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Genomic structure and evolution of 
the mating type locus in the green 
seaweed Ulva partita
Tomokazu Yamazaki1, Kensuke Ichihara1, Ryogo Suzuki1, Kenshiro Oshima2, Shinichi 

Miyamura3, Kazuyoshi Kuwano4, Atsushi Toyoda  5, Yutaka Suzuki2, Sumio Sugano2, 

Masahira Hattori2,6 & Shigeyuki Kawano1

The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type 

determination in haploid phases via genes on UV chromosomes is not well understood. We report 

the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva 

partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating 

type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of 
genomic next-generation sequencing data for mt− and mt+ strains identified highly rearranged MT 
loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. 
Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the 

individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-
containing protein was found in the mt− MT locus but was not an ortholog of the chlorophycean mating 
type determination gene MID. Taken together, our results suggest that the genomic structure and its 

evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that 

the MT locus genes are quite different from those of Chlorophyceae.

Sexual reproduction systems in eukaryotes can be divided into two types, in terms of determining sex/mating 
type in the haploid phase (UV systems) or in the diploid phase (XY/ZW systems)1. In the XY/ZW systems of 
mammals, insects, and plants, the structures of XY/ZW chromosomes and their evolution correspond reasonably 
well with predictions based on population genetics theory, whereby the suppressed recombination of the two 
chromosomes results in degeneration through Muller’s ratchet, background selection, the Hill-Robertson e�ect 
with weak selection, and the “hitchhiking” of deleterious alleles along with favorable mutations2,3. �ese theoret-
ical predictions are constructed under the postulate that both sex chromosomes (XY or ZW) are heterozygous 
in the diploid phase and that they are distributed separately into the gametes (egg and sperm) via meiosis. In this 
case, deleterious mutations in an allelic gene on a sex chromosome, referred to as a gametolog, are masked by the 
counterpart gene on the other sex chromosome, resulting in sex chromosome degeneration driven by the above 
population genetic mechanisms of gene �xation. Sex chromosomes undergo stepwise degeneration, such as a size 
decrease, gene loss, accumulation of transposable elements, and decrease in codon bias, at di�erent evolutionary 
times, resulting in “evolutionary strata”1,4,5. Several recent studies about plant Y chromosomes suggest that puri-
fying selection in�uences their degeneration6. On the other hand, this postulate is not applicable to organisms 
with UV systems in which mutations in both sex chromosomes, named UV chromosomes, are not sheltered, 
because they have no allelic counterparts in the dominant haploid phase, leading to the expectation of di�erent 
evolutionary patterns for UV chromosomes7. Recent simulations of UV systems suggest that the degeneration 
of sex chromosomes due to the accumulation of deleterious mutations by reduced recombination at mating type 
(MT) loci or sex-determining regions (SDRs) should be slower than in diploid determination systems because of 
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the absence of masking of these mutations in the haploid phase; their di�erentiation would be driven by balancing 
selection, which involves maintenance of allelic genes in a population, to a greater extent than in XY/ZW sys-
tems8. However, there have been very few empirical studies of the structure and evolution of UV chromosomes.

In the green plant lineage, the genomic sequences of MT loci and SDRs on UV chromosomes have been 
reported in four species: the unicellular green alga Chlamydomonas (Chlorophyta), the colonial green 
alga Gonium (Chlorophyta), the multicellular alga Volvox (Chlorophyta), and the liverwort Marchantia 
(Marchantiophyta)9–11. �e three green algal MT loci and SDRs have been compared along with the evolution 
of multicellularity and oogamy because these algae evolved from an ancestral unicellular green alga, similar to 
Chlamydomonas, into Volvox with multicellularity and oogamy since least 200 million years ago (Mya)12. �e 
sizes of Volvox male and female SDRs are over 1.0 and 1.5 Mb at the distal ends of the UV chromosomes and 
contain 70 and 80 genes, respectively, and they are larger than those of the of Chlamydomonas and Gonium MT 
loci, which are 200–300 kb and 360–500 kb and contain 40–41 genes and 24 genes, respectively9,10. Many genes of 
the Volvox SDR are the same as those located inside and outside of the Chlamydomonas MT locus, suggesting that 
expansion of the MT locus involves the surrounding genes9. �ese green algal MT loci/SDRs show high degrees 
of gene rearrangement9,10,13. Other well-studied green lineages include bryophyte species, speci�cally the liver-
wort Marchantia (Marchantiophyta) and the moss Ceratodon (Bryophyta). Marchantia has accumulated repeats 
in sex chromosomes, and gametologs are exposed to purifying selection11,14,15. Although the genomic sequences 
of Ceratodon have not been reported, population genetics and molecular evolutionary approaches indicate that 
non-recombination of SDRs exposes gametologs16. �e genomic sequences of the MT loci have been reported 
in several species outside the green lineages. �e brown alga Ectocarpus has a non-recombining SDR in which 
gametologs are exposed17. In fungi, the �lamentous self-fertilized ascomycete Neurospora tetrasperma and the 
anther-smut fungus Microbotryum lychnidis-dioicae have UV chromosomes called “mating type chromosomes”; 
both the former and latter show an early stage of MT locus degeneration with two inversions via transposable 
elements over a 1.2–5.3 Mb region and a highly divergent MT locus with rearrangement over18–20. In both cases, 
degeneration signals, such as transposable element accumulation and relaxed codon bias, are found, but there are 
no clear evolutionary strata. �ese studies of the MT locus/SDR sequences provided both similar and contrast-
ing �ndings (Fig. 1). �e similar results included low levels of MT locus/SDR recombination, rearrangement of 
gametolog locations, exposure of most gametologs to purifying selection, low gene density, and gene loss. �e 
contrasting results were a size range of 200 kb to 4 Mb, lack of clear strata except in Ceratodon, lack of relaxed 
codon usage bias in Chlamydomonas (but this has not been estimated in some species), and lack of accumulation 
of some transposable elements. �e rules governing the generation of these di�erences are not yet clear.

Green seaweeds of the Ulvophyceae are multicellular and grow in coastal areas worldwide21,22. Ulva partita is 
a species of the Ulvophyceae and shows representative features of the life cycle of this order (Fig. 1). �e species 
exhibits a typical haploid-diploid life cycle with alternating haploid and diploid phases, and the gametes have two 
mating types, mt− and mt+ 23,24. Our previous study indicated a di�erence between the mating types, as evidenced 
by the arrangement of a putative mating structure involved in the fusion of gamete cells and an eyespot required 
for the recognition of photons; the putative mating structure and eyespot are arranged on opposite sides in mt− 
gametes and on the same side in mt+ gametes25. �e asymmetry between the mating structure and the eye spot is 
observed even in the isogamous green alga Chlamydomonas reinhardtii26. �us, U. partita develops a multicellular 
body and produces gametes with the determination of mating types in the haploid phase. Ulva species are anisog-
amous but not oogamous. U. partita develops isomorphic gametophytes and sporophytes with a thallus (leaf-like) 
shape, and their somatic cells di�erentiate into bi�agellate gametes and tetra�agellate zoospores, respectively23,24. 
Compared with the other previously analyzed organisms with UV systems, U. partita may provide several insights 
into the drivers of MT locus/SDR evolution in terms of the life cycle. Isomorphism between gametophytes and 
sporophytes is expected to restrict the functions of the MT locus genes because they must function equally in the 
haploid gametophyte, haploid gamete, diploid sporophyte, and haploid zoospore. Natural populations of Ulva 
species show no dominance of haploid or diploid phases and no sexual bias between seasons, suggesting that 
isomorphism and sexuality do not a�ect �tness in either phase27. �is is distinct from other organisms. For exam-
ple, the two mosses develop extremely heteromorphic gametophytes and sporophytes or egg, sperm, and spores, 
and not all SDR genes are necessarily required for both phases, resulting in evolutionary relaxation of selective 
pressure on particular genes. Ulva genetically determines mating type a�er meiosis by harboring individual UV 
chromosomes in gametophytes, and it may acquire a transcriptional regulation system between mating types at 
the gamete stage or during gametogenesis.

Chlorophyta contains several classes; the major classes are Prasinophyceae, Trebouxiophyceae, Chlorophyceae, 
and Ulvophyceae28. In all Chlorophyta, the only known sex- or mating-determining gene is the Chlamydomonas 
MID (Minus dominance), encoding a putative transcription factor containing an RWP-RK domain, including a 
leucine zipper-like motif29,30. A MID ortholog has been found in the Volvox SDR, and its genetic manipulation 
results in the transformation of sex, from female to male or from male to female. However, the expression level of 
this gene is constant during spermatogenesis in males, suggesting that this gene does not play a role in sex deter-
mination but instead has a male-speci�c function in the di�erentiation of male vegetative cells into sperm31. MID 
is highly conserved in the Chlorophyceae lineage, but it is unclear whether other green algal lineages also possess 
this gene. With regard to green algal evolution, it is of interest to examine the conservation of MID among the 
distinct taxonomic classes Chlorophyceae and Ulvophyceae.

Here, we report identi�cation of the MT locus in a species with a haploid mating type determination system 
without oogamy. �e primary issue that this study aims to resolve is how much the genomic structures and evo-
lutionary history of the MT locus in U. partita resemble those of the SDRs in UV chromosomes. �e mating type 
determination system of U. partita is similar to the UV system in terms of the timing of mating determination, 
while the genes on the MT locus of the two mating types coexist in the diploid phase over a longer time scale. �e 
isomorphism between the gametophyte in the haploid stage and the sporophyte in the diploid stage may a�ect 
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Figure 1. Life cycles and SDRs/mating type loci. Schematics of the life cycles of organisms are shown, along 
with the features of UV chromosomes. In XY/ZW systems, the diploid phase dominates, and the haploid phase 
is degenerate. In these organisms, sex determination occurs in the diploid phase, and a sex chromosome of a 
particular sex degenerates. In UV systems of multicellular organisms, the diploid saprophyte generates haploid 
zoospores or spores via meiosis, and mating type or sex is genetically determined by the UV chromosomes. 
Spores or zoospores with U and V chromosomes are female and male, respectively, and they develop haploid 
gametophytes. In UV systems of unicellular organisms, diploid zygospores a�er fusion of gametes with opposite 
mating types, some of which are dormant, undergo germination and meiosis to generate haploid vegetative 
cells that reproduce themselves and generate gametes under particular conditions, such as nutrient starvation. 
Genomic sequences of UV chromosomes are revealed in two types of life cycle: dominating haploid phase 
(e.g., the multicellular green alga Volvox and the moss Marchantia) and haploid and diploid phases of equal 
dominance (e.g., the brown alga Ectocarpus). Degeneration of sex chromosomes is thought to be observed only 
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the evolution of the MT locus. We also investigated the orthologs among the U. partita MT locus, the MT locus 
in Chlamydomonas, and SDRs in Volvox.

