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Genomic selection (GS) is a promising approach exploiting molecular genetic markers
to design novel breeding programs and to develop new markers-based models for
genetic evaluation. In plant breeding, it provides opportunities to increase genetic
gain of complex traits per unit time and cost. The cost-benefit balance was an
important consideration for GS to work in crop plants. Availability of genome-wide
high-throughput, cost-effective and flexible markers, having low ascertainment bias,
suitable for large population size as well for both model and non-model crop species
with or without the reference genome sequence was the most important factor for its
successful and effective implementation in crop species. These factors were the major
limitations to earlier marker systems viz., SSR and array-based, and was unimaginable
before the availability of next-generation sequencing (NGS) technologies which have
provided novel SNP genotyping platforms especially the genotyping by sequencing.
These marker technologies have changed the entire scenario of marker applications and
made the use of GS a routine work for crop improvement in both model and non-model
crop species. The NGS-based genotyping have increased genomic-estimated breeding
value prediction accuracies over other established marker platform in cereals and other
crop species, and made the dream of GS true in crop breeding. But to harness the true
benefits from GS, these marker technologies will be combined with high-throughput
phenotyping for achieving the valuable genetic gain from complex traits. Moreover, the
continuous decline in sequencing cost will make the WGS feasible and cost effective
for GS in near future. Till that time matures the targeted sequencing seems to be more
cost-effective option for large scale marker discovery and GS, particularly in case of
large and un-decoded genomes.

Keywords: genomic selection, GBS, complex traits, GEBVs, crop improvement

INTRODUCTION

Plant breeding has been and will continue remain the major driving force for science based
productivity enhancements in major food, feed, and industrial crops. The conventional and
marker-assisted breeding (MAB) are the two approaches used to accomplish plant breeding
(Breseghello and Coelho, 2013). The conventional breeding involves hybridization between diverse
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parents and subsequent selection over a number of generation
to develop improved crop variety. This approach has several
limitations such as requires long period (5–12 years) to
develop crop variety, based on phenotypic selection (PS),
high environmental noise, and less effective for complex
and low heritable traits (Tuberosa, 2012). MAB involves the
use of molecular markers for the indirect selection on trait
of interest in crop species, requires minimum phenotypic
information during training phase, and were initiated to solve
limitations of conventional breeding (Collard and Mackill,
2008). The marker-assisted selection (MAS) and genomic
selection (GS) are the two kinds of MAB. MAS use molecular
markers known to be associated with trait of interest or
phenotypes to select plants with desirable allele effecting target
trait. It is efficient only for those traits that are controlled
by fewer numbers of quantitative trait loci (QTLs) having
the major effect on trait expression, whereas for complex
quantitative traits which are governed by large number of
minor QTLs, the method is even inferior to conventional
phenotypic selection (PS; Zhao et al., 2014). The major
reason is the estimation of QTL effects for minor QTLs
through linkage mapping and genome-wide association mapping
(GWAS) is often biased. Therefore, research communities
were looking for solutions over decades how to deal with
these complex traits and come out in the form of GS.
GS estimates the genetic worth of the individual based
on large set of marker information distributed across the
whole genome, and is not based on few markers as in
MAS. The GS develops the prediction model based on
the genotypic and phenotypic data of training population
(TP), which is used to derive genomic estimated breeding
values (GEBVs) for all the individuals of breeding population
(BP) from their genomic profile (Meuwissen et al., 2001)
(Figure 1). The GEBVs allow us to predict individuals that
will perform better and are suitable either as a parent in
hybridization or for next generation advancement of the
breeding program, because the molecular marker profile of
those individual are similar to that of other plants of TP
that have been recorded to perform better in the particular
environments.

