
ORIGINAL RESEARCH
published: 14 June 2021

doi: 10.3389/fpls.2021.676326

Frontiers in Plant Science | www.frontiersin.org 1 June 2021 | Volume 12 | Article 676326

Edited by:

Fernando H. Toledo,

International Maize and Wheat

Improvement Center, Mexico

Reviewed by:

Gota Morota,

Virginia Tech, United States

Danilo Lyra,

Rothamsted Research,

United Kingdom

Zhao-Bang Zeng,

North Carolina State University,

United States

*Correspondence:

Patricio R. Munoz

p.munoz@ufl.edu

Specialty section:

This article was submitted to

Plant Breeding,

a section of the journal

Frontiers in Plant Science

Received: 05 March 2021

Accepted: 12 May 2021

Published: 14 June 2021

Citation:

Ferrão LFV, Amadeu RR,

Benevenuto J, de Bem Oliveira I and

Munoz PR (2021) Genomic Selection

in an Outcrossing Autotetraploid Fruit

Crop: Lessons From Blueberry

Breeding. Front. Plant Sci. 12:676326.

doi: 10.3389/fpls.2021.676326

Genomic Selection in an Outcrossing
Autotetraploid Fruit Crop: Lessons
From Blueberry Breeding

Luís Felipe V. Ferrão 1, Rodrigo R. Amadeu 1, Juliana Benevenuto 1,

Ivone de Bem Oliveira 1,2 and Patricio R. Munoz 1*

1 Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL,

United States, 2Hortifrut North America, Inc., Estero, FL, United States

Blueberry (Vaccinium corymbosum and hybrids) is a specialty crop with expanding

production and consumption worldwide. The blueberry breeding program at the

University of Florida (UF) has greatly contributed to expanding production areas by

developing low-chilling cultivars better adapted to subtropical and Mediterranean

climates of the globe. The breeding program has historically focused on recurrent

phenotypic selection. As an autopolyploid, outcrossing, perennial, long juvenile phase

crop, blueberry breeding cycles are costly and time consuming, which results in low

genetic gains per unit of time. Motivated by applying molecular markers for a more

accurate selection in the early stages of breeding, we performed pioneering genomic

selection studies and optimization for its implementation in the blueberry breeding

program. We have also addressed some complexities of sequence-based genotyping

and model parametrization for an autopolyploid crop, providing empirical contributions

that can be extended to other polyploid species. We herein revisited some of our previous

genomic selection studies and showed for the first time its application in an independent

validation set. In this paper, our contribution is three-fold: (i) summarize previous results

on the relevance of model parametrizations, such as diploid or polyploid methods, and

inclusion of dominance effects; (ii) assess the importance of sequence depth of coverage

and genotype dosage calling steps; (iii) demonstrate the real impact of genomic selection

on leveraging breeding decisions by using an independent validation set. Altogether, we

propose a strategy for using genomic selection in blueberry, with the potential to be

applied to other polyploid species of a similar background.

Keywords: genotyping by sequencing, sequencing depth, allele dosage, plant breeding, molecular marker, fruit

quality, independent validation, genomic prediction

INTRODUCTION

Blueberry (Vaccinium corymbosum and hybrids) is recognized worldwide for its health benefits due
to the high content and diversity of polyphenolic compounds (Kalt et al., 2020). Such health-related
attributes have resulted in an increased demand for blueberries, as it has become a crop with one of
the fastest growths in production trends, with an increase of 142% of its production in the last
10 years (FAOSTAT, 2021). In this sense, the blueberry breeding program at the University of
Florida (UF) has had a major contribution to the expansion of production areas. Starting in the
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1950s, the UF blueberry breeding program led to pioneering
hybridizations between high-quality US northern adapted species
(Vaccinium corymbosum) and endemic US southern species (e.g.,
Vaccinium darrowii), selecting for low-chill requirements to
break the dormancy of flower buds (Sharpe and Sherman, 1971;
Lyrene, 2000). The resulting breeding material and cultivars,
known as southern highbush blueberries, established a new
industry in Florida and multiple warmer regions worldwide,
allowing a year-round supply of fresh blueberries for the
global market.

Historically, like many others, the UF program used recurrent
phenotypic selection with visual assessment of plants to select
both new parents for crossing and genotypes for commercial
testing (Cellon et al., 2018). Despite the success of the industry
and the release of many cultivars in recent decades, the use
of conventional methods results in low genetic gains per
unit of time. Moreover, the autopolyploid nature of the crop,
long juvenile phase, multi-year evaluations, large experimental
areas, and the high sensibility to inbreeding depression make
phenotypic selection costly and time-consuming. Remarkably,
it can take up to 12 years to release a new cultivar using
conventional tools (Lyrene, 2005). As DNA sequencing costs
continue to decrease, genomics-based markers present an
opportunity to accelerate the breeding process by achieving more
accurate selection during earlier breeding stages. Therefore, the
UF blueberry breeding program has been leading innovative
genomics studies and procedures to fill two primary gaps in
the blueberry breeding literature: understanding the genetic
architecture of complex traits via genome-wide association
studies (GWAS) and quantitative trait loci (QTL) mapping;
and, at the practical level, performing genomic prediction based
on molecular markers, a methodology popularly referred to as
genomic selection (GS).

