Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi

Claire M. Fraser ${ }^{*}$, Sherwood Casjens \dagger, Wai Mun Huang \dagger, Granger G. Sutton ${ }^{*}$, Rebecca Clayton ${ }^{\star}$, Raju Lathigra \ddagger, Owen White ${ }^{\star}$, Karen A. Ketchum ${ }^{\star}$, Robert Dodson ${ }^{\star}$, Erin K. Hickey ${ }^{\star}$, Michelle Gwinn ${ }^{\star}$, Brian Dougherty ${ }^{\star}$, Jean-Francois Tomb ${ }^{\star}$, Robert D. Fleischmann ${ }^{*}$, Delwood Richardson ${ }^{\star}$, Jeremy Peterson ${ }^{\star}$, Anthony R. Kerlavage ${ }^{\star}$, John Quackenbush ${ }^{*}$, Steven Salzberg ${ }^{\star}$, Mark Hanson \ddagger, Rene van Vugt \dagger, Nanette Palmer \dagger, Mark D. Adams ${ }^{\star}$, Jeannine Gocayne ${ }^{\star}$, Janice Weidman ${ }^{\star}$, Teresa Utterback ${ }^{\star}$, Larry Watthey ${ }^{*}$, Lisa McDonald ${ }^{*}$, Patricia Artiach ${ }^{\star}$, Cheryl Bowman ${ }^{\star}$, Stacey Garland ${ }^{\star}$, Claire Fujii ${ }^{*}$, Matthew D. Cotton ${ }^{*}$, Kurt Horst*, Kevin Roberts*, Bonnie Hatch*, Hamilton O. Smith ${ }^{\star}$ \& J. Craig Venter ${ }^{*}$

* The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA
\dagger Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84132, USA
\ddagger MedImmune, Inc., 35 West Watkins Mill Road, Gaithersburg, Maryland 20878, USA

The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains $\mathbf{8 5 3}$ genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39\% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.

In the mid-1970s, a geographic clustering of an unusual rheumatoid arthritis-like condition was reported in Connecticut ${ }^{1}$. That cluster of cases focused attention on the syndrome that is now called Lyme disease. It was subsequently realized that a similar disorder had been known in Europe since the beginning of this century. Lyme disease is characterized by some or all of the following manifestations: an initial erythematous annular rash,' 'flu-like symptoms, neurological complications, and arthritis in about 50% of untreated patients ${ }^{2}$. In the United States, the disease occurs primarily in northeastern and midwestern states, and in western parts of California and Oregon. These regions coincide with the ranges of various species of Ixodes ticks, the primary vector of Lyme disease. Lyme disease is now the most common tick-transmitted illness in the United States, and has been reported in many temperate parts of the Northern Hemisphere.

It was not until the early 1980s that a new spirochaete, Borrelia burgdorferi ${ }^{3}$, was isolated and cultured from the midgut of Ixodes ticks, and subsequently from patients with Lyme disease ${ }^{4,5}$. Analysis of genetic diversity among individual Borrelia isolates has defined a closely related cluster containing at least 10 tick-borne species of Lyme disease agents, called 'B. burgdorferi (sensu lato)'. B. burgdorferi resembles most other spirochaetes in that it is a highly specialized, motile, two-membrane, spiral-shaped bacterium that lives primarily as an extracellular pathogen. Borrelia is fastidious and difficult to culture in vitro, requiring a specially enriched media and low oxygen tension ${ }^{6}$.

One of the most striking features of B. burgdorferi is its unusual genome, which includes a linear chromosome approximately one megabase in size ${ }^{7-10}$ and numerous linear and circular plasmids ${ }^{11-13}$, with some isolates containing up to 20 different plasmids. The plasmids have a copy number of approximately one per chromosome ${ }^{10,14}$, and different plasmids often appear to share regions of homologous $\mathrm{DNA}^{13,15,16}$. Long-term culture of B. burgdorferi results in the loss of some plasmids, changes in protein expression profiles,
and a loss in the ability of the organism to infect laboratory animals, suggesting that the plasmids encode important proteins involved in virulence ${ }^{17-19}$.

Because of its importance as a pathogen of humans and animals, and the value of complete genome sequence information for understanding its life cycle and advancing drug and vaccine development, we sequenced the genome of B. burgdorferi type strain (B31), using the random sequencing method previously described ${ }^{20-24}$. Here we summarize the results from sequencing, assembly and analysis of the linear chromosome and 11 plasmids.

Chromosome analysis

The linear chromosome of B. burgdorferi has 910,725 base pairs (bp) and an average $\mathrm{G}+\mathrm{C}$ content of 28.6%. Base pair one represents the first double-stranded base pair that we observed at the left telomere. Previous genome characterizations agree with the nucleotide sequence of the large chromosome ${ }^{10,25-28}$. The 853 predicted coding sequences (open reading frames; ORFs) have an average size of 992 bp , similar to that observed in other prokaryotic genomes, with 93% of the B. burgdorferi genome representing

Figure 1 Linear representations of the B. burgdorferi B31 chromosome and plasmids. The location of predicted coding regions colour-coded by biological role, RNA genes, and tRNAs is indicated. Arrows represent the direction of transcription for each predicted coding region. Numbers associated with tRNA symbols represent the number of tRNAs at a locus. Numbers associated with GES represent the number of membrane-spanning domains according to the Goldman, Engelman and Steitz scale as calculated by TopPred ${ }^{49}$. Only proteins with five or more GES are indicated. Members of paralogous gene families are identified by family number. Transporter abbreviations: mal, maltose; P, gly and bet, proline, glycine, betaine; glyc, glycerol; aa, amino acid; E, glutamate; fru, fructose; glu, glucose; s/p, spermidine/putrescine; pan, pantothenate; Pi, phosphate; lac, lactate; rib, ribose; ?, unknown.
coding sequence. Biological roles were assigned to 59% of the 853 ORFs using the classification scheme adapted from Riley ${ }^{29}$ (Fig. 1), 12% of ORFs matched hypothetical coding sequences of unknown function from other organisms, and 29% were new genes. The average relative molecular mass (M_{r}) of the chromosome-encoded proteins in B. burgdorferi is 37,529 ranging from 3,369 to 254,242, values similar to those observed in other bacteria including Haemophilus influenzae ${ }^{20}$ and Mycoplasma genitalium ${ }^{21}$. The median isoelectric point (pI) for all predicted proteins is 9.7.

Analysis of codon usage in B. burgdorferi reveals that all 61 triplet codons are used. When both AU- and GC-containing codons specify a single amino acid, there is a marked bias (from 2-fold to more than 20 -fold, depending on the amino acid) in the use of AUrich codons. The most frequently used codons are AAA (Lys, 8.1\%), AAU (Asn, 5.9%), AUU (Ile, 5.9\%), UUU (Phe, 5.7\%), GAA (Glu, 5.0%), GAU (Asp, 4.2%) and UUA (Leu, 4.2\%). The most common amino acids are Ile (10.6\%), Leu (10.3\%), Lys (10.2\%), Ser (7.8\%) and Asn (7.2%). The high value for Lys is in agreement with the median calculated isoelectric point of 9.7.

Plasmid analysis

Analysis of the nucleotide sequence and Southern analyses on B. burgdorferi DNA indicate that, in addition to the large linear chromosome, isolate B31 contains linear plasmids of the following approximate sizes: 56 kilobase pairs (kbp) (lp56), 54 kbp (lp54), four plasmids of 28 kbp (lp28-1, lp28-2, lp28-3 and lp28-4), 38 kbp (lp38), 36 kbp (lp36), 25 kbp (lp25) and 17 kbp (lp17); and circular plasmids of the following sizes: 9 kbp (cp9), 26 kbp (cp26) and five or six homologous plasmids of 32 kbp (cp32). These include all of the plasmids previously identified in this strain, but comparisons with other B31 cultures suggest that this isolate may have lost one 21 kbp linear and one or two 32 kbp circular plasmids during growth in culture since its original isolation ${ }^{11-14,19,30}$. The sequences of all plasmids were assembled as part of this project. However, the assembled sequences of the cp32 and related lp56 plasmids could not be determined with a high degree of confidence because of DNA sequence similarity among them ($\geq 99 \%$ in several regions of

4 Table 2 Gene identification numbers are listed with the prefix BB as in Fig. 2. Each gene identified is listed in its functional role category (adapted from Riley ${ }^{29}$). The percentage of similarity and a two-letter abbreviation for genus and species for the best match are also shown. An expanded version of this table with additional information is available on the World-Wide Web at http://www.tigr.org/tdb/mdb/bbdb/bbdb.htm. Abbreviations of gene names are: Ac, acetyl; BP, binding protein; biosyn, biosynthesis; cello, cellobiose; CPDase carboxypeptidase; Dcase, decarboxylase; DHase, dehydrogenase; flgr, flagellar/flagellum; fru, fructose; GBP, glycine, betaine, L-proline; glu, glucose; Kase, kinase; mal, maltose; MC-methyl-accepting chemotaxis; MTase, methyltransferase; NAG, N-acetylglucosamine; OH , hydroxy; OP, oligopeptide; P, phosphate; PPTase, phosphotransferase; PPase, phosphatase; prt, protein; put, putative; RDase, reductase; RG, ribose/galactose; SAM, S-adenosylmethionine; Sase, synthetase/synthase; SP, spermidine/putrescine; ss, single-stranded; sub, subunit; Tase, transferase.
Abbrevation of genus and species are: Ah, Aeromonas hydrophila; Ar, Agrobacterium radiobacter; Al, Alteromonas sp.; Ab, Anabaena sp.; An, Anacystis nidulans; At, arabidopsis thaliana; Av, Azotobacter vinelandii; Bf, Bacillus firmus; BI, Cacillus licheniformis; Bm, Bacillus megaterium; Bs, Bacillus stearothermophilus; Bs, Bacillus subtilis; Bb, Borrelia burgdorferi; Bc, Borrelia coriaceae; Bh, Borrelia hermsii; Ba, Buchnera aphidicola; Ca, Clostridium acetobutylicum; Cl, Clostridium Iongisporum; Cp, Clostridium perfringens; Cg , Corynegacterium glutamicum; Cb, Coxiella burnetii; Cp, Cyanophora paradoxa; Dd, Dictyostelium discoideum; Ec, Escherichia coli; Eh, Entamoeba histolytica; Ec, Enterobacter cloacae; El, Enterococcus faecalis; Eh, Enterococcus hirae; Ha, Haemophilus aegyptius; Hi, Haemophilus influenzae; Hp, Helicobacter pylori; Hs, Homo sapiens; La, Lactobacillus acidophilus; LI, Lactococcus lactis; Li, Leptospira interrogans serovar lai; Mj, Methanococcus jannaschii; Mb, Methanosarcina barkeri; MI, Mycobacterium leprae; Mt, Mycobacterium tuberculosis; Mc, Mycoplasma capricolum; Mg, Mycoplasma genitalium; Mh, Mycoplasma hominis; Mh, Mycoplasma hyorhinis; Mm, Mycoplasma mycoides; Mp, Mycoplasma pneumoniae; Mx, Myxococcus xanthus; Ng , Neisseria gonorrhoeae; Nm, Neisseria meningitidis; Os, Odontella sinensis; Pt, Paramecium tetraurelia; Pa, Pediococcus acidilactici; Pf, Plasmodium falciparum; Pg, Porphyromonas gingivalis; Pv, Proteus vulgaris; Pa, Pseudomonas aeruginosa; Pm, Pseudomonas mevalonii; Pp, Pseudomonas putida; Rm, Rhizobium meliloti; Rc, Rhodobacter capsulatus; Rs, Rhodobacter sphaeroides; Rp, Rickettsia prowazekii; Sc, Saccharomyces cerevisiae; Sc, Salmonella choleraesius; St, Salmonella typhimurium; Sh, Serpulina hyodysenteriae; Sd, Shigella dysenteriae; So, Spinacia oleracea; Sc, Staphylococcus camosus; Se, Staphylococcus epidermidis; Sp, Streptococcus pyogenes; Sc, Streptomyces coelicolor; Ss, Sulfolobus solfataricus; Syn, Synechococcus sp.; Sp, Synechocystis PCC6803; Tt, Thermoanaerobacterium thermosaccharolyticum; Tb, Thermophilic bacterium RT8.B4.; Ttv, Thermoproteus tenax virus; Tm, Thermotoga maritima; Tat, Thermus aquaticus thermophilus; Ta, Thermus aquaticus; Td, Treponema denticola; Tp, Treponema pallidum; Ta, Triticum aestivum; Tb, Trypanosoma brucei mitochondrion; Vc, Vibrio cholerae; Vp, Vibrio parahaemolyticus; Zm, Zymomonas mobilis.
$3,000-5,000$ bp per plasmid) ${ }^{13,16}$ (Table 1). Improved assembly strategies are being tested to achieve closure on these plasmids (G. Sutton, unpublished). Plasmid lp 17 is identical to that of lp16.9 from Barbour et al. ${ }^{15}$.