Since the concept of GS was proposed by Meuwissen et al.
(2001) as an approach to predict complex traits in animals
and plants, it is being only recently used in applied crop
breeding. The most important reason behind this is the lack
of cost-effective and high-throughput genotyping platforms,
which is an essential requirement for GS. However, the
next generation sequencing (NGS) has drastically reduced the
cost and time of sequencing as well as single nucleotide
polymorphism (SNP) discovery and has led to development
of high-throughput genome-wide SNP genotyping platforms,
especially the emergence of genotype-by-sequencing (GBS)
which has resulted the implementation of SNPs suitable and
affordable for GS in both model and non-model plant species
(Poland et al., 2012). In this review, we try to make understand
how NGS technologies will help to reap the true benefits
of GS in the era of high-throughput genotyping for crop
improvement.

GENOMIC VS. PHENOTYPIC SELECTION

The classical breeding has evolved dramatically in the last
century and made significant contribution to crop improvement,
developed high yielding and nutrient responsive semi-dwarf
varieties of cereals during Green Revolution and hybrid rice in
1970s. These methods have produced the modern cultivars of
almost all major crop species since the middle of 20th century
and have achieved significant gains in terms of production and
productivity. They pushed the yearly genetic gain of 1% increase
in potential grain yield, which is not sufficient to keep pace with
the world population growing at the rate of 2% per year, which
relies heavily on crop products as source of food (Oury et al.,
2012; Fischer et al., 2014). Moreover, the conventional breeding
is based on PS to select better parents either for crossing or
generation advancement and are less effective for low heritable
multi-genic quantitative traits (yield, quality, biotic, and abiotic
stresses), which are considerably influenced by environment and
G × E interaction. In addition, these methods are challenged
by being time consuming, laborious, require large land, cost
ineffective, population size, and are less precise and reliable,
hence necessitate the immediate, rapid and efficient selection
systems for the development of high yielding and climate
resilient crop varieties. Therefore, to address these challenges
new strategies called GS based on reduced phenotyping, and
were selection is based on marker/genotypic profile was suggested
(Meuwissen et al., 2001). GS develops the prediction model by
integrating the genotypic and phenotypic data of TP, which is
subsequently used to calculate GEBV for all the individuals of BP
from their genotypic data (Poland et al., 2012) (Figure 1). The
GEBV is derived on the combination of useful loci that occur in
the genome of each individual of the BP, and it provides a direct
estimation of the likelihood of each individual to have a superior
phenotype (i.e., high breeding value). Selections of new breeding
parents are based on the estimated GEBV, which leads to shorter
breeding cycle duration as it is no longer necessary to wait for late
filial generations (i.e., usually F6 or following in the case of wheat)
to phenotyping quantitative traits such as yield, biotic, and abiotic
stresses etc. Given realistic assumptions of selection accuracies,
breeding cycle times, and selection intensities, GS can increase
the genetic gain per year compared to PS in both animal and crop
breeding (Zhong et al., 2009; Heffner et al., 2010). Moreover, for
those traits that have a long generation time or are difficult to
evaluate (i.e., insect resistance, bread making quality, and others)
GS becomes cheaper or easier than PS so that more candidates
can be characterized for a given cost, thus enabling an increase
in selection intensity. Hence, GS offers number of merits over
PS by reducing selection duration, increasing selection accuracy,
intensity, efficiency, and gains per unit of time, hence saves
time, money and provides more reliable results as well as is
environmentally insensitive (Rutkoski et al., 2011; Desta and
Ortiz, 2014), thus enables the faster development of improved
varieties of crop species to cope the challenges of climate change
and decreasing arable land (Figure 2). One premise of using GS
in applied breeding programs is the availability of high-density
genome wide molecular markers at a cost that is comparable to
(or lower than) the cost of phenotyping (Meuwissen et al., 2001;
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FIGURE 1 | Showing the different steps of genomic selection (GS) used for crop improvement program.

FIGURE 2 | Showing the different steps of GS for complex traits as well as its impact on agriculture growth and global hunger.
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Goddard and Hayes, 2007; Heffner et al., 2009; Jannink et al.,
2010).