GWAS and QTL mapping are both tools for providing
a biological elucidation of the genetic architecture, in which
molecular markers spanning the entire genome are statistically
tested for associations with phenotypes (Pritchard et al., 2000).
While QTL analyses are usually performed using structured
populations, GWAS increases the mapping resolution by using
populations with low levels of linkage disequilibrium considering
a deep history of recombination events. In blueberry, we recently
detected candidate genomic regions and markers associated with
different fruit quality traits (Ferrão et al., 2018) and flavor-
related volatiles (Ferrão et al., 2020) via GWAS investigations;
and we built a high-density linkage map and detected QTL
associated to berry firmness (Cappai et al., 2020a). In counterpart,
GS aims to predict breeding values by using all genome-wide
markers simultaneously (Meuwissen et al., 2001). The underlying
rationale is that most QTL will be in linkage disequilibrium with
some of the markers used whenever the marker density is high
enough. Therefore, the estimated effect of all markers will lead to

Abbreviations: UF, University of Florida; GEBV, genomic estimated breeding

value; GWAS, genome-wide association study; QTL, quantitative trait loci; eBLUE,

empirical best linear unbiased estimate; SNP, single nucleotide polymorphism;

GxE, genotype by environment interaction; MAS, marker-assisted selection; GS,

genomic selection; GBLUP, genomic best linear unbiased prediction.

accurate predictions of the genetic merit for a complex trait. We
have recently shown the potential of GS in blueberry breeding
under distinct modeling scenarios (de Bem Oliveira et al., 2019,
2020; Amadeu et al., 2020a; Zingaretti et al., 2020).

The autopolyploid nature of blueberry (2n = 4X = 48)
imposes additional challenges for analyzing and interpreting
genetic data. Autopolyploids possess genomes with multiple
sets of homologous chromosomes, resulting in non-preferential
pairing and potential polysomic inheritance during meiosis.
Given the presence of higher allele dosage (i.e., the number of
copies of each allele at a particular locus), a higher number
of genotypic classes are possible (Gallais, 2003; Garcia et al.,
2013; Dufresne et al., 2014). Thus, the inclusion of allelic
dosage information on GS models could imply a more accurate
estimation of breeding values by considering the additive
effect of multiple copies of the same allele and the potential
inheritance of dominance effects. However, accurate allele
dosage calling on polyploids depends on a higher depth of
coverage, increasing genotyping costs when using sequence-
based genotyping platforms (Gerard et al., 2018; Caruana et al.,
2019). After performing foundational studies on the importance
of polyploid models, the inclusion of non-additive effects, and
sequencing depth on allele dosage parameterizations, the UF
blueberry breeding program is now on track to overcome the
barrier a simple promise to make GS a reality.

Motivated by the potential to use GS to reshape traditional
blueberry breeding, we herein revisited some of our previous
studies and described the current achievements in blueberry.
Thus, our contributions in this paper are three-fold: (i)
summarize previous results on the relevance of model
parametrizations, such as diploid or polyploid methods,
and inclusion of additive and non-additive gene actions for
prediction; (ii) assess the importance of accurate dosage
estimation for genomic prediction under low and high
sequencing depth scenarios; (iii) demonstrate the realized impact
of GS over breeding cycles by using an independent validation
set. Altogether, we anticipate challenges and directions for future
studies in blueberry that could be applied to other polyploid and
fruit species of a similar breeding background.

MATERIALS AND METHODS

Populations and Phenotypic Data
The southern highbush blueberry populations used in this study
were generated as part of the breeding program at the University
of Florida. Two phenotypic datasets, referred to as calibration set
and testing set, were used for different purposes.

The calibration set comprises a large breeding population
already described in previous studies (Ferrão et al., 2018; de
Bem Oliveira et al., 2019). Briefly, it consists of 1,837 individuals
originating from 117 biparental crosses using 146 distinct
parents. The population corresponds to early stages in the
breeding scheme, and it was planted in a high-density nursery
at the “Plant Science Research and Education Unit” in Citra,
Florida. All phenotypic evaluations were conducted on ripe fruits
collected from the beginning of April to mid-May. Fruit firmness
(g∗mm−1 of compression force), size (mm), and weight (g) were
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evaluated over two seasons (2014 and 2015), while soluble solid
(◦Brix) was evaluated only in 2015. Given the large representative
population, all genomic prediction models reported in this study
were calibrated using this dataset. The empirical best linear
unbiased estimates (eBLUEs) were estimated for each genotype
based on a linear model. Genotype and year were considered
fixed effects, as described by Amadeu et al. (2020a). Hereafter, the
eBLUEs for each trait were considered as our response variable in
the genomic prediction analyses.

The testing set was used for independent validation in genomic
prediction analyses. It comprises 280 advanced selections not
originally included in the calibration set. These genotypes
represent materials in advanced stages in the breeding program
planted over 2013–2017 under commercial conditions. These
genotypes were evaluated over several years (2014–2020), some of
them (16 common genotypes) in different locations throughout
Florida. As these phenotypes were collected from plants in
different physiological phases and multiple environments, we
adjusted the phenotypes using a linear model, including separate
fixed effects for the year, location, and plant age. The eBLUEs
of each genotype per trait were used as the phenotypic value
in subsequent genomic prediction analyses. All phenotypic
analyses were carried out using the ASReml-R software (Butler
et al., 2009). Additional details about the calibration and testing
datasets are reported in Supplementary Figures 1, 2.