The 11 plasmids we have described contain a total of 430 putative ORFs with an average size of 507 bp ; plasmid G+C content ranges from 23.1% to 32.3%. Only 71% of plasmid DNA represents predicted coding sequences, a value significantly lower than that on the chromosome. This indicates that average intergenic distances are greater in the plasmids than in the chromosome, and that many potential ORFs contain authentic frameshifts or stops (see E29, for example), suggesting that they are decaying genes not encoding functional proteins. Of the 430 plasmid ORFs, only 70 (16\%) could be identified and these include membrane proteins such as OspA-D, decorin-binding proteins, the VlsE lipoprotein recombination cassette, and the purine ribonucleotide biosynthetic enzymes GuaA and GuaB. We found that 100 ORFs (23\%) match other hypothetical proteins from plasmids in this and related strains of B. burgdorferi ${ }^{15,16,31} ; 10$ ORFs (2.3\%) match hypothetical proteins from species other than Borrelia; and 250 ORFs (58\%) have no database match.

We found that 47 paralogous gene families containing from 2 to 12 members account for 39% (169 ORFs) of the plasmid-encoded genes with no known biological role (Fig. 1). Paralogue families 32 and 50, typified by previously identified B. burgdorferi plasmid genes cp 32 orfC and cp8.3 orf2, respectively, have some similarities to proteins involved in replication, segregation and control of copy number in other bacterial systems ${ }^{16,31}$. Previous studies have reported examples of plasmid gene duplication, but the extent of

Table 1 Genome features in Borrelia burgdorferi

Chromosome $910,725 \mathrm{bp}(28.6 \% \mathrm{G}+\mathrm{C})$

Coding sequences (93\%)
RNAs (0.7\%)
Intergenic sequence (6.3\%)
853 coding sequences
500 (59\%) with identified database match
104 (12\%) match hypothetical proteins
249 (29\%) with no database match

Plasmids	$9,386 \mathrm{bp}(23.6 \% \mathrm{GC})$
cp9	$26,497 \mathrm{bp}(26.3 \% \mathrm{GC})$
cp26	$16,828 \mathrm{bp}(23.1 \% \mathrm{GC})$
lp17	$24,182 \mathrm{bp}(23.3 \% \mathrm{GC})$
lp25	$26,926 \mathrm{bp}(32.3 \% \mathrm{GC})$
lp28-1	$29,771 \mathrm{bp}(31.5 \% \mathrm{GC})$
lp28-2	$28,605 \mathrm{bp}(25.1 \% \mathrm{GC})$
lp28-3	$27,329 \mathrm{bp}(24.4 \% \mathrm{GC})$
lp28-4	$36,834 \mathrm{bp}(26.8 \% \mathrm{GC})$
lp36	$38,853 \mathrm{bp}(26.1 \% \mathrm{GC})$
lp38	$53,590 \mathrm{bp}(28.1 \% \mathrm{GC})$

Coding sequences (71\%)
Intergenic sequence (29\%)
430 coding sequences
70 (16\%) with identified database match
110 (26\%) match hypothetical proteins
250 (58\%) with no database match

Ribosomal RNA	Chromosome coordinates
16S	444581-446118
23S	438590-441508
5 S	438446-438557
23S	435334-438267
5S	435201-435312
Stable RNA	
tmRNA	46973-47335
mpB	750816-751175

Transfer RNA

34 species (8 clusters, 14 single genes)
*The telomeric sequences of the nine linear plasmids assembled as part of this study were not determined; estimation of the number of missing terminal nucleotides by restriction analysis suggests that less than $1,200 \mathrm{bp}$ is missing in all cases. Comparisons with previously determined sequences of Ip 16.9 and one terminus of Ip28-1 indicate that 25, 60 and 1,200 bp are missing, respectively.
this redundancy has become even more apparent with the complete sequence of these 11 plasmids from isolate B31. Moreover, a preliminary search of 221 putative ORFs from the cp32s and lp56 indicates that at least 50% display $\geq 70 \%$ amino-acid similarity to ORFs from the other 11 plasmids presented here (data not shown). Although plasmid-encoded genes have been implicated in infectivity and virulence ${ }^{17-19}$, the biological roles of most of these genes are not known. The significance of the large number of paralogous plasmid-encoded genes is not understood. These proteins may be expressed differentially in tick and mammalian hosts, or may undergo homologous recombination to generate antigenic variation in surface proteins. This hypothesis is supported by the identification of 63 plasmid-encoded putative membrane lipoproteins (Fig. 1).

Several copies of a putative recombinase/transposase similar to IS891-like transposases were identified in the B. burgdorferi plasmids. Linear plasmid 28-2 contains one full-length copy of this gene. Although no inverted repeats were found on either side of the transposase, there is a putative ribosome-binding site several nucleotides upstream of the apparent start codon, and a stemloop structure ($-27 \mathrm{kcal} \mathrm{mol}^{-1}$) 195 bp downstream of the stop codon in an area with no ORFs. This transposase might represent a functional gene important for the frequent DNA rearrangements that presumably occur in Borrelia plasmids. There are other partial or nearly complete copies of the transposase gene that contain frame-destroying mutations elsewhere in the genome: two copies on lp17, one on lp36, one on lp38, one on lp28-3, two on lp28-1, and one near the right end of the large linear chromosome.

Origin of replication

The replication mechanism for the linear chromosome and plasmids in B. burgdorferi is not yet known. Replication possibly begins at the termini, as has been proposed for the poxvirus hairpin telomeres ${ }^{32}$, or may begin from a single origin somewhere along the length of the linear replicon. Of the genes on the linear chromosome, 66% are transcribed away from the centre of the chromosome (Fig. 1), similar to the transcriptional bias observed for the genomes of M. genitalium ${ }^{21}$ and M. pneumoniae ${ }^{33}$. It has been suggested that bacterial genes are optimally transcribed in the same direction as that in which replication forks pass over them, particularly for highly transcribed genes ${ }^{34,35}$

Given the transcriptional bias observed in B. burgdorferi, it seems likely that the origin of replication is near the centre of the chromosome. Because bacterial chromosomal replication origins are usually near $d n a A^{36}$, it is intriguing to note that this gene (BB437) lies almost exactly at the centre of the linear B. burgdorferi chromosome ${ }^{10,27}$. A centrally initiated, bi-directional replication fork would be equidistant from the two chromosome ends, and replication would traverse the rRNA genes in the same direction as transcription.

An analysis of GC skew, $(\mathrm{G}-\mathrm{C}) /(\mathrm{G}+\mathrm{C})$ calculated in 10-kilobase (kb) windows across the chromosome, shows a clear break at
the putative origin of replication. The GC-skew values are uniformly negative from 0 to 450 kb (minus strand), and uniformly positive (plus strand) from 450 kb to the end of the chromosome (Fig. 2). Additional evidence for the location of the origin of replication comes from our discovery of an octamer, TTGTTTTT, whose skewed distribution in the plus versus the minus strand of the chromosome matches the GC skew (Fig. 2). The biological significance of this octamer has not yet been determined, although it may be analogous to the Chi site in Escherichia coli that is implicated in $\operatorname{rec} B C D$ mediated recombination. No GC skew was observed in any of the plasmids, although the heptamer ATTTTTT displays a skewed distribution in the plus versus the minus strand of lp28-4 that changes at the approximate midpoint of the plasmid (not shown).

Transcription and translation

Genes encoding the three subunits $\left(\alpha, \beta, \beta^{\prime}\right)$ of the core RNA polymerase were identified in B. burgdorferi along with σ^{70} and two alternative σ factors, σ^{54} and rpoS. The role and specificity of each of these σ factors in transcription regulation in B. burgdorferi are not known. The nus A, nus B and rho genes, which are involved in transcription elongation and termination, were also identified.
A region of the genome with a significantly higher $\mathrm{G}+\mathrm{C}$ content (43%), located between nucleotides 434,000 and 447,000, contains the rRNA operon. As previously reported, the rRNA operon in B. burgdorferi contains a 16 S rRNA-Ala-tRNA-Ile-tRNA-23S rRNA-5S rRNA-23S rRNA-5S rRNA ${ }^{37,38}$. All of the genes are present in the same orientation, except for that encoding Ile tRNA. Four unrelated genes, encoding 3-methyladenine glycosylase, hydrolyase and two with no database match, are also present in the rRNA operon. Three of these genes are transcribed in the same direction as the rRNAs.
We identified in the chromosome 31 tRNAs with specificity for all 20 amino acids (Fig. 1). These are organized into 7 clusters plus 13 single genes. All tRNA synthetases are present except glutaminyl tRNA-synthetase. A single glutamyl tRNA synthetase probably aminoacylates both tRNA ${ }^{\text {Glu }}$ and t RNA ${ }^{\text {Gln }}$ with glutamate followed by transamidation by Glu-tRNA amidotransferase, a heterotrimeric enzyme present in B. burgdorferi and several Gram-positive bacteria and archaea ${ }^{30}$. The lysyl-tRNA synthetase (LysS) in B. burgdorferi is a class I type that has no resemblance to any known bacterial or eukaryotic LysS, but is most similar to LysS from the archaea ${ }^{40}$.