Results
Structure of the MT locus in the green seaweed Ulva partita. �e PacBio long reads (1.7 × 106 reads 
and 12.0 Gb for mt− and 2.7 × 106 reads and 16.6 Gb for mt+) from the genomes of both mating types were assem-
bled into sca�olds. Although comparison of the sca�olds with unassembled PacBio long reads revealed mating 
type-speci�c (MTS) PacBio long reads, these reads were distributed over many sca�olds (Supplementary Tables 1 
and 2; Supplementary Fig. 1). To select the MTS PacBio long reads located within a particular narrow region, 
the ratio of the sum of the lengths of 5–15 successive MTS PacBio long reads on the same sca�old per genomic 
length to that of the distal positions of the successive reads was determined (Supplementary Fig. 2). For reads 
located close together in a narrow region, the ratio reached 1 (see Supplementary Text for detailed analysis). �is 
analysis identi�ed a sca�old (# 632) containing a region that was highly divergent between the two mating types 
(Supplementary Fig. 3). In addition, the mapping results of the Illumina short reads from the two mating type 
genomes and RNA-sequencing (RNA-seq) reads derived from gametes and gametophytes were mapped, and the 
gene models predicted by the RNA-seq assemblies are shown in Supplementary Fig. 3. �e highly adjacent MTS 
region was located in the middle of mt− sca�old 632 over ~1.0 Mb (designated as the mt− MT locus), and this 
region was particularly well mapped using short-read nucleotide sequences generated from the mt−, but not the 
mt+, genome and RNA-seq reads (Supplementary Fig. 3, 4th and 5th lanes). In addition, two highly adjacent MTS 
regions (mt+ MT locus) were identi�ed for mt+ (sca�olds 4 and 898; Supplementary Fig. 2D–F, Supplementary 
Figs 4 and 5). �ese regions had lower gene density than the surrounding regions (8.2 and 5.8 genes/100 kb 
for the mt− MT locus and the mt+ MT locus, and 10.6 and 9.8 genes/100 kb for the regions around these loci, 
respectively).

Using mt− sca�old 632 and mt+ sca�olds 4 and 898, homologous sca�olds for the opposite mating type 
genome were identi�ed based on a reciprocal homology search of sca�olds, which revealed that all had com-
plementary scaffolds, and the two mt+ scaffolds were estimated to be a single fragmented mt+ MT locus 
(Supplementary Fig. 6). �e mt− and mt+ MT loci, together with the surrounding complementary regions iden-
ti�ed in the �anking sca�olds, extended for 7.19 and 7.33 Mb, respectively (Fig. 2A).

As no genome of Ulva relatives has yet been analyzed, there are no training data for gene prediction based on 
genome sequencing data. �us, for precise prediction of genes based on expression, sets of RNA-seq assemblies 
from gametes and gametophytes of the individual mating types were assembled and mapped on the sca�olds in 
and around the MT locus. �e sets of RNA-seq assemblies were gathered based on homology, and then de�ned 
as genes. �ese analyses indicated that the mt− MT locus and mt+ MT locus contained 46 and 67 mRNA-coding 
loci, respectively; several of the loci were assumed to generate splicing variants (Supplementary Tables 4 and 5).

Comparisons of the genes in the mt− MT locus and the mt+ MT locus by reciprocal BLASTX analysis showed 
that 23 genes were shared by the two regions (Supplementary Table 6). �ese genes were de�ned as gametologs 
and were used to compare the genomic structures of the two regions; the results indicated that the mt− and mt+ 
MT loci were highly rearranged and contained many MTS reads (Fig. 2A; Supplementary Figs 3–5).

In XY and ZW systems, particular transposable elements accumulate in the sex chromosomes32. No such accu-
mulation of transposable elements has been detected in the MT loci of Chlamydomonas and Gonium, but it has 
been found in Volvox or Ectocarpus, Marchantia9,11,17. Transposable elements were predicted based on homology 
with known transposable elements and comparison of the genome with itself. �e results showed that transpos-
able elements were present at the MT locus but were not more highly accumulated than in neighboring regions 
(mt−, MT locus: 0.32 ± 0.56/100 kb; neighboring region: 0.57 ± 0.84/100 kb; mt+, MT locus: 0.61 ± 0.85/100 kb; 
neighboring region: 0.62 ± 0.81/100 kb) (Supplementary Fig. 7).

U. partita has no genetic marker for estimating homologous recombination. �us, a genomic PCR analysis 
was performed using four MT locus genes in both mating types for the two genome-sequenced strains and four 
other strains (mt−, MGEC-3 and 5; mt+, MGEC-4 and 6) isolated from di�erent areas along the Japanese coast 
(Supplementary Table 6). All examined genes were linked to the mating types of the individual isolates (Fig. 2B), 
suggesting that these two regions contain the characteristics expected of an MT locus.

Finally, to examine the linkage between mating type and the identi�ed MT locus, the mt− strain, which was 
a di�erent isolate than the one for which the genome was sequenced, was crossed with the mt+ strain, and the 
linkage between the mating types of their progeny and the unique gene markers of the MT locus was examined 
(Supplementary Table 7). A total of 10 of 16 progeny were mated with an mt+ tester strain, and 7 of 16 progeny 

in the moss, with the other organisms harboring sex-determining regions (SDRs) in the UV chromosomes. 
�e green seaweed Ulva partita has a life cycle with even domination of haploid and diploid phases, but it is not 
oogamous, in which gametes di�erentiate into eggs and sperms. �e bi�agellate gametes are anisogamous, apart 
from their size and ultrastructure. U. partita develops isomorphic gametophytes with a tubular thallus, and 
somatic cells di�erentiate into gametes24. Gametes of opposite mating types fuse, and a zygote develops into a 
sporophyte that is identical to a gametophyte in terms of morphology. �e sporophyte somatic cells di�erentiate 
into zoospores that have four �agellae and are slightly larger than the gametes. �e gametes have two mating 
types, mt− and mt+, de�ned by the inheritance of chloroplast DNA from the mt+ gamete to the zygote23,24. �us, 
the sexually reproductive form of this species is the mating type. �e other type of MT locus is found in the 
unicellular green alga Chlamydomonas and the colonial green alga Gonium. �eir MT locus sizes are smaller 
than the SDRs in the UV chromosomes, and they have a low diversity of gametologs, which are genes shared 
between the MT loci of individual mating types.
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Figure 2. Genomic structures of the mating type (MT) locus in the green seaweed Ulva partita. (A) Sca�olds, 
transposable elements surrounding the MT locus, the MT locus in the green seaweed U. partita. SF, the MT locus 
sca�olds and neighboring sca�olds in both the mt+ and mt− strains are shown. Blue and red bars indicate mt− 
and mt+ sca�olds, respectively. Numbers are sca�old numbers. Transposable elements (TEs) of the same type are 
indicated by the same colors. �e predicted MT locus genes were mapped on both genomes, and the positions of 
the 23 gametologs were compared between the mt+ and mt− strains. �e colored vertical bars indicate individual 
mating type-speci�c genes. Light gray vertical bars indicate mating gametologs. mt−, mating type minus; mt+, 
mating type plus. (B) Genomic PCR of MT locus genes for distinct wild-type strains. �e presence of the U. 
partita MT locus genes in the MGEC-2 (mt−) and MGEC-1 (mt+) strains was con�rmed in four other strains 
isolated from di�erent areas along the Japanese coast. Genomic PCR was performed using primer sets for four 
genes in individual MT loci. PCR products of same primer sets were loaded on di�erent gels (Supplementary 
Fig. 10). A�er electroporation, PCR products were visualized by ethidium bromide (EtBr) staining method. 
Captured EtBr �uorescence images of gels were cropped and images with low intensity were enhanced.

http://10


www.nature.com/scientificreports/

6Scientific RepoRts | 7: 11679  | DOI:10.1038/s41598-017-11677-0

were mated with an mt− tester strain. Eight of the mt− progeny harbored only mt− MT locus markers, but two of 
them harbored both types of MT locus marker. In addition, six of the mt+ progeny harbored only mt+ MT locus 
markers.

Evolution of gametologs in the U. partita MT locus. To analyze the evolutionary history of the 
gametologs in the MT locus, the homologous sequences of an MT locus gene encoding proliferation-associated 
protein 1, PAR1, and a gene encoding G-strand telomere-binding protein 1, GTBP1, in a region neighboring 
the MT locus, were isolated from species related to U. partita. Molecular phylogenies were then reconstructed 
(Fig. 3A and Supplementary Table 7). In all species examined, two types of homologous sequence were identi-
�ed from the two distinct mating types, and the phylogenetic tree showed that the genes could be classi�ed into 
two clades (Fig. 3A). In addition, these two clades were associated with the previously determined mating types 

Figure 3. Evolution of the gametologs at the mating type (MT) locus. Molecular phylogenies of a gametolog 
in and a gene outside the MT locus. (A) Genes orthologous to an MT locus gametolog (encoding proliferation-
associated protein 1, PAR1) from other species of the order Ulvales and (B) those of a gene outside the MT locus 
(encoding G-strand telomere-binding protein 1, GTBP1). �e mating type of each strain of the species was 
determined previously (see Supplementary Table 7) and is indicated a�er the species name. Bootstrap values 
were obtained from analyses of 100 pseudoreplicates and are shown close to the branches (>50). �e numbers 
above the scale bar indicate nucleotide substitutions per site. (CF) Synonymous (dS) and non-synonymous 
(dN) substitution rates of gametologs between the mt+ and mt− strains of green algae. (C) dS and dN values for 
C. reinhardtii. (D) dS and dN values for Volvox carteri. (E) dS and dN values for Ulva partita. (F) dN/dS ratios 
of three algae. Up, U. partita. Cr, C. reinhardtii. Vc, V. carteri. MS, model selection method. MYN, modi�ed 
YN method. Lines show speci�c thresholds of the dN/dS ratio. To make the dN/dS ratio of a gametolog clearly 
understandable, useful thresholds of this ratio (1, 0.2, 0.1, and 0.05) are indicated as follows: continuous line, 
1, dashed line, 0.2, dotted line, 0.1, and dashed and dotted line, 0.05. (G) dS values and (H) dN values of the 
gametologs and genes around the MT locus. dN and dS values of the gametologs and the genes around the MT 
locus were calculated and plotted according to their positions in the mt− genome. Numbers a�er “sf ” indicate 
the sca�old number. �e shadowed region shows the MT locus. Dashed lines show the border of the sca�old.
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(Supplementary Table 7). In contrast, the neighboring-region genes in each species were almost identical and 
were not classi�ed into di�erent clades in the molecular phylogeny (Fig. 3B). �ese data suggest that the investi-
gated gametolog existed in the MT locus when this locus was established and evolved independently within the 
MT loci of the individual mating types.

Next, to determine the type of selective pressure exerted on the gametologs a�er their divergence, the nucleo-
tide substitution rates at synonymous and non-synonymous sites (dS and dN, respectively) were estimated. �ey 
were also compared with those for genes at the known MT locus of Chlamydomonas and in the SDR of Volvox9,13 
(Supplementary Tables 8 and 9). Mean distances between individual genes on the plot were also calculated as an 
index to compare the divergence of MT locus genes (Supplementary Tables 10–12). Among 23 genes with several 
mRNA variants de�ned as gametologs by BLASTX analysis, two (06550 m/01365p and 12186 m/06628p) did not 
have coding sequences (CDSs) that could be aligned between gametologs; thus, the CDSs of the other 21 game-
tologs were aligned.

