ad-
mixtures of 2 and 4 breeds; (A+B) is the combined_AB; (AB) is the 
F1; (AB)2 is the F2; (AB)C is the 3-way cross; (AB)(CD) is the 4-way 
crossbred; A is purebred A; and (AC) is cross of breeds A and C.
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1973; Lo et al., 1993). The first part is the average LD 
that existed within the parental populations, referred 
to as old LD, and the second part is LD generated in 
the cross as a result of difference in gene frequencies 
between the parental breeds, referred to as new LD 
because it is created by a recent phenomenon. Whereas 
the old LD is confined to shorter distances due to the 

accumulation of recombination events, the new LD ex-
tends over longer intervals. The combined_AB training 
population was composed of breeds A and B with equal 
proportion; as a result, the distribution of LD in this 
population was the same as in the F1 training popu-
lation. Figure 3 depicts the average distance between 
pairs of markers at various levels of LD.

Table 4. Average distance (in cM) between adjacent markers with r2 greater than 0.1, 0.4, or 0.7 in different 
training data sets, with the percentage of such marker pairs out of all adjacent pairs with r2 greater than 0 in 
parentheses1,2,3,4 

Item

Training population

B (AB) (A+B) (AB)2 (AB)C Adm4br (AB)(CD)

Beta estimate 151 262 263 269 349 355 440
Minimum r2        
 0.7 0.31a (0.42) 0.21b (0.21) 0.21b (0.21) 0.16c (0.22) 0.12d (0.17) 0.10e (0.17) 0.09f (0.14)
 0.4 0.75c (1.0) 2.21a (0.58) 2.17b (0.58) 0.50d (0.55) 0.56e (0.41) 0.32f (0.41) 0.21g (0.33)
 0.1 3.22g (5.7) 15.12a (7.2) 15.05b (7.2) 4.34e (4.4) 10.5c (4.1) 7.39d (3.4) 4.41f (2.3)

a–gValues with different letters within each row are significantly different (P < 0.05).
1Estimated coefficients of linkage disequilibrium decline (Beta estimate) are shown in the first row of the table. 
2B is the purebred B training population; (AB) is the F1; (A+B) is the combined_AB, (AB)2 is the F2; (AB)C is the 3-way cross, Adm4br is 

the admixture of 4 breeds, and (AB)(CD) is the 4-way crossbred training population.
3Based on 60 replicates; in each replicate, distances were averaged across adjacent pairs that met the minimum r2 value, resulting in at least 

100,000 pairs per replicate).
4All Beta estimates had SE of less than 1.

Figure 2. Average linkage disequilibrium as measured by of r2 against distance (cM) in different training populations. Sved_Ne100 and 
Sved_Ne500 are expectations based on Sved (1971) E(r2) ≈ 1/(1 + 4Nec), where Ne = 100 or 500 and c is recombination rate calculated as 0.5(1 
− exp(−2 × map distance). Pure breed is the purebred B training population; (AB) is the F1; Adm4br is the admixture of 4 breeds, and (AB)
(CD) is the 4-way crossbred training population. The graph is based on 60 replicates; average r2 over all replicates are plotted against distance. 
Lines in the graph are in the order as shown in the legend. The top line is Sved_Ne100, second line is purebred, third line is (AB), fourth line is 
Adm4br, fifth line is (AB)(CD), and the last line is Sved_Ne500. Other training populations are not shown for clarity of the picture.
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Table 4, on the other hand, shows that haplotype 
with strong LD (r2 ≥ 0.70) are significantly shorter in 
the admixed and the crossbred populations compared 
with the purebred population. The average distance be-
tween pairs of markers with strong LD is 3 times larger 
in the purebred than in the admixed and 4-way cross-
bred populations (Table 4 and Figure 3c). This very 
narrow region of strong LD in the crossbred training 
populations might explain the high accuracy obtained 
with these populations (Table 2). In the same way that 
LD limited to short distances is beneficial in QTL fine 
mapping by providing a more accurate estimate of the 
QTL position (Pritchard and Przeworski, 2001; Reich 
et al., 2001; Aerts et al., 2007), it can also result in 
greater accuracy of GS because only markers that are 
very close to the QTL will explain a high proportion of 
the QTL variance and this association will not rapidly 
erode over generations by recombination.