Replication, repair and recombination

The complement of genes in B. burgdorferi involved in DNA replication is smaller than in E. coli, but similar to that in M. genitalium ${ }^{21}$. Three ORFs have been identified with high homology to four of the ten polypeptides in the E. coli DNA polymerase III: α, β and γ, and τ. In E. coli, the γ and τ proteins are produced by programmed ribosomal frameshifting. This observation suggests that DNA replication in B. burgdorferi, like that in M. genitalium, is accomplished with a restricted set of genes. B. burgdorferi has one

Figure 2 Distribution of TTGTTTTT and GC skew in the B. burgdorferi chromosome. Top, distribution of the octamer TTGTTTTT. The lines in the top panel represent the location of this octamer in the plus strand of the sequence, and those in the second panel represent the location of this oligomer in the minus strand of the sequence. Bottom, GC skew.
type I topoisomerase (topA) and two type II topoisomerases (gyrase and topoisomerase IV) for DNA topology management and chromosome segregation, despite its linear chromosomal structure. This suggests that topoisomerase IV may be required for more than the separation of circular DNAs during segregation.

The DNA repair mechanisms in B. burgdorferi are similar to those in M. genitalium. DNA excision repair can presumably occur by a pathway involving endonuclease III, PolI and DNA ligase. The genes for two of three DNA mismatch repair enzyme ($m u t S$, mutL) are
present. The apparent absence of $m u t H$ is consistent with the lack of GATC (dam) methylation in strain B31 (S. Casjens, unpublished). Also present are genes for the repair of ultraviolet-induced DNA damage ($u v r A, u v r B, u v r C$ and $u v r D$) (Table 2).
B. burgdorferi has a complete set of genes to perform homologous recombination, including $r e c A, r e c B C D, s b c C, s b c D, \operatorname{rec} G, r u v A B$ and recJ. 3^{\prime}-Exonuclease activity associated with $s b c B$ in E. coli may be encoded by exoA (exodeoxynuclease III). Although recA is present, we found no evidence for lexA, which encodes the repressor that

Figure 3 Solute transport and metabolic pathways in B. burgdorferi. A schematic diagram of a B. burgdorferi cell providing an integrated view of the transporters and the main components of the metabolism of this organism, as deduced from the genes identified in the genome. The ORF numbers correspond to those listed
in Table 2 (red indicates chromosomal and blue indicates plasmid ORFs). Presumed transporter specificity is indicated. Yellow circles indicate: places where particular uncertainties exist as to the substrate specificity, subcellular location or direction of catalysis: or expected activities that were not found.
regulates SOS genes in E. coli. No genes encoding DNA restriction or modification enzymes are present.

Biosynthetic pathways

The small genome size of B. burgdorferi is associated with an apparent absence of genes for the synthesis of amino acids, fatty acids, enzyme cofactors, and nucleotides, similar to that observed with M. genitalium ${ }^{21}$ (Fig. 3, Table 2). The lack of biosynthetic pathways explains why growth of B. burgdorferi in vitro requires serum-supplemented mammalian tissue-culture medium. This is also consistent with previous biochemical data indicating that Borrelia lack the ability to elongate long-chain fatty acids, such that the fatty-acid composition of Borrelia cells reflects that present in the growth medium ${ }^{6}$.

Transport

The linear chromosome of B. burgdorferi contains 46 ORFs and the plasmids contain 6 ORFs that encode transport and binding proteins (Fig. 3, Table 2). These gene products contribute to 16 distinct membrane transporters for amino acids, carbohydrates, anions and cations. The distribution of transporters between the four categories of functions in this section is similar to that observed in other heterotrophs (such as Haemophilus influenzae, M. genitalium and H. pylori), with most being dedicated to the import of organic compounds.

There are marked similarities between the transport capacity of B.

Figure 4 Telomere nucleotide sequences from Borrelia species. Nucleotide sequences are shown for known Borrelia telomeres as indicated: 1,B. burgdorferi Sh-2-82 chromosome left end; 2, B. burgdorferi B31 chromosome left end; 3, B. afzelii R-IP3 chromosome right end; 4, B. burgdorferi B31 chromosome right end; 5, B. burgdorferi B31 plasmid lp17 left end; 6, B. burgdorferi B31 plasmid Ip17 right end; $7, B$. hermisii plasmids bp7E and pb21E right ends; $8, B$. burgdorferi B31 plasmid lp28-1 right end. In each case the telomere is at the left. Question marks (?) indicate locations where S1 nuclease was used to open terminal hairpins during the sequence determinations. Stippled areas highlight regions that appear to have been most highly conserved among these telomeres; no strong sequence conservation has been found near the right of the terminal 26 bp among the different sequences listed, except between the chromosomal left ends from strains B31 and Sh-2-82 (see text). The telomeric sequences of the strain B31 chromosome were determined in this report; the others are from references $14,28,30,45,46$.
burgdorferi and M. genitalium. Both genomes have a limited number of recognizable transporters, so it is not clear how they can sustain diverse physiological reactions. Several of the identified transporters in both genomes exhibit broad substrate specificity, exemplified by the oligopeptide ABC transporter (opp operon) or the glycine, betaine, l-proline transport system (proVWX). Therefore, these organisms probably compensate for their restricted coding potential by producing proteins that can import a wide variety of solutes. This is important because B. burgdorferi is unable to synthesize any amino acids de novo. We were unable to identify any transport systems for nucleosides, nucleotides, NAD/NADH or fatty acids, although they are likely to be present.

Glucose, fructose, maltose and disaccharides seem to be acquired by the phosphoenolpyruvate:phosphotransferase system (PTS). The two nonspecific components, enzyme $1(p t s l)$ and $\mathrm{Hpr}(p t s H)$, are associated in one operon with an apparently glucose-specific, phosphohistidine-sugar phosphotransferase enzyme IIA (crr). Separate from this operon are four permeases (enzyme IIBC), fruA in two copies (fructose), pts (glucose) and malX (glucose/ maltose) (Fig. 3, Table 2). The fructose-specific enzyme IIA is induced in the ORF with IIBC ($f r u A$), as has been observed in M. genitalium ${ }^{41}$. Ribose may be imported by an ATP-binding cassette transporter ($r b s A C$). The $r b s A C$ genes are transcribed in an operon with a methyl-accepting chemotaxis protein that may respond to β galactosides, suggesting that movement of the organisms towards sugars may be coupled to the transport process.

Energy metabolism

The limited metabolic capacity of B. burgdorferi is similar to that found in M. genitalium (Fig. 3, Table 2). Genes encoding all of the enzymes of the glycolytic pathway were identified. Analysis of the metabolic pathway suggests that B. burgdorferi uses glucose as a primary energy source, although other carbohydrates, including glycerol, glucosamine, fructose and maltose, may be used in glycolysis. Pyruvate produced by glycolysis is converted to lactate, consistent with the microaerophilic nature of B. burgdorferi. Generation of reducing power occurs through the oxidative branch of the pentose pathway. None of the genes encoding proteins of the tricarboxylic acid cycle or oxidative phosphorylation were identified. The similarity in metabolic strategies of two distantly related, obligate parasites, M. genitalium and B. burgdorferi, suggests convergent evolutionary gene loss from more metabolically competent, distant progenitors.
Addition of N -acetylglucosamine (NAG) to culture medium is required for growth of B. burgdorferi ${ }^{6}$. NAG is incorporated into the cell wall, and may also serve as an energy source. The cp26 plasmid encodes a PTS cellobiose transporter homologue that could have specificity for the structurally similar compound chitobiose (di- N -acetyl-D-glucosamine). A gene product on the chromosome with sequence similarity to chitobiase (BB2) may convert chitobiose to NAG. B. burgdorferi can metabolize NAG to fructose-6-phosphate, which then can enter the glycolytic cycle through the action of N -acetylglucosamine-6-phosphate deacetylase and glucosamine-6phosphate isomerase. NAG is the primary constituent of chitin, which makes up the tick cuticle ${ }^{6}$, and may be a source of carbohydrate for B. burgdorferi when it is associated with its tick host.
The parallels between B. burgdorferi and M. genitalium appear to extend to other aspects of their metabolism. Both organisms lack a respiratory electron transport chain, so ATP production must be accomplished by substrate-level phosphorylation. Consequently, membrane potential is established by the reverse reaction of the $\mathrm{V}_{1} \mathrm{~V}_{0}$-type ATP synthase, here functioning as an ATPase to expel protons from the cytoplasm (Fig. 3, Table 2). The ATP synthase genes in B. burgdorferi appear to be transcribed as part of a sevengene operon. They are not typical of those usually found in eubacteria, more closely resembling the eukaryotic vacuolar (Vtype) and archaeal (A-type) H^{+}-translocating ATPases ${ }^{42}$, both in size
and sequence similarity, than the bacterial $\mathrm{F}_{1} \mathrm{~F}_{0}$ ATPases. Genome analysis of Treponema pallidum, the pathogenic spirochaete that causes syphilis, has also revealed the presence of a $\mathrm{V}_{1} \mathrm{~V}_{0}$-type ATP synthase (C. M. F. et al., manuscript in preparation), suggesting that this may be a feature of spirochaetes.

Regulatory systems

Although the expression of Borrelia genes varies according to the current host species, temperature, host body location and other local factors, control of gene expression appears to differ from more well studied eubacteria. A typical set of homologues of heat-shock response genes is present (groES, groEL, grpE, dnaJ, hslU, hslV, dnaK and $h t p G$), and B. burgdorferi is known to have such a response; however, it lacks the σ - 32 that controls their transcription in E. coli. Only a few homologues to other eubacterial regulatory proteins are present, including only two response-regulator two-component systems.

Motility and chemotaxis

Like other spirochaetes, B. burgdorferi has periplasmic flagella that are inserted at each end of the cell and extend towards the middle of the cell body. The unique flagella allow the organism to move through viscous solutions, an ability that is presumed to be important in its migration to distant tissues following deposition in the skin layers ${ }^{43}$. Proteins involved in motility and chemotaxis are encoded by 54 genes, more than 6% of the B. burgdorferi chromosome, most of which are arranged in eight operons containing between 2 and 25 genes.
B. burgdorferi contains several copies of the chemotaxis genes (cheR, cheW, cheA, che Y and cheB) downstream of the methylaccepting chemotaxis proteins. Other eubacteria also have duplications of some che genes, but those genes in B. burgdorferi are the most redundant set yet found. B. burgdorferi lacks recognizable virulence factors; thus, its ability to migrate to distant sites in the tick and mammalian host is probably dependent on a robust chemotaxis response. Multiple chemotaxis genes may provide redundancy in this system in order to meet such challenges or, alternatively, these genes may be differentially expressed under varied physiological conditions. Another speculative possibility is that the flagellar motors at the two ends of the B. burgdorferi cell are different and require different che systems. In support of this idea is the observation that one of the motor switch genes, $f l i G$, is also present in two copies.