Both maximum-likelihood and approximate methods showed that the synonymous substitution rates for the 
gametologs in U. partita were considerably higher than the non-synonymous rates, and the non-synonymous 
rate/synonymous rate (dN/dS) ratios were <1 for all genes except one (means were 0.16 ± 0.36 for the approx-
imate method and 0.16 ± 0.40 for the maximum-likelihood method), suggesting that these genes have been 
exposed to negative selective pressure and that their functions are highly restricted (Fig. 3E,F and Supplementary 
Table 13).

Mean dS values were much higher in U. partita and Volvox than in Chlamydomonas, and those of U. partita 
were higher than those of Volvox (Supplementary Fig. 8 and Supplementary Table 13). In addition, the dN means 
of U. partita and Volvox were higher than that of Chlamydomonas, but the di�erence between U. partita and 
Volvox was small.

Means of all distances between the two dots for each estimation method were calculated as an index of 
scattering (Supplementary Tables 10–13). If the mean distance is short, the dN/dS ratios would be expected 
to be homogeneous. �e mean distances for U. partita in the two estimation methods were 1.43 ± 1.19 and 
1.59 ± 1.23 (Supplementary Table 10). All mean distances were lower in Chlamydomonas than in U. partita, while 
some of the dN/dS ratios were slightly higher (0.17 ± 0.18 for the approximate method and 0.17 ± 0.17 for the 
maximum-likelihood method) and were plotted in a small area (mean distances were 0.03 ± 0.02 for the approx-
imate method and 0.03 ± 0.02 for the maximum-likelihood method; Fig. 3C,F; Supplementary Table 11). Mean 
distances in Volvox were similar to those of U. partita (1.20 ± 0.92 for the approximate method and 1.10 ± 0.98 
for the maximum-likelihood method), but comparison of the standard deviations showed that the divergence of 
their ratios was similar to that of Chlamydomonas (0.21 ± 0.22 for the approximate method and 0.22 ± 0.24 for the 
maximum-likelihood method; Fig. 3D,F; Supplementary Table 12). �e molecular phylogeny and nucleotide sub-
stitution rates suggest that the U. partita gametologs were present at a common MT locus before the divergence 
of the relatives and that this region experienced a prolonged period a�er separation.

�e synonymous and nonsynonymous substitution rates of the genes around the MT locus were estimated 
by the two methods. From the sca�old data around the MT loci of mt− and mt+, the CDSs of the genes were 
extracted and their associations were determined using BLASTN. A�er estimation of the synonymous and 
nonsynonymous substitution rates of 119 genes by the two methods, both values were plotted according to the 
mt− positions of the MT locus (Fig. 3G,H). �e data showed that almost all synonymous and non-synonymous 
substitution rates of the genes around the MT locus were near zero or zero; additionally, the synonymous sub-
stitution rates were higher than those of the MT locus, and the non-synonymous substitution rates were slightly 
higher than those of the MT locus.

It has been reported that relaxed codon usage bias occurs with reduced recombination in sex chromosomes33,34.  
Furthermore, the codon usage in CDSs obtained from all mRNA data and the codon usage for the MT locus 
genes were compared with those of other autosomal locus genes (Supplementary Table 14). �e codon usage 
patterns of all of the autosomal genes and the MT locus genes did not appear to di�er (Supplementary Fig. 9), and 
comparisons between them and those of mt− and mt+ autosomal locus genes showed high correlations (Poisson’s 
correlation, 0.98; p-value, 2.2 × 10−16). However, the codon usage of half of the MT locus genes in both mating 
types di�ered signi�cantly from that of the autosomal genes, and these included the gametologs, which showed a 
low dN/dS ratio (Supplementary Table 14).

Motifs and molecular phylogeny of RWP-RK domain-containing proteins in the MT locus 
and autosomes. We investigated whether there were orthologs among the U. partita MT locus genes, the 
Chlamydomonas MT locus, and the Volvox SDR. Although no gene was clearly shared among the MT loci and 
SDR in the three species, very weak homology with MID was found in a gene only in the U. partita mt− MT 
locus, named UpaRWP1. To assess the relationship between MID and UpaRWP1, a BLAST analysis was per-
formed using all Chlamydomonas RWP genes as queries against the entire U. partita mRNA database from the 
assembly of RNA-seq data. Two of the autosomal RWPs (UpaRWP2 and UpaRWP3) were identi�ed and mapped 
to locations other than the MT locus. In addition, genes encoding proteins containing the RWP-RK domain in 
Chlorophyta were collected from the annotated genes from the genomes of �ve species: Chlamydomonas rein-
hardtii, Volvox carteri, Gonium pectorale, Coccomyxa subellipsoidea, and Micromonas pusilla. Although these 
genes encode proteins containing a single RWP-RK domain, the protein lengths are very diverse.

Conserved motifs among all of the deduced amino sequences were identi�ed with the MEME program; �ve 
conserved motifs were identi�ed (Fig. 4A,B). Motif 1 contained the RWPxRK sequence, which was conserved 
among all identi�ed gene products. �ree Volvocales MIDs were very similar in terms of protein length and 
the order of the �ve motifs (Fig. 4A,B). Although the protein length of UpaRWP1 was similar to that of MID, 
the order of the �ve motifs di�ered. �e order of Motif 1 and Motif 2 was conserved among UpRWP1 and the 
Volvocales MIDs, but the order of the other motifs was not.
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Figure 4. Conserved motifs and molecular phylogeny of U. partita RWP1, Volvocales MIDs, and RWP-RK 
domain-containing proteins in green algae. (A) Schematic of the protein structure of U. partita RWP1. Among 
proteins containing the RWP-RK domain in Chlorophyta, conserved motifs were identi�ed by using MEME, 
and the motifs of U. partita RWP1 and Volvocales MIDs are shown by distinctly colored boxes, re�ecting their 
positions and lengths. Gray bars show the total lengths of the individual proteins. In particular, Motif 1 contains 
RWPxRK sequences. Bar shows 10 amino acids. (B) Sequence logos of individual motifs. Information contents 
of individual amino acids at a position in each motif are visualized by the height of the capital letters designating 
amino acid residues. �e y-axis represents the bit value, as information content, of which the maximum is log220 
≈ 4.32. �e x-axis represents the position of an amino acid residue in each motif. (C) Molecular phylogeny of the 
RWP-RK domain-containing proteins in Chlorophyta. From the deduced amino acid sequences of the proteins 
containing the RWP-RK domain in the genomes of Ulva partita, Volvox carteri, C. reinhardtii, Gonium pectorale, 
Coccomyxa subellipsoidea, and Micromonas pusilla, the amino acid sequences of motifs conserved in all proteins 
were combined in individual proteins, and the aligned combined sequences were used for the construction of 
an unrooted molecular phylogeny using the maximum-likelihood method. U. partita RWP1 (UpaRWP1) in 
the MT locus is shown in red. �e highlighted genes indicated in green, orange, and purple are classi�ed into 
clades containing Volvocales MIDs (blue), one of the U. partita autosomal RWP genes (UpaRWP2; accession 
ID, DN37992), and the other of the U. partita autosomal RWP genes (UpaRWP3; accession ID, DN130398), 
respectively. �e pre�xes before the gene symbols are abbreviations of the species names: Upa, U. partita, Cre, 
C. reinhardtii, Vca, V. carteri, Gpe, Gonium pectorale, Csu, Coccomyxa subellipsoidea, Mpu, Micromonas pusilla. 
Bootstrap values were obtained from analyses of 100 pseudoreplicates and are shown close to the branches 
(>50). �e numbers below the scale bar indicate amino acid substitutions.
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A molecular phylogenetic tree was constructed using all �ve motifs of UpaRWP1, two U. partita autosomal 
RWPs, MIDs, and other Chlorophyta RWPs (Fig. 4C). �e three MIDs were classi�ed into a clade with high 
statistical support, whereas UpaRWP1 was classi�ed into a di�erent clade from that containing the MIDs, albeit 
with low statistical support (Fig. 4C). In addition, an autosomal U. partita RWP (UpaRWP2) was classi�ed into 
a clade containing Chlamydomonas RWP11 (CreRWP11) with high statistical support and few amino acid sub-
stitutions35. �e other (UparRWP2) was classi�ed into a clade containing NIT2, which is a regulator of nitrate 
assimilation36. �us, UpaRWP1 di�ered not only from MIDs but also from the autosomal RWPs, suggesting that 
this gene is not an ortholog among the three species and was acquired independently in the U. partita MT locus 
and the two other species.

Expression of MT locus genes in gametogenesis. Mating type-speci�c genes are expected to provide 
genetic di�erences to opposite mating types a�er meiosis, and the expression of the MT locus genes may provide 
di�erentiation of gametophytes and gametes between mating types. On the other hand, there are no di�erences 
in gametophytes between mating types in U. partita, but there are some di�erences in gametes with asymme-
try of mating structure and eye spot and mt−-speci�c fusion machinery25,37. To analyze the expression levels of 
the U. partita MT locus genes, RNA-seq data during gametogenesis from the two mating types with biological 
replications were mapped on the genome, and the expression levels of the MT locus genes were estimated. �e 
expression levels of all splicing variants are shown with the results of one-way ANOVA for four time points and 
the Dunnett test for multiple comparisons between gametophytes before induction and at various time points 
a�er gametogenesis (Supplementary Table 15). A�er removing splicing variants with low expression and cluster-
ing these data, the expression data of gametologs and mating type-speci�c genes as well as the relative expression 
changes were plotted separately (Fig. 5A–D). �e expression data showed that most of the genes, including both 
the unique genes and the gametologs, were expressed constantly during gametogenesis in both mating types. 
In addition, the expression levels of gametologs were much higher than those of the mating type-speci�c genes 
(Fig. 5E,F).

Statistical analyses showed that the expression levels of 18 and 6 genes changed signi�cantly during game-
togenesis in mt− and mt+, respectively. Among the 18 mt− MT locus genes, the two gametologs LOG1m and 
ALP1m were upregulated in gametes; two gametologs (DGK1 and 12223m) and two mating type-speci�c genes 
(07489m and 05930m) were classified into cluster No. 7 and, except for 12223m, were downregulated dur-
ing gametogenesis; six gametologs (elF1m, SNR1m, PRP1m, ACTB1m, 05354m, and 23244m) and two mat-
ing type-speci�c genes (RWP1 and 06021m) were co-expressed (cluster No. 3), and, except for 05354m, their 
expression levels increased at 24 h a�er gametogenesis and decreased to the pre-gametogenesis level in gametes 
(Fig. 5A,C). Of the mating type-speci�c genes at the mt− MT locus, the expression level of 03057m was increased 
at 48 h a�er gametogenesis and then decreased to zero in gametes; the others were downregulated in gametes. 
Among the 6 mt+ MT locus genes, two gametologs (SNR1p and PRP1p) were classi�ed into co-expression clus-
ter (#3, see above); one other gametolog (Pik1p) and two mating type-speci�c genes (03154p and 08677p) were 
downregulated (Fig. 5B,D). In summary, among the genes signi�cantly upregulated in mt−, thirteen mt− genes 
and two mt+ genes were signi�cantly upregulated during gametogenesis or in gametes, and the others were 
downregulated.