Genotyping
The calibration set was genotyped using the “Capture-Seq”
approach described in Benevenuto et al. (2019). The genotyping
of the testing set was also performed using “Capture-Seq,”
considering 10,000 biotinylated probes of 120-mer at RAPiD
Genomics (Gainesville, FL, USA). Sequencing was carried out
in the Illumina HiSeq2000 platform using 150 cycle paired-
end runs. To ensure that the same group of single nucleotide
polymorphisms (SNPs) will be called in both calibration and
testing sets, we included the next-generation sequence data from
both sets under the same SNP calling pipeline. First, raw reads
were cleaned and trimmed. Then, the remaining reads were
aligned using Mosaik v.2.2.3 (Lee et al., 2014) against the largest
scaffolds of each of the 12 homoeologous groups of Vaccinium
corymbosum cv. “Draper” genome assembly (Colle et al., 2019).
SNPs were called with FreeBayes v.1.3.2 using the 10,000 probe
positions as targets (Garrison andMarth, 2012). Loci were filtered
out applying the following criteria: minimummapping quality of
10; only biallelic locus; maximum missing data of 50%; minor
allele frequency of 1%; and minimum and maximum mean
sequence depth of 3,750 across individuals, respectively. A total
of 63,552 SNPs were kept after these filtering steps. Sequencing
read counts per allele per individual were extracted from the
variant call file using vcftools v.0.1.16 (Danecek et al., 2011)
and subsequently used to investigate some practical questions
implementation of genomic prediction in polyploids.

We first investigated the importance of accurate genotype
calling for genomic prediction by testing ratio and dosage under
high and low sequencing depth scenarios. For this purpose, we
used the calibration set only in a 10-fold cross-validation scheme.
For the ratio method, each genotypic score was computed as the

ratio between the alternative and total read depth, as described
by Sverrisdóttir et al. (2017) and applied in de Bem Oliveira et al.
(2019). For the dosage method, genotypic classes were assigned
probabilistically using the updog R package v.2.1.0 considering
the “norm model” and prior bias equals zero (Gerard et al., 2018;
Gerard and Ferrão, 2020). Both genotyping methods (ratio and
dosage) were compared under scenarios of high sequencing depth
(random sampling for the mean number of 60 reads – 60×) and
low sequencing depth (random sampling for the mean number
of 6 reads – 6×). Specifically, we assumed the sequencing reads
of each allele (alternative or reference) for a given marker come
from a multinomial distribution, with probability equal to the
number of the reads divided by the total number of reads across
all the alleles, markers, and individuals (N). Then, we sampled
N/10 reads from this multinomial distribution. We performed
this sampling 10 times, and each sampling result was used in a
different cross-validation fold. To avoid an eventual confounding
between the number of markers and the predictive ability over
the four scenarios, we kept the same number of SNPs (63,552)
across all scenarios. Therefore, in total, four scenarios were tested:
ratio_60x, ratio_6x, dosage_60x, and dosage_6x.

For the real validation and implementation of GS in the
blueberry breeding program, we used the actual read counts to
estimate the allele dosage in the calibration and test sets according
to the “norm model” in the updog 2.1.0 R package (Gerard et al.,
2018; Gerard and Ferrão, 2020). The posterior probability modes
were used as our genotypic score. After estimating the posterior
mean per genotype, we filtered out markers with a proportion
of individuals genotyped incorrectly (“prop_miss” < 10%) and
markers with an estimated bias higher than 0.13 and smaller than
7.38. Missing genotypes were imputed by the mean of each locus.
A total of 48,829 SNPs were kept and used in genomic prediction
for independent validations.

Statistical Analyses
Single-trait linear mixed models were used to predict breeding
values using the best linear unbiased prediction (BLUP) and
restricted maximum likelihood approach (REML) to estimate
variance components, as following: y = µ + Zu + e; where y

is a vector of pre-corrected phenotypic records for a particular
trait; µ is the overall mean; Z is an incidence matrix linking
observations in the vector y to their respective breeding value
in the vector u. Normality was assumed for the additive and
residual effects, where u ∼ MVN(0,Gσ 2

u ) and the residual
variance e ∼ MVN(0, Iσ 2

u ). For the residual, I is an identity
matrix; while σ 2

u and σ 2
e are the genetic and residual variance

components. The matrix G denotes the genomic relationship
matrix computed using the ratio genotypic score or the tetraploid
allele dosages with the different sequencing depths described
above. The matrices were estimated in the AGHmatrix v.2.0.0
R package (Amadeu et al., 2016). For the ratio implementation,
we used the “ratio” option in the software that computes

the relationship as G = ZZ
′

/h, where Z is the mean-
centered matrix of the molecular marker information (ratio
values); and h is a scale factor, where h =

∑m
i=0 s

2
i and

s2i is the variance of the vector zi centered marker i (for
more details, see de Bem Oliveira et al., 2019). For the dosage
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FIGURE 1 | Schematic representation of four validation scenarios tested in blueberries. Calibration set represents a diverse group of genotypes representative of the

UF blueberry breeding population. In Scenario 1, we used the calibration set in a 10-fold cross-validation scheme to test the relevance of genotyping calling (ratio vs.

dosage) considering two different sequencing depths (6× and 60×). Scenario 2 (across-stages) represents a group of 114 individuals originally presented in the

calibration set that were clonally propagated, moved to the advanced Stage of the breeding program, and phenotyped under commercial field conditions. Scenario 3

(general prediction) represents an independent group of 280 genotypes (testing set), evaluated under commercial conditions. The phenotypic values of the target

individuals were pre-adjusted for the year, location, and age effects. Finally, in Scenario 4 (stratified prediction), we performed predictions over four regions of the State

of Florida. To avoid potential model overfitting, we removed genotypes from the calibration set overlapped with the testing set.

implementation, we used the additive relationship matrix based
onVanRaden (2008) as described by de BemOliveira et al. (2019).
All genomic prediction analyses were carried out using the
rrBLUP package (Endelman, 2011). For comparison, predictions
were also carried out using pedigree BLUP. Using the same
linear mixed model, we computed the numerator pedigree-
based relationship considering autotetraploidy and no double
reduction (Kerr et al., 2012), using the AGHmatrix v.2.0.0 R
package (Amadeu et al., 2016).