Membrane protein analysis

Much of the previous work on B. burgdorferi has focused on outersurface membrane genes because of their potential importance in bacterial detection and vaccination. Nearly all Borrelia membrane proteins have been found to be typical bacterial lipoproteins. A search of B. burgdorferi ORFs for a consensus lipobox in the first 30 amino acids identified 105 putative lipoproteins, representing more than 8% of coding sequences. This contrasts with a total of only 20 putative lipoproteins in the 1.67 -million base pair H. pylori genome $(1.3 \% \text { of coding sequences })^{23}$. The periplasmic binding proteins involved in transport of amino acids/peptides and phosphate in B. burgdorferi are candidate lipoproteins, suggesting that they may be anchored to the outer surface of the cytoplasmic membrane as in Gram-positive bacteria, rather than localized in the periplasmic space.
In better-characterized eubacteria, prolipoprotein diacylglycerol transferase (lgt), prolipoprotein signal peptidase (lsp), and apolipoprotein:phospholipid N-acyl transferase (lnt) are required for post-translational processing and addition of lipids to the aminoterminal cysteine. Genes for the first two of the enzymes (lgt and lsp) are present in the B. burgdorferi genome, but the gene for lnt was not identified, although biochemical evidence argues for all three activities in B. burgdorferi ${ }^{44}$. The sequence similarity of an lnt
homologue in B. burgdorferi may be too low to be identified using our search methods, or its activity may be present in a new enzyme. In E. coli the Sec protein export system moves lipoproteins through the inner membrane, and Borrelia carries a complete set of these protein-secretion gene homologues ($\sec A / D / E / F / Y$ and $t t h$; only the non-essential $\sec B$ is missing).

Analysis of telomeres

The two chromosomal telomeres of strain B31 have similar 26-bp inverted terminal sequences (Fig. 4). We found no other similarity between the two ends, and these 26 -bp sequences are very similar to the previously characterized Borrelia telomeres. Terminal restriction fragments from both B31 chromosomal termini were shown to exhibit snapback kinetics (data not shown), strongly indicating that both terminate in covalently closed hairpins, like previously characterized Borrelia telomeres ${ }^{28,45,46}$.

The left chromosomal telomere of strain B31 is identical to the previously characterized left telomere of strain Sh-2-82 (ref. 28), except for a 31 bp insertion in B31 26 bp from the end. The rightmost $7,454 \mathrm{bp}$ contains surprisingly few ORFs, given the ORF density elsewhere on the chromosome. The function of this region is unknown, but it contains several unusual features. The right terminal 900 bp contains considerable homology to the left ends of lp17 and lp28-3. The region between 3,600 bp and 8,000 bp from the right end also contains several areas with similarity to plasmid sequences, including a portion of the transposase-like gene approximately $4,500 \mathrm{bp}$ from the right end. The spacing between the two conserved motifs (ATATAAT and TAGTATA) in the right 26-bp terminal repeat is the same as most previously known plasmid telomeres but different from the previously known chromosomal telomeres. These findings support the idea that the right end of the Borrelia chromosome has historically exchanged telomeres with the linear plasmids ${ }^{28}$.

Conclusions

The B. burgdorferi genome sequence will provide a new starting point for the study of the pathogenesis, prevention and treatment of Lyme disease. With the exception of a small number of putative virulence genes (haemolysins and drug-efflux proteins), this organism contains few, if any, recognizable genes involved in virulence or host-parasite interactions, suggesting that B. burgdorferi differs from better-studied eubacteria in this regard. It will be interesting to determine the role of the multi-copy plasmid-encoded genes, as previous work has implicated plasmid genes in infectivity and virulence. The completion of the genome sequence from a second spirochaete, Treponema pallidum (C.M.F. et al., manuscript in preparation) will allow for the identification of genes specific to each species and to this bacterial phylum, and will provide further insight into prokaryotic diversity.

Methods

Cell lines. A portion of a low-passage subculture of the original Lyme-disease spirochaete tick isolate ${ }^{4}$ was obtained from A. Barbour. The type strain of B. burgdorferi (ATCC 35210) ${ }^{3}$, B31, was derived from this isolate by limiting dilution cloning ${ }^{5}$. Cells were grown in Barbour-Stoenner-Kelly medium II (BSKII) ${ }^{6}$, omitting the additions of antibiotics and gelatin, in tightly closed containers at $33-34^{\circ} \mathrm{C}$. Cells were subcultured three or fewer times in vitro between successive rounds of infection in $\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}$ mice to minimize loss of infectivity and plasmid content ${ }^{17,18}$. After four successive transfers of infection in mice, a primary culture of B31, established from infected ear tissue, was expanded to 2.5 l by four successive subcultures. All available evidence indicates that the B31 line used for preparation of genomic DNA was probably clonal, as genetic heterogeneity was undetectable by several criteria including macrorestriction analysis (S. Casjens, unpublished data) and plasmid analysis of clonal derivatives of the B31 line ${ }^{13}$.
Sequencing. The B. burgdorferi genome was sequenced by a whole-genome random sequencing method previously applied to other microbial genomes ${ }^{20-24}$.

An approximately 7.5 -fold genome coverage was achieved by generating 19,078 sequences from a small insert plasmid library with an average edited length of 505 bases. The ends of 69 large insert lambda clones were sequenced to obtain a genome scaffold; 50% of the genome was covered by at least one lambda clone. Sequences were assembled using TIGR Assembler as described ${ }^{20-24}$, resulting in a total of 524 assemblies containing at least two sequences, which were clustered into 85 groups based on linking information from forward and reverse sequence reads. All Borrelia sequences that had been mapped were searched against the assemblies in an attempt to delineate which were derived from the various elements of the B. burgdorferi genome. Some contigs were also located on the existing physical map by Southern analysis. Sequence and physical gaps for the chromosome were closed as described ${ }^{20-24}$. At the completion of the project, less than 3% of the chromosome had single-fold coverage. The linear chromosome of B. burgdorferi has covalently closed hairpin structures at its termini that are similar to those reported for linear plasmids in this organism ${ }^{11}$. The telomeric sequences (106 and 72 bp , respectively, from the left and right ends) were obtained after nicking the terminal loop with S1 nuclease and amplifying terminal sequences by ligation-mediated polymerase chain reaction (PCR) as described ${ }^{28}$. The unknown terminal sequence was determined in both directions on four independent plasmid clones of the amplified DNA from each telomere. A minimum amount of S1 nuclease was used and, because of their sequence similarity to other Borrelia telomeres, it is likely that few, if any, nucleotides were lost from the B31 chromosomal telomeres in this process.
Identification of ORFs. Coding regions (ORFs) were identified using compositional analysis using an interpolated Markov model based on variable-length oligomers ${ }^{47}$. ORFs of $>600 \mathrm{bp}$ were used to train the Markov model, as well as B. burgdorferi ORFs from GenBank. Once trained, the model was applied to the complete B. burgdorferi genome sequence and identified 953 candidate ORfs. ORFs that overlapped were visually inspected, and in some cases removed. Non-overlapping ORFs that were found between predicted coding regions and >30 amino acids in length were retained and included in the final annotation. All putative ORFs were searched against a non-redundant amino-acid database as described ${ }^{20-24}$. ORFs were also analysed using 527 hidden Markov models constructed for several conserved protein families (PFAM v2.0) using HMMER ${ }^{48}$. Families of paralogous genes were constructed by pairwise searches of proteins using FASTA. Matches that spanned at least 60% of the smaller of the protein pair were retained and visually inspected. A total of 94 paralogous gene families containing 293 genes were identified (Fig. 1).
Identification of membrane-spanning domains (MSDs). TopPred ${ }^{49}$ was used to identify potential MSDs in proteins. A total of 526 proteins containing at least one putative MSD were identified, of which 183 were predicted to have more than one MSD. The presence of signal peptides and the probable position of a cleavage site in secreted proteins were detected using Signal-P as described ${ }^{23} ; 189$ proteins were predicted to have a signal peptide. Lipoproteins were identified by scanning for a lipobox in the first 30 amino acids of every protein. A consensus sequence relaxed from that used for H. pylori ${ }^{23}$ was defined for the purpose of this search based on known or putative B. burgdorferi lipoprotein consensus sequences.
Received 3 November; accepted 18 November 1997.