Discussion
Comparison of the genomic structures of the Ulva partita MT locus with those of other organ-
isms. In this study, we used a third-generation sequencing technology with a single-molecule sequencing 
method to identify the putative mating locus in the genome of the green macroalga Ulva partita. �e size of the 
U. partita MT locus (~1.0–1.5 Mb; Fig. 1 and 2) resembles that of the SDR of Volvox, which is a UV system with a 
dominating haploid phase in a life cycle showing phasic heteromorphism (sporophytes do not develop, and mei-
osis occurs in the zygote) and gamete dimorphism (eggs and sperm), and the brown alga Ectocarpus, which is also 
a UV system with a haploid-diploid life cycle with phasic heteromorphism and gamete dimorphism (motile and 
immotile gametes in males and females, respectively)9,17. �ese sizes are smaller than those in two fungal MT loci 
(Neurospora and Microbotryum) and larger than those in unicellular and colonial green algae (Chlamydomonas 
and Gonium)9,10,18–20. In addition, the gametolog location rearrangements in the individual mating types resem-
ble not only the SDRs of Volvox and Ectocarpus but also the MT loci of all others sequenced to date. �erefore, 
genomic rearrangement in the MT loci and SDRs is a common phenomenon in haploid organisms. Accumulation 
of transposable elements and low gene content are found in the MT loci and SDRs of Volvox, Ectocarpus, and 
Microbotryum but not of Chlamydomonas, Gonium, or Neurospora. Note that the Neurospora locus is thought to 
be young and therefore to show less accumulation of transposable elements18. �e Ulva MT locus showed lower 
gene content but not a high level of transposable element accumulation. �e low gene content suggests chro-
mosomal degeneration with gene loss, while the low level of transposable element accumulation may re�ect the 
shortage of transposable element data for Ulvophyceae.

Chlamydomonas and Gonium are unicellular and colonial, respectively, with few cells in their gametophytes, 
and meiosis occurs in diploid spores38. �is is the clearest di�erence from other organisms except the two fungi 
Neurospora and Microbotryum. On the other hand, the fungi Neurospora and Microbotryum exhibit automictic 
reproduction, which is a mating system involving a meiotic tetrad20,39. Such automictic reproduction is predicted 
to favor successive linkage to a set of mating type genes that experience deleterious and recessive mutations40,41. 
�erefore, the driver of evolution in fungal MT type loci may be distinct from those in the other organisms. While 
we initially expected to observe some di�erences between the Ulva MT locus and others, resulting from the contri-
bution of types of diploid phases in UV systems, the sizes and structures seem to be associated with the multicel-
lularity of gametophytes, except in the fungi, rather than equal dominance of the diploid phase. In the case of the 
liverwort, Marchantia, the UV chromosomes of which are thought to be dimorphic, complete genomic sequences 
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have not yet been reported11. When available, they will likely provide some insight into the evolution of the MT 
locus/SDR in organisms in which the sex/mating type is determined in the haploid stages.

Figure 5. Expression changes in the mating type (MT) locus during gametogenesis. (A) Gametologs of mt−. 
(B) Gametologs of mt+. (C) Mating type-speci�c genes of mt−. (D) Mating type-speci�c genes of mt+. �e blue 
heat map shows the average fragments per kilobase of exon per million fragments (FPKM) values from three 
biological replicate for gametologs and mating type-speci�c genes in each mating type during gametogenesis. 
High FPKM values (>200) are shown in the same color as values of 200. �e red heat map shows relative values 
for maxima of FPKM values. �e numbers in the right column are the numbers of clusters calculated by the 
k-means method. Results of one-way ANOVA for individual genes are shown on the right side of the heat maps 
(**p < 0.01, *p < 0.05). (E),(F) Average FPKM and values normalized to the beta-tubulin gene. Box-whisker 
plots of FPKM values for gametologs and mating type-speci�c genes. Results of Wilcoxon’s rank-sum test of all 
expression data between gametologs and unique genes during gametogenesis (**p < 0.01, *p < 0.05).
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Although the MT locus genes were tightly linked to the mating types of the U. partita isolates, inheritance 
patterns from a sporophyte to gametophytes were somewhat unusual. Several progenies had the both mating 
type-speci�c genes, suggesting that they are diploid. However, these progenies mated with the mt+ tester strain. 
We now hypothesized that this is an apomixis-like phenomenon found in several organisms and will report on 
this in more detail in the future. In addition, the �nding that the gametes of the diploid progenies mated with the 
mating type plus gametes is similar to an observation in Chlamydomonas, in which diploid gametes arti�cially 
generated by using auxotrophic mutants exhibited the mt− phenotype42. �is suggests that the MT locus gene(s) 
of U. partita may determine the mating type.

Evolution of the U. partita MT locus. A comparison of the dS and dN values of the gametologs in the U. 
partita MT locus showed that the dS values were signi�cantly higher than the dN values (Fig. 3). Although they 
are dependent on the substitution model and generation time, dS values are underestimated when they are greater 
than ~243. In total, 15 dS values for the approximate method and 13 for the maximum-likelihood method were 
>2, indicating that nucleotide substitution at a given site may have occurred several times and that substitutions 
at some sites are saturated. �us, the possibility that the dS values estimated from this data set are not accurate 
cannot be ruled out. In contrast, with the exception of one gene, all dN values were <1. �is suggests that the dN/
dS ratios for all gametologs, except one, are <1, although dS may be over- or underestimated, and that the genes 
have been exposed to purifying selection with a functional constraint.

Volvox is considered to have diverged from a unicellular ancestor, similar to Chlamydomonas, at least 200 
Mya12. Comparison of the MT locus/SDR and neighboring autosomal genes between Chlamydomonas and Volvox 
suggested that the expansion from an ancestral MT locus to an SDR involving neighboring autosomal genes 
occurred with cooption of gene functions12. Although the timing of the establishment of the U. partita MT locus 
is currently unclear, the molecular phylogeny of a gametolog among U. partita relatives was associated with 
mating type, and the U. partita gametologs showed high proportions of synonymous substitutions (Fig. 3). �ere 
are no fossil samples available to calibrate the molecular clock of the order Ulvales, including U. partita, and it is 
therefore di�cult to determine the timing of the establishment of the Ulva MT locus. However, the diversity of 
gametologs and the molecular phylogeny within Ulvales suggest that this locus was established at least at the ori-
gin of the examined species and has experienced a long period of evolution. �e low diversity of the dN/dS ratio 
in the U. partita gametologs suggests that no such expansion during evolution of the Volvox SDR has occurred 
for a prolonged period, because newer gametologs would be expected to have lower dN and dS values than those 
of older genes if there had been expansion involving the addition of autosomal genes adjacent to the MT locus9; 
alternatively, rapid gene losses may have been occurring, and this may be related to a larger number of mating 
type-speci�c genes than are present in other green linage organisms. �is is similar to the SDR of the UV chro-
mosome in Ectocarpus, which was estimated to have been established more than 70 Mya17.

Evolutionary relationship between Chlamydomonas MID and an MT locus gene encoding 
an RWP-RK domain. In the Chlorophyta, a gene determining mating type has been identi�ed only in 
Chlamydomonas, namely, Minus Dominance (MID), which is located at the mt− MT locus29. �is gene encodes 
a putative transcription factor containing an RWP-RK domain, which includes a leucine zipper-like motif29,30. 
Although MID homologs have been found across the Volvocales and the Volvox MID (VcaMID) is located on 
the SDR of the V chromosome in males, genetic manipulation data and the constitutive expression of VcaMID in 
males during both vegetative and sexual stages suggest that this gene does not play a role in sex determination but 
instead has a sex-speci�c function in the di�erentiation of male vegetative cells into sperm9,31,44. One RWP-RK 
domain-containing gene was found only at the mt− MT locus of U. partita and was named RWP1 (Fig. 4). Genes 
containing the RWP-RK domain are present in the genomes of various plants, including green algae, and their 
orthologs in Arabidopsis play roles in the development of eggs and embryos45–49. Although RWP1 is a potential 
determinant of mating type, transcriptome analysis showed that it is expressed even in gametophytes, with a slight 
increase at an early time point, and decreases to the initial level in gametes, suggesting that this gene is related 
to mating type di�erentiation at the transcriptional level (Fig. 5C). �is is similar to the case of Volvox MID9. If 
RWP1 is a master gene for mating type determination, future studies should address whether post-transcriptional 
or post-translational regulation occurs during gametogenesis and, if so, which mechanisms underlie this process.

Degeneration of U. partita MT locus genes. Expression levels of most of the MT locus genes were 
constant during gametogenesis in both mating types, and those of gametologs were much higher than those of 
mating type-speci�c genes (Fig. 5E,F). Ectocarpus sp. show much lower transcript abundance in haplotype mating 
type-speci�c SDR genes, and this may re�ect degradation of the promoter and cis-regulatory sequences of these 
SDR genes17. �is corresponds to the mating type-speci�c genes of U. partita. Although comparisons among 
species closely related to U. partita are required, these low levels of mating type-speci�c gene expressions may 
indicate their degeneration via mutations not only in protein-coding sequences but also in promoter regions. 
Degeneration is supported by the presence of degeneration signals such as relaxed codon usage bias in both 
gametologs and mating type-speci�c genes (Supplementary Table 14).

Expression of U. partita MT locus genes. �e low dN/dS ratios of gametologs suggest that their gene 
functions are conserved between mating types. �e mating type-speci�c genes confer genetic di�erences between 
mating types a�er meiosis and may lead to dimorphism between them. U. partita shows no di�erence between 
opposite mating type gametophytes, and only structural di�erences were found between gametes. Constitutive 
expression and expression changes during gametogenesis in most of the MT locus genes indicate that their func-
tions are identical during each stage. A group of mt− gametologs (cluster No. 3) exhibited signi�cantly increased 
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expression levels at the early stage of gametogenesis. �ese genes encoded orthologs of actin (ACTB1m), al�n-like 
protein (ALP1m), small nuclear ribonucleoprotein polypeptide G (SNR1m), proliferation-associated protein 1 
(PRP1m), and eukaryotic initiation factor (eIF1m) that are expected to be involved in important cellular func-
tions, and their allelic genes, except eIF1m and PRP1m, did not show changes in expression levels, suggesting that 
these genes may modulate di�erentiation of gametes via transcriptional regulation. On the other hand, other mat-
ing type-speci�c genes (RWP1 and 06021m) were upregulated, and still others were downregulated; most of them, 
except RWP1, were shown to encode proteins with no homology to known proteins, making it di�cult to predict 
their function(s) during gametogenesis. Our group and another team have developed a system to introduce and 
transiently express a transgene using a polyethylene glycol method. �is method, as well as the application of 
other methods, including RNA interference and genome-editing technologies, will provide further information 
regarding the molecular functions of the MT locus and its constituent genes50,51.