In a human genetics study, Shifman and Darva-
si (2001) compared the average level of LD between 
SNP markers for distances below and over 200 kb in 
an outbred population (Centre d’Etude du Polymor-
phisme Humain) with that in several isolated popula-
tions (Finnish, Ashkenazi, and Sardinian). Their find-
ings showed that at short intervals the amount of LD 
in the outbred population was comparable with that 
in the isolated populations, whereas at long intervals 
(>200 kb) there was up to 6 times more LD in the 
isolated populations than that in the outbred popula-
tion. In another study, Shifman et al. (2003) compared 
an admixed, an outbred, and an isolated population 
(African Americans, Caucasians, and Ashkenazi Jews, 
respectively). They found that the average LD declined 
with distance between loci more rapidly in the admixed 
population. This is in accordance with our results, 
which also showed that the average level of LD was 

Figure 3. Average distance (cM) between adjacent markers in different training populations at various levels of linkage disequilibrium (LD; r2). 
B is the purebred B, F1 is the (AB), F2 is the (AB)2, ABC is the 3-way crossbred, ADMIX is the admixture of 4 breeds, and ABCD is the 4-way 
cross training population. Based on 60 replicates, results were averaged over distances with certain amount of LD and over replicates. Note the dif-
ferent scales of the graphs. a) Minimum r2 between 0.10 and 0.30, b) minimum r2 between 0.40 and 0.60, c) minimum r2 between 0.70 and 0.90.
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greater and extended over longer intervals in the pure-
bred population compared with crossbred and admixed 
populations (see Figures 2, 3c, and 4). In a crossbred 
population, individuals are more distantly related to 
each other (i.e., the mean time to a common ancestor 
is longer); thus, LD haplotypes in the population are 
narrower than those in a purebred population. Results 
of the canine genome project have also shown that hap-
lotype blocks are several Mb long within a breed, but 
they are much shorter across breeds, extending only 
to tens of kb (Lindblad-Toh et al., 2005). The ancient 
domestic dog diverged from wolves 15,000 to 100,000 
yr ago, whereas most of the new breeds of dog were 
formed within the past few hundred years (Lindblad-
Toh et al., 2005).

Figure 2 illustrates that LD in all training populations 
fell between the expected LD based on the Sved (1971) 
formula for effective population sizes of 100 and 500. 
As can be seen from the figure, LD at short distances 
followed the expectation based on Ne = 500, whereas at 
larger distances it tended toward its expectation based 
on Ne = 100. The LD at short intervals is a function of 
Ne in the distant past, whereas LD at longer intervals 
reflects Ne in the recent past (Hayes et al., 2003).

Marker Density

As it is evident from Table 4, the frequency with 
which strong LD haplotypes occur differs substantially 
between the training populations. Consider the differ-
ence of accuracies (Table 2) when the training popula-

tion is purebred B or a 4-way crossbred population, for 
example. Whereas the high LD signals are restricted 
to very short distances in the 4-way crossbred popula-
tion, there are about 3 times as many markers with 
strong LD in the purebred B population (Table 4). 
This might describe why the 3- and 4-way crossbred 
populations were much more affected by marker den-
sity compared with the purebred training population. 
Increasing marker density is expected to raise the level 
of LD between markers and QTL because the aver-
age distance between adjacent loci is inversely related 
to marker density and recombination is less likely to 
erode associations between tightly linked loci. Figure 4 
illustrates the relationship between marker density and 
the level of LD between markers. The greater the LD 
between a pair of loci (in fact a marker and QTL), the 
larger is the variance that is associated with the marker 
(Luo et al., 1997).