Predictive performances were assessed for the ratio and
dosage methods under high (60×) and low (6×) sequencing
depth scenarios using only the calibration set in a 10-fold
cross-validation scheme. To this end, the calibration set was
randomly divided into 10 groups, where one group was used
as a validation test, while the remaining nine groups were
used as training. Models were trained in the validation test
using the genomic best linear unbiased prediction (GBLUP)
approach. For each fold, predictive abilities were estimated using
Pearson’s correlation between genomic estimated breeding values
(GEBVs) and the corresponding eBLUEs. We also evaluated the
correspondence between the top 20 groups of individuals ranked
using dosage_60x and the other scenarios. A post-hoc Tukey test
(alpha= 0.05) was used for intergroup comparisons between the
top 20 ranked genotypes.

For the independent GS validation over the breeding cycles,
we assessed the robustness of our predictive model over different
scenarios: (i) across-stages scenario refers to 114 individuals
from the calibration set that were clonally propagated in 2014
and planted in a commercial condition in a single location,
becoming the testing set – prediction accuracy in this scenario
can demonstrate the potential losses when models are trained
at earlier stages (high density) and used at late stages of
selection (commercial condition); (ii) general scenario stands

for models trained in the calibration set and predictions carried
out in the testing data, in which the target phenotypic values
were pre-corrected for year, location, and age fixed effects; (iii)
stratified scenario comprises models trained in the calibration
set that were tested for predictions across four regions in
Florida (North-FL, Central-FL, South-FL, and Citra-FL) – in
contrast to the general predictions, in this scenario the target
phenotypic values were pre-corrected only for the year effect per
region. In all scenarios, predictive performances were assessed via
Pearson’s correlation.

A summary of all validation scenarios is illustrated in
Figure 1. We complemented the predictive analysis for the
stratified predictions by accessing the importance of genotype-
by-environment interaction (GxE) via ANOVA. To this end, we
considered 16 genotypes (checks) that were phenotyped over
the four regions. We fitted a linear model considering the year,
genotype, location, and the interaction between genotype and
location (GxE) as fixed effects. ANOVA was performed in R (R
Team, 2013) using the native lm() function.

RESULTS AND DISCUSSIONS

In the last two decades, GS has become a reality for many
animal and plant breeding programs. Despite the optimism
and proven efficacy, its wide implementation is still hindered
by investment costs and the analytical skills required (Hickey
et al., 2017). With that in mind, the UF blueberry breeding
program initiated genomic studies on a large scale in 2013.
First, we worked closely with genotyping companies to design
customized genotyping platforms; we phenotyped and genotyped
a large and multi-parental blueberry breeding population; we
increased our computational resources; and finally, we adapted
our breeding framework to incorporate genomics. During this
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FIGURE 2 | A schematic representation of the UF blueberry breeding program, integrating phenotypic selection and genomic prediction. The breeding process is

conventionally organized in two integrated steps: population improvement and product development. A breeding cycle starts with crosses between outstanding

parental genotypes. After that, several stages (I–IV) are required to evaluate the genotype performance. At Stage I, we will use marker-assisted selection targeting

traits with simple genetic architecture. Genomic selection will be implemented in Stage II when GEBVs are computed. In advanced selections (Stages III and IV),

high-quality phenotyping will be performed to leverage the calibration of genomic prediction models. At these stages, metabolomics and sensory panel analyses will

also play an important role in flavor-assisted selections. In the end, elite materials are registered as clonally propagated cultivars. In addition, to shortening the time for

product development, GS can be applied to move top-ranked plants directly from Stages II to IV, skipping at least 3 years of evaluation at Stage III. For population

improvement, GS can assist in more accurate parental selection at early stages.

process, the implementation of GS in a polyploid and outcrossing
species proved challenging, particularly regarding the intrinsic
biological complexities and the availability of genomic and
computational tools (Mackay et al., 2019). In blueberry, for
example, a high-quality genome assembly became available only
in 2019 (Colle et al., 2019). As a result, about half of the capture-
seq genotyping probes originally developed based on a draft
genome assembly were discarded afterward based on the high-
quality genome, without compromising genetic association and
genomic prediction analyses (Benevenuto et al., 2019). We also
explored additional optimizations to reduce costs regarding the
number of individuals per family, the number of markers, and
sequencing depth (de Bem Oliveira et al., 2020). Moreover, new
genomics methods and tools have been developed in the last

decade for the polyploid community, including allele dosage
estimation, haplotype reconstruction, and the use of different

relationship matrices (Bourke et al., 2018). Here, we presented

the lessons we have learned so far for implementing GS in an
autotetraploid and outcrossing species. We summarized previous

results and also included novel findings relevant to the blueberry
and polyploid community.

Filling the Gaps: Phenotypic and Genotypic
Selection in the Same Breeding Framework
Blueberry is an outcrossing and clonally propagated crop, for
which the breeding process can be conventionally organized
in two central steps: population improvement and product
development (Lyrene, 2005). First, population improvement is
done to manage the frequency of beneficial alleles over time by
selecting and crossing outstanding materials, as conceptualized
in recurrent selection designs. Second, in parallel, product
development consists of a series of trials in which potential
candidates are evaluated over several years and locations,
advancing across stages until selecting the best genotypes
becomes a registered variety. In Figure 2, we illustrated these
two key steps and how they are integrated into a four-stage
selection design (from Stages I to IV) in the UF blueberry
breeding program.

Annually, the blueberry breeding program performs more
than 200 crosses, including parents selected among cultivars,
elite material, and wild germplasm (Lyrene, 2005). From these
crosses, about 20,000 seedlings are planted in non-replicated
high-density nurseries (area of 0.2 ha), establishing the so-called
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Stage I. After 1 year, plants in Stage I are visually selected
based on fruit size, color, scar, and using the breeder’s “bite test”
for flavor quality attributes. Approximately 10% of the original
number of seedlings are kept after this first selection, and the
unselected plants are removed from the field. To not exhaust
genetic diversity, a minimal number of individuals per family
are kept. However, given blueberry’s long juvenile period, the
availability of few berries, and the high competition in a high-
density planting, it is difficult to phenotype for all traits and assess
the individuals’ full potential stage.