In conclusion, we identi�ed a locus linked to mating type in the green macroalga U. partita with an isomor-
phic haploid-diploid life cycle and without oogamy. �is locus was highly rearranged and exhibited suppressed 
recombination for a prolonged period. In addition, the U. partita MT locus has features similar to UV chro-
mosomes. Although the U. partita mt− MT locus harbored a gene encoding a protein containing an RWP-RK 
domain, RWP1, which is found in the Chlamydomonas mating type determination gene MID, this gene is not 
an ortholog of MID. During gametogenesis, the expression level of RWP1 increased once and then decreased in 
gametes as much as in gametophytes.

Materials and Methods
Algal materials and culture conditions. Algal strains. �e pairs of mt− (MGEC-2) and mt+ (MGEC-1) 
strains of Ulva partita used were collected from the coast of Japan (Supplementary Table 7)23–25,52. We recently 
renamed this species from Ulva compressa to U. partita based on its molecular phylogeny and morphology35. �e 
Ulva strains were obtained from culture collections at Kochi University, and their mating types were determined 
previously based on gamete sizes53–55. �e strains are maintained in the culture collection of Nagasaki University 
(Nagasaki, Japan).

Culture conditions. Laboratory cultivation and induction of gametogenesis were performed as described pre-
viously23,56. Brie�y, thalloid gametophytes were grown at 16 °C under 150 µmol photons m−2 s−1 light under a 
10 h:14 h light (L):dark (D) cycle in arti�cial seawater for 28 days. �en, 2 days a�er the induction of gametogen-
esis by rinsing several times and transferring to long-day conditions at 23 °C under 150 µmol photons m−2 s−1 
light under a 14 h:10 h L:D cycle in seawater, migrating gametes were released from the gametophytes. Positive 
phototaxis was used to collect the gametes. �is alga was cultured with symbiotic bacteria because inappropriate 
development occurs in the absence of symbiotic bacteria.

Genome and RNA-sequencing. DNA isolation. To remove bacterial DNA contamination prior to 
genome sequencing, gametic cells were gathered by illumination using a natural white �uorescent light that 
induced positive phototaxis. Gametes of both mating types with a fresh weight (FW) of approximately 1.5 g were 
collected. �e collected gametic cells were frozen in liquid nitrogen, ground, and subjected to genomic DNA 
isolation using a Plant Maxi Kit (QIAGEN, Venlo, �e Netherlands).

RNA extraction. Gametic cells were collected by the same method as used to gather cells for RNA isolation. 
Gametophytic thalli were collected at 0, 24, and 48 h a�er the induction of gametogenesis, and three replicates 
of each mating type were included. Total RNA was extracted from 50 mg of gametic cells and gametophyte thalli 
using an RNeasy Plant Mini Kit (QIAGEN) according to the manufacturer’s protocol. Contaminating DNA was 
removed using RNase-Free DNase I (QIAGEN).

DNA and RNA-sequencing. Genomic sequences of U. partita MGEC-1 and MGEC-2 were determined using 
PacBio single-molecule real-time sequencing (long reads) and Illumina MiSeq for paired-end (PE) short reads. 
Brie�y, for PacBio sequencing, a library was constructed using the PacBio DNA Template Prep Kit 2.0 (Paci�c 
Biosciences, CA, USA) according to the manufacturer’s protocol. For Illumina sequencing, a library was con-
structed using the TruSeq- DNA LT Sample Prep Kit (Illumina, CA, USA). �e PacBio sequencing and selection 
of reads of more than 500 bp provided 1.7 M reads of 12.0 Gb and 2.7 M reads of 16.6 Gb from the mt− and mt+ 
genomes, respectively. �e average lengths of mt− and mt+ PacBio reads were 7182 and 6136 bp, respectively. 
�e Illumina sequencing generated 271 M reads of 100 bp (totaling 27.1 Gb) and 252 M reads of 100 bp (totaling 
25.2 Gb) from the mt− and mt+ genomes, respectively. Sequences in the obtained long reads were corrected by 
mapping the short reads and comparing individual sites, and the corrected long reads were assembled into scaf-
folds using HGAP3 so�ware (Paci�c Biosciences, CA, USA). Finally, BLASTN analysis was performed using 
the sca�olds as query sequences against the RefSeq microbial genome database (http://www.ncbi.nlm.nih.gov/
refseq/) with a threshold e-value of 1 × 10−30 to exclude contaminating sequences from the symbiotic bacteria. 
For mt− and mt+ genomes, the �nal numbers of sca�olds a�er removing bacterial genome contamination were 
851 and 1385, and the total lengths of sca�olds were 110.2 and 116.7 Mb. �ese sequences were used for later 
analyses. A�er assembly, the Illumina short reads were mapped onto the assembled sequences of both mating 
types. �e proportions of properly paired reads were 99.8% and 99.5%, respectively. In addition, the proportions 
for mt− sca�old 632 and mt+ sca�olds 4 and 898 were 99.2%, 99.1%, and 99.4%, respectively.

For RNA-seq, the purification of mRNA from total RNA and construction of a cDNA library from the 
puri�ed mRNA were performed using TruSeq RNA Sample Preparation (ver. 2; Illumina). �e cDNA library 
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was sequenced using an Illumina HiSeq 2500 instrument. A summary of the reads obtained is shown in 
Supplementary Table 1.

Identi�cation of mating type-speci�c long genomic sequence reads. �e long reads and the sca�olds were used 
to identify mating type-speci�c genomic regions. First, the corrected long reads from mt− were mapped to the 
sca�olds from mt+ by BLAST search57 using the criteria of nucleotide sequences >3 kb matched with 97% identity 
and a gap length of less than 100 bp, and then the unmapped long reads were obtained. For the individual mating 
types, RNA-seq data derived from the gametes and the gametophytes before gametogenesis were assembled into 
isotigs using Newbler (Roche Applied Science, Penzberg, Germany) with default parameters, and these isotigs 
were used as gene models. �e isotigs of a mating type were mapped on the sca�olds of the same mating type. �e 
mt− unmapped long reads on the above mt+ long sca�olds were used as query sequences against a database gen-
erated from the mt− sca�olds using BLASTN, and a pool of long reads with e-values of >1 × 10−100 was selected. 
From the selected long reads, MTS reads were de�ned using the following criteria: 1) identity with a region over-
lapping the read was less than 80%, 2) the read contained the gene model(s), and 3) length >1 kb. An equivalent 
analysis of the mt+ long reads was also performed. Finally, 241 and 320 sites were identi�ed for mt− and mt+, 
respectively. A summary of the MTS reads is shown in Supplementary Table 2.

Identi�cation of MTS genomic sca�olds. To identify genomic regions in which successively mapped MTS reads 
were present, “moving sums” were calculated. �e length of a read among the MTS reads on a sca�old and lengths 
of n − 1 reads toward the 3′ end from the �rst read were summed (l, vertical axis in Supplementary Fig. 3) and 
de�ned as the “moving sum” unit. From a read at the 5′ end of a sca�old to its 3′ end, the same calculations of 
moving sums were performed. In addition, the distance between the position at the 5′ end of the �rst read of a 
moving sum and the position at the 3′ end of its last read, which were n reads, was calculated (L, horizontal axis 
in Supplementary Fig. 3). All moving sums for n = 5, 10, and 15 were calculated. �e l/L ratio was used as an 
index of the extent to which the MTS reads were successive on a sca�old that is part of the U. partita genome. 
If the moving sum is completely successive, the ratio will be >1. MTSs that met the following criteria were sub-
jected to further analysis: (1) l/L was >0.1, (2) l was >50 kb in n = 15, and (3) L was >1 Mb. Sca�old 632 from 
mt− and Sca�old 4 and Sca�old 898 from mt+ were identi�ed as containing highly successive MTS reads (HMTS 
sca�olds).

Comparison of MTS genomic sca�olds from mt− and mt+ genomes. �e data from short reads, MTS reads, 
Cu�inks gene models (not the same as the models from isotigs: see RNA-seq analysis for the generation of 
these gene models), and RNA-seq reads from gametes and gametophytes were mapped onto the sca�olds and 
visualized using the GBrowse genome browser58. �e HMTS sca�olds were used as query sequences against the 
database for the opposite mating type using LAST (long-sequence alignment so�ware) with default parameters59, 
and their counterpart sca�olds were identi�ed. �is process was performed reciprocally, and three sca�olds for 
mt− (#632, #629, and #1214) and four sca�olds for mt+ (#4, #898, #462, and #469) were identi�ed. �ese sca�olds 
were aligned and visualized as a dot plot using a script in the LAST so�ware with default parameters. Finally, the 
mt− and mt+ HMTS sca�olds were estimated as complementary sca�olds, and the sums of the HMTS sca�olds 
and adjacent sca�olds for mt− and mt+ were 7.19 and 7.33 Mb, respectively.

Comparison and visualization of the MT locus. �e regions containing HMTS reads were ~1.0 and ~1.5 Mb, 
respectively. RNA-seq data of gametes and gametophytes in the individual mating types were merged and assem-
bled using Newbler, and CDSs were generated automatically. �ese isotigs, were mapped on the genomic assem-
blies of both mating types, and genes contained in these regions were identi�ed from the isotig gene models. 
In total, 84 and 95 genes with splicing variants were identi�ed for mt− and mt+, respectively (Supplementary 
Tables 3 and 4). Clustering analyses using the DNACLUST package60 were performed for the genes in the HMTS 
genomic regions in mt− and mt+; a�er manual correction of the clusters, they were classi�ed into 46 and 67 clus-
ters that were de�ned as splicing variants transcribed from individual loci. �ese genes were compared by using 
reciprocal BLASTX analyses61 with e-values of >1 × 10−3, and 23 were identi�ed as gametologs (Supplementary 
Table 5). Representative genes were selected and their positional data in the sca�olds were visualized using the 
ggplot2 (1.0.0) and ggbio (1.14.0)62 packages in R (3.1.3). �e resulting data were modi�ed using drawing so�-
ware. �e identi�ed regions in the mt− and mt+ sca�olds were termed the MT loci. �e nucleotide sequences of 
the MT loci were submitted to the DNA Data Bank of Japan (DDBJ; accession numbers: LC091542 for the mt+ 
MT locus; and LC091540 and LC091540 for mt− MT loci in sca�olds 4 and 898, respectively). �e nucleotide 
sequences of the MT locus genes for RNA-seq analysis were submitted to DDBJ, and the accession numbers are 
shown in Supplementary Tables 3 and 4.