The effect of marker density on the accuracy of GS 
has been discussed in some recent studies (Muir, 2007; 
Calus et al., 2008; Solberg et al., 2008). Solberg et al. 
(2008) simulated SNP markers with several densities. 
In their study, in which training and validation popula-
tions were purebreds, accuracies of GS using SNP mark-
ers with densities of 1, 2, 4, and 8 markers per cM were 
found 0.69, 0.79, 0.84 and 0.86, respectively (with 1,000 
QTL on the genome). For the density of 4 SNP per cM, 
their accuracy of 0.84 is roughly comparable with our 
estimate of 0.79 (Table 2), keeping in mind that we 
had 5 SNP per cM. The greater heritability of the trait 
(0.5 vs. 0.30) considered in Solberg et al. (2008) might 
be a reason for the difference in accuracies obtained in 

Figure 4. The average level of linkage disequilibrium as a function of marker density (No. of markers per cM) and type of training popula-
tion. B is the purebred B, F1 is the (AB), F2 is the (AB)2, ABC is the 3-way crossbred, ADMIX is the admixture of 4 breeds, and ABCD is the 
4-way crossbred training population. Other training populations are not shown, because they showed the same trend and magnitude of linkage 
disequilibrium. The graph is based on 60 replicates; for each training population, average r2 of all replicates for marker distances of 0.025, 0.05, 
0.10, and 0.20 cM was calculated.
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the 2 studies. With a reduced heritability, markers ex-
plain a smaller proportion of additive genetic variance 
and decreased accuracy will be obtained (Goddard and 
Hayes, 2007). Thus, to get accurate estimates of marker 
effects, a larger sample size is required. The level of LD 
between markers and QTL and the sample size used to 
estimate the QTL effects are the 2 factors driving the 
accuracy of marker assisted selection and the power of 
QTL detection (Lande and Thompson, 1990; Hayes et 
al., 2007).

Persistence of LD Phase

Markers in LD with putative QTL are valuable for 
marker-assisted selection if the marker-QTL linkage-
phase and extent of LD is consistent between the popu-
lation used for estimation and the population in which 
selection is to be practiced (Dekkers and Hospital, 2002; 
Goddard et al., 2006). Figure 5 shows the persistence of 
LD phase between adjacent markers in the training and 
validation populations, as measured by the correlation 
of r between the 2 populations. A greater correlation 
implies that the marker-marker (and most probably the 
marker-QTL) linkage phase is more consistent between 
the 2 populations. This figure shows that the correla-
tion of r increased with marker density and was less 
if the training and validation populations were more 
different (e.g., when training and validation was in dif-
ferent breeds vs. in the same breed). This relationship 
between persistence of LD phase and divergence be-

tween breeds agrees with other reports (e.g., Andreescu 
et al., 2007; Gautier et al., 2007; de Roos et al., 2008). 
Obviously, the shorter the length of a haplotype, the 
greater is the chance of its similarity across popula-
tions. In the same way, as distance in time between 2 
subpopulations increases, there is a greater chance for 
recombination to break down the LD that was present 
in the ancestral population and drift to create new LD 
within each subpopulation (Hill and Robertson, 1968, 
Goddard et al., 2006).

In a study of extent and persistence of LD phase in 
Holstein-Friesian, Jersey, and Angus cattle, de Roos et 
al. (2008) reported a correlation close to 1 of r between 
2 breeds for pairs of markers that were <10 kb apart 
and a decline of this correlation as distance between 
markers or divergence between breeds increased. Con-
sidering marker loci that were less than 10 kb apart, 
Gautier et al. (2007) reported correlations of 0.54 to 
0.93 (0.77, on the average) of r for pairs of European 
cattle breeds, which again reflects how the degree of re-
lationship between 2 breeds changes the correlation of 
r. In our simulations, marker densities were not greater 
than 40 per cM (a distance of ≈25 kb between adjacent 
markers). For pairs of markers with such average dis-
tance, the correlation of r for across breeds GS was 0.81 
(see Figure 5). For the LD correlation between 2 breeds 
to be high, tight LD between a pair of loci should exist 
in the ancestral population before divergence of the 2 
breeds such that recombination cannot erode it (God-
dard et al., 2006).