Additionally, the large number of individuals prevents
genomic prediction at this stage, given the costs of genotyping.
Therefore, at Stage I, we envision that marker-assisted selection
(MAS) for traits with simple genetic architecture is a more
feasible approach, and it is a current research line of the breeding
program. In this regard, the example of MAS implementation in
early selection stages is reported in strawberry (Gezan et al., 2017;
Osorio et al., 2020).

After the first selection, ∼2,000 genotypes pass to the second
stage (Stage II). All plants stay in the same field plot, in high
density. Further visual phenotypic evaluations are performed for
the next 3 years. At this stage, we are implementing genomic
prediction to increase genetic gains by improving phenotyping
accuracy and selecting parents at early stages. Therefore, at Stage
II, all plants will be genotyped. The GEBVs will be predicted for
five fruit quality traits (soluble solids, titratable acidity, weight,
size, and firmness), yield, and consumers panel liking scores.
Using a selection index according to trait importance (Williams,
1962), we will perform GS to complement standard phenotypic
descriptors and rank all genotypes. Different selection indexes
are defined every year, depending on the traits and crosses
performed, with yield and flavor traits usually receiving the
highest weights. As routinely done, 10% of the 2,000 plants will
be moved to the next stage (Stage III), where selected plants are
clonally propagated and evaluated in a 15-plant clonal plot in a
commercial field.

At Stage III, around 200 plants are more accurately
phenotyped for more traits, using more fruits, clonal repetitions,
and multiple years of evaluations in commercial conditions.
Technically, all information collected at this stage will be used to
feed the genomic prediction models. The UF blueberry breeding
program has included new traits for routine phenotyping to meet
the current demand from different marketable demands in recent
years. For example, the use of volatiles for flavor-assisted selection
has shown the ability to predict sensory perceptions by explaining
55% of the variation in overall liking scores (Colantonio et al.,
2020). Given the high costs to perform sensory panels, we are
incorporating metabolomics in the breeding pipeline to predict
flavor ratings for many genotypes at Stage III (Gilbert et al., 2015;
Colantonio et al., 2020; Ferrão et al., 2020).

In the last stage (Stage IV), around 15–20 plants selected
from Stage IIIs with consistent and outstanding performances
are propagated and planted at commercial trial sites across
Florida. The different locations comprise two production systems
according to the accumulation of chilling hours: evergreen and
deciduous (Fang et al., 2020). To ensure accurate selection,
phenotypic data is collected weekly and used to feed our

genomic prediction models. Fruits from selected genotypes are
also submitted to sensory panels, where blueberry consumers
score flavor preferences. Elite selections from this final Stage
are ultimately named, patented, and released as clonally
propagated cultivars.

Altogether, the conventional breeding pipeline takes up to
12 years to evaluate the genotype merit of an individual to
be released as a cultivar. With the implementation of genomic
selection at the scope of the breeding program, the selection
criteria can be more accurate than the visual phenotypic selection
at Stage II. Moreover, it will shorten the time to select genotypes
to become a parent in the next breeding cycle and advance to
Stage III. In a typical recurrent selection breeding scheme, the
parental selection is crucial (Lyrene, 2005). We have optimized
this selection by ranking the GEBVs over the breeding cycles and
seeking crosses that minimize inbreeding. Among the different
tools available for mate allocation, we have recently implemented
the algorithm described in the AlphaMate software with default
parameters (Gorjanc and Hickey, 2018).

“Simplicity Is the Ultimate

Sophistication”1: On the Relevance of
Additive GBLUP Models
When confronting the problem of modeling the relationship
between molecular markers and variation in the observed traits,
an important question to keep in mind is what statistical method
could better describe this relationship (Ferrão et al., 2019).
In recent years, we have investigated statistical and biological
aspects underlying the implementation of genomic prediction in
autopolyploid species, including (i) the importance of accounting
for allele dosage in whole-genome statistical models (de Bem
Oliveira et al., 2019); (ii) the relevance of multiple gene actions,
including additive and non-additive genetic sources (Amadeu
et al., 2020a; Zingaretti et al., 2020); and finally, (iii) the impact of
sequencing depth of coverage, when sequence-based genotyping
approaches are used (de Bem Oliveira et al., 2020).

Among the factors that differentiate diploid and polyploid
analyses, resolving the allelic dosage of individual loci is
one the most important. While in diploid organisms, only
three genotypic classes are possible for biallelic markers,
autotetraploids, like blueberry, can have up to five genotypic
classes. Therefore, in theory, it is expected that statistical models
accounting for the dosage effect could be more informative and
provide a more realistic representation of the genetic complexity
of a quantitative trait (Garcia et al., 2013). We first tested this
hypothesis by contrasting polyploid and diploid parametrizations
in GWAS studies (Ferrão et al., 2018), whereby a larger number
of associations were observed under polyploid models. In a
subsequent study, we investigated a similar assumption for
genomic prediction (de Bem Oliveira et al., 2019). We tested
GBLUP models using relationship matrices built in a tetraploid
(Slater et al., 2016) and diploid (VanRaden, 2008) fashion.