Segregation analysis. From MGEC-5 (mt−) and MGEC-2 (mt−) gametophytes, gametes were induced and 
mixed. �en, mated zygotes were gathered together by negative phototaxis. A�er cultivation for 3 weeks, some 
sporophytes were transferred to MGEC-5 or MGEC-2 culture �asks, from which zoospores were induced by 
the same method as for the gametogenesis. Microscopy was used to determine whether the zoospores had four 
�agella, which are di�erent from gametes with two �agella. Zoospores that showed exactly four �agella were cul-
tured in 1-L �asks for 3 weeks. Approximately 100 small gametophytes of MGEC-5/MGEC-2 progeny were trans-
ferred into respective 1-L �asks and cultured for 3 weeks. Before checking the mating types, small pieces of thalli 
were collected, frozen in liquid nitrogen and stored at −80 °C until the extraction of genomic DNA. Gametes were 
induced from approximately 50 healthily developed gametophytes. MGEC-2 (mt−) and MGEC-1 (mt+) were used 
as testers. A�er mixing the gametes of MGEC-5/MGEC-2 progeny with mt− or mt+ testers, mating was checked 
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by negative phototaxis and the observation of zygotes. Finally, the mating types of a total of 16 MGEC-5/MGEC-2 
progeny were determined.

Identification of repeats. To identify repetitive sequences, we used RepeatMasker (ver. 4.05) and RepBase 
(20140131) with RepeatMasker in polymorphism mode (Open-4.0. 2013–2015, http://www.repeatmasker.org). 
From all mt− genome assemblies, in total, 92 kb of repeats containing 1,126 transposable elements, 223 small 
RNAs, and one satellite were identi�ed. For all mt+ genome assemblies, in total, 106 kb of repeats containing 
1,147 transposable elements, 173 small RNAs, and one simple repeat were identi�ed. �e data of the mt− sca�olds 
(#632, #629, and #1214) and the mt+ sca�olds (#4, #898, #462, and #469) were extracted and visualized using R/
ggbio.

Molecular evolution analysis. Phylogenetic analysis. To construct phylogenetic trees, an MT locus 
gene (PRA1) and a gene (GTBP1) in the �anking region of the MT locus (homologous genes) were isolated 
from Ulva spp. (Supplementary Table 7). �e CDS regions of the two genes from the examined species were 
amplified using degenerate primers (mt− PRA1m/mt+ PRA1f, 5′-TTCATTGCYGTTCAAGCTACWAC-3′ 
and 5′-AACAAGCTCWCCRTCTTTCTCCCA-3′; G-strand telomere-binding protein 1 (GTBP1), 
5′-TGGCGCACATCATGGCAAGATT-3′ and 5′-CAGCCCCACTGATCGAGCTTCAC-3′). �e PCR program 
for PRA1 and GTBP1 consisted of one initial denaturation step for 2 min at 94 °C, followed by 45 cycles of dena-
turation for 30 s at 94 °C, annealing for 30 s at 50 °C, and extension for 40 s at 68 °C. Sequences were aligned using 
Muscle in MEGA663. Model tests for each analysis were performed using KAKUSAN 4.064. �e best �t models 
for maximum-likelihood analysis were GTR + G for mt− PRA1m/mt+ PRA1p and J2 + G for GTBP1, based on 
the Akaike information criterion (AIC). Phylogenetic analyses were performed using the maximum-likelihood 
method in TREEFINDER65. Bootstrap values66 were obtained from analyses of 100 pseudoreplicates. �e nucle-
otide sequences of the genes homologous to mt− PRA1m/mt+ PRA1p and GTBP1 were submitted to DDBJ, and 
the accession numbers are shown in Supplementary Table 7.

Using the C. reinhardtii RWP-RK domain-containing proteins de�ned by Chardin et al.45 as queries, RWP-RK 
domain-containing proteins were retrieved by BLAST analysis from data sets in Phytozome 11 (http://phyto-
zome.jgi.doe.gov/pz/portal.html) for C. reinhardtii (ver. 5.5), Volvox carteri (ver. 2.1), Coccomyxa subellipsoidea 
(ver. 2.0), and Micromonas pusilla (ver. 3.0), and from NCBI for Gonium pectorale38. MIDs for Chlamydomonas 
and Volvox were retrieved from NCBI9,13. U. partita autosomal genes encoding an RWP-RK domain-containing 
protein were identi�ed with BLASTX using all Chlamydomonas RWP-RP domain-containing proteins as que-
ries, similar to the description above, against the RNA-seq assembly database. �e resulting data set served as 
input for a conserved motif analysis performed using MEME (http://meme.sdsc.edu/meme/meme.html), and 
five conserved motifs were identified. The five motifs were combined and used for molecular phylogenetic 
analyses. Phylogenetic analyses were performed using the maximum-likelihood method in MEGA6. Model 
tests for the analysis were also performed using MEGA6. �e best-�t model, based on AIC, for the RWP-RK 
domain-containing proteins was JTT + G. Bootstrap values were obtained from analyses of 100 pseudoreplicates.

Calculation of synonymous and non-synonymous substitution rates. From mRNA assembly data, CDSs of game-
tologs were extracted, and the deduced amino acid sequences were checked manually with BLAST analyses. 
If the amino acid sequences were not similar between gametologs, the full-length assembly sequences were 
analyzed with ORF �nder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and an appropriate frame was identi-
�ed. A�er manual checking, two gametologs were found to contain no CDSs that could form pairs with their 
counterparts. Pairs of CDSs for the individual gametologs were aligned using the ParaAT package67, and the 
alignments obtained were used to calculate the synonymous and non-synonymous substitution rates using the 
maximum-likelihood and approximation methods with nucleotide substitution models in the KaKs_Calculator 
2.0 package68,69. For comparison with the substitution rate in U. partita, CDSs of gametologs in C. reinhardtii and 
V. carteri9,13 were obtained from the NCBI database (Supplementary Table 8). �e data were plotted using ggplot2 
for R.

Calculation of codon usage. CDSs of all mRNAs of mt− and mt+ were extracted using a custom-made Perl script, 
and codons in individual CDSs were counted using the cusp command of EMBOSS (ver. 6.6.0.0). �e results 
were merged using a custom-made Python script. From these data, the MT locus genes and autosomal genes 
were separated, and Pearson’s product-moment correlations and p-values for the sums of individual codons of all 
autosomal genes and the MT locus genes were determined using the R default “cor” command. �e correlation 
between all autosomal mt− and mt+ genes was 0.98 (p = 2.2 × 10−16).

Ampli�cation of MT locus genes. DNA was extracted from six U. partita strains using the CicaGeneus DNA 
Extraction Reagent DNA kit (Kanto Chemical, Tokyo, Japan). �e mating types are given in Supplementary 
Table 7. To amplify DNA fragments of individual genes, the Kapa Taq PCR kit (Kapa Biosystems) was used in 
accordance with the manufacturer’s protocol. �e PCR program for the ampli�cation of each gene consisted of 
an initial denaturation step of 3 min at 95 °C, followed by 45 cycles of denaturation for 15 s at 95 °C, annealing for 
15 s at 60 °C, and extension for 90 s at 72 °C. Primer sets are shown in Supplementary Table 15. �e ampli�ed DNA 
fragments were separated by electrophoresis and visualized by ethidium bromide staining.

RNA-seq analysis. Triplicate RNA-seq data from gametophytes, gametophytes a�er the induction of gametogen-
esis (24 and 48 h), and gametes from mt− and mt+ were obtained using an Illumina HiSeq. 2500. To compare the 
transcripts from the mt− and mt+ strains, the gamete and gametophyte data were merged and mapped on the 
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mt− sca�olds and gene models (Cu�inks gene models) generated using a TopHat-Cu�inks pipeline, TopHat2 
(2.0.12)/Bowtie2 (2.2.3)/Cu�inks (2.2.1)70–72. To compare gene expression at the MT locus during gametogen-
esis between the two mating types, mRNA gene models were used for the analysis using Cu�merge from the 
Cu�inks results of individual genes of fragments per kilobase of exon per million fragments of mapped reads 
(FPKM) values, and the data were aggregated. �e sum of FPKM values of all splicing variants at a locus was used 
to compare gametolog expression between the two mating types. Mean FPKM values were normalized relative to 
the maximum values, and clustering analysis was performed by the k-means method. One-way ANOVA and the 
Wilcoxon rank-sum test were performed for the expression data of each MT locus gene during gametogenesis. 
All statistical analyses were performed using R.

References
 1. Bachtrog, D. et al. Are all sex chromosomes created equal? Trends Genet 27, 350–357, doi:https://doi.org/10.1016/j.tig.2011.05.005 

(2011).
 2. Charlesworth, B. �e evolution of sex-chromosomes. Science 251, 1030–1033, doi:https://doi.org/10.1126/science.1998119 (1991).
 3. Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118–128, 

doi:https://doi.org/10.1038/sj.hdy.6800697 (2005).
 4. Fraser, J. A. & Heitman, J. Evolution of fungal sex chromosomes. Molecular Microbiology 51, 299–306, doi:https://doi.org/10.1046/

j.1365-2958.2003.03874.x (2004).
 5. Charlesworth, D. Plant sex chromosome evolution. Journal of Experimental Botany 64, 405–420, doi:https://doi.org/10.1093/jxb/

ers322 (2013).
 6. Crowson, D., Barrett, S. C. H. & Wright, S. I. Purifying and positive selection in�uence patterns of gene loss and gene expression in 

the evolution of a plant sex chromosome system. Mol Biol Evol 34, 1140–1154, doi:https://doi.org/10.1093/molbev/msx064 (2017).
 7. Mable, B. K. & Otto, S. P. �e evolution of life cycles with haploid and diploid phases. Bioessays 20, 453–462, doi:https://doi.

org/10.1002/(sici)1521-1878(199806)20:6<453::aid-bies3>3.0.co;2-n (1998).
 8. Immler, S. & Otto, S. P. �e evolution of sex chromosomes in organisms with separate haploid sexes. Evolution 69, 694–708, 

doi:https://doi.org/10.1111/evo.12602 (2015).
 9. Ferris, P. et al. Evolution of an expanded sex-determining locus in Volvox. Science 328, 351–354, doi:https://doi.org/10.1126/

science.1186222 (2010).
 10. Hamaji, T. et al. Sequence of the gonium pectorale mating locus reveals a complex and dynamic history of changes in volvocine algal 

mating haplotypes. G3-Genes Genom Genet 6, 1179–1189, doi:https://doi.org/10.1534/g3.115.026229 (2016).
 11. Yamato, K. T. et al. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid 

system. Proceedings of the National Academy of Sciences of the United States of America 104, 6472–6477, doi:https://doi.org/10.1073/
pnas.0609054104 (2007).

 12. Herron, M. D., Hackett, J. D., Aylward, F. O. & Michod, R. E. Triassic origin and early radiation of multicellular volvocine algae. 
Proceedings of the National Academy of Sciences of the United States of America 106, 3254–3258, doi:https://doi.org/10.1073/
pnas.0811205106 (2009).