Figure 5. Correlation of r between each pair of training and validation populations, as a function of marker density (in 1 cM). r is the correla-
tion coefficient; B is training and validating in breed B; A is training in breed A and validating in breed B; F2 is training in (AB)2 and validating 
in B; (AB)C is training in the 3-way cross and validating in B; (AB)(CD) is training in a 4-way cross and validating in B; and Adm4Br is training 
in the admixture of 4 breeds and validating in breed B. Based on 60 replicates.
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The high correlation of r for the admixed training 
populations compared with the crossbred training 
populations reveals a closer relationship between these 
populations and breed B because the admixed popula-
tions had a greater proportion of breed B genes. Cor-
relation of r between 2 populations can be used as a 
good estimate of relationship between the 2 popula-
tions (Andreescu et al., 2007). This could explain why 
the admixed populations resulted in greater accuracy 
of selection than the crossbred training populations. 
The greater accuracy obtained when training in the 
AC population vs. in the A purebred population (Ta-
ble 2) might be explained as follows. The use of AC 
cross forces the model to look only at ancestral LD 
that was already present at the time of separation of 
breeds, rather than using the new LD. Ancestral LD 
is more likely to be present in breed B as well. This 
explains why the correlation of r between the AC and 
breed B was greater than the correlation of r between 
breeds A and B (data not shown). The correlation of 
r between 2 populations may be used as an indication 
of the required marker density to ensure marker-QTL 
linkage-phase persists across the populations (Goddard 
et al., 2006).

In a simulation study, Ibanez-Escriche et al. (2009) 
applied GS to select purebreds for crossbred perfor-
mance. In their work, they compared the performance 
of a model with breed-specific effects to a model with 
the same effects across breeds. It was shown that for 2 
unrelated breeds, where correlation of r between the 2 
breeds was 0, the across-breed model was as accurate 
as the breed-specific model in prediction of BV. The 
breed-specific model resulted in decreased accuracy 
of prediction when the marker density increased com-
pared with the across-breed model (Ibanez-Escriche 
et al., 2009). More effects might need to be estimated 
in a multi-breed population. When alternative alleles 
are fixed in different breeds, there are almost twice as 
many effects to be estimated compared with the pure-
bred population. Thus, one may need a larger sample 
size in a multi-breed population to get an accuracy that 
is comparable with the accuracy in a purebred popula-
tion.

Divergence of the Breeds

Wright’s F-statistics are inbreeding coefficients that 
differ in the reference population that is used (Hartl 
and Clark, 1989). The FIT is the broadest measure of 
inbreeding in that it takes into account the effects of 
nonrandom mating within the subpopulations (FIS) and 
the effects of population subdivision (FST; Hartl and 
Clark, 1989). The estimate of FIS of 0.005 implies only 
a minor deficit of heterozygosity within breeds. Because 
individuals in each breed were randomly mated, a sig-
nificant divergence from the Hardy-Weinberg propor-
tions within each breed is not expected. The expected 
value of FIS is 1/(2Ne), which with Ne = 100 in each 

breed agrees with the results and indicates negligible 
levels of inbreeding within the breeds. The expected 
value of FST under the conditions of an idealized pop-
ulation with subdivision (Falconer, 1989) is 1 − (1–
1/2Ne)