GS AND COMPLEX TRAITS

The inheritance of quantitative trait varied from simple to
complex, simple quantitative traits inheritance are dominated
by few major genes/QTLs whereas the complex traits are
controlled by many minor effect genes distributed throughout
the genome. Most of the economic traits in crop species are
complex quantitative traits (e.g., yield, quality, biotic, and abiotic
stresses etc), hence remain the main focus of plant breeders and
researchers over the decades. These traits are constrained by their
low heritability and environment sensitiveness; hence traditional
breeding approaches were slow in targeting these traits that too
under costly and labor intensive phenotyping (Bhat et al., 2015).
MAS based on initial identification of marker-trait association
either through linkage or Linkage Disequilibrium (LD) mapping
was sometime thought to have potential for clearing genetic basis
of complex traits when everywhere was slogans of QTL and
QTL. But very soon it was recognized that MAS and association
genetics were unable to capture the ‘minor’ gene effects that
underpin most of the genetic variation in complex traits, and
are inferior to phenotypic selection in case the associated
marker account for small portion of genetic variation among the
individuals of BP (Castro et al., 2003; Collins et al., 2003; Xu and
Crouch, 2008) (Figure 2). The improvement of complex traits
requiring multi-year and multi-location phenotypic evaluation to
fix G ×E interaction is at times not feasible due to shortage of
funds and labor. And what have been predicted over last two and
half decades that molecular marker technology would reshape
the breeding program and facilitate rapid gains from selection
came finally true in the form of GS facilitated by cost-effective
high-throughput NGS-based genotyping platforms. In contrast
to traditional MAS approaches focusing on the identification and
introgression of few major effect genes/QTLs, the GS considers all
markers distributed throughout the genome to be incorporated
into the model to generate a prediction that was the sum total
of all genetic effects, regardless how many minor and major, and
hence avoids missing of substantial portion of genetic variance
contributed by loci of minor effects. The number of studies
carried out earlier has shown GS models to be advantageous
for complex quantitative traits viz., grain yield, quality, biotic
and abiotic stresses etc (de los Campos et al., 2009; Crossa
et al., 2010; Burgueño et al., 2012; González-Camacho et al.,
2012; Jannink et al., 2010). The key feature of this approach is
the genome-wide high density markers used potentially explain
all the genetic variance, so that at least one marker is in LD
with each QTL governing the trait of interest and the number
of effects per QTL to be estimated is small. The most obvious
advantage of GS is the genotypic data obtained from the seed or
seedling can be used for predicting the phenotypic performance
of mature individuals without the need for extensive phenotyping
evaluation over years and environments, thus increasing the
speed of varietal development in crop species. The approach
is special thanks to especially NGS which make this approach

feasible by discovering large number of SNPs and genotyping
methods to genotype this huge SNP information across large
BP. Hence, whole-genome prediction based selection will replace
the phenotypic selection and marker assisted breeding protocols
in the coming era for at least in complex traits that require
least phenotyping for updating model to build up the prediction
accuracy.

NGS: KEY TO THE SUCCESS OF GS

To sequence/re-sequence the entire genome (or part of it) of
a large number of accessions is the ultimate approach for the
study of polymorphism in any crop. This was not possible before
the introduction of NGS platform, which has revolutionized
genomics approaches to biology drastically increasing the speed
at which DNA sequence can be acquired while reducing
the costs by several orders of magnitude. NGS technologies
have been widely used for whole genome sequencing (WGS),
whole genome resequencing (WGRS), de novo sequencing, GBS,
and transcriptome and epigenetic analysis (Varshney et al.,
2009). However, there are few technical challenges to NGS
technologies such as NGS data analysis is time consuming,
requires sufficient knowledge of bioinformatics to harvest
accurate information from these sequence data, short sequencing
read lengths and data processing steps/bioinformatics (Daber
et al., 2013). In the last few years, third generation sequencing
(TGS) technologies were developed and are being used to
improve NGS strategies. These technologies produce longer
sequence reads in less time and that too at lower costs per
instrument run. In the coming few years, TGS platform has
been predicted to replace the SGS by 47% (Peterson et al.,
2010). These technologies are also expected to increase the
accuracy of SNP discovery, and reduce the chances of wrong base
calling.