 13. De Ho�, P. L. et al. Species and population level molecular pro�ling reveals cryptic recombination and emergent asymmetry in the 
dimorphic mating locus of C. reinhardtii. Plos Genetics 9, doi:https://doi.org/10.1371/journal.pgen.1003724 (2013).

 14. Nakayama, S., Fujishita, M., Sone, T. & Ohyama, K. Additional locus of rDNA sequence speci�c to the X chromosome of the 
liverwort. Marchantia polymorpha. Chromosome Res 9, 469–473, doi:https://doi.org/10.1023/a:1011676328165 (2001).

 15. Okada, S. et al. �e Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a 
male-speci�c gene. Proceedings of the National Academy of Sciences of the United States of America 98, 9454–9459, doi:https://doi.
org/10.1073/pnas.171304798 (2001).

 16. McDaniel, S. F., Neubig, K. M., Payton, A. C., Quatrano, R. S. & Cove, D. J. Recent gene-capture on the UV sex chromosomes of the 
moss Ceratodon purpureus. Evolution 67, 2811–2822, doi:https://doi.org/10.1111/evo.12165 (2013).

 17. Ahmed, S. et al. A haploid system of sex determination in the brown alga Ectocarpus sp. Current Biology 24, 1945–1957 (2014).
 18. Badouin, H. et al. Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-

dioicae. Genetics 200, 1275–+, doi:https://doi.org/10.1534/genetics.115.177709 (2015).
 19. Ellison, C. E. et al. Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the Filamentous Fungus 

Neurospora tetrasperma. Genetics 189, 55–U652, doi:https://doi.org/10.1534/genetics.111.130690 (2011).
 20. Menkis, A., Jacobson, D. J., Gustafsson, T. & Johannesson, H. The mating-type chromosome in the filamentous ascomycete 

Neurospora tetrasperma represents a model for early evolution of sex chromosomes. Plos Genetics 4, doi:https://doi.org/10.1371/
journal.pgen.1000030 (2008).

 21. Hayden, H. S. & Waaland, J. R. Phylogenetic systematics of the Ulvaceae (Ulvales, Ulvophyceae) using chloroplast and nuclear DNA 
sequences. Journal of Phycology 38, 1200–1212, doi:https://doi.org/10.1046/j.1529-8817.2002.01167.x (2002).

 22. Wichard, T. et al. �e green seaweed Ulva: a model system to study morphogenesis. Front Plant Sci 6, doi:ARTN 72 https://doi.
org/10.3389/fpls.2015.00072 (2015).

 23. Kagami, Y. et al. DNA content of Ulva compressa (Ulvales, Chlorophyta) nuclei determined with laser scanning cytometry. 
Phycological Research 53, 77–83, doi:https://doi.org/10.1111/j.1440-1835.2005.tb00359.x (2005).

 24. Kagami, Y. et al. Sexuality and uniparental inheritance of chloroplast DNA in the isogamous green alga Ulva compressa 
(Ulvophyceae). Journal of Phycology 44, 691–702, doi:https://doi.org/10.1111/j.1529-8817.2008.00527.x (2008).

 25. Mogi, Y. et al. Asymmetry of eyespot and mating structure positions in Ulva compressa (Ulvales, Chlorophyta) revealed by a new 
field emission scanning electron microscopy method. Journal of Phycology  44 ,  1290–1299, doi:https://doi.
org/10.1111/j.1529-8817.2008.00573.x (2008).

 26. Holmes, J. A. & Dutcher, S. K. Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94, 273–285 (1989).
 27. Hiraoka, M. & Yoshida, G. Temporal variation in isomorphic phase and sex ratios of a natural population of Ulva pertusa 

(Chlorophyta). Journal of Phycology 46, 882–888, doi:https://doi.org/10.1111/j.1529-8817.2010.00873.x (2010).
 28. Leliaert, F. et al. Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31, 1–46, doi:https://doi.org/10.1080/073

52689.2011.615705 (2012).
 29. Ferris, P. J. & Goodenough, U. W. Mating type in Chlamydomonas is speci�ed by mid, the minus-dominance gene. Genetics 146, 

859–869 (1997).
 30. Lin, H. & Goodenough, U. W. Gametogenesis in the Chlamydomonas reinhardtii minus mating type is controlled by two genes, MID 

and MTD1. Genetics 176, 913–925, doi:https://doi.org/10.1534/genetics.106.066167 (2007).
 31. Geng, S., De Ho�, P. & Umen, J. G. Evolution of Sexes from an Ancestral Mating-Type Speci�cation Pathway. Plos Biology 12, 

doi:https://doi.org/10.1371/journal.pbio.1001904 (2014).
 32. Kejnovsky, E., Hobza, R., Cermak, T., Kubat, Z. & Vyskot, B. The role of repetitive DNA in structure and evolution of sex 

chromosomes in plants. Heredity 102, 533–541, doi:https://doi.org/10.1038/hdy.2009.17 (2009).
 33. Bachtrog, D. Adaptation shapes patterns of genome evolution on sexual and asexual chromosomes in Drosophila. Nat Genet 34, 

215–219, doi:https://doi.org/10.1038/ng1164 (2003).

http://dx.doi.org/10.1016/j.tig.2011.05.005
http://dx.doi.org/10.1126/science.1998119
http://dx.doi.org/10.1038/sj.hdy.6800697
http://dx.doi.org/10.1046/j.1365-2958.2003.03874.x
http://dx.doi.org/10.1046/j.1365-2958.2003.03874.x
http://dx.doi.org/10.1093/jxb/ers322
http://dx.doi.org/10.1093/jxb/ers322
http://dx.doi.org/10.1093/molbev/msx064
http://dx.doi.org/10.1002/(sici)1521-1878
http://dx.doi.org/10.1002/(sici)1521-1878
http://dx.doi.org/10.1111/evo.12602
http://dx.doi.org/10.1126/science.1186222
http://dx.doi.org/10.1126/science.1186222
http://dx.doi.org/10.1534/g3.115.026229
http://dx.doi.org/10.1073/pnas.0609054104
http://dx.doi.org/10.1073/pnas.0609054104
http://dx.doi.org/10.1073/pnas.0811205106
http://dx.doi.org/10.1073/pnas.0811205106
http://dx.doi.org/10.1371/journal.pgen.1003724
http://dx.doi.org/10.1023/a:1011676328165
http://dx.doi.org/10.1073/pnas.171304798
http://dx.doi.org/10.1073/pnas.171304798
http://dx.doi.org/10.1111/evo.12165
http://dx.doi.org/10.1534/genetics.115.177709
http://dx.doi.org/10.1534/genetics.111.130690
http://dx.doi.org/10.1371/journal.pgen.1000030
http://dx.doi.org/10.1371/journal.pgen.1000030
http://dx.doi.org/10.1046/j.1529-8817.2002.01167.x
http://dx.doi.org/10.3389/fpls.2015.00072
http://dx.doi.org/10.3389/fpls.2015.00072
http://dx.doi.org/10.1111/j.1440-1835.2005.tb00359.x
http://dx.doi.org/10.1111/j.1529-8817.2008.00527.x
http://dx.doi.org/10.1111/j.1529-8817.2008.00573.x
http://dx.doi.org/10.1111/j.1529-8817.2008.00573.x
http://dx.doi.org/10.1111/j.1529-8817.2010.00873.x
http://dx.doi.org/10.1080/07352689.2011.615705
http://dx.doi.org/10.1080/07352689.2011.615705
http://dx.doi.org/10.1534/genetics.106.066167
http://dx.doi.org/10.1371/journal.pbio.1001904
http://dx.doi.org/10.1038/hdy.2009.17
http://dx.doi.org/10.1038/ng1164


www.nature.com/scientificreports/

1 6Scientific RepoRts | 7: 11679  | DOI:10.1038/s41598-017-11677-0

 34. Bartolome, C. & Charlesworth, B. Rates and patterns of chromosomal evolution in Drosophila pseudoobscura and D. miranda. 
Genetics 173, 779–791, doi:https://doi.org/10.1534/genetics.105.054585 (2006).

 35. de Lomana, A. L. G. et al. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas 
reinhardtii. Biotechnol. Biofuels 8, 18, doi:https://doi.org/10.1186/s13068-015-0391-z (2015).

 36. Camargo, A. et al. Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19, 3491–3503, doi:https://doi.
org/10.1105/tpc.106.045922 (2007).

 37. Yamazaki, T. et al. HAP2/GCS1 is involved in the sexual reproduction system of the marine macroalga Ulva compressa (Ulvales, 
Chlorophyta). Cytologia 79, 575–584, doi:https://doi.org/10.1508/cytologia.79.575 (2014).

 38. Hanschen, E. R. et al. �e Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of 
multicellularity. Nature Communications 7, 11370–11370 (2016).

 39. Giraud, T., Yockteng, R., Lopez-Villavicencio, M., Refregier, G. & Hood, M. E. Mating system of the anther smut fungus 
Microbotryum violaceum: Sel�ng under heterothallism. Eukaryotic Cell 7, 765–775, doi:https://doi.org/10.1128/ec.00440-07 (2008).

 40. Antonovics, J. & Abrams, J. Y. Intratetrad mating and the evolution of linkage relationships. Evolution 58, 702–709 (2004).
 41. Johnson, L. J., Antonovics, J. & Hood, M. E. �e evolution of intratetrad mating rates. Evolution 59, 2525–2532 (2005).
 42. Ebersold, W. T. Chlamydomonas reinhardi - heterozygous diploid strains. Science 157, 447–&, doi:https://doi.org/10.1126/

science.157.3787.447 (1967).
 43. Gojobori, T. Codon substitution in Evolution and the saturation of synonymous changes. Genetics 105, 1011–1027 (1983).
 44. Hamaji, T., Ferris, P. J., Nishii, I., Nishimura, Y. & Nozaki, H. Distribution of the sex-determining gene MID and molecular 

correspondence of mating types within the isogamous genus gonium (Volvocales, Chlorophyta). Plos One 8, doi:https://doi.
org/10.1371/journal.pone.0064385 (2013).

 45. Chardin, C., Girin, T., Roudier, F., Meyer, C. & Krapp, A. �e plant RWP-RK transcription factors: key regulators of nitrogen 
responses and of gametophyte development. Journal of Experimental Botany 65, 5577–5587, doi:https://doi.org/10.1093/jxb/eru261 
(2014).

 46. Jeong, S., Palmer, T. M. & Lukowitz, W. �e RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP 
kinase signaling. Current Biology 21, 1268–1276, doi:https://doi.org/10.1016/j.cub.2011.06.049 (2011).

 47. Koszegi, D. et al. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant Journal 67, 
280–291, doi:https://doi.org/10.1111/j.1365-313X.2011.04592.x (2011).

 48. Waki, T., Hiki, T., Watanabe, R., Hashimoto, T. & Nakajima, K. �e arabidopsis RWP-RK protein RKD4 triggers gene expression and 
pattern formation in early embryogenesis. Current Biology 21, 1277–1281, doi:https://doi.org/10.1016/j.cub.2011.07.001 (2011).