1. Steere, A. C. et al. Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheum. 20, 7 (1977).
2. Steere, A. C. Lyme disease. New Engl. J. Med. 321, 586-596 (1989).
3. Johnson, R. C., Schmidt, G. P., Hyde, F. W., Steigerwaalt, A. G. \& Brenner, D. J. Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int. J. Syst. Bacteriol. 34, 496-497 (1984).
4. Burgdorfer, W. et al. Lyme disease-a tick-borne spirochetosis? Science 216, 1317-1319 (1982).
5. Barbour, A. G., Burgdorfer, W., Hayes, S. F., Peter, O. \& Aeschlimann, A. Isolation of a cultivable spirochete from lxodes ricinus ticks of Switzerland. Curr. Microbiol. 8, 123-126 (1983).
6. Barbour, A. \& Hayes, S. F. Biology of Borrelia species. Microbiol. Rev. 50, 381-400 (1986).
7. Baril, C., Richaud, C., Baranton, G. \& Saint Girons, I. Linear chromosome of Borrelia burgdorferi. Res. Microbiol. 140, 507-516 (1989).
8. Ferdows, M. S. \& Barbour, A. G. Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl Acac Sci. USA 86, 5969-5973 (1989).
9. Davidson, B., MacDougall, J. \& Saint Girons, I. Physical map of the linear chromosome of the bacterium Borrelia burgdorferi 212, a causative agent of Lyme disease and localization of rRNA genes. J. Bacteriol. 174, 3766-3774 (1992).
10. Casjens, S. \& Huang, W. M. Linear chromosome physical and genetic map of Borrelia burgdorferi, the Lyme disease agent. Mol. Microbiol. 8, 967-980 (1993).
11. Barbour, A. G. \& Garon, C. F. Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237, 409-411 (1987).
12. Barbour, A. G. Plasmid analysis of Borrelia burgdorferi, the Lyme disease agent. J. Clin. Microbiol. 26, 475-478 (1988).
13. Casjens, S., van Vugt, R., Stevenson, B., Tilly, K. \& Rosa, P. Homology throughout the multiple $32-$ kilobase circular plasmids present in Lyme disease spirochetes. J. Bacteriol. 17, 217-227 (1997).
14. Hinnebush, J. \& Barbour, A. G. Linear- and circular-plasmid copy numbers in Borrelia burgdorferi. J. Bacteriol. 174, 5251-5257 (1992).
15. Barbour, A. G., Carter, C. J., Bundoc, V. \& Hinnebush, J. The nucleotide sequence of a linear plasmid of Borrelia burgdorferi reveals similarities to those of circular plasmids of other prokaryotes. J. Bacteriol. 178, 6625-6639 (1996).
16. Zuckert, W. R. \& Meyer, J. Circular and linear plasmids of Lyme disease spirochetes share extensive homology: characterization of a repeated DNA element. J. Bacteriol. 178, 2287-2298 (1996).
17. Schwan, T. G., Burgdorfer, W. \& Garon, C. Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect. Immun. 56, 1831-1836 (1988).
18. Xu, Y., Kodner, C., Coleman, L. \& Johnson, R. C. Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31. Infect. Immun. 64, 3870-3876 (1996).
19. Norris, S. J., Howell, J. K., Garza, S. A., Ferdows, M. S. \& Barbour, A. G. High- and low-infectivity phenotypes of clonal populations of in vitro-cultured Borrelia burgdorferi. Infect. Immun. 63, 22062212 (1995).
20. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512 (1995).
21. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397-403 (1995).
22. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058-1072 (1996).
23. Tomb, J.-F. et al. The complete genome sequence of the gastric pathogen Heliocobacter pylori. Nature 388, 539-547 (1997).
24. Klenk, H.-P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364-370 (1997).
25. Casjens, S., Ley, H., DeLange, M., Rosa, P. \& Huang, W. Linear chromosomes of Lyme disease agent spirochetes; genetic diversity and conservation of gene order. J. Bacteriol. 177, 2769-2780 (1995).
26. Casjens, S. \& Huang, W. in Bacterial Genomes: Physical Structure and Analysis (eds de Bruijn, F., Lupski, J. \& Weinstock, G. J.) (Chapman and Hall, New York, in the press)
27. Old, I., MacDougall, J., Saint Girons, I. \& Davidson, B. Mapping of genes on the linear chromosome of the bacterium Borrelia burgdorferi: possible locations for its origin of replication. FEMS Microbiol. Lett. 99, 245-250 (1992).
28. Casjens, S. et al. Telomeres of the linear chromosomes of Lyme disease spirochetes: nucleotide sequence and possible exchange with linear plasmid telomers. Mol. Microbiol. 26, 581-596 (1997).
29. Riley, M. Functions of gene products of Escherichia coli. Microbiol. Rev. 57, 862-952 (1993).
30. Zhang, J., Hardham, J., Barbour, A. \& Norris, S. Antigenic variation in Lyme disease Borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275-285 (1997).
31. Dunn, J. J. et al. Complete nucleotide sequence of a circular plasmid from the Lyme disease spirochete, Borrelia burgdorferi. J. Bacteriol. 176, 2706-2717 (1994).
32. Traktman, P. in DNA Replication in Eukaryotic Cells (ed. DePamphilis, M.) 775-798 (Cold Spring Harbor Laboratory Press, NY, 1996).
33. Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420-4449 (1996).
34. Brewer, B. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679-686 (1988).
35. French, S. Consequences of replication fork movement through transcription units in vivo. Science 258, 1362-1365 (1992).
36. Ogasawara, N. \& Yoshikawa, H. Genes and their organization in the replication origin region of the bacterial chromosome. Mol. Microbiol. 6, 629-634 (1992).
37. Gazumyan, A., Schwartz, J. J., Liveris, D. \& Schwartz, I. Sequence analysis of the ribosomal RNA operon of the Lyme disease spirochete, Borrelia burgdorferi. Gene 146, 57-65 (1994).
38. Ojaimi, C., Davidson, B., Saint Girons, I. \& Old, I. Conservation of gene arrangement and an unusual organization of rRNA genes in the linear chromosomes of Lyme disease spirochaetes Borrelia burgdorferi, B. garinii and B. afzelli. Microbiology 140, 2931-2940 (1994).
39. Cumow, A. W. et al. Glu-tRNA ${ }^{\mathrm{Gln}}$ amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl Acad. Sci. USA 94, 11819-11826 (1997).
40. Ibba, M., Bobo, J. L., Rosa, P. A. \& Soll, D. Archaeal-type lysyt-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc. Natl Acad. Sci. USA (in the press).
41. Reizer, J., Paulsen, I. T., Reizer, A., Titgemeyer, F. \& Saier, M. H. Jr Novel phosphotransferase system genes revealed by bacterial genome analysis: The complete complement of pts genes in Mycoplasma genitalium. Microb. Comp. Genom. 1, 151-164 (1996).
42. Takase, K. et al. Sequencing and characterization of the ntp gene gluster for vacuolar-type Na+translocating ATPase of Enterococcurs hirae. J. Biol. Chem. 269, 11037-11044 (1994).
43. Sadziene, A., Rosa, P. A., Thompson, P. A., Hogan, D. M. \& Barbour, A. G. Antibody-resistant mutants of Borrelia burgdorferi: in vitro selection and characterization. J. Exp. Med. 176, 799-809 (1992).
44. Brandt, M. E., Riley, B. S., Radolf, J. D. \& Norgard, M. V. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect. Immun. 58, 983-991 (1990).
45. Hinnebusch, J., Bergstrom, S. \& Barbour, A. Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Mol. Microbiol. 4, 811-820 (1990).
46. Kitten, T. \& Barbour, A. Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc. Natl Acad. Sci. USA 87, 6077-6081 (1990).
47. Salzberg, S., Delcher, A., Kasif, S. \& White, O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. (in the press).
48. Sonnhammer, E. L. L., Eddy, S. R. \& Durbin, R. Pfam: a comprehensive database of protein families based on seed alignments. Proteins 28, 405-420 (1997).
49. Claros, M. G. \& von Heijne, G. TopPred II: an improved software for membrane proteins structure predictions. Comput. Appl. Biosci. 10, 685-686 (1994).

Acknowledgements. We thank A. G. Barbour for isolation of the Borrelia burgdorferi strain; A. Barbour, P. Rosa, K. Tilly, J. Riberio, B. Stevenson and D. Soll for discussions; N. K. Patel for technical assistance; M. Heaney, J. Scott and A. Saeed for software and database support; and V. Sapiro, B. Vincent and D. Maas for computer system support. This work was supported by a grant to J.C.V. and C.M.F. from the G. Harold and Leila Y. Mathers Charitable Foundation.

Correspondence and requests for materials should be sent to C.M.F. (e-mail: gbb@tigr.org). The annoted genome sequence and gene family alignments are available on the World-Wide Web at http:// www.tigr.org $/ \mathrm{tdb} / \mathrm{mdb} / \mathrm{bbdb} / \mathrm{bbdb} . h t m l$. Sequences have been deposited with GenBank under the following accession numbers: AE00783 (chromosome); AE00784 (lp28-3); AE000785 (lp25); AE00786 (lp28-2); AE00787 (lp38); AE00788 (lp36); AE00789 (lp28-4); AE00790 (lp54); AE00791 (cp9); AE00792 (cp26); AE00793 (lp17); and AE00794 (lp28-1).

1 1p28-2

BBG08	stage 0 sporulation prt J (spoOJ) \{Bb\}
Cell killing	
BB143	-hemolysin (hlyA) $\{\mathrm{Ah}\}$
BB117	hemolysin III (yplQ) $\{\mathrm{Bs}\}$
BB506	hemolysin (tlyA) \{Sh\}
BB059	hemolysin (tlyC) \{Sh\}
BB202	hemolysin, put \{Syn\}
Chaperones	

Protein and peptide secretion
BB154 preprt translocase sub (secA) \{Bb\} 100
BB395 preprt translocase sub (secE) \{Bl\} 62
BB498 preprt translocase sub (secY) \{Sc\} 64
BB362 prolipoprt diacyIglyceryl Tase (lgt) $\{\mathrm{Ec}\}$
BB652 prt-export membrane prt (secD) \{Ec\}
BB653 prt-export membrane prt (secF) $\{\mathrm{Hi}\}$
BB030 signal peptidase I (lepB-1) \{Bs\}
BB031 signal peptidase I (lepB-2) \{Syn $\}$
BB263 signal peptidase I (lepB-3) \{St
BB469 signal peptidase II (Isp) \{Sc
BB694 signal recognition particle prt (ffh) $\{B s\}$
BB610 trigger factor (tig) $\{\mathrm{Hi}\}$
Transformation
BB591 competence locus E, put \{Bs $\}$
BB798 competence prt F, put $\{\mathrm{Hi}\}$
Central intermediary metabolism
General
BB241 glycerol kinase (glpK) \{Ec\}
BB243 glycerol-3-P DHase, anaerobic (glpA) $\{\mathrm{Hi}\}$
$\begin{array}{ll}\text { BB376 SAM Sase (metK) }\{B s\} & 52 \\ 72\end{array}$
Amino sugars
$\begin{array}{lll}\text { BB152 } & \begin{array}{l}\text { glucosamine-6-P isomerase } \\ \text { (nagB) }\{\mathrm{Hi}\}\end{array} & 79 \\ \text { BB151 } & \mathrm{N} \text {-Acglucosamine-6-P deAcase } & \end{array}$
$\begin{array}{ll}\text { BB151 } & \begin{array}{l}\text { N-Acglucosamine-6-P deAcase } \\ \text { (nagA) }\{\mathrm{Hi}\}\end{array}\end{array}$
$\begin{array}{lll}\begin{array}{ll}\text { Degradation of polysaccharides } & \\ \text { BB620 } & \text {-glucosidase, put \{Syn\} }\end{array} & 58 \\ \text { BB002 } & \text {-N-Achexosaminidase, put \{As }\} & 54\end{array}$
Phosphorus compounds
BB533 phnP prt (phnP) $\{E c\}$
Polysaccharides - (cytoplasmic)
BB166 4- -glucanoTase (malQ) \{Syn\} 55
BB004 phosphoglucomutase (femD) \{Mj\} 52
BB835 phosphomannomutase (cpsG) \{Hi\} 57
Energy metabolism
Aerobic
BB728 NADH oxidase, water-forming (nox) \{Sh\}

Amino acids and amines
BB841 arginine deiminase (arcA) \{Cp\} 75
BB842 ornithine carbamoylTase (arcB) $\{\mathrm{Ng}\}$

Anaerobic
BB016 glpE prt (glpE) $\{\mathrm{Hi}\}$
BB087 L-lactate DHase (ldh) \{Bs\}