Initially, the WGS made available by Sanger sequencing was
limited to few model plant species (rice, maize, Arabidopsis
etc). The availability of WGS led considerable shift from
fragment based polymorphism identification to sequence based
polymorphism (SSR, SNP etc) identification to expedite the
marker identification process and to increase the number
of informative markers. The Sanger sequencing being time
consuming, costly and provide information only to the target
individual, has limited its use in specific gene discovery (Ray
and Satya, 2014). Hence, it is not feasible for breeding programs
involving large population size. The NGS technologies and
powerful computational pipelines have driven the whole genome
sequencing cost to drop by several folds allowing discovery,
sequencing and genotyping of thousands of markers in a single
step (Stapley et al., 2010). NGS has emerged as a powerful
tool to detect numerous DNA sequence polymorphism based
markers within a short timeframe, growing as a powerful tool
for genomic-estimated breeding (GAB). Presently, the WGS of
parental and progeny lines of mapping populations as well as
of germplasm lines currently present in different germplasm
repositories is costly and not feasible, but the moving revolution
in NGS technologies can reduce the cost for resequencing the
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genome to only a few hundred US dollars. This will lead to the
discovery of huge markers information to meet all the needs
of plant breeding. By that time targeted sequencing seems to
be more cost-effective option for large scale marker discovery,
particularly in case of large and un-decoded genomes. Several
targeted marker discovery techniques have been developed
using NGS platforms viz., reduced-representation libraries
(RRL), complexity reduction of polymorphic sequences (CRoPS),
restriction-site associated DNA sequencing (RAD-seq), double
digest RADSeq (ddRADSeq), ezRADSeq, 2bRADSeq, DArTSeq,
genome reduction on restriction site conservation (GR-RSC),
sequence based polymorphic marker technology, multiplexed
shotgun genotyping (MSG), genotyping-by-sequencing (GBS),
molecular inversion probe, solution hybrid selection and
microarray-based GS, which involve partial representation of
the genome and those can be utilized even in absence of
prior knowledge on WGS (Toonen et al., 2013; Ray and
Satya, 2014). Among these NGS technologies RAD-seq (or its
variants) and GBS have already been proved to be effective
for GAB and were frequently used in GWAS and GS studies
(Yang et al., 2012; Glaubitz et al., 2014) (Table 1). The
sequencing technology development closely follows Moore’s
law (Wetterstrand, 2014), which indicates that WGS or NGS
cost will drop by several magnitudes, and WGS will be
preferred over targeted genome sequencing in near future
(Marroni et al., 2012). We expect that overwhelming flow
of WGS will not completely wipe off the partial genome
sequencing approach, but it would be a preferred choice for
short term projects for strengthening next generation plant
breeding.

The NGS-based marker technologies provide genome-wide
marker coverage at a very low cost per data point and
have increased the speed, throughput, and cost effectiveness
of genome-wide genotyping, thus allowing us to assess the
inheritance of the entire genome with nucleotide-level precision.
Previously, to generate marker data were expensive and
laborious, and number of markers were major constrain for
MAB strategies that could efficiently be assayed. This restricted
the use of markers only in critical genomic regions to predict
the presence or absence of agriculturally important traits. But,
the expansion of NGS technologies and genotyping platforms
widen the marker applications for crop improvement and were
the basis for the success of GS, which has almost shifted the
complete reliance on phenotyping to an increased reliance on
genotyping-based selection. The NGS-based genotyping offer
number of benefits over array-based genotyping such as low
genotyping cost (per sample cost <$20 USD), low ascertainment
bias, increased dynamic range detection offered by sequencing
in polyploid species, insight into non-model genomes were
no a priori genomic information is available and high marker
density, hence made them the method of choice in genotyping
for GS (Poland et al., 2012) (Figure 3). Among the number
of factors that ascertain the efficiency and accuracy with which
the superior lines can be predicted through GS, the type and
density of marker used as well as size of reference population
(limited by high cost genotyping) are the most critical factors
(Jannink et al., 2010; Lorenz et al., 2011), both have been