 49. Wuest, S. E. et al. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. 
Current Biology 20, 506–512, doi:https://doi.org/10.1016/j.cub.2010.01.051 (2010).

 50. Oertel, W., Wichard, T. & Weissgerber, A. transformation of Ulva mutabilis (Chlorophyta) by vector plasmids integrating into the 
genome. Journal of Phycology 51, 963–979, doi:https://doi.org/10.1111/jpy.12336 (2015).

 51. Suzuki, R., Yamazakil, T., Toyoda, A. & Kawano, S. A transformation system using rbcS N-terminal region fused with GFP 
demonstrates pyrenoid targeting of the small subunit of RubisCO in Ulva compressa. Cytologia 79, 427–427, doi:https://doi.
org/10.1508/cytologia.79.427 (2014).

 52. Ichihara, K. et al. Ulva partita sp nov., a Novel enteromorpha-like Ulva species from Japanese coastal areas. Cytologia 80, 261–270, 
doi:https://doi.org/10.1508/cytologia.80.261 (2015).

 53. Hiraoka, M. et al. Di�erent life histories of Enteromorpha prolifera (Ulvales, Chlorophyta) from four rivers on Shikoku Island, 
Japan. Phycologia 42, 275–284, doi:https://doi.org/10.2216/i0031-8884-42-3-275.1 (2003).

 54. Shimada, S., Hiraoka, M., Nabata, S., Iima, M. & Masuda, M. Molecular phylogenetic analyses of the Japanese Ulva and 
Enteromorpha (Ulvales, Ulvophyceae), with special reference to the free-�oating Ulva. Phycological Research 51, 99–108, doi:https://
doi.org/10.1111/j.1440-1835.2003.tb00176.x (2003).

 55. Shimada, S., Yokoyama, N., Arai, S. & Hiraoka, M. Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special 
reference to the Japanese freshwater and brackish taxa. Journal of Applied Phycology 20, 979–989, doi:https://doi.org/10.1007/
s10811-007-9296-y (2008).

 56. Kuwano, K., Hashioka, T., Nishihara, G. N. & Iima, M. Durations of gamete motility and conjugation ability of Ulva compressa 
(Ulvophyceae). Journal of Phycology 48, 394–400, doi:https://doi.org/10.1111/j.1529-8817.2011.01110.x (2012).

 57. Kent, W. J. BLAT - �e BLAST-like alignment tool. Genome Res 12, 656–664, doi:https://doi.org/10.1101/Gr.229202 (2002).
 58. Donlin, M. J. Using the generic genome browser (GBrowse). Current Protocols in Bioinformatics, 9.9. 1–9.9. 25 (2009).
 59. Frith, M. C., Hamada, M. & Horton, P. Parameters for accurate genome alignment. Bmc Bioinformatics 11, doi:https://doi.

org/10.1186/1471-2105-11-80 (2010).
 60. Ghodsi, M., Liu, B. & Pop, M. DNACLUST: accurate and e�cient clustering of phylogenetic marker genes. Bmc Bioinformatics 12, 

doi:https://doi.org/10.1186/1471-2105-12-271 (2011).
 61. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 

403–410, doi:https://doi.org/10.1006/jmbi.1990.9999 (1990).
 62. Yin, T., Cook, D. & Lawrence, M. ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biology 13 

(2012).
 63. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. 

Molecular Biology and Evolution 30, 2725–2729, doi:https://doi.org/10.1093/molbev/mst197 (2013).
 64. Tanabe, A. S. KAKUSAN: a computer program to automate the selection of a nucleotide substitution model and the con�guration 

of a mixed model on multilocus data. Molecular Ecology Notes 7, 962–964, doi:https://doi.org/10.1111/j.1471-8286.2007.01807.x 
(2007).

 65. Jobb, G., von Haeseler, A. & Strimmer, K. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics 
(Retraction of vol 4, 18, 2004). Bmc Evol Biol 15, doi:https://doi.org/10.1186/s12862-015-0513-z (2015).

 66. Felsenstein, J. Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39, 783–791, doi:https://doi.
org/10.2307/2408678 (1985).

 67. Zhang, Z. et al. ParaAT: A parallel tool for constructing multiple protein-coding DNA alignments. Biochemical and Biophysical 
Research Communications 419, 779–781, doi:https://doi.org/10.1016/j.bbrc.2012.02.101 (2012).

 68. Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding 
window strategies. Genomics Proteomics & Bioinformatics 8, 77–80, doi:https://doi.org/10.1016/s1672-0229(10)60008-3 (2010).

 69. Zhang, Z. et al. KaKs_calculator: Calculating Ka and Ks through model selection and model averaging. Genomics Proteomics & 
Bioinformatics 4, 259–263, doi:https://doi.org/10.1016/s1672-0229(07)60007-2 (2006).

 70. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome 
Biology 14, doi:https://doi.org/10.1186/gb-2013-14-4-r36 (2013).

 71. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–U354, doi:https://doi.org/10.1038/
nmeth.1923 (2012).

 72. Trapnell, C. et al. Di�erential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cu�inks. Nature 
Protocols 7, 562–578, doi:https://doi.org/10.1038/nprot.2012.016 (2012).

http://dx.doi.org/10.1534/genetics.105.054585
http://dx.doi.org/10.1186/s13068-015-0391-z
http://dx.doi.org/10.1105/tpc.106.045922
http://dx.doi.org/10.1105/tpc.106.045922
http://dx.doi.org/10.1508/cytologia.79.575
http://dx.doi.org/10.1128/ec.00440-07
http://dx.doi.org/10.1126/science.157.3787.447
http://dx.doi.org/10.1126/science.157.3787.447
http://dx.doi.org/10.1371/journal.pone.0064385
http://dx.doi.org/10.1371/journal.pone.0064385
http://dx.doi.org/10.1093/jxb/eru261
http://dx.doi.org/10.1016/j.cub.2011.06.049
http://dx.doi.org/10.1111/j.1365-313X.2011.04592.x
http://dx.doi.org/10.1016/j.cub.2011.07.001
http://dx.doi.org/10.1016/j.cub.2010.01.051
http://dx.doi.org/10.1111/jpy.12336
http://dx.doi.org/10.1508/cytologia.79.427
http://dx.doi.org/10.1508/cytologia.79.427
http://dx.doi.org/10.1508/cytologia.80.261
http://dx.doi.org/10.2216/i0031-8884-42-3-275.1
http://dx.doi.org/10.1111/j.1440-1835.2003.tb00176.x
http://dx.doi.org/10.1111/j.1440-1835.2003.tb00176.x
http://dx.doi.org/10.1007/s10811-007-9296-y
http://dx.doi.org/10.1007/s10811-007-9296-y
http://dx.doi.org/10.1111/j.1529-8817.2011.01110.x
http://dx.doi.org/10.1101/Gr.229202
http://dx.doi.org/10.1186/1471-2105-11-80
http://dx.doi.org/10.1186/1471-2105-11-80
http://dx.doi.org/10.1186/1471-2105-12-271
http://dx.doi.org/10.1006/jmbi.1990.9999
http://dx.doi.org/10.1093/molbev/mst197
http://dx.doi.org/10.1111/j.1471-8286.2007.01807.x
http://dx.doi.org/10.1186/s12862-015-0513-z
http://dx.doi.org/10.2307/2408678
http://dx.doi.org/10.2307/2408678
http://dx.doi.org/10.1016/j.bbrc.2012.02.101
http://dx.doi.org/10.1016/s1672-0229(10)60008-3
http://dx.doi.org/10.1016/s1672-0229(07)60007-2
http://dx.doi.org/10.1186/gb-2013-14-4-r36
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nprot.2012.016


www.nature.com/scientificreports/

17Scientific RepoRts | 7: 11679  | DOI:10.1038/s41598-017-11677-0

Acknowledgements
We thank Dr. Tsuyoshi Takeshita for the computer support; Mr. Mikiya Endo, Mr. Kan Ito, and Mr. Yasuo Shimizu 
for assistance with the experiments; Ms. Kiyomi Imamura and Ms. Terumi Horiuchi for the RNA-seq analysis; 
and all members of the Plant Life System Laboratory for their assistance with this research. We also thank Dr. 
Masanori Hiraoka of Kochi University for providing the Ulva strains. �is study was funded by JSPS KAKENHI 
(no. 25291070) and MEXT KAKENHI (no. 221S0002) to K.S.

Author Contributions
S.K. conceived the study, designed the research, and supervised the study. K.K., R.S., and K.I. maintained and 
cultured the strains. R.S. and K.I. prepared genomic DNA samples and R.S. prepared RNA samples. A.T., K.O., 
and M.H. sequenced genomic DNA and assembled the sequences. Y.S. and S.S. sequenced mRNA. A.T. and T.Y. 
analyzed the genome structures and transcriptome. R.S. performed the genetic analysis. T.Y. and K.I. performed 
the molecular evolution analysis. T.Y., R.S., and K.I. prepared the �gures and tables. T.Y. wrote the manuscript, 
and R.S., K.I., K.K., S.M., and S.K. assisted in writing the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-11677-0

Competing Interests: �e authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-11677-0
http://creativecommons.org/licenses/by/4.0/

	Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita
	Results
	Structure of the MT locus in the green seaweed Ulva partita. 
	Evolution of gametologs in the U. partita MT locus. 
	Motifs and molecular phylogeny of RWP-RK domain-containing proteins in the MT locus and autosomes. 
	Expression of MT locus genes in gametogenesis. 

	Discussion
	Comparison of the genomic structures of the Ulva partita MT locus with those of other organisms. 
	Evolution of the U. partita MT locus. 
	Evolutionary relationship between Chlamydomonas MID and an MT locus gene encoding an RWP-RK domain. 
	Degeneration of U. partita MT locus genes. 
	Expression of U. partita MT locus genes. 

	Materials and Methods
	Algal materials and culture conditions. 
	Algal strains. 
	Culture conditions. 

	Genome and RNA-sequencing. 
	DNA isolation. 
	RNA extraction. 
	DNA and RNA-sequencing. 
	Identification of mating type-specific long genomic sequence reads. 
	Identification of MTS genomic scaffolds. 
	Comparison of MTS genomic scaffolds from mt− and mt+ genomes. 
	Comparison and visualization of the MT locus. 
	Segregation analysis. 
	Identification of repeats. 

	Molecular evolution analysis. 
	Phylogenetic analysis. 
	Calculation of synonymous and non-synonymous substitution rates. 
	Calculation of codon usage. 
	Amplification of MT locus genes. 
	RNA-seq analysis. 


	Acknowledgements
	Figure 1 Life cycles and SDRs/mating type loci.
	Figure 2 Genomic structures of the mating type (MT) locus in the green seaweed Ulva partita.
	Figure 3 Evolution of the gametologs at the mating type (MT) locus.
	Figure 4 Conserved motifs and molecular phylogeny of U.
	Figure 5 Expression changes in the mating type (MT) locus during gametogenesis.