ATP-proton motive force interconversion
BB094 V-type ATPase, sub A (atpA) \{Mb\} 64 BB093 - V-type ATPase sub B (atpB) \{Mb\} 62 BB092 V-type ATPase, sub D (atpD) \{Mj\} 51 BB096 V-type ATPase, sub E (atpE) \{Mj\} 54 $\begin{array}{lll}\text { BB091 } & \text { V-type ATPase, sub I (atpl) }\{\text { Eh }\} & 53 \\ \text { BB090 } & \text { V-type ATPase, sub K (atpK) }\{\mathrm{M}\} & 54\end{array}$
Electron transport
$\begin{array}{lll}\text { BB061 } & \text { thioredoxin (trxA) }\{E c\} & 59 \\ \text { BB515 } & \text { thioredoxin RDase (trxB) }\{B b\} & 99\end{array}$
Fermentation
$\begin{array}{lll}\text { BB622 } & \text { acetate kinase (ackA) }\{\mathrm{Ec}\} & 63 \\ \text { BB589 } & \text { P AcTase (pta) }\{T \mathrm{~T}\}\end{array}$

Glycolysis

BB337 enolase (eno) \{Bs\} 79
$\begin{array}{lll}\text { BB745 } & \text { fructose-bisP aldolase (fba) }\{\mathrm{EC}\} & 80 \\ \text { BB730 } & \text { glucose-6-P isomerase (pgi) }\{\mathrm{Pf}\} & 62\end{array}$
BB057 glyceraldehyde 3-P DHase (gap) $\{B b\}$

99
52
$\begin{array}{lll}\text { BB630 } & \text { 1-phosphofructoKase (fruK) }\{\mathrm{Hi}\} & 52 \\ \text { BB056 } & \text { phosphoglycerate Kase (pgk) }\{\mathrm{Bb}\} & 99\end{array}$
BB658 phosphoglycerate mutase (gpmA)
\{Ec\}
79
62
$\begin{array}{lll}\text { BB348 } & \text { pyruvate Kase (pyk) }\{\text { Bs }\} & 62 \\ \text { BB727 } & \text { pyroP-fructose 6-P 1-PPTase } & \end{array}$
(pfk) $\{$ Eh $\}$
pyroP-fructose 6-P 1-PPTase
sub (pfpB) $\{\mathrm{Bb}\}$
BB055 trioseP isomerase \{Bb\}
Pentose phosphate pathway
BB222 glucose-6-P 1-DHase, put \{As \} 48
BB636 glucose-6-P 1-DHase (zwf) \{Hi\} 64
BB561 phosphogluconate DHase
(gnd) $\{S d\}$
$\begin{array}{ll}\text { BB657 ribose } 5-\mathrm{P} \text { isomerase (rpi) }\{\mathrm{Mj}\} & \begin{array}{l}71 \\ 61\end{array}\end{array}$
Sugars
$\begin{array}{lll}\text { BB407 } & \text { mannose-6-P isomerase } & \\ \text { (manA) }\{\mathrm{Ec}\} & 54 \\ \text { BB444 } & \text { nucleotide sugar epimerase \{Vc\} } & 69\end{array}$
$\begin{array}{ll}\text { BB444 } & \text { nucleotide sugar epimerase }\{\mathrm{Vc}\} \\ \text { BB676 } & 69 \\ \text { phosphoglycolate PPase (gph) }\{\mathrm{Hi}\} & 50\end{array}$
BB207 UTP-glucose-1-P uridylylTase
(gtaB) $\{\mathrm{Bs}\}$
BB545 xylulokinase (xylB) \{Bs\}
Fatty acid and phospholipid metabolism
General
BB037 1-acyl-sn-glycerol-3-P AcTase (plsC) $\{\mathrm{Bb}\}$

100
BB685 3-OH-3-methylglutaryl-CoA
RDase (mvaA) $\{\mathrm{Pm}\}$
$\begin{array}{lll}\text { BB683 } & \text { 3-OH-3-methylglutaryl-CoA } & \\ & \text { Sase \{At }\} & 53 \\ \text { BB109 } & \text { Ac-CoA C-AcTase (fadA) }\{\mathrm{Hi}\} & 67\end{array}$
$\begin{array}{lll}\text { BB109 } & \text { Ac-CoA C-AcTase (fadA) }\{\mathrm{Hi}\} & 67 \\ \text { BB704 } & \text { acyl carrier prt \{Syn\} } & 65\end{array}$
$\begin{array}{ll}\text { BB721 } & \text { CDP-diacylglycerol-glycerol-3-P } \\ & \text { 3-phosphatidylTase \{Bs\} }\end{array}$
$\begin{array}{ll}\text { BB327 } & \text { glycerol-3-P O-acylTase, put }\{S o\} \\ \text { BB368 } & \text { glycerol-3-P DHase, NAD(P)+ (gpsA) }\end{array}$
BB368 glycerol-3-P DHase, NAD(P)+ (gpsA)
BB137 $\begin{aligned} & \text { long-chain-fatty-acid CoA ligase } \\ & \{\text { Syn }\}\end{aligned} \quad 54$
BB593 long-chain-fatty-acid CoA ligase \{Syn\}
$\begin{array}{ll}\text { BB688 } & \text { melvalonate Kase }\{\mathrm{Mj}\} \\ \text { BB686 } & 56 \\ \end{array}$
$\begin{array}{ll}\text { BB686 } & \text { mevalonate pyroP DCase }\{S c\} \\ \text { BB119 } & \text { phosphatidate cytidylyltase (cdsA), }\end{array}$
AFS\{Ec $\}$
$\begin{array}{llr}\text { BB249 } & \text { phosphatidylTase }\{H \text { p }\} & 52 \\ \text { BB687 } & \text { phosphomevalonate Kase, put }\{S c\} & 53\end{array}$
Purines, pyrimidines, nucleosides, nucleotides
Nucleotide and nucleoside interconversion

BB417	adenylate kinase (adk) \{Bs\}	64
BB128	cytidylate kinase (cmk-1) \{Bs\}	58
BB819	cytidylate kinase (cmk-2) \{Mj\}	57

BB463 nucleoside-diP kinase (ndk) \{Bs\} $\quad 70$
$\begin{array}{lll}\text { BB793 } & \text { thymidylate kinase (tmk) \{Mj\} } & 59 \\ & 54\end{array}$
Purine ribonucleotide biosynthesis
BB544 phosphoribosyl pyroP Sase (prs) $\{\mathrm{Mp}\}$

59
cp26
BBB18 GMP Sase (guaA) \{Bb\} 100
BBB17 IMP DHase (guaB) $\{\mathrm{Bb}\}$
100

Pyrimidine ribonucleotide biosynthesis

BB575 CTP Sase (pyrG) $\{\mathrm{Mj}\}$
Salvage of nucleosides and nucleotides
BB777 adenine phosphoribosylTase

	(apt) $\{T \mathrm{~T}\}$	
BB618	cytidine deaminase (cdd) $\{\mathrm{Mp}\}$	63

BB239 deoxyguanosine/deoxyadenosine
kinase(I) sub 2 (dck) \{La\}
BB375 pfs prt (pfs-1) \{Ec\}
BB588 pfs prt (pfs-2) \{Hi\}
BB791 thymidine kinase (tdk) \{Bs\}
BB015 uridine kinase (udk) \{Bb\}
Ip36
${ }_{\text {BBK }} 17$ adenine deaminase (adeC) $\{\mathrm{Bs}\}$

Regulatory functions

General
BB184 carbon storage regulator

$$
\text { (csrA) \{Hi\} }
$$

BB198 guanosine-3',5'-bis(diP) 3'-
pyrophosphohydrolase (spoT) \{Ec\} 61
BB737 histidine phosphoKase/PPase,
BB176 methanol DHase regulator $\begin{aligned} & \text { man } \text { (mb\} }\end{aligned}$
BB416 pheromone shutdown prt
$\begin{array}{lll}\text { BB042 } & \mathrm{P} \text { transport system regulatory } \\ & \text { prt (phoU) }\{\mathrm{Pa}\}\end{array}$
BB379 prt Kase C1 inhibitor (pkcl) \{Bb\} 100
BB419 response regulatory prt
$\begin{array}{ll}\text { BB763 } & \begin{array}{l}\text { response regulatory prt } \\ \text { (rrp-2) }\{E c\}\end{array}\end{array}$
$\begin{array}{ll}\text { BB764 } & \begin{array}{l}\text { sensory transduction histidine } \\ \text { Kase, put \{Bs }\}\end{array}\end{array}$
BB420 sensory transduction
histidine Kase, put \{Syn\}
BB693 xylose operon regulatory prt
$\begin{array}{lll}\text { BB831 } & \begin{array}{l}\text { xylose operon regulatory } \\ \\ \text { prt (xyIR-2) }\{\text { Syn }\}\end{array} & 51\end{array}$
Ip54
BBA07 chpAl prt, put \{Ec\}

Replication

Degradation of DNA
BB411
(nucA) $\{$ As $\}$

DNA replication, restriction, modification,
recombination, and repair
BB422 3-methyladenine DNA
glycosylase (mag) \{At\} 56

BB827 ATP-dep helicase (hrpA) \{Ec\} 61
BB437 chromosomal replication init prt (dnaA) \{Bb\}

61

BB435 DNA gyrase, sub A (gyrA) \{Bs\} 67
BB436 DNA gyrase, sub B (gyrB) \{Bb\} 99
BB344 DNA helicase (uvrD) \{Ec\} 55
BB552 DNA ligase (lig) $\{\mathrm{Ta}\}$
BB211 DNA mismatch repair prt

$$
\text { (mutL) }\{\mathrm{Hi}\}
$$

(mutL) $\{\mathrm{Hi}\}$ -
BB797 DNA mismatch repair prt 55
(mutS) $\{\mathrm{Hi}\}$
BB098 DNA mismatch repair prt, put \{Syn\}
BB548 DNA polymerase I (polA) \{Hi\} 61
$\begin{array}{ll}\text { BB579 } & \begin{array}{l}\text { DNA polymerase III, sub } \\ \text { (dnaE) }\{\mathrm{Ec}\}\end{array}\end{array}$
$\begin{array}{ll}\text { BB438 } & \begin{array}{l}\text { DNA polymerase III, sub } \\ \text { (dnaN) \{Bb\} }\end{array}\end{array}$
BB461 DNA polymerase III, sub / 61
BB710 DNA primase (dnaG) \{Bs\} 56
BB581 DNA recombinase (recG) \{Syn\} 60
BB828 DNA topoisomerase I (topA) \{Syn\} 64
BB035 DNA topoisomerase IV (parC) \{Bb\} 58
BB036 DNA topoisomerase IV (parE) \{Bb\} 56
BB745 endonuclease III (nth) \{Syn\}
BB837 excinuclease ABC sub A (uvrA) \{Ec\} (uvrB) \{Ec\}