resolved by NGS genotyping technologies (Jarquín et al., 2014a).
In addition, the population structure (i.e., genetic relatedness)
is another key factor affecting predictions of breeding values
with genomic models and could result in biased accuracies
of genomic predictions (Saatchi et al., 2011; Riedelsheimer
et al., 2013; Wray et al., 2013). Population structure produces
spurious marker-trait associations in genome-wide association
studies due to different allele frequencies among subpopulations,
which may inflate estimate of genomic heritability and bias
accuracies of genomic predictions (Price et al., 2010; Visscher
et al., 2012; Wray et al., 2013). When population structure exists
in both training and validation sets, correcting for population
structure led to a significant decrease in accuracy with genomic
prediction. In comparison to SSR and array based marker
systems, the NGS-based marker genotyping provide abundant
SNP information across whole crop genome to accurately
estimate the population structure of TP, which in turn is used to
train the model that accurately predict the GEBV of BP (Isidro
et al., 2015).

Thus, the rapid advances in sequencing technology have
led to higher throughput and low cost per sample, and
positioning NGS-based genotyping as a cost-effective and
efficient agrigenomics tool for performing GS in both model
and non-model crop species as well as for crops with large
and complex genomes (Metzker, 2010; Kirst et al., 2011;
Poland et al., 2012; Toonen et al., 2013) (Table 1). The NGS
genotyping have been reported to increase GEBV prediction
accuracies by 0.1 to 0.2 over other established marker platform
in cereals and other crop species (Poland et al., 2012). GS have
been attempted in Miscanthus sinensis for 17 traits related to
phenology, biomass, and cell wall composition using RADSeq,
and genome-wide prediction accuracies were investigated to be
moderate to high (average of 0.57) and suggested immediate
implementation of GS in Miscanthus breeding programs (Slavov
et al., 2014). Spindel et al. (2015) also revealed the prediction
accuracies of 0.63 for flowering time, by studying the GS
in tropical rice breeding lines. In addition, the NGS marker
genotyping have been reported to give higher GS accuracy
than DArT markers on the same lines of wheat (Triticum
aestivum L.), despite 43.9% missing data (Heslot et al., 2013).
These entire make the sequence based genotyping an ideal
approach for GS and its successful application in crop breeding
(Figure 3).