Interestingly, both parametrizations resulted in similar
performances for all traits tested. Furthermore, the similar

1Quote by Leonardo da Vinci.
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predictive ability for diploid and polyploid parametrizations
was also reported in other autotetraploid species (Lara et al.,
2019; Matias et al., 2019), which ultimately reinforced the
robustness of the predictive accuracy of GBLUP regardless of
the ploidy parametrization used. These results are explained
by the similarity between the genomic relationship matrices
computed using diploid and autotetraploid parametrizations.
Recently, we presented empirical evidence on this topic by
showing that the estimation of molecular pairwise relatedness in
both scenarios are highly correlated, in particular, under low-to-
middle rates of heterozygosity (Amadeu et al., 2020b).

Besides the potential additive impact of allele dosages,
dominance effects can also be heritable in polyploids and could
improve the prediction of genetic values. Therefore, it is also
reasonable to speculate that a greater number of alleles per
locus may increase the range of genetic models to describe one-
locus genotypic value by accounting for multiple dominance
levels (Gallais, 2003). This is exemplified by the different models
addressing the dominance effect proposed in the polyploid
literature, including the use of digenic interactions (Endelman
et al., 2018), the use of a general effect by assuming that each
genotype has its effect (Rosyara et al., 2016; Slater et al., 2016), and
the use of heterozygous parametrization (Enciso-Rodriguez et al.,
2018). In blueberries, we tested the importance of such different
gene actions in predictive studies. Although we have observed an
improvement in the statistical goodness of fit when dominance
effects are counted, this increment is not directly translated into
predictive ability (Amadeu et al., 2020a). Hence, the additive
model resulted in performance similar to models accounting for
dominance effects, as it has been described for diploid species
(Muñoz et al., 2014).

Given the genetic complexity of polyploids and the potentially
higher intra- and inter-locus interactions, we also hypothesized
that predictions could be improved by using deep learning
techniques (Zingaretti et al., 2020). Through deep learning, we
could take advantage of non-linearity assumptions to model the
whole genetic merit of an individual. We used allo-octoploid
strawberry and autotetraploid blueberry as our biological models
and compared linear models and deep learning techniques for
prediction to test this. We did not observe improvements of deep
learning over traditional linear models for traits with presumably
different genetic architectures in both species. The only exception
was observed in a simulated data set. Deep learning performed
better for traits with large epistatic effects and low narrow-sense
heritability, which reinforced the high predictive ability of mixed
models as prediction machinery.

Our last contribution to the practical implementation of
genomic prediction in polyploids is the relevance of sequencing
depth of coverage for genotyping methods based on next-
generation sequencing. Sequencing depth refers to the number
of reads sequenced at a given site in the genome. Low
coverage datasets increase the chances of not sampling all
homologous chromosomes at a given site for a given individual
during sequencing. Thus, it could result in high rates of
missing data, miscalled genotypes, and uncertainty of allele
copy number in heterozygous genotypes (Clark et al., 2019).
Some studies in polyploid crops have recommended increasing
the sequencing depth to circumvent this issue, which implies

higher costs of genotyping. For example, Bastien et al. (2018)
and Uitdewilligen et al. (2013) suggested sequencing depths
of 50X−80X for an accurate assessment of allele dosage in
autotetraploid potatoes. In a recent study, we demonstrated that
such numbers are quite conservative for genomic prediction.
By combining a simple genetic parametrization (ratio) and
low-to-mid sequencing depth (6x–12x), we achieved similar
predictive accuracies as the ones obtained using higher depths
for blueberry traits with different genetic architectures (de Bem
Oliveira et al., 2020). In practical terms, reducing the amount
of sequencing data will also reduce the costs of implementing
GS or potentially genotyping more individuals under a
fixed budget.

Despite the considerable advancements previously explored,
the relevance of using more sophisticated algorithms for
genotype calling and its impact on genomic prediction remains
unexplored. Recently, several new methods have been developed
to assign accurate allelic dosage of individual loci in polyploids
(Garcia et al., 2013; Gerard et al., 2018; Pereira et al., 2018; Clark
et al., 2019). In this paper, we compared predictive abilities.
We confirmed that low-to-mid sequencing depth and ratio
parametrization could be used to rank GEBVs with similar
predictive performance (Figure 3 and Supplementary Table 2)
and genotypic ranking (Table 1). Nonetheless, despite the
attractive simplicity of using the ratio and low-sequencing
depth, such results are only valid for prediction analysis (de Bem
Oliveira et al., 2019, 2020). Importantly, there is no empirical
evidence that setting the parameters to these levels could work for
inferential studies such as GWAS, population genomics, linkage,
and QTL mapping. In this sense, an important counterpoint was
recently reported in hexaploid sweet potato. Higher sequencing
depths and accurate dosage calling improved the ultra-dense
linkage map and posterior QTL analysis (Gemenet et al., 2020;
Mollinari et al., 2020). For GWAS, we observed large rates of
false-positive associations when analyses were performed using
low sequencing depth associated with the ratio parametrization
(results not shown). Herein, we systematically observed
large biases when relationship matrices were constructed
using the ratio_6x approach (Supplementary Figure 4 and
Supplementary Table 4).

Our results suggest that the use of traditional GBLUP is
robust enough for genomic prediction, even under simplistic
assumptions. This fact has long been discussed in the specialized
literature and has raised questions on the contribution of linkage
disequilibrium between QTL and markers vs. the relationship
information to GS (Habier et al., 2013).

How Does Genomic Prediction Work in a
Real Validation Population?
While we have investigated several statistical and computational
aspects related to GS in blueberry, it is still unknown how
accurate the predictions will be across breeding cycles, with
plants in different phenological stages and locations. This
scenario came to be called “true validation” and involves the use
of independent populations. We investigate it by dividing our
prediction analyses as following: models calibrated in 2014 and
2015 using plants in Stage II were used for genomic predictions
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FIGURE 3 | Violin plot with predictive ability considering two genotype calling approaches (dosage and ratio) under two sequencing depth scenarios (6× and 60×) for

four fruit quality traits in blueberry using 10-fold cross validation. Each circle represents one cross validation fold result.