BB534 (uvrC) \{Syn\} 57
\qquad
\qquad
sarbon storage regulator

BB633	(recD) $\{\mathrm{Ec}\}$ exodeoxyribonuclease V , chain (recB) $\{\mathrm{Hi}\}$
BB634	exodeoxyribonuclease V , chain (recC) \{Hi\}
BB829	exonuclease SbcD (sbcD) \{Ec\}
BB830	exonuclease SbcC (sbcC) \{Ec\}
BB177	glucose-inhibited div prt B (gidB) \{Bb\}
BB178	glucose-inhibited div prt A (gidA) $\{\mathrm{Bb}\}$
BB022	Holliday junction DNA helicase (ruvB) \{Bb\}
BB023	Holliday junction DNA helicase (ruvA) $\{\mathrm{Bb}\}$
BB014	primosomal prt N (priA) $\{\mathrm{Bb}\}$
BB13	recA prt (recA) \{Bb\}
BB607	rep helicase, ss DNA-dep ATPase (rep) $\{\mathrm{Hi}\}$
BB111	replicative DNA helicase (dnaB) $\{\mathrm{Ec}\}$
BB114	ss DNA-BP (ssb) \{Syn\}
BB254	ss-DNA-specific exonuclease (recJ) $\{\mathrm{Hi}\}$
BB623	transcription-repair coupling factor (mfd) $\{\mathrm{Hi}\}$
BB053	

|p28-2
BBG32 replicative DNA helicase, put $\{\mathrm{Bs}\} \quad 59$
1 p 25
BBE29 adenine specific DNA MTase, put \{Hp\}

Transcription
General
BB052 spoU prt (spoU) \{Ec\}
Degradation of RNA
BB805 polyribonucleotide nucleotidylTase 68 (pnpA) \{Bs\}
BB046 ribonuclease H (rnhB) \{Hi\} 66
$\begin{array}{ll}\text { BB705 } & \text { ribonuclease III (rnc) \{Bs\} } \\ \text { BB441 } & \text { ribonuclease P prt component }\end{array}$ (rnpA) $\{\mathrm{Bb}\}$

DNA-dependent RNA polymerase
BB502 DNA-directed RNA polymerase (rpoA) \{Bs\}
BB389 DNA-directed RNA polymerase (rpoB) $\{\mathrm{Bb}\}$
BB388 DNA-directed RNA polymerase (rpoC) $\{\mathrm{Ec}\}$
BB771 RNA polymerase sigma factor (rpoS) $\{\mathrm{Pa}\}$
BB712 RNA polymerase sigma-70 factor (rpoD) \{Bb\}
BB450 RNA polymerase sigma-54 factor (ntrA) $\{\mathrm{Av}\}$

Transcription factors
BB107 N utilization substance prt B (nusB) $\{\mathrm{Ec}\}$
\square
-

BB067 peptidase, put \{Sc\}
BB104 periplasmic serine protease DO (htrA) $\{\mathrm{Hi}\}$

BB430 proline dipeptidase (pepQ) $\{\mathrm{Hi}\}$	60

BB769 sialoglycoprotease (gcp) $\{\mathrm{Hi}\}$ vacuolar X-prolyl dipeptidyl aminopeptidase I (pepX) \{MI

BB118 zinc protease, put $\{\mathrm{Hi}\}$
BB536 zinc protease, put $\{\mathrm{Hi}\}$
Nucleoproteins
BB232 hbbU prt \{Bb\}
Protein modification
BB105 methionine aminopeptidase (map) $\{\mathrm{Bs}\}$
BB065 polypeptide deformylase
BB648 serine/threonine kinase, put $\{\mathrm{Pf}\}$
Ribosomal proteins: synthesis and modification
BB392 ribosomal prt L1 (rpIA) \{Bs\} 71
BB481 ribosomal prt L2 (rplB) $\{B b\} \quad 99$
BB800 N-utilization substance prt A (nusA) \{Bs\}
BB394 transcription antitermination factor (nusG) \{Ec\}
BB132 transcription elongation factor (greA) \{Ec\}
BB355 transcription factor, put $\{\mathrm{M} x\}$
BB230 transcription termination factor Rho (rho) $\{\mathrm{Bb}\}$

RNA processing
BB706 polynucleotide adenylyITase (papS) \{Bs\}

Translation

General
BB590 dimethyladenosine Tase (ksgA) \{Bs\}
$\begin{array}{lll}\text { BB802 ribosome-B factor } A(r b f A) & \{B s\} & 61 \\ 62\end{array}$
Amino acyl tRNA synthetases
BB220 alanyl-tRNA Sase (alaS) \{Ec\} 62
BB594 arginyl-tRNA Sase (argS) \{Mj\} 55
BB101 asparaginyl-tRNA Sase (asnS) \{Ec\} 73
BB446 aspartyl-tRNA Sase (aspS) \{Ec\} 66
BB599 cysteinyl-tRNA Sase (cysS) \{Hi\} 58
BB372 glutamyl-tRNA Sase (gltX) \{Rm\}
BB371 glycyl-tRNA Sase (glyS) \{Ta\}
BB135 histidyl-tRNA Sase (hisS) $\{\mathrm{Mj}\}$
BB833
isoleucyl-tRNA Sase (ileS) \{Sc\}
leucyl-tRNA Sase (leuS) \{Bs\}
BB659 lysyl-tRNA Sase $\{\mathrm{M} j\}$
$\begin{array}{ll}\text { BB587 methionyl-tRNA Sase (metG) \{Sc\} } & 54\end{array}$
BB514 phenylalanyl-tRNA Sase, sub (pheT) \{Bb\}
BB513 phenylalanyl-tRNA Sase, sub (pheS) $\{\mathrm{Bb}\}$
BB402 prolyl-tRNA Sase (proS) \{Sc\} 100
65
BB226 seryl-tRNA Sase (serS) \{Bs $\}$

BB005	tryptophanyl-tRNA Sase (trsA) $\{\mathrm{Cl}\}$

BB370 tyrosyl-tRNA Sase (tyrS) \{Bs \} 62
BB738 valyl-tRNA Sase (valS) $\{\mathrm{Bs}\}$
Degradation of proteins, peptides, and glycopeptides
BB608 aminoacyl-histidine dipeptidase (pepD) $\{\mathrm{Hi}\}$
BB366 aminopeptidase I (yscl) \{Bb\} 100
BB611 ATP-dep Clp protease proteolytic
component (clpP-1) $\{\mathrm{Hi}\}$
BB757 ATP-dep CIp protease proteolytic component (clpP-2) $\{\mathrm{Hi}\}$
BB369 ATP-dep Clp protease, sub A 67 (clpA) \{Ec\}
BB612 ATP-dep Clp protease, sub X (clpX) \{Ec\}
BB834 ATP-dep Clp protease, sub C (clpC) $\{\mathrm{Pp}\}$
BB253 ATP-dep protease LA (lon-1) \{Bb\} 100
BB613 ATP-dep protease LA (lon-2) \{Hi\} 65
BB359 carboxyl-terminal protease (ctp) \{Syn\}
BB203 Lambda CII stability-governing prt (hflK) \{Ec\}
BB204 Lambda Cll stability-governing prt 56
58

55

65
56
0
6
ribosomal prt 33 (rpmG) $\{\mathrm{Bs}\}$
BB440 ribosomal prt L33 (rpmG) \{Bs\}
BB189 ribosomal prt L35 (rpml) $\{\mathrm{Ba}\}$
BB499 ribosomal prt L36 (rpmJ) \{Bs\}
BB127 ribosomal prt S1 (rpsA) \{Ec\}
BB123 ribosomal prt S2 (rpsB) $\{\mathrm{Pa}\}$
BB484 ribosomal prt S3 (rpsC) $\{\mathrm{Hi}\}$
BB615 ribosomal prt S4 (rpsD) $\{\mathrm{Hi}\}$
BB495 ribosomal prt S5 (rpsE) \{Bs $\}$
BB115 ribosomal prt S6 (rpsF) \{Os $\}$
BB386 ribosomal prt S7 (rpsG) \{Sc\}
BB492 ribosomal prt S8 (rpsH) \{Syn\}
BB338 ribosomal prt S9 (rpsl) $\{\mathrm{Hi}\}$
BB477 ribosomal prt S10 (rpsJ) $\{\mathrm{Bb}\}$
BB501 ribosomal prt S11 (rpsK) $\{\mathrm{Hi}\}$
BB387 ribosomal prt S12 (rpsL) \{An\}
BB500 ribosomal prt S13 (rpsM) \{Cp\}
BB804 ribosomal prt S14 (rpsN) \{Bs $\}$
BB695 ribosomal prt S16 (rpsP) \{Bs $\}$
BB487 ribosomal prt S17 (rpsQ) \{Mc\}
BB113 ribosomal prt S18 (rpsR) \{Bs $\}$
BB482 ribosomal prt S19 (rpsS) $\{\mathrm{Bb}\}$
BB233 ribosomal prt S20 (rpsT) $\{\mathrm{Bb}\}$
BB256 ribosomal prt S21 (rpsU) $\{\mathrm{Mx}\}$
BB516 rRNA methylase (yacO) \{Mc\}
tRNA modification
BB821 2-methylthio-N6-isopentyladenosine
tRNA modification enzyme (miaA) $\{\mathrm{Ec}\}$
BB084 AT (nifS) \{Syn\} 61
BB343 glu-tRNA amidoTase, sub C (gatC) \{Bs \}
BB341 glu-tRNA amidoTase, sub B (gatB)
BB342 glu-tRNA amidoTase, sub A (gatA)
\{Bs\}
methionyl-tRNA formylTase (fmt) $\{\mathrm{Ec}\}$
BB787 peptidyl-tRNA hydrolase (pth) \{Bb\} 100
BB012 pseudouridylate Sase I (hisT) \{Bb\} 100
BB021 SAM: tRNA ribosylTase-isomerase
\{Bb\}
$\begin{array}{ll}\text { BB809 } & \text { tRNA-guanine transglycosylase } \\ \text { (tgt) }\{\mathrm{Zm}\}\end{array}$
BB698 tRNA (guanine-N1)-MTase (trmD)
\{Mg\}
$\begin{array}{ll}\text { BB803 } & \text { tRNA pseudouridine } 55 \text { Sase } \\ \text { (truB) }\{\mathrm{Ec}\}\end{array}$
Translation factors
BB088 GTP-B membrane prt (lepA) $\{\mathrm{Hi}\} \quad 76$
BB196 peptide chain release factor 1 (prfA)
BB074 peptide chain release factor 2 (prfB) \{Sc\}
BB121 ribosome releasing factor (frr) \{Mt\} 68
BB169 translation initiation factor 1 (infA)
\{Ec\}
BB801 translation initiation factor 2 (infB) 73
BB190 translation initiation factor 3 (infC)
$\begin{array}{ll}\text { BB691 } & \text { translation elongation factor } \mathrm{G} \\ \text { (fus-2) }\{\mathrm{Tm}\}\end{array}$
$\begin{array}{ll}\text { BB214 } & \begin{array}{l}\text { translation elongation factor } P \\ \text { (efp) }\{E c\}\end{array}\end{array} 56$
$\begin{array}{lll}\text { BB476 } & \text { translation elongation factor } \\ & \text { TU (tuf) }\{B b\} & 100\end{array}$
$\begin{array}{lll}\text { BB122 } & \text { translation elongation factor } & \\ & \text { TS (tsf) }\{\mathrm{Hi}\} & 57\end{array}$
$\begin{array}{ll}\text { BB540 } & \text { translation elongation factor } \\ & G(\text { fus-1) }\{T \mathrm{Tm}\}\end{array}$