t, which with t = 53 generations is equal to 0.233 
and is in close agreement with our estimate based on 
marker data of 0.236. This value of FST shows that 
about 24% of the total genetic variability in the whole 
population can be attributed to the difference among 
breeds [e.g., Cañón et al. (2001)], or that about 24% of 
shared allelic diversity was lost within each breed since 
they were separated. Thus, the breeds had significantly 
diverged from each other. With FIS = 0, FST and FIT 
are expected to be equal because (1 − FIS)(1 − FST) = 
(1 − FIT) (Wright, 1969). Recently, McKay et al. (2008) 
published estimated pairwise and global FST values for 
several cattle breeds, based on a panel of 2641 SNP. 
Their estimated global FST when they considered both 
Bos taurus and Bos indicus breeds was 0.29. However, 
the estimated global FST reduced to 0.17 when they ex-
cluded the Bos indicus breeds from their analysis (Mc-
Kay et al., 2008). Therefore, our simulated breeds had 
enough divergence to represent current breeds of beef 
cattle.

The Effect of TSD of Breeds

The accuracies for the scenarios of TSD = 25 and 
50 (Table 3) were compared. As expected, no effect 
of TSD on accuracy was observed for the scenario of 
training and validating in the same breed (B) because 
there was no divergence within the same breed. The 
minimum (4%) and the maximum (62%) increase in 
accuracies were observed for the admixed training 
populations and when training and validating in dif-
ferent breeds, respectively, when TSD changed from 50 
to 25 generations. Again, this reflects the fact that the 
more distantly 2 populations are related, the greater is 
the chance of recombination to break down the shared 
ancestral haplotypes (and even reverse the LD phase) 
across the populations. This might explain why accu-
racy of GS was reduced for training populations other 
than breed B when TSD changed from 25 to 50 (Table 
3). The more time elapsed since separation of 2 sub-
populations, the greater is the loss of shared allelic di-
versity between them (McKeigue, 2005).

Effect of Selection

In this simulation only LD generated by mutation and 
drift was considered. In reality, livestock populations 
have been under selection for a long time and breeds 
may have been under varying intensities and directions 
of selection. To assess the impact of differential selection 
of breeds on the validity of our results, the relationship, 
across replicates, between the accuracy of GS and the 
difference in the mean true BV of the breeds that were 
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crossed or admixed was evaluated. Although any breed 
differences in the simulations were the result of muta-
tion and drift, rather than directed selection, selection 
can be viewed as directed random drift. Therefore, the 
accuracy of GS against the variance of the mean true 
BV of the breeds that are crossed was plotted for the 
160 replicates of our simulation (Figure 6). This did 
not reveal any significant association of accuracy with 
the extent of the diversity of breeds contributing to 
the cross. Considering Figure 6a, for example, although 
breeds A and B showed quite a range of different true 
genetic means for the trait of interest, this difference 
did not affect the accuracy of selection.

Traditionally, GS studies by simulation have only con-
sidered additive QTL effects (Meuwissen et al., 2001). 
However, in reality QTL contribute to total genetic 
variation by themselves or by interacting with other 
QTL (Carlborg et al., 2006). Interaction among loci 
might result in a biased estimate of the effect of each 
locus (Carlborg and Halley, 2004). In a recent study, 
Carlborg et al. (2006) identified a genetic network of 
several interacting loci that significantly contributed to 
BW at 56 d of age in chickens. Their results showed 
that the power of QTL mapping experiment in iden-
tifying loci whose effect is dependent on the genotype 
at another locus improves when the inter- and intralo-

cus interactions are included in their statistical model. 
Thus, dominance and epistatic QTL effects might need 
to be considered in GS studies where the objective is 
improvement of purebreds for their crossbred progeny 
performance.

In this study our focus was on purely additive gene 
effects; however, there might be the question of how ac-
curate GS predictions will be in the presence of hetero-
sis. In an F1 population, where the population is homog-
enous in terms of breed composition, we think ignoring 
the effects of heterosis does not bias the prediction of 
marker effects. However, in an admixed population, be-
cause individuals have different breed compositions, the 
dominance effects must be explicitly accounted for.