TABLE 1 | The number of genotypes matching the top 20 rankings using the

dosage_60× method as the benchmark, under 10-fold cross-validation.

Method Depth Firmness Size Weight Brix

Dosage 6× 16.5b 16.9b 16.3b 16.4b

Ratio 6× 16.2b 15.6c 16.2b 15.3b

Ratio 60× 18.8a 18.3a 18.6a 18.7a

A post-hoc Tukey test (alpha = 0.05) was used for intergroup comparisons over the

scenarios. Cells with the same letter represent non-statistically different groups for the

given trait (column).

of individuals at Stages III and IV. Both data sets share genetic
similarity (Figure 4A).

For independent validations, we tested different scenarios in
which GS could be applied (Figure 1). First, we focused on
validations across breeding stages. To this end, we used the
calibration test—originally evaluated in Stages II—to predict
a subset of individuals that were cloned and planted in an
advanced stage (Stages III). When compared to within-sample
cross-validation schemes, as originally reported by de Bem
Oliveira et al. (2019) and Amadeu et al. (2020a), lower predictive
accuracies were observed (Figure 4B). These results mainly
highlight (i) the importance of collecting better phenotypic data
and (ii) the influence of plant management. Remarkably, most
of the phenotypic traits measured in the calibration set were
collected from five berries per genotype, while on Stage III, we
used 25 berries per genotype. Furthermore, genotypes in Stage II
are planted in high-density nurseries with phenotypes collected
in plants that are still in their juvenile phase. At the same time,
Stages III are grown under commercial conditions and evaluated
over several years.

A second predictive scenario tested the relevance of calibration
tests at early stages to predict independent genotypes in advanced
stages that were more extensively phenotyped. The results for

most fruit-quality traits confirm the importance of genomic
information (general predictions) over pedigree-based methods
(Figure 4C). However, compared with predictions using within-
sample cross-validation schemes, we also observed a reduction
in the predictive results (Supplementary Table 3) (de Bem
Oliveira et al., 2019; Amadeu et al., 2020a). This decline in
predictive performance in true validation is expected due to
differences in the allele frequencies over populations, variation
in linkage disequilibrium patterns, and GxE interactions
(Habier et al., 2013).

In the third scenario, a more challenging exercise was
to measure how predictive ability varies across regions in
the State of Florida (stratified predictions, Figure 4D). Higher
predictability was observed for Citra and Central-FL, the closest
regions where the models were originally trained. In counterpart,
plants evaluated in the South-FL showed, on average, lower
predictability performances. Despite the small number of
genotypes included in this analysis, these results provide insights
into the importance of GxE interaction for GS in blueberry.
We further explored this hypothesis by using a group of 16
common genotypes (checks) evaluated over the four regions.
The results confirmed the significance of the GxE effect for
most of the traits (Table 2 and Supplementary Figure 3), with
the plants evaluated in South-FL showing the most contrasting
values. It is noteworthy that blueberry locations in South-FL
are grown under an evergreen production system, under less
chilling hours, and are focused on preventing defoliation during
the winter months (Fang et al., 2020). On the other hand,
Citra, Central-FL, and North-FL regions are grown under the
deciduous production system, where leaves are dropped during
the winter. Such differences in the production systems could
drive the largest disparity observed at South-FL compared with
the other regions.

The results from independent validations allow us to draw
some practical conclusions. First, even with low-to-moderate
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FIGURE 4 | Genomic prediction on independent validation scenarios. (A) Principal component analysis (PCA) of two blueberry populations: calibration set represents

the trained set, where genomic prediction models were originally calibrated; and testing set comprising additional 280 individuals used for testing. (B) Across-stages

prediction: predictive ability was measured in a subset of 114 individuals included in the calibration set, but phenotypes were collected in advanced selection stages.

(C) General prediction: the predictive ability of the testing set after training the models in the calibration set. (D) Stratified predictions: after training the models in the

calibration set, individuals in the testing set were predicted using phenotypes collected over four macro-regions in the Florida State, which are under different chilling

hour accumulation. All predictive abilities were expressed as percentage values.

predictive accuracies, GS is still encouraging. For example,
soluble solids and firmness are both traits treasured by
consumers, for which routine phenotyping is expensive and time-
consuming for large populations, like Stage IIs. Ranking plants

based on their GEBVs proved to be a better alternative than any
other criteria historically used throughout UF blueberry breeding

program (pedigree or visual selection).More accurate phenotypic

data to annually recalibrate the model also has the potential to

improve predictability.

Unifying Biological Discoveries and
Predictions
Genomic information can also provide new opportunities to
integrate biotechnology and quantitative genetics into modern
breeding programs, creating platforms for both deliveries of
new products and biological discovery (Hickey et al., 2017).
For example, in blueberry, biological discoveries have been
addressed via QTL mapping (Cappai et al., 2020a) and GWAS
studies (Ferrão et al., 2018, 2020) for multiple fruit quality traits.
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TABLE 2 | Mean and standard deviation (in parenthesis) of four fruit quality traits

were evaluated in advanced stages of the blueberry breeding program at four

Florida regions.

Location Firmness (g * mm−1) Size (mm) Weight (g) ◦ Brix

North FL 248 (32.8) 18.0 (1.79) 2.57 (0.641) 11.3 (1.31)

Citra 245 (42.0) 17.0 (2.22) 2.34 (0.691) 10.9 (1.33)

Central FL 244 (29.3) 17.7 (1.46) 2.29 (0.491) 11.8 (1.27)

South FL 251 (33.4) 17.4 (1.34) 2.21 (0.549) 12.0 (1.91)

GxE (p-value)* 0.007 0.0002 0.005 0.47

*p-values associated to genotype-by-environment interaction (GxE) were computed using

a linear model and ANOVA, where season, genotype, location, and the interaction

between genotype and location (GxE) were fitted as fixed effects.