Transport and binding proteins General BB573	ABC transporter, ATP-BP $\{\mathrm{Bs}\}$	53
BB742	ABC transporter, ATP-BP $\{\mathrm{Syn}\}$	57
BB466	ABC transporter, ATP-BP $\{\mathrm{Hi}\}$	74
BB754	ABC transporter, ATP-BP $\{\mathrm{Bl}\}$	60
BB080	ABC transporter, ATP-BP $\{\mathrm{Mj}\}$	63
BB269	ATP-BP $(y \mid x H-1)\{\mathrm{Bb}\}$	100
BB726	ATP-BP $(y \mid x H-2)\{\mathrm{Bb}\}$	54

1 p 38
$\overline{\mathrm{BBJ} 26} \mathrm{ABC}$ transporter, ATP-BP $\{\mathrm{Mj}\}$
Amino acids, peptide, and amines

BB729	
BB401	glutamate transporter (gltP) $\{\mathrm{Bs}\}$
55	

BB146 GBP ABC transporter, ATP-BP

	(proV) $\{\mathrm{Sc}\}$	
BB145	GBP ABC transporter, permease prt (proW) \{Ec\}	
BB144	GBP ABC transporter, BP (proX) $\{E c\}$	
BB334	OP ABC transporter, ATP-BP (oppD) \{Bs\}	
BB335	OP ABC transporter, ATP-BP (oppF) \{Bs\}	
BB332	OP ABC transporter, permease prt (oppB-1)\{Ec\}	
BB747	OP ABC transporter, permease prt (oppB-2)\{Bs\}	
BB333	OP ABC transporter, permease prt (oppC-1)\{Hi\}	
BB746	OP ABC transporter, permease prt (oppC-2)\{Bs\}	
BB328	OP ABC transporter, periplasmic BP (oppA-1) \{Bb\}	
BB329	OP ABC transporter, periplasmic BP (oppA-2) \{Bb\}	
BB330	OP ABC transporter, periplasmic BP (oppA-3) \{Bb\}	
BB642	SP ABC transporter, ATP-BP (potA) $\{E c\}$	
BB641	SP ABC transporter, permease prt (potB) $\{E c\}$	
BB640	SP ABC transporter, permease prt (potC) \{Ec\}	
BB639	SP ABC transporter, periplasmic $B P(p o t D)\{E c\}$	
$\frac{\operatorname{lp} 54}{\text { BBA34 }}$	OP ABC transporter, periplasmic BP (oppA-4) $\{\mathrm{Bc}\}$	
$\frac{\mathrm{cp} 26}{\text { BBB16 }}$	OP ABC transporter, periplasmic BP (oppA) \{Bb\}	
Anion		
BB218	P ABC transporter, ATP-BP (pstB) $\{\mathrm{Pa}\}$	
BB216	P ABC transporter, permease (pstC) $\{E c\}$	
BB217	P ABC transporter, permease prt (pstA) $\{$ Syn $\}$	
BB215	P ABC transporter, periplasmic P-BP (pstS) \{Syn\}	
Carbohydrates, organic alcohols, and acids		
BB240	glycerol uptake facilitator $(\mathrm{g} \mid \mathrm{pF})\{\mathrm{Bs}\}$	
$\begin{aligned} & \text { BB604 } \\ & \text { BB318 } \end{aligned}$	L-lactate permease (IctP) \{Ec\} methylgalactoside ABC transporter, ATP-BP (mg\|A) $\{\mathrm{Hi}\}$	
BB814	pantothenate permease (panF) \{Ec $\}$	
	phosphocarrier prt HPr (ptsH-1)	

BB557	\{Mg\}	56	BB586	femA prt (femA) \{Se\}	47
	phosphocarrier prt HPr		BB141	membrane fusion prt (mtrC) $\{\mathrm{Hi}\}$	47
	(ptsH-2) \{Hi\}	69	\|p28-4		
BB558	phosphoenolpyruvate-prt PPase (ptsl) $\{\mathrm{Sc}\}$	65	BBI26	multidrug-efflux transporter $\{\mathrm{Hp}\}$	55
BB408	PTS system, fru-specific IIABC (fruA-1) \{Ec\}	65	$\frac{\operatorname{lp} 25}{\mathrm{BBE} 22}$	pyrazinamidase/nicotinamidase	
BB629	PTS system, fru-specific IIABC (fruA-2) \{Ec\}	68		(pncA) \{Mt\}	56
BB559	PTS system, glu-specific IIA (crr) $\{\mathrm{Bb}\}$	100	Transp	son-related functions	
BB645	PTS system, glu-specific IIBC (ptsG) \{Sc\}	67	$\frac{\operatorname{lp} 38}{\text { BBJ05 }}$	transposase-like prt, put \{Bb\}	89
BB116	PTS system, mal/glu-specific IIABC (malX) \{Ec\}	56	1 p 36		
BB677	RG ABC transporter, ATP-BP (mglA) $\{\mathrm{Mg}\}$	68	BBK25	transposase-like prt, put \{Bb\}	80
BB678	RG ABC transporter, permease prt (rbsC-1) $\{\mathrm{Mg}\}$	51	$\frac{\operatorname{lp} 28-1}{\text { BBF18 }}$	transposase-like prt, put \{Bb\}	96
BB679	RG ABC transporter, permease prt (rbsC-2) \{Mp\}	52	BBF19	transposase-like prt, put \{Bb\}	96
			$\frac{\operatorname{lp} 28-2}{\text { BBG05 }}$)	99
BBB04	PTS system, cello-specific IIC (celB) $\{\mathrm{Bs}\}$	62	Ip28-3		
BBB05	PTS system, cello-specific IIA (celC) \{Bs\}	61	BBH40	transposase-like prt, put \{Bb\}	57
BBB06	PTS system, cello-specific IIB (celA) \{Bs\}	73	$\frac{\operatorname{lp} 17}{\mathrm{BBD} 20}$	transposase-like prt, put \{Bb\}	99
BBB29	PTS system, glu-specific IIBC, put \{Ec\}	70	BBD23	transposase-like prt, put \{Bb\}	88
			Unknow		
Cations			BB528	aldose RDase, put \{Bs\}	57
BB724	K+ transport prt (ntpJ) \{Eh\}	60	BB684	carotenoid biosyn prt, put \{Ss\}	58
BB380	Mg2+ transport prt (mgtE) \{Bb\}	100	BB671	chemotaxis operon prt (cheX) \{Bb\}	99
BB164	$\mathrm{Na}+/ \mathrm{Ca}+$ exchange prt, put $\{\mathrm{Mj}\}$	59	BB250	dedA prt (dedA) \{Ec\}	54
BB447	$\mathrm{Na}+/ \mathrm{H}+$ antiporter (napA) \{Eh\}	57	BB168	dnaK suppressor, put \{Ec\}	53
BB637	$\mathrm{Na}+/ \mathrm{H}+$ antiporter (nhaC-1) $\{\mathrm{Bf}\}$	48	BB508	GTP-BP \{Tp\}	59
BB638	$\mathrm{Na}+/ \mathrm{H}+$ antiporter (nhaC-2) $\{\mathrm{Hi}\}$	50	BB219	gufA prt $\{\mathrm{Mx}\}$	54
			BB421	hydrolase $\{\mathrm{Hi}\}$	58
Other			BB524	inositol monoPPase \{Hs\}	47
BB451	chromate transport prt, put $\{\mathrm{Mj}\}$	58	BB454	lipopolysaccharide biosyn-related prt $\{\mathrm{M} j\}$	49
Other categories			BB702	lipopolysaccharide	
Adaptations and atypical conditions				biosyn-related prt $\{\mathrm{Hi}\}$	62
BB237	acid-inducible prt (act206) \{Rm\}	45	BB045	P115 prt \{Mh\}	53
BB786	general stress prt (ctc) \{Bs\}	51	BB336	P26 \{Bb\}	100
BB785	stage V sporulation prt $\mathrm{G}\{\mathrm{Bm}\}$	74	BB363	periplasmic prt \{Bb\}	100
BB810	virulence factor mviN prt		BB033	small prt (smpB) $\{\mathrm{Rp}\}$	70
	(mviN) $\{\mathrm{Hi}\}$	51	BB297	smg prt \{ Bb$\}$	100
			BB443	spolllJ-associated prt (jag) \{Bs\}	56
Colicin-related functions					
BB766	colicin V production prt, put $\{\mathrm{Hi}\}$	52	$\underline{1 p 54}$		
BB546	outer membrane integrity prt (tolA) $\{\mathrm{Hi}\}$	44	BBA76	thy1 prt (thy1) \{Dd\}	68
			\|p28-4		
		Drug and analog sensitivity	BBI06	pfs prt (pfs) \{Ec\}	59
BB140	acriflavine resistance prt (acrB) $\{\mathrm{Hi}\}$	53	cp9		
BB258	bacitracin resistance prt		BBC09	rev prt (rev) $\{\mathrm{Bb}\}$	62
	(bacA) \{Ec\}	56	BBC10	rev prt (rev) $\{\mathrm{Bb}\}$	66

BB724 K+ transport prt (ntpJ) \{Eh\} 60
BB380 Mg2+ transport prt (mgtE) $\{\mathrm{Bb}\}$
$\begin{array}{lll}\text { BB164 } & \mathrm{Na}+/ \mathrm{Ca}+\text { exchange prt, put }\{\mathrm{Mj}\} & 59 \\ \text { BB447 } & \mathrm{Na}+/ \mathrm{H}+\text { antiporter (napA) }\{\mathrm{Eh}\} & 57\end{array}$
$\begin{array}{lll}\mathrm{BB} 638 & \mathrm{Na}+/ \mathrm{H}+\text { antiporter (nhaC-1) }\{\mathrm{Bf}\} & 48 \\ \mathrm{Ba}\}\end{array}$
BB451 chromate transport prt, put $\{\mathrm{M} j\}$
Other categories
Adaptations and atypical conditions
BB237 acid-inducible prt (act206) \{Rm\}
$\begin{array}{ll}\text { BB786 } & \text { general stress prt (ctc) }\{\mathrm{Bs}\} \\ \text { BB785 } & \text { stage } V \text { sporulation prt } G\{B m\}\end{array}$

Drug and analog sensitivity

BB258 bacitracin resistance prt (bacA) \{Ec\}
$\begin{array}{lll}\text { BBC10 } & \text { rev prt (rev) }\{\mathrm{Bb}\} & 62 \\ & 66\end{array}$