GS and GBS

Genotype-by-sequencing follows a modified RAD-seq based
library preparation protocol for NGS and is a simple and highly
multiplexed system. The important feature of this system include
reduced sample handling, fewer PCR and purification steps, low
cost, no reference sequence limits, no size fractionation and
efficient barcoding technique (Davey et al., 2011). The recent
advances in NGS have reduced the DNA sequencing cost to the
point that GBS is now feasible for large genome species and
high diversity (Elshire et al., 2011). It enables the detection of
thousands of millions of SNPs in the large collections of lines
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that can be used for genetic diversity analysis, linkage mapping,
GWAS, GS, and evolutionary studies. (Beissinger et al., 2013).
GBS is becoming increasingly important as a cost-effective and
unique tool for genomics-assisted breeding in a range of plant
species. Genotyping-by sequencing combines marker discovery
and genotyping of large populations, making it an excellent
marker platform for breeding applications even in the absence
of a reference genome sequence or previous polymorphism
discovery. The GBS method offers a greatly simplified library
production procedure more amenable to use on large numbers of
individuals/lines (Elshire et al., 2011). The original GBS protocol
utilizing only one enzyme ApeKI have been modified in plants
by two-enzyme (PstI/MspI) GBS protocol, which allows greater
reduction of complexity and uniform library for sequencing, and
have been applied in wheat and barley (Poland et al., 2012). In
crop species with large and complex genomes as well as lack of
reference sequence the marker technologies lagged behind, which
is an important factor to consider for large scale application of GS
in crop plants. The high polyploidy level, large genome size and
lack of reference genome (wheat) were the major hindrance of
molecular marker development in the crop species. Genotyping-
by-sequencing has recently been applied to large complex
genomes of barley (Hordeum vulgare L.) and wheat (Triticum
aestivum L.), and shown to be an effective tool to rapidly generate
molecular markers for these species (Poland et al., 2012). The
GBS have also been used for de novo genotyping of breeding
panels and to develop accurate GS models, for the large, complex,
and polyploid wheat genome. GAB value prediction accuracies
were 0.28 to 0.45 for grain yield, an improvement of 0.1 to 0.2
over an established marker platform for wheat (Heslot et al.,
2013). The first evidence of the prediction accuracy of GBS in
plants came from Poland et al. (2012), who showed good accuracy
using GBS in prediction models for polyploid wheat breeding,
and from Crossa et al. (2013), who predicted doubled-haploid
maize lines using pedigree as well as imputed and unimputed
GBS data. In these applications, read depth as low as ∼1x was
sufficient to obtain accurate EBV without using imputation and
error correction methods. Since then GS involving GBS have
been reported in multiples of crop species including both model
and non-model (Table 1). In soybean, prediction accuracy for
grain yield, assessed using cross validation, was estimated to be
0.64, indicating good potential for using GS for grain yield in
soybean (Jarquín et al., 2014b). The GBS has the potential to drive
the cost per sample below $10 through intensive multiplexing.
Genotyping cost of GBS per individual is lowest in comparison
to array-based and other NGS-based markers in wheat and other
non-model crop species (Bassi et al., 2016). The fraction of the
genome covered by GBS can potentially be much greater than
the fraction captured by even the densest SNP arrays currently
available in crop plants (Gorjanc et al., 2015). Furthermore,
unlike SNP arrays that are typically developed from a limited
sample of individuals, GBS can capture genetic variation that
is specific to a population or family of interest. GBS has the
advantage that markers are discovered using the population to
be genotyped, thus minimizing ascertainment bias. Hence, the
flexibility, low cost and GEBV prediction accuracy of GBS make
this an ideal approach for GS (Table 1; Figure 3).

Frontiers in Genetics | www.frontiersin.org 7 December 2016 | Volume 7 | Article 221

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00221 December 24, 2016 Time: 15:47 # 8

Bhat et al. Genomic Selection for Crop Improvement

FIGURE 3 | Role of next-generation sequencing (NGS) based marker technologies and high-throughput phenotyping (HTP) on GS. Both NGS and HTP
occupy a critical position in the precise estimation of GEBV that predict the breeding value of individuals in a breeding population using GS.

GS: IMPLICATIONS IN CROP
IMPROVEMENT

The applied plant breeding is the ultimate source of improved
crop varieties, and has led to green revolution in 1960s. At
every time this field was supported and facilitated by the new
technologies and approaches. The impact of climate change on
crop production and global food security is being discussed
currently throughout the world (Reynolds, 2010). The population
of the world is expected to rise by 50% till 2050 (Tester and
Langridge, 2010), requiring 70% increase in crop production
(Furbank and Tester, 2011). Therefore, to fight against these
challenges and maintaining sustainable agriculture, new crop
varieties are required at an accelerated rate to increase production
as well as withstand better biotic and abiotic stresses. As
discussed that most of the agriculturally important traits are
governed by minor effect genes, and with a high occurrence
of epistatic interactions such as grain yield, plant growth and
stress adaptation etc (Mackay, 2001). Improvement of these traits
through conventional breeding and MAS do not met the expected
results to pace with growing human population. In this regard, GS
provides new opportunities for increasing the efficiency of plant
breeding programs (Bernardo and Yu, 2007; Heffner et al., 2009;
Crossa et al., 2010; Lorenz et al., 2011). The GS has the potential
to fix all the genetic variation and has ability to accurately select
individuals of higher breeding value without the requirement of
collecting phenotypes pertaining to these individuals. This has
facilitated a shortening of the breeding cycle and enable rapid