Values were computed using 16 common genotypes (checks).

Unifying such discoveries with prediction is challenging, but
it has been addressed under three different avenues: (i) use
of GWAS discovered QTL as fixed effects on GS models; (ii)
incorporating markers (or QTL) in MAS designs, and (iii) using
genome-editing technology to speed up breeding.

In a strategy called “GS de novo GWAS,” we explored the
importance and applicability of GWAS findings for prediction
using the significant GWAS hits as fixed effects in GS models,
considering independent datasets. For oligogenic traits, like some
flavor-related volatiles, we achieved an increase of more than
20% in predictive ability compared with traditional GS methods
(Ferrão et al., 2020). Using a similar strategy, gains in predictive
performance have also been reported in other crops, such as
maize (Bernardo, 2014; Rice and Lipka, 2019), wheat (Sehgal
et al., 2020), and rice (Spindel et al., 2016). Alternatively, we
have investigated further modeling strategies to accommodate
biological information into the predictive models. For example,
the use of Bayesian strategies that could accommodate SNPs with
larger effect by using different prior distributions (Erbe et al.,
2012; Gianola, 2013; Zhou et al., 2013); and GBLUP models that
could weight variants previously selected either via association
analysis or using bioinformatic pipelines (Su et al., 2014; Zhang
et al., 2016; Liu et al., 2020; Ren et al., 2021).

Another potential strategy is to use target markers associated
with important traits for MAS during Stage I of the blueberry
breeding program. Such a strategy could be used for the early
selection of plants still in the seedling stage. Acknowledged by
their simple genetic architecture, we showed that few markers
could yield reasonable predictive accuracies of volatile emission
and, thus, leverage flavor selection (Ferrão et al., 2020). We
envision that MAS can also be implemented for other oligogenic
traits. In this regard, we have been conducting other GWAS and
QTL mapping studies for disease resistance, such as anthracnose
(Colletotrichum gloeosporioides) and bacterial wilt (Ralstonia
solanacearum). A similar strategy has been implemented in
strawberries (Gezan et al., 2017; Osorio et al., 2020) and
other fruits (Iezzoni et al., 2020). However, for MAS to be
applicable for thousands of plants, cheap and fast DNA extraction
and targeted SNP genotyping assays should be optimized.
We are currently testing high-resolution melting (HRM) and
competitive allele-specific PCR (KASP) assays to validate and
implement MAS for volatiles.

Gene editing is another attractive technology with the
potential to have significant effects on the breeding program.
Aside from the use of CRISPR-Cas9 for validating candidate
genes identified via GWAS or QTL studies, some simulations
have recently shown that genome editing can double the rate of
genomic gain when coupled with genomic prediction, compared
with GS conducted in isolation (Noman et al., 2016; Hickey et al.,
2017). However, to our knowledge, there is only one study of
CRISPR-Cas9 targeted mutagenesis in blueberry (Omori et al.,
2021). At the UF blueberry breeding program, we have advanced
our understanding of the best tissue culture practices and most
effective transformation markers (Cappai et al., 2020b), laying
the ground for CRISPR/Cas9 genome editing implementation in
our breeding program. Using this technique, we can also take
advantage of the knowledge accumulated from model crops to
introduce novel allelic diversity in orthologs and accelerate the
domestication process.

CONCLUSIONS

The implementation of GS has already changed the UF blueberry
breeding program routine by reorganizing how we collect
genotypic and phenotypic information and analyze data to rank
the material to advance stages and breed in the next cycles. Our
previous studies on GS were fundamental to define the most
cost- and time-effective methods for model parameterization
and genotyping. The main lessons learned can be conveniently
divided into different areas. Statistically, despite the numerous
algorithms for prediction—many of them more elegant at the
biological and computational level—the use of additive effects
under a linear mixed model framework (GBLUP) showed
the best balance between efficiency and accuracy. Considering
the particularities of autopolyploid genetic data, we showed
that for GS, low depth of sequencing (6×-12×) simplifies
the allele dosage information (i.e., diploidization and ratio)
resulted in similar prediction accuracies as those obtained using
more refined scenarios. Finally, the genomic prediction was
incorporated in a recurrent selection breeding scheme at the
practical level, whereby variety development and populational
improvement run in parallel. So far, GEBVs have been primarily
used for parental selection to increase genetic gains while keeping
the genetic diversity. A more objective reduction in the number
of years to develop a cultivar would be selecting the top-ranked
genotypes from Stage II directly to IV, skipping at least 3 years of
evaluations at Stage III.

FUTURE DIRECTIONS

Finally, we highlight some challenges and opportunities for
further studies in blueberries. First, recalibrating the model with
more accurate phenotypic data can yield better predictive ability.
In this sense, phenomics is also a cutting-edge area of research
that could leverage the number of traits and samples collected
during a season and improve the quality of phenotypic data.
For example, yield is a complex and time-consuming trait to
be phenotyped over the season. We envision that image-based
phenotyping may aid in evaluating yield and other traits, such
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as plant architecture and diseases. For the future, it would
also be important to incorporate additional statistical checks
(common genotypes) across years and locations to understand
better the effects of GxE interaction on genomic predictions and
recalibrate our models according to the environmental targets.
On integrating multi-omics data, we expect that we will predict
flavor preferences through volatile quantification and perform an
early selection for more flavorful cultivars. Statistically, testing
new algorithms for mate allocation and using haplotypes for
prediction and imputation methods are some potential areas that
could further improve genomic predictions.
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