Another question might be the choice of training 
population when the selection candidates are crossbred 
themselves. In a recent simulation study, Ødegård et 
al. (2009) investigated introgression of favorable alleles 
from an inferior donor line into a superior recipient line 
using dense marker genotyping and GS. Their proposed 
method of combining backcrossing and GS increased 
the frequency of favorable QTL alleles at the expense 
of unfavorable ones (irrespective of origin) across the 
entire genome, without any specific effort to reduce 
the linkage drag from the donor line (Ødegard et al., 
2009).

Figure 6. Plot of accuracy (Acur) against between breeds variance of true breeding values (varTBV). a) Plot of accuracy when training in an 
F1 vs. between breeds [A and B] variance of true breeding values; b) plot of accuracy when training in a 3-way cross [(AB)C] vs. between breeds 
(A, B, and C) variance of true breeding values; c) plot of accuracy when training in a 4-way cross [(AB)(CD)] vs. between breeds (A, B, C, and D) 
variance of true breeding values. In all plots, the black line shows the regression of accuracy on between breeds variance of true breeding values.
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In a recent study with real data, Harris et al. (2008) 
compared the accuracy of GS of purebred Jersey (J), 
purebred Holstein-Friesian (HF), and crossbred J-HF 
bulls using the BovineSNP50 BeadChip. The training 
data sets were either 1 of the 2 breeds (J or HF) or a 
combined data set of both breeds. Training in one breed 
and validating in another breed resulted in an accuracy 
of −0.10 to 0.3. Accuracy of GS of crossbred J-HF bulls 
was 5 to 10% greater when training was done in the 
combined data set compared with when training was 
in J or HF breeds (Harris et al., 2008). Assuming that 
the validation population is a crossbred, we compared 
the accuracy of GS when the training population was 
purebred or crossbred (F1). Training in the crossbred 
population increased accuracy of GS in the crossbred 
population by 11% compared with training in the pure-
bred (data not shown).

A population that is a crossbred or an admixture 
of different breeds can be used as a training data set 
for GS and can provide reasonably accurate estimates 
of true BV of purebred selection candidates. This also 
implies that, with GS using high-density SNP markers, 
marker estimates obtained from crossbred populations 
can be used to select purebreds for crossbred perfor-
mance, as suggested by Dekkers (2007), and examined 
by Ibanez-Escriche et al. (2009). Our results showed 
that in crossbred and admixed populations, haplotypes 
with strong LD are much shorter than in purebred 
populations. Thus, crossbred or admixed populations 
are more suitable for QTL fine mapping than purebred 
populations, provided marker density is sufficient.

Furthermore, because haplotype segments with strong 
LD in crossbred and admixed populations are narrower, 
markers in such segments are expected to have more 
consistent associations with QTL across the training 
and validation populations. Therefore, the decline of 
accuracy of GS over generations that has been observed 
in simulation studies (e.g., Habier et al., 2007) might be 
slower when admixed or crossbred populations are used 
for training than when purebred populations are used. 
By combining 2 pure breeds into a single training popu-
lation, one can take advantage of a larger sample size 
for simultaneous estimation of marker effects and thus 
improve the accuracy of GS. In our simulation, when 
the size of the training population for the combined_
AB training population was doubled, a 7% increase of 
the accuracy resulted (data not shown). In addition, by 
combining breeds into a single training population (vs. 
making certain crosses like an F1), a lot of time and ef-
fort can be saved. More importantly, there is a greater 
chance of segregation of breed-specific QTL in a multi-
breed training population.

In the present study, while dealing with admixed 
populations, the population structure or additive ge-
netic relationships were not explicitly modeled, which 
might be regarded as the standard method to limit the 
false discoveries due to population admixture in mark-
er-phenotype association studies. Nevertheless, GS us-

ing high-density markers proved to be efficient enough 
to distinguish between true signals of association from 
spurious signals, at least under the idealized population 
structures that were used in the simulations. Whether 
or not this could provide an alternative methodology for 
association studies in populations with cryptic struc-
tures or extensive genealogical relationships requires 
further research.
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