selection and intercrossing of early generation breeding material
(Figure 2). Recent research has shown that GS has the potential
to reshape crop breeding, and many authors have concluded that
the estimated genetic gain per year applying GS is several times
that of conventional breeding (Bassi et al., 2016). The cost of
genotyping has declined dramatically in the era of NGS (Davey
et al., 2011), whereas the cost of phenotyping is increasing due to
labor and land-use expenses, and has led to increased utility of
GS in crop improvement. This will expand the genetic evaluation
of germplasm in crop improvement programs and accelerate the
delivery of crop varieties with improved yield, quality, biotic
and abiotic stress tolerance, and thus directly benefit attempts
to address the challenge of increasing global hunger. Thus, GS
will be the cornerstone for the release of global hunger, and has
tremendous impact on crop breeding and variety development
(Figure 2).

GS AND HIGH THROUGHPUT
PHENOTYPING (HTP)

It is clear from the above discussion that genotyping no more
limit the prediction accuracy of GS. But the technical challenge
in implementing the GS in crop plants is the reliability of
phenotypic data that creates genotype-phenotype gap (GP gap).
The GS predication model used to derive GEBV for all genotyped
individuals of the reference set depends upon the precision
and accuracy the phenotypic data is taken on TP, and thereby
the genetic gain achieved after every generation of selection
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(Meuwissen et al., 2001). The precise phenotypic data is one of
the key components to train GS model for accurately predicting
GEBV of BP (Cabrera-Bosquet et al., 2012). In this regard, several
phenotyping facilities have been developed around the world that
can scan and record precise and accurate data for thousands
of plants quickly by making use of non-invasive imaging,
spectroscopy, image analysis, robotics and high-performance
computing facilities (Cobb et al., 2013). The HTP helps us to
collect high quality accurate phenotyping data. The manual,
invasive and destructive methods of plant phenotyping were
laborious, costly and less precise, often led inaccuracy in GAB as
well as limit the population size. This importance can be realized
by the fact that an International Plant Phenomics Initiative
was launched recently to address crop productivity1 The earlier
manual methods of plant phenotyping are now giving way to
high-throughput precise non-destructive imaging techniques.
These phenomics facilities make sure to scan thousands of plants
in a day so that this phenotyping technology will become similar
to high-throughput DNA sequencing in the field of genomics
(Finkel, 2009). Hence, to achieve fruitful results from GS and
GAB much more efforts and funds are required to be allocated in
this field. In India well established phenomic facility has been not
created yet, therefore efforts are required to create such facility
in the country to boost agriculture production. Hence, HTP will
change the paradigm of GS and led its effective application in crop
plants as well as harness its true benefits for crop improvement
(Figure 3).

CONCLUSION

The classical breeding had made a significant contribution to crop
improvement but was slow in targeting the complex and low
1 http://www.plantphenomics.org/

heritable quantitative traits. In this regard, GS has been suggested
to have a potential to fix all the genetic variation of complex
traits. Many studies have shown tremendous opportunities of
GS to increase genetic gain in plant breeding. The important
consideration for GS to work in crop plant is the availability of
low cost, flexible and high density marker system. Revolution
of inexpensive NGS technologies has resulted in increasing
number of crop genomes as well as provides the low cost and
high density SNP genotyping. These marker technologies have
deeply estimated the population structure of both training and
validation set, and have increased the selection accuracy of GS.
The NGS markers, as well as methodological refinements (such
as the implementation of genotype-by-environment interaction
in prediction models), are notably contributing to paving the way
for a successful implementation of GS in plant breeding. Hence,
GS will be the key approach for the success of second “Green
Revolution” to occur. Furthermore, the GS and HTP together will
change the entire paradigm of plant breeding as well as led to the
effective increase in genetic gain for complex traits. In the future
when the genomic sequencing cost further decreases and WGS
become feasible and cost effective for GS, there will be further
increase in the prediction accuracy of GS. Till that time matures
the targeted sequencing seems to be more cost-effective option
for large scale marker discovery and GS, particularly in case of
large and un-decoded genomes.
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