

Open access • Posted Content • DOI:10.1101/2020.06.17.158006

Genomic surveillance of SARS-CoV-2 reveals community transmission of a major lineage during the early pandemic phase in Brazil — Source link \square

Paola Cristina Resende, Edson Delatorre, Tiago Gräf, Daiana Mir ...+19 more authors Institutions: Oswaldo Cruz Foundation, Universidade Federal do Espírito Santo, University of the Republic Published on: 18 Jun 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

- A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology.
- Evolution and epidemic spread of SARS-CoV-2 in Brazil.
- A new coronavirus associated with human respiratory disease in China.
- Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus.
- A pneumonia outbreak associated with a new coronavirus of probable bat origin

1	Genomic surveillance of SARS-CoV-2 reveals community transmission of a major lineage
2	during the early pandemic phase in Brazil
3	
4	Paola Cristina Resende ^{1a} , Edson Delatorre ² , Tiago Gräf ³ , Daiana Mir ⁴ , Fernando do Couto Motta ¹ ,
5	Luciana Reis Appolinario ¹ , Anna Carolina Dias da Paixão ¹ , Maria Ogrzewalska ¹ , Braulia
6	Caetano ¹ , Mirleide Cordeiro dos Santos ⁵ , Jessylene de Almeida Ferreira ⁵ , Edivaldo Costa Santos
7	Junior ⁵ , Sandro Patroca da Silva ⁵ , Sandra Bianchini Fernandes ⁶ , Lucas A Vianna ⁷ , Larissa da Costa
8	Souza ⁸ , Jean F G Ferro ⁹ , Vanessa B Nardy ¹⁰ , Júlio Croda ^{11,12} , Wanderson K Oliveira ¹³ , André
9	Abreu ¹⁴ , Gonzalo Bello ^{15a*} , Marilda M Siqueira ^{1*}
10	[*] Both authors contributed equally to this work.
11	
12	^a Correspondent authors
13	Paola Cristina Resende - paola@ioc.fiocruz.br
14	Gonzalo Bello - gbellobr@gmail.com
15	
16	Affiliation
17	¹ Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio
18	de Janeiro, Brazil. SARS-CoV-2 National Reference Laboratory for the Brazilian Ministry of
19	Health (MoH) and Regional Reference Laboratory in Americas for the Pan-American Health
20	Organization (PAHO/WHO).
21	² Departamento de Biologia. Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal
22	do Espirito Santo, Alegre, Brazil.
23	³ Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.
24	⁴ Unidad de Genomica y Bioinformatica, Centro Universitario Regional del Litoral Norte,
25	Universidad de la Republica, Salto, Uruguay.
26	⁵ Instituto Evandro Chagas, Belem, Para
27	⁶ Laboratorio Central de Saúde Publica do Estado de Santa Catarina (LACEN-SC), Florianopolis,
28	Santa Catarina, Brazil.
29	⁷ Laboratorio Central de Saude Publica do Estado Espirito Santo (LACEN-ES). Vitoria, Espirito
30	Santo, Brazil.
31	⁸ Laboratorio Central de Saude Publica do Distrito Federal (LACEN-DF). Brasilia, Distrito
32	Federal, Brazil.
33	⁹ Laboratorio Central de Saude Publica de Alagoas (LACEN-AL). Maceio, Alagoas, Brazil.

³⁴ ¹⁰Laboratorio Central de Saude Publica da Bahia (LACEN-BA). Salvador, Bahia, Brazil.

³⁵ ¹¹Fiocruz Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.

¹²Universidade Federal de Mato Grosso do Sul – UFMS, Campo Grande, MS, Brazil.

¹³Hospital das Forças Armadas, Ministério da Defesa, Brasília, Distrito Federal, Brazil.

¹⁴Coordenadoria Geral de Laboratórios – Ministério da Saúde, Brasilia, Distrito Federal, Brazil.

39 ¹⁵Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de

- 40 Janeiro, Brazil.
- 41

42 Abstract

43 Despite all efforts to control the COVID-19 spread, the SARS-CoV-2 reached South 44 America within three months after its first detection in China, and Brazil became one of the 45 hotspots of COVID-19 in the world. Several SARS-CoV-2 lineages have been identified and some local clusters have been described in this early pandemic phase in Western countries. Here we 46 47 investigated the genetic diversity of SARS-CoV-2 during the early phase (late February to late April) of the epidemic in Brazil. Phylogenetic analyses revealed multiple introductions of SARS-48 49 CoV-2 in Brazil and the community transmission of a major B.1.1 lineage defined by two amino 50 acid substitutions in the Nucleocapsid and ORF6. This SARS-CoV-2 Brazilian lineage was 51 probably established during February 2020 and rapidly spread through the country, reaching 52 different Brazilian regions by the middle of March 2020. Our study also supports occasional 53 exportations of this Brazilian B.1.1 lineage to neighboring South American countries and to more 54 distant countries before the implementation of international air travels restrictions in Brazil.

55

56 Keywords: COVID-19; SARS-CoV-2; Brazil; coronavirus; genetic lineages; community
57 transmission.

58

59 Introduction

60 COVID-19, the disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 61 (SARS-CoV-2), is leading to high rates of acute respiratory syndrome, hospitalization, and death 62 ^{1,2}. Brazil, the second most hit country in the world so far, has reported 923.189 cases and 45.241 63 deaths (last update 17th June 2020) ³. The first positive case of SARS-CoV-2 infection in Brazil 64 was reported on 26th February 2020 in an individual traveling from Europe to Sao Paulo 65 metropolitan region ⁴, and during the following two weeks, the virus was detected in all country 66 regions ⁵

67 The rapid worldwide genomic surveillance of SARS-CoV-2, mainly shared via the GISAID (https://www.gisaid.org/) databank that provides public access to genomic sequence and 68 69 patient's metadata, is being crucial for managing this healthcare emergency enabling the tracking 70 of viral transmission patterns as the epidemic progresses. The SARS-CoV-2 has diversified in 71 several phylogenetic lineages while it spread geographically across the world ⁶⁻⁸. A SARS-CoV-2 lineage previously designated as "G" or "B.1" clade, was initially identified as the most common 72 73 variant in Europe and is currently one of the predominant viral lineages in North America ⁶⁻⁸. 74 Inspection of SARS-CoV-2 genomic sequences from South America available on GISAID 75 revealed that the clade B.1 is also the most prevalent (82%) SARS-CoV-2 variant circulating in 76 South America (Fig. 1A).

77 Genomic epidemiology has been a useful tool to track the community transmission of 78 SARS-CoV-2 in different geographical settings. Previous studies revealed that SARS-CoV-2 epidemics in Australia^{9,10}, Belgium¹¹, Denmark¹², France¹³, Iceland¹⁴, Israel¹⁵, Netherlands¹⁶ 79 Spain ¹⁷ and the United States (US) ¹⁸⁻²⁰, resulted from multiple independent introductions, 80 81 followed by community dissemination of some viral strains that resulted in the emergence of national (or local) transmission clusters. Early phylogenetic analyses of SARS-CoV-2 complete 82 genomes from the Brazilian states of Minas Gerais²¹, Sao Paulo²² and Amazonas²³, revealed 83 84 multiple independent viral importations and limited local spread during the initial stage of the SARS-CoV-2 epidemic in Brazil. Even so, the SARS-CoV-2 genomes analyzed in those previous 85 86 studies were mostly recovered from individuals returning from international travel, and thus might 87 not have recovered the genetic diversity of SARS-CoV-2 strains linked to community transmission 88 in Brazil.

To investigate the SARS-CoV-2 strains circulating in Brazil, we recovered 95 wholegenomes collected from 10 different Brazilian states during the first two months of the COVID-19 epidemic. New SARS-CoV-2 Brazilian viral sequences were combined with other Brazilian and global reference sequences available in GISAID and subjected to maximum likelihood (ML) and Bayesian coalescent analyses.

94 Methods

95 Sampling and ethical aspects

Nasopharyngeal-throat combined swabs were collected from clinically ill individuals between the
first and the eleventh day after their first symptoms, or from asymptomatic individuals suspicious
of SARS-CoV-2 infection. Samples were conserved in the viral transport medium at 4°C to 8°C

99 up to processing. This study was approved by the FIOCRUZ-IOC Ethics Committee
100 (68118417.6.0000.5248) and the Brazilian Ministry of Health SISGEN (A1767C3).

101 Nucleic acid isolation and RT–qPCR

102 The Viral RNA was extracted manually from 140 µl of clinical samples using QIAamp Viral RNA 103 Mini kit (QIAGEN, Hilden, Germany) or automatedly using the 300 µl of sample and Perkin-104 Elmer Chemagic machine/chemistry, according to the manufacturer's instructions. SARS-CoV-2 105 positive cases were confirmed by real-time RT-PCR assays using the SARS-COV-2 Molecular 106 E/RP Kit (Biomanguinhos, Rio de Janeiro, Brazil) based on the protocol previously designed by Corman et al (2020)²⁴. Amplifications were conducted in ABI7500 platform using the following 107 108 conditions: reverse transcription (50°\C, 15 min), reverse transcriptase inactivation and DNA 109 polymerase activation (95 °C, 2 min), followed by 45 cycles of DNA denaturation (95 °C, 20 s) 110 and annealing-extension (58 °C, 30 s). The fluorescence data was collected in the annealing-111 extension step and all samples with sigmoid curves crossing the threshold line up to cycle 40 were 112 named positive. Negative and positive controls were included in each extraction and real time RT-113 PCR batch.

114 SARS-CoV-2 whole-genome amplification and sequencing

115 Total RNA from positive samples presenting Ct values up to 30,0 for gene E was reverse 116 transcribed using SuperScript[™] IV First Strand Synthesis System (Invitrogen). Two multiplex 117 PCR reactions using the primer scheme previously described 25 (Pool A = nine amplicons and Pool B = eight amplicons), were performed using the Q5® High-Fidelity DNA Polymerase (NEB). 118 119 Amplicons were purified using Agencourt AMPure XP beads (Beckman CoulterTM) and the DNA 120 quantified with Qubit 4 Fluorometer (Invitrogen) using the Qubit dsDNA HS Assay Kit 121 (Invitrogen) and sequenced using Illumina MiSeq or NextSeq (San Diego, CA, USA) and 122 Nanopore (Oxford, UK) platforms. Illumina short reads DNA libraries were generated from the 123 pooled amplicons using Nextera XT DNA Sample Preparation Kit (Illumina, San Diego, CA, 124 USA) according to the manufacturer specifications. The size distribution of these libraries was 125 evaluated using a 2100 Bioanalyzer (Agilent, Santa Clara, USA) and the samples were pair-end sequenced (Micro V2, 300 cycles) on a MiSeq equipment (Illumina, San Diego, USA) in around 126 18 hours. The Nanopore library protocol is optimized for long reads (2 kb amplicons)²⁵. Library 127 128 preparation was conducted using Ligation Sequencing 1D (SQK-LSK109 Oxford Nanopore 129 Technologies (ONT) and Native Barcoding kit 1 to 24 (ONT), according to the manufacturer's

130 instructions. After end repair using the NEBNext® Ultra™ II End Repair/dA-Tailing Module 131 (New England Biolabs, NEB) the native barcodes were attached using a NEBNext® Ultra[™] II 132 Ligation Module (NEB). Up to 23 samples were pooled for sequencing in the same flow cell 133 (FLOMIN106 flow cell R9.4.1), and a negative mock sample was loaded in each run for validation. 134 The sequencing was performed for 12 hours using the high accuracy base calling in the MinKNOW 135 software, however, the run was monitored by RAMPART 136 (https://github.com/articnetwork/rampart) allowing us stop the assay after 2 hours, when $\geq 20x$ 137 depth for all amplicons was achieved.

138 Data analysis to recover the SARS-CoV-2 whole-genome consensus sequences

139 Demultiplexed fastq files generated by Illumina sequencing were used as the input for the analysis. 140 Reads were trimmed based on quality scores with a cutoff of q30, in order to remove low quality 141 regions and adapter sequences. The reads were mapped to Wuhan Strain MN908947. Duplicate 142 reads were removed from the alignment and the consensus sequence called at a threshold of 10x. The entire workflow was carried out in CLC Genomics Workbench software version 20.0. For the 143 Oxford Nanopore sequencing data, the high accuracy base called fastq files were used as an input 144 145 for analysis. The pipeline used was an adaptation of the artic-ncov2019 medaka workflow 146 (https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). We used an earlier version 147 of the workflow which used Porechop to demultiplex the reads. The mapping to the Wuhan 148 reference sequence (MN908947) was done using Minimap2 with Medaka used for error correction. 149 This was all carried out within the artic-ncov2019-medaka conda environment 150 (https://github.com/artic-network/artic-ncov2019).

151 SARS-CoV-2 genotyping

New Brazilian genome sequences of SARS-CoV-2 were assigned to viral lineages according to the nomenclature proposed by Rambaut *et al* ⁷, using the pangolin web application (<u>https://pangolin.cog-uk.io</u>). A matrix with the count of each possible character at each position of the alignment of the B.1.1 sequences available in GISAID as of June 6, was computed using the R package SeqinR ²⁶.

157 Maximum Likelihood phylogenetic analyses

158 SARS-CoV-2 B.1.1 complete genome sequences (> 29 Kilobases) with appropriate metadata were 159 retrieved from GISAID (https://www.gisaid.org/) as of 4th June. After excluding low quality 160 genomes (> 10% of ambiguous positions), we obtained a final dataset of 7,674 sequences. Because 161 most sequences recovered (75%) were from the United Kingdom (UK), we generate a "non-162 redundant" global balanced dataset by removing very closely related sequences (genetic similarity 163 > 99.99%) from the UK. To achieve this aim, sequences from the UK were grouped by similarity with the CD-HIT program ²⁷ and one sequence per cluster was selected. With this sampling 164 procedure, we obtained a balanced global reference B.1.1 dataset containing 3,764 sequences that 165 166 were aligned with the new B.1.1 Brazilian sequences generated in this study using MAFFT v7.467 167 ²⁸ and then subjected to maximum-likelihood (ML) phylogenetic analyses. The ML phylogenetic tree was inferred using IQTREE v1.6.12²⁹, under the GTR+F+I+G4 nucleotide substitution model 168 as selected by the ModelFinder application ³⁰ and the branch support was assessed by the 169 170 approximate likelihood-ratio test based on a Shimodaira-Hasegawa-like procedure (SH-aLRT) 171 replicates. The ML tree was visualized with 1,000 using the FigTree v1.4 172 (http://tree.bio.ed.ac.uk/software/figtree/).

173 Analysis of temporal signal and phylogeographic structure

174 A ML tree of the B.1.1.EU/BR and B.1.1.BR dataset was inferred as explained above and the 175 temporal signal was assessed by performing a regression analysis of the root-to-tip divergence against sampling time using TempEst³¹. The degree of phylogeographic structure was then 176 investigated using the BaTS program ³² which estimates phylogeny-trait associations in a posterior 177 178 sampling of Bayesian trees. Bayesian trees were generated with BEAST package ³³ as explained below, but without incorporation of a phylogeographic model. Phylogenetic clustering by 179 180 sampling location in the posterior sampling of trees was then assessed by calculating different metrics including the Association Index (AI), the Parsimony Score (PS) and the Maximum Clade 181 182 (MC) and compared to a null hypothesis generated by tip randomization. Results were considered significant for P < 0.01. 183

184 Bayesian phylogeographic analyses

The age of the most recent common ancestor (T_{MRCA}) and the spatial diffusion pattern of the B.1.1.EU/BR and B.1.1.BR lineages were jointly estimated using a Bayesian Markov Chain Monte Carlo (MCMC) approach implemented in BEAST 1.10³³, using the BEAGLE library v3³⁴ to improve computational time. Time-scaled Bayesian trees were estimated by using a strict molecular clock model with a fixed substitution rate (8 x 10⁻⁴ substitutions/site/year) based on previous estimates, the HKY+I+G nucleotide substitution model, and the Bayesian skyline 191 coalescent prior ³⁵. Viral migrations across time were reconstructed using a reversible discrete 192 phylogeographic model ³⁶ with a CTMC rate reference prior ³⁷. Two MCMC chains were run for 193 100 million generations and then combined to ensure stationarity and good mixing. Stationarity 194 (constant mean and variance of trace plots) and good mixing (Effective Sample Size >200) for all 195 parameter estimates were assessed using TRACER v1.7 ³⁸. The maximum clade credibility (MCC) 196 tree was summarized with TreeAnnotator v1.10 and visualized using the FigTree v1.4 program.

197 **Results**

198 In this study, we analyzed 95 viral whole-genomes (>99% coverage) obtained from 199 individuals with confirmed SARS-CoV-2 infection, who underwent testing and genomic 200 sequencing at the Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC)-201 FIOCRUZ, in Rio de Janeiro, and the Evandro Chagas Institute, in Para, Brazil²⁵. Samples were collected between 29th February and 28th April 2020 from individuals that reside in 10 different 202 203 Brazilian states from the Southeastern (Rio de Janeiro and Espirito Santo), Central-Western 204 (Distrito Federal), Northern (Acre, Amapa and Para), Northeastern (Alagoas, Bahia and 205 Maranhao) and Southern (Santa Catarina) regions. (Supplementary Table 1). The median age of 206 patients with COVID-19 illness was 42-year-old (range 0 to 85 years) and 54 (57%) were female. 207 Seven individuals reported international travel or contact with travelling people. Six different 208 SARS-CoV-2 lineages (A.2, B.1, B.1.1, B.2.1, B.2.2 and B.6) were detected in our sample 209 (Supplementary Table 1), according to the nomenclature proposed by Rambaut *et al* ⁷. Most 210 Brazilian SARS-CoV-2 sequences here obtained were classified as clade B.1 (95%, n = 90), and particularly within the sub-clade B.1.1 (92%, n = 87) (Fig. 1B). The prevalence of the sub-clade 211 212 B.1.1 in our sample (92%) was much higher than that observed in other Brazilian sequences 213 available in GISAID (36%) (Fig. 1C). The clade B.1.1 was the only lineage detected in the 18 214 individuals with no history of recent international travel, while four different lineages (B.1, B.1.1, 215 B2.1 and B.6) were detected among the six individuals with recent history of international travel 216 (imported cases) and their contacts. (Supplementary Table 1).

217 To investigate whether the observed high prevalence of the lineage B.1.1 in Brazil resulted from one or multiple independent viral introductions into the country, we performed a ML 218 219 phylogenetic analysis of the 87 B.1.1 Brazilian sequences identified in this study, together with 220 3,764 SARS-CoV-2 complete genome sequences available in GISAID as of 4th June representing 221 the current global diversity of the B.1.1 clade. Brazilian isolates were distributed throughout the 222 phylogenetic tree, consistent with the hypothesis of multiple independent introductions (Fig. 2). A 223 significant proportion of Brazilian B.1.1 sequences (65%, n = 74/114), however, branched in a 224 monophyletic cluster (SH-aLRT = 74%) here designated as B.1.1.BR, that comprises sequences

from Brazil, other South American countries (Argentina, Chile and Uruguay), North America (Canada and USA), Australia and England. The lineage B.1.1.BR is nested within a highly supported (SH-*aLRT* = 87%) clade, here referred as B.1.1.EU/BR, containing basal sequences from Western Europe and Brazil, (**Fig. 2**). We also detected two other well-supported (SH-*aLRT* > 80%) monophyletic clades of small size (n = 2-11) mostly composed by Brazilian sequences (**Supplementary Fig. 1**).

231 In addition to sharing the three nucleotide mutations (G28881A, G28882A, G28883C) 232 characteristic of the clade B.1.1, sequences of clusters B.1.1.EU/BR and B.1.1.BR harbor a non-233 synonymous mutation T29148C at the Nucleocapsid protein (I292T); and another non-234 synonymous mutation T27299C at the ORF6 (I33T) was shared only by sequences of the lineage 235 B.1.1.BR. Mutations T29148C or T27299C were not detected in the other 7,551 B.1.1 genomes 236 available in GISAID, supporting the hypothesis that they are synapomorphic traits of the 237 B.1.1.EU/BR and B.1.1.BR clades, respectively. The clades B.1.1.EU/BR and B.1.1.BR were 238 detected in different countries around the world, but the overall estimated prevalence of these 239 clades in Brazil (6% and 44%, respectively) is much higher than that estimated in Europe, North 240 America or Australia (Supplementary Table 2). Such difference could not be explained by 241 sampling bias as those regions comprise the most densely sampled countries worldwide and is 242 suggestive of local dissemination of those clades in Brazil. Consistent with this hypothesis, none 243 of the individuals infected with clade B.1.1.BR from our cohort or with clade B.1.1.EU/BR from 244 a previous cohort ²¹ reported international travel. The clades B.1.1.EU/BR and B.1.1.BR were not homogeneously distributed across Brazilian states (Supplementary Table 3). The clade 245 246 B.1.1.EU/BR was highly prevalent in Minas Gerais and also detected in the Federal District, while 247 the clade B.1.1.BR was predominant in Rio de Janeiro and also identified in some samples from 248 the Northern, Central-Western and Northeastern Brazilian regions. Notably, none of these lineages 249 were detected in the most populated state of Sao Paulo.

250 Finally, we conducted a Bayesian phylogeographic analysis to reconstruct the 251 spatiotemporal dissemination dynamics of the B.1.1.EU/BR and B.1.1.BR lineages. Linear regression of root-to-tip genetic distance against sampling date revealed a weak temporal structure 252 in our dataset ($R^2 = 0.19$) (Supplementary Fig. 2). Despite the low genetic diversity, analyses of 253 254 geographic structure rejected the null hypothesis of a panmixed population (Supplementary 255 Table 4), supporting that geographic subdivision of the B.1.1.EU/BR and B.1.1.BR sequences was 256 greater than expected by chance. The time-scaled Bayesian tree was then reconstructed using a strict molecular clock model with a fixed substitution rate (8 x 10⁻⁴ substitutions/site/year). 257 258 Bayesian reconstructions traced the origin of the B.1.1.EU/BR lineage most probably to Europe

259 (*Posterior state probability* [*PSP*] = 0.64) at 2^{nd} February (95% High Posterior Density [HPD]: 7th 260 January – 20th February) and its dissemination to Brazil at 19th February (95% HPD: 4th February 261 – 28th February) (**Fig. 3A**). The origin of the B.1.1.BR lineage was traced with high probability to 262 Brazil (*PSP* = 0.95) at 22th February (95% HPD: 10th February – 28th February). From Brazil, the 263 B.1.1.BR lineage probably disseminated to neighboring South American countries (Argentina, 264 Chile and Uruguay) and to more distant regions (Australia, USA and UK).

265 Discussion

266 Our genomic survey identified a major SARS-CoV-2 B.1.1 lineage, here designated as 267 B.1.1.BR, that seems to be responsible for a substantial fraction of the community viral 268 transmissions in Brazil. This lineage harbors two non-synonymous synapomorphic mutations at 269 positions T27299C and T29148C located at the ORF6 (I33T) and the Nucleocapsid protein 270 (I292T), respectively. Basal to this clade, we identified a group of Brazilian and European 271 sequences composing a paraphyletic clade, designated as B.1.1.EU/BR, that only carry the 272 synapomorphic mutation T29148C and seems to represent and evolutionary intermediate between 273 clades B.1.1 and B.1.1.BR.

274 Our phylogeographic reconstruction supports that clade B.1.1.EU/BR most probably arose in Europe (*PSP* = 0.64) around 2^{nd} February and was introduced into Brazil a couple of weeks 275 276 later, where it spread and rapidly fixed the T27299C mutation, originating the clade B.1.1.BR (Fig. 277 4A). This evolutionary pattern agrees with the earlier detection of the clade B.1.1.EU/BR in Western Europe (28th February) than in Brazil (13th March) (Fig. 3B); but the extremely low 278 279 prevalence of the clade B.1.1.EU/BR in Europe (<1% of total SARS-CoV-2 sequences) makes this 280 transmission history a highly unlikely epidemiological scenario. Once our phylogeographic 281 analysis also estimated Brazil as a putative ancestral state at the root of clade B.1.1.EU/BR (PSP 282 = 0.35), an alternative hypothesis would be that a highly prevalent B.1.1 strain was introduced from Western Europe into Brazil before 2nd February and that synapomorphic mutations T29148C 283 284 and T27299C were fixed at sequential steps during subsequent virus local spread (Fig. 4B). The 285 relative high prevalence of clade B.1.1.EU/BR in some Brazilian locations makes the dissemination of this lineage from Brazil to Western Europe a quite plausible transmission 286 287 scenario. Retrospective analyses of Brazilian samples obtained from individuals with severe acute 288 respiratory disease during February might provide unique insights to resolve the origin of the clade 289 B.1.1.EU/BR.

Brazil was traced as the source location of the clade B.1.1.BR with high probability (*PSP* = 0.95) in our phylogeographic reconstruction. The earliest B.1.1.BR sequence currently available, however, is an Argentinean sequence sampled on 1st March 2020; while the earliest detection of

the clade B.1.1.BR in Brazil occurred in two samples isolated in the Distrito Federal on 13th March 293 2020 (Fig. 3B). Of note, none of the 30 Brazilian genomes analyzed between 25th February and 294 12th March, including 12 B.1.1 genomes from imported cases, belong to the clade B.1.1.BR. This 295 296 suggests that clade B.1.1.BR may have arisen in a Brazilian state that was not included in our 297 dataset and/or that this lineage circulated cryptically for several weeks before being detected in 298 symptomatic carriers. The nearly simultaneous detection of the clade B.1.1.BR in distant states from the Central-Western (Federal District, 13th March), Northern (Amapa, 17th March) and 299 Southeastern (Rio de Janeiro, 20th March) Brazilian regions, supports the second hypothesis and 300 further suggests a wide geographic spread of this Brazilian lineage. Our results also suggest a high 301 302 geographic compartmentalization of SARS-CoV-2 genetic diversity within Brazil. Considering 303 the three most populated and densely sampled states of Brazil, the clade B.1.1.EU/BR was only 304 detected in Minas Gerais, the clade B.1.1.BR only in Rio the Janeiro, and none of those in Sao 305 Paulo.

306 Our analyses support that the clade B.1.1.BR not only spread within Brazil but was also 307 exported from Brazil to neighboring South American countries and also to more distant countries 308 (i.e. Canada, USA, UK and Australia). The chance introduction of SARS-CoV-2 strains from 309 Western Europe into Brazil during February and the subsequent exportation of Brazilian SARS-310 CoV-2 lineages to neighboring South American countries, Western Europe and North America 311 during following weeks agrees with the high influx of tourists from those regions into Brazil during 312 January and February (Fig. 4C). Our findings support that when first control measures for 313 international travels were implemented in Brazil around the middle March, the clades 314 B.1.1.EU/BR and B.1.1.BR were already established in the country and also spread from Brazil to other countries. Of note, no B.1.1.EU/BR or B.1.1.BR sequences were detected in Europe, North 315 America or Oceania after 15th April, coinciding with a sharp decrease in the influx of international 316 air travels to Brazil (Fig. 4C) that might have greatly reduced the chance of exportation of SARS-317 318 CoV-2 Brazilian lineages to other countries.

319 Our phylogeographic reconstruction suggests that the clade B.1.1.BR might have seeded 320 secondary outbreaks in Argentina, Chile, Australia and the US, but those findings should be 321 interpreted with caution because of the low support of local clusters. Although high-quality full 322 genomes of SARS-CoV-2 currently available contain enough information to allow reliable 323 phylogenetic inferences, the low genetic diversity of within-country (or regional) transmission clusters imposes a serious limitation for accurate phylogeographic reconstructions ^{39,40}. Indeed, the 324 325 MC test supports a random phylogenetic clustering of B.1.1.EU/BR and B.1.1.BR strains from 326 most locations, with exception of Brazil, Argentina and Europe (Supplementary Table 4). The 327 B.1.1.BR sequences sampled at different Brazilian states were also highly similar or identical, 328 making it difficult to trace with precision the origin and within-country fluxes of this viral clade 329 during the early epidemic phase in Brazil. Another important limitation of our study is the uneven 330 spatial and temporal sampling scheme. Most SARS-CoV-2 sequences recovered in the present 331 study were from the Rio de Janeiro state and might thus not represent the viral diversity in other 332 Brazilian states. More accurate reconstructions of the origin and regional spread of the clade 333 B.1.1.BR will require a denser sampling from Brazil and neighboring South American countries, 334 particularly during the very early phase of the epidemic.

In summary, this study reveals the existence of a major SARS-CoV-2 B.1.1 lineage associated with community transmission in Brazil and widespread in a national scale. This major B.1.1 Brazilian lineage emerged in Brazil in February 2020, probably before the detection of the first imported SARS-CoV-2 case in the country, and reached different Brazilian regions by the middle of March 2020. Continuous efforts for widespread sequencing of SARS-CoV-2 may provide unique insight about its local dissemination in Brazil and other South American countries.

342

Figure 1. Prevalence of SARS-CoV-2 clades B.1 and B.1.1 in Brazil and other South 343 American countries. A) Map showing the prevalence of SARS-CoV-2 clades B.1 and B.1.1 344 across different South American countries with more than five viral genomes available in the 345 GISAID (https://www.gisaid.org/) database as of 4th June. Countries were colored according to the 346 incidence of COVID-19. B and C) Brazilian maps showing the prevalence of SARS-CoV-2 clades 347 B.1 and B.1.1 across different states considering the viral sequences generated in this study (B) or 348 349 those generated by others and deposited in the GISAID database. Brazilian states are colored 350 according to the number of SARS-CoV-2 available. Colors in pie charts correspond to the viral 351 lineage.

352

353 Figure 2. Phylogenetic relationships of SARS-CoV-2 B.1.1 Brazilian and global strains. A) 354 ML phylogenetic tree of 87 B.1.1 Brazilian genomes obtained in this survey (red circles) along 355 with 3,764 B.1.1 worldwide reference sequences from GISAID database. B) Zoomed view of the 356 clusters B.1.1.EU/BR and B.1.1.BR. Names of Brazilian SARS-CoV-2 genomes generated in this 357 study (red tips) or deposited in GISAID databank (black tips) are shown. Tip circles are colored 358 according to the sampling location. Only node supports (aLRT) above 70% are shown. Shaded 359 boxes highlight the position of clusters B.1.1.EU/BR and B.1.1.BR. Tree was rooted on midpoint and branch lengths are drawn to scale with the bars at the bottom indicating nucleotide 360 361 substitutions per site.

362

363 Figure 3. Spatiotemporal dissemination of the SARS-CoV-2 clades B.1.1.EU/BR and B.1.1.BR. A) Time-scaled Bayesian phylogeographic MCC tree of the major B.1.1 lineages 364 circulating in Brazil. Branches are colored according to the most probable location state of their 365 descendent nodes as indicated at the legend. Circles size at internal nodes is proportional to the 366 corresponding posterior probability support as indicated at the legend. The inferred T_{MRCA} (based 367 368 on the median of the posterior heights) and nucleotide substitutions fixed at ancestral key nodes 369 are shown. Shaded boxes highlight the position of the clades B.1.1.EU/BR and B.1.1.BR. The tree is automatically rooted under the assumption of a strict molecular clock and all horizontal branch 370 lengths are drawn to a scale of years. B) Timeline of the earliest detection of clades B.1.1.EU/BR 371 372 (blue bars) and B.1.1.BR (red bars) in Europe (EU), North America (NA), Australia (AU), 373 Argentina (AR), Brazil (BR), Chile (CL) and Uruguay (UY).

375 Figure 4. Putative origin and transmission history of the SARS-CoV-2 clades B.1.1.EU/BR 376 and B.1.1.BR. A) Diagrams showing two alternative scenarios for the origin and dissemination of clades B.1.1.EU/BR and B.1.1.BR. The left panel depicts the hypothetical scenario where a 377 378 B.1.1.EU/BR strain carrying the mutation T29148C was introduced into Brazil from Europe and after a period of local transmission in Brazil arose the B.1.1.BR variant carrying the mutation 379 380 T27299C, which dispersed all over the country and from Brazil to other countries in the Americas and Oceania. The right panel depicts the hypothetical scenario where a B.1.1 strain was introduced 381 382 from Europe to Brazil and mutations T29148C and T27299C arose at sequential steps during local transmission. According to this second scenario, Brazil was the epicenter of dissemination of both 383 384 clades B.1.1.EU/BR and B.1.1.BR to other countries in Europe, the Americas and Oceania. B) 385 Graphic showing the monthly number of international air passengers from South America, North 386 America and Europe that arrived in Brazil during 2020 (available at: https://www.anac.gov.br)

387 (left hand axis) along with probability density of T_{MRCA} estimates for clades B.1.1.EU/BR (gray)

388 and B.1.1.BR (red).

389

390 References

391	1	Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N
392		Engl J Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
393	2	Coronaviridae Study Group of the International Committee on Taxonomy of, V. The
394		species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV
395		and naming it SARS-CoV-2. Nat Microbiol 5, 536-544, doi:10.1038/s41564-020-0695-z
396		(2020).
397	3	Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19
398		in real time. Lancet Infect Dis 20, 533-534, doi:10.1016/S1473-3099(20)30120-1 (2020).
399	4	Brazilian Ministry of Health. Brasil confirma primeiro caso da doença – COVID-19.
400		(2020).
401	5	Brazilian Ministry of Health, S. V. S. Doenca pelo Coronavirus 2019. 06 (2020).
402		https://portalarquivos.saude.gov.br/images/pdf/2020/April/03/BE6-Boletim-Especial-
403		do-COE.pdf>.
404	6	Hadfield, L <i>et al.</i> Nextstrain: real-time tracking of pathogen evolution. <i>Bioinformatics</i> 34.
405	-	4121-4123. doi:10.1093/bioinformatics/btv407 (2018).
406	7	Rambaut, A. <i>et al.</i> A dynamic nomenclature proposal for SARS-CoV-2 to assist genomic
407		epidemiology <i>bioRxiv</i> doi:10.1101/2020.04.17.046086 (2020)
408	8	Shu, Y. & McCauley, I. GISAID: Global initiative on sharing all influenza data - from
409	0	vision to reality <i>Euro Surveill</i> 22 doi:10.2807/1560-7917 ES 2017 22.13.30494 (2017)
410	9	Rockett R J <i>et al.</i> Revealing COVID-19 Transmission by SARS-CoV-2 Genome
411	-	Sequencing and Agent Based Modelling <i>bioRxiv</i> doi:10.1101/2020.04.19.048751
412		(2020)
413	10	Seemann, T. <i>et al.</i> Tracking the COVID-19 pandemic in Australia using genomics.
414	10	<i>medRxiv</i> , doi:10.1101/2020.05.12.20099929 (2020).
415	11	Dellicour, S. <i>et al.</i> A phylodynamic workflow to rapidly gain insights into the dispersal
416		history and dynamics of SARS-CoV-2 lineages, <i>bioRxiv</i> , doi:10.1101/2020.05.05.078758
417		(2020).
418	12	Bluhm, A. et al. SARS-CoV-2 Transmission Chains from Genetic Data: A Danish Case
419		Study, <i>bioRxiv</i> , doi:10.1101/2020.05.29.123612 (2020)
420	13	Gámbaro, F <i>et al.</i> Introductions and early spread of SARS-CoV-2 in France <i>bioRxiv</i> .
421	10	doi:10.1101/2020.04.24.059576 (2020).
422	14	Gudbiartsson, D, F, et al. Spread of SARS-CoV-2 in the Icelandic Population N Engl I
423	11	Med. doi:10.1056/NEIMoa2006100 (2020)
424	15	Miller D <i>et al</i> Full genome viral sequences inform patterns of SARS-CoV-2 spread into
425	10	and within Israel <i>medRxiv</i> doi:10.1101/2020.05.21.20104521 (2020)
426	16	Oude Munnink, B. B. <i>et al.</i> Rapid SARS-CoV-2 whole genome sequencing for informed
427	10	public health decision making in the Netherlands, <i>bioRxiv</i> .
428		doi:10.1101/2020.04.21.050633 (2020).
429	17	Díez-Fuertes, F. <i>et al.</i> Phylodynamics of SARS-CoV-2 transmission in Spain <i>bioRxiv</i>
430	17	doi:10.1101/2020.04.20.050039 (2020)
431	18	Worobey M $et al$ The emergence of SARS-CoV-2 in Europe and the US $bioRxiv$
432	10	doi:10.1101/2020.05.21.109322 (2020).
433	19	Gonzalez-Reiche, A. S. et al. Introductions and early spread of SARS-CoV-2 in the New
434	17	York City area Science doi:10.1126/science abc1917 (2020)
1.5 1		1 on ong alou belowe, addited belowed addited (2020).

435 20 Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into 436 Northern California. Science, doi:10.1126/science.abb9263 (2020). 437 Xavier, J. et al. The ongoing COVID-19 epidemic in Minas Gerais, Brazil: insights from 21 438 epidemiological data and SARS-CoV-2 whole genome sequencing. medRxiv, 439 doi:10.1101/2020.05.05.20091611 (2020). 440 Jesus, J. G. et al. Importation and early local transmission of COVID-19 in Brazil, 2020. 22 441 Rev Inst Med Trop Sao Paulo 62, e30, doi:10.1590/s1678-9946202062030 (2020). 442 23 Nascimento, A. A., Corado, A. L. G., Nascimento, F. O., Costa, A. K. A., Duarte, D. C. 443 G., Jesus, M. S., Luz, S. L. B., Gonçalves, L. M. F., Costa, C. F., Delatorre, E., Naveca, 444 F. G. Genomic and phylogenetic characterization of an imported case of SARS-CoV-2 in 445 Amazonas State, Brazil. Mem Inst Oswaldo Cruz Fast track, doi:10.1590/0074-446 02760200310 (2020). 447 24 Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-448 PCR. Euro Surveill 25, doi:10.2807/1560-7917.ES.2020.25.3.2000045 (2020). 449 Resende, P. C. et al. SARS-CoV-2 genomes recovered by long amplicon tiling multiplex 25 450 approach using nanopore sequencing and applicable to other sequencing platforms. 451 bioRxiv, doi:10.1101/2020.04.30.069039 (2020). 452 Charif D., L. J. R. SeginR 1.0-2: A Contributed Package to the R Project for Statistical 26 453 Computing Devoted to Biological Sequences Retrieval and Analysis. Structural 454 Approaches to Sequence Evolution. Biological and Medical Physics, Biomedical 455 Engineering. Springer, Berlin, Heidelberg In: Bastolla U., Porto M., Roman H.E., 456 Vendruscolo M. (eds), doi:10.1007/978-3-540-35306-5_10 (2007). 457 27 Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of 458 protein or nucleotide sequences. Bioinformatics 22, 1658-1659, 459 doi:10.1093/bioinformatics/btl158 (2006). 460 28 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772-780, 461 462 doi:10.1093/molbev/mst010 (2013). 463 29 Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. O. IO-TREE: a fast and 464 effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol 465 Evol 32, 268-274, doi:10.1093/molbev/msu300 (2015). Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. 466 30 467 ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14, 468 587-589, doi:10.1038/nmeth.4285 (2017). Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal 469 31 470 structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 471 2, vew007, doi:10.1093/ve/vew007 (2016). 472 32 Parker, J., Rambaut, A. & Pybus, O. G. Correlating viral phenotypes with phylogeny: 473 accounting for phylogenetic uncertainty. Infect Genet Evol 8, 239-246, 474 doi:10.1016/j.meegid.2007.08.001 (2008). 475 Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using 33 476 BEAST 1.10. Virus Evol 4, vey016, doi:10.1093/ve/vey016 (2018). 477 Ayres, D. L. et al. BEAGLE 3: Improved Performance, Scaling, and Usability for a High-34 478 Performance Computing Library for Statistical Phylogenetics. Syst Biol 68, 1052-1061, 479 doi:10.1093/sysbio/syz020 (2019). 480 Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent 35 481 inference of past population dynamics from molecular sequences. Mol Biol Evol 22, 482 1185-1192, doi:10.1093/molbev/msi103 (2005). 483 36 Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography 484 finds its roots. PLoS Comput Biol 5, e1000520, doi:10.1371/journal.pcbi.1000520 (2009).

- 485 37 Ferreira, M. A. R. & Suchard, M. A. Bayesian analysis of elapsed times in continuous486 time Markov chains. *Canadian Journal of Statistics* 36, 355-368,
 487 doi:10.1002/cjs.5550360302 (2008).
 488 38 Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior
 480 Summarization in Payagian Phylogenetics Using Trager 1.7, Syst Piol 67, 001, 004.
- 489 Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol 67, 901-904,
 490 doi:10.1093/sysbio/syy032 (2018).
- 491 39 Mavian, C., Marini, S., Prosperi, M. & Salemi, M. A Snapshot of SARS-CoV-2 Genome
 492 Availability up to April 2020 and its Implications: Data Analysis. *JMIR Public Health*493 Surveill 6, e19170, doi:10.2196/19170 (2020).
- 494 40 Villabona-Arenas, C. J., Hanage, W. P. & Tully, D. C. Phylogenetic interpretation during
 495 outbreaks requires caution. *Nat Microbiol*, doi:10.1038/s41564-020-0738-5 (2020).

496 497

498 Acknowledgements

- 499 The authors wish to thank all the health care workers and scientists, who have worked hard to deal
- 500 with this pandemic threat, the GISAID team and all the submitters of the database. GISAID
- 501 acknowledgment tables containing sequences used in this study are in **Supplementary Tables 5**
- 502 (South American SARS-CoV-2 genomes) and Supplementary Table 6 (Global SARS-CoV 2
- 503 genomes B.1.1 lineage). Locally, we acknowledge the Respiratory Viruses Genomic Surveillance
- 504 Network of the General Laboratory Coordination (CGLab) of the Brazilian Ministry of Health
- 505 (MoH), Brazilian Central Laboratory States (LACENs), and local surveillance teams for the
- 506 partnership in the viral surveillance in Brazil.
- 507
- 508 Funding support: CGLab/MoH (General Laboratories Coordination of Brazilian Ministry of
- 509 Health) and CVSLR/FIOCRUZ (Coordination of Health Surveillance and Reference Laboratories
- 510 of Oswaldo Cruz Foundation).

Supplementary Material

Supplementary Figure 1. Phylogenetic relationships of SARS-CoV-2 B.1.1 Brazilian and global strains. ML phylogenetic tree of 87 B.1.1 Brazilian genomes obtained in this survey (red circles) along with 3,764 B.1.1 worldwide reference sequences from GISAID database. Shaded box highlights the position of major Brazilian clusters B.1.1.EU/BR and B.1.1.BR, and a close view of each cluster is showed. Names of Brazilian SARS-CoV-2 genomes generated in this study (red tips) are shown. Only node supports (SH-*aLRT*) above 70% are shown. Tree was rooted on midpoint and branch lengths are drawn to scale with the bars at the bottom indicating nucleotide substitutions per site.

Supplementary Figure 2. Linear regression analysis between the sampling date of each viral sequence and the root-to-tip divergence (genetic distance of that sequence to the tree root) of a ML phylogeny of the SARS-CoV-2 clades B.1.1.EU/BR and B.1.1.BR. SARS-CoV-2 genomes generated in this study (red) were combined with other genomes available on the GISAID database (gray).

	-									
Virus name	Accession number GISAID	Clinical Specimen	Pangolin lineage*	Town	Collection date	Onset symptoms	Travel history	Gender	Age	Clinical outcome
hCoV-19/Brazil/ES- 225/2020	EPI_ISL_415128	NPS	B.2.1	Vila Velha	29/02/2020	22/02/2020	Italy	F	37y	inpatient
hCoV-19/Brazil/BA- 312/2020	EPI_ISL_415105	NPS	B.1.1	Feira de Santana	04/03/2020	26/02/2020	Italy	F	34y	inpatient
hCoV-19/Brazil/RJ- 314/2020	EPI_ISL_414045	NPS	B.1	Rio de Janeiro	04/03/2020	02/03/2020	Italy	F	52y	outpatient
hCoV-19/Brazil/RJ- 352/2020	EPI_ISL_427299	NPS	A.2	Niteroi	05/03/2020	unknown	unknown	М	27y	unknown
hCoV-19/Brazil/RJ- 477/2020	EPI_ISL_427300	NPS	B.1.1	Rio de Janeiro	11/03/2020	10/03/2020	Europe	М	48y	outpatient
hCoV-19/Brazil/RJ- 477i/2020	EPI_ISL_427301	Vero E6	B.1.1	Rio de Janeiro	11/03/2020	10/03/2020	Europe	М	48y	outpatient
hCoV-19/Brazil/BA- 510/2020	EPI_ISL_427293	NPS	B.1.1	Feira de Santana	06/03/2020	03/03/2020	unknown	F	41y	unknown
hCoV-19/Brazil/DF- 615i/2020	EPI_ISL_427294	Vero E6	B.1.1.BR	Brasilia	13/03/2020	unknown	unknown	М	unknown	unknown
hCoV-19/Brazil/DF- 619i/2020	EPI_ISL_427295	Vero E6	B.1.1.BR	Brasilia	13/03/2020	unknown	unknown	М	unknown	unknown
hCoV-19/Brazil/RJ- 763/2020	EPI_ISL_427302	NPS	B.1.1.BR	Petropolis	20/03/2020	19/03/2020	no	F	47y	outpatient
hCoV-19/Brazil/SC- 766/2020	EPI_ISL_427305	NPS	B.6	Joinvile	10/03/2020	08/03/2020	Europe and Africa	М	57y	unknown
hCoV-19/Brazil/SC- 769/2020	EPI_ISL_427306	NPS	B.1.1	Florianopolis	10/03/2020	04/02/2020	Europe	F	59y	outpatient
hCoV-19/Brazil/RJ- 818/2020	EPI_ISL_427303	NPS	B.1.1.BR	Rio de Janeiro	25/03/2020	22/03/2020	no	F	54y	outpatient
hCoV-19/Brazil/AL- 837/2020	EPI_ISL_427292	NPS	B.1.1	Maceio	18/03/2020	15/03/2020	unknown	М	65y	unknown
hCoV-19/Brazil/DF- 861/2020	EPI_ISL_427296	NPS	B.1.1.BR	Brasilia	23/03/2020	unknown	unknown	М	55y	unknown
hCoV-19/Brazil/DF- 862/2020	EPI_ISL_427297	NPS	B.1.1.BR	Brasilia	23/03/2020	unknown	unknown	F	25y	unknown

Supplementary Table 1. Clinical and epidemiological data associated with SARS-CoV-2 genomes obtained in this study.

hCoV-19/Brazil/RJ- 872/2020	EPI_ISL_427304	NPS	B.1.1	Rio de Janeiro	26/03/2020	unknown	unknown	F	60y	unknown
hCoV-19/Brazil/DF- 891/2020	EPI_ISL_427298	NPS	B.1.1.BR	Brasilia	22/03/2020	16/03/2020	unknown	F	61y	Deceased
hCoV-19/Brazil/RJ- 1056/2020	EPI_ISL_456072	NPS	B.1.1.BR	Rio de Janeiro	01/04/2020	30/03/2020	no	F	31y	outpatient
hCoV-19/Brazil/RJ- 1058/2020	EPI_ISL_456073	NPS	B.1.1.BR	Rio de Janeiro	01/04/2020	25/03/2020	no	М	27y	outpatient
hCoV-19/Brazil/RJ- 1065/2020	EPI_ISL_456074	NPS	B.1.1.BR	Rio de Janeiro	01/04/2020	asymptomatic	no	F	85y	outpatient
hCoV-19/Brazil/RJ- 1402/2020	EPI_ISL_456079	NPS	B.1.1.BR	Rio de Janeiro	03/04/2020	30/03/2020	no	F	55y	outpatient
hCoV-19/Brazil/RJ- 1464/2020	EPI_ISL_456080	NPS	B.1.1.BR	Petropolis	06/04/2020	unknown	no	М	30y	outpatient
hCoV-19/Brazil/RJ- 1466/2020	EPI_ISL_456081	NPS	B.1.1.BR	Rio de Janeiro	06/04/2020	03/04/2020	no	F	54y	outpatient
hCoV-19/Brazil/RJ- 1701/2020	EPI_ISL_456086	NPS	B.1.1.BR	Rio de Janeiro	08/04/2020	05/04/2020	no	М	60y	outpatient
hCoV-19/Brazil/RJ- 1702/2020	EPI_ISL_456087	NPS	B.1.1.BR	Rio de Janeiro	08/04/2020	04/04/2020	no	М	40y	outpatient
hCoV-19/Brazil/RJ- 1902/2020	EPI_ISL_456090	NPS	B.1.1.BR	Rio de Janeiro	09/04/2020	06/04/2020	no	F	39y	outpatient
hCoV-19/Brazil/RJ- 1921/2020	EPI_ISL_456091	NPS	B.1.1.BR	Rio de Janeiro	09/04/2020	06/04/2020	no	F	70y	outpatient
hCoV-19/Brazil/RJ- 1923/2020	EPI_ISL_456092	NPS	B.1.1.BR	Rio de Janeiro	10/04/2020	08/04/2020	no	М	5m	unknown
hCoV-19/Brazil/RJ- 1927/2020	EPI_ISL_456093	NPS	B.1.1.BR	Rio de Janeiro	12/04/2020	10/04/2020	no	М	46y	outpatient
hCoV-19/Brazil/RJ- 1948/2020	EPI_ISL_456095	NPS	B.1.1.BR	Rio de Janeiro	13/04/2020	12/04/2020	no	F	45y	inpatient
hCoV-19/Brazil/RJ- 1952/2020	EPI_ISL_456096	NPS	B.1.1.BR	Rio de Janeiro	13/04/2020	11/04/2020	no	М	29y	outpatient
hCoV-19/Brazil/RJ- 2057/2020	EPI_ISL_456102	NPS	B.1.1.BR	Rio de Janeiro	16/04/2020	11/04/2020	no	М	29y	outpatient
hCoV-19/Brazil/RJ- 899/2020	EPI_ISL_456071	NPS	B.1.1	Rio de Janeiro	30/03/2020	24/03/2020	no	М	42y	outpatient
hCoV-19/Brazil/RJ- 1100/2020	EPI_ISL_456075	NPS	B.1.1.BR	Belford Roxo	02/04/2020	30/01/2020	unknown	М	30y	outpatient

hCoV-19/Brazil/RJ- 1111/2020	EPI_ISL_456076	NPS	B.1.1.BR	Rio de Janeiro	25/03/2020	22/03/2020	unknown	М	59y	unknown
hCoV-19/Brazil/RJ- 1119/2020	EPI_ISL_456077	NPS	B.1.1.BR	Rio de Janeiro	25/05/2020	20/03/2020	unknown	М	55y	unknown
hCoV-19/Brazil/RJ-	EPI_ISL_467344	NPS	B.2.2	Petropolis	02/04/2020	27/03/2020	unknown	М	31y	unknown
hCoV-19/Brazil/RJ- 1574/2020	EPI_ISL_467345	NPS	B.1.1.BR	Rio de Janeiro	02/04/2020	25/03/2020	unknown	М	82y	unknown
hCoV-19/Brazil/RJ- 1595/2020	EPI_ISL_467346	NPS	B.2.2	Rio de Janeiro	02/04/2020	28/03/2020	unknown	F	83y	unknown
hCoV-19/Brazil/RJ- 1600/2020	EPI_ISL_456082	NPS	B.1.1.BR	Teresopolis	02/04/2020	24/03/2020	unknown	М	68y	unknown
hCoV-19/Brazil/RJ- 1627/2020	EPI_ISL_456083	NPS	B.1.1.BR	Nova Iguaçu	03/04/2020	30/03/2020	unknown	F	44y	unknown
hCoV-19/Brazil/RJ- 1690/2020	EPI_ISL_456084	NPS	B.1.1.BR	Rio de Janeiro	08/04/2020	07/04/2020	unknown	F	42y	outpatient
hCoV-19/Brazil/RJ- 1691/2020	EPI_ISL_456085	NPS	B.1.1.BR	Rio de Janeiro	08/04/2020	06/04/2020	unknown	М	42y	outpatient
hCoV-19/Brazil/RJ- 1719/2020	EPI_ISL_456088	NPS	B.1.1	Itaborai	06/04/2020	05/04/2020	unknown	F	36y	unknown
hCoV-19/Brazil/RJ- 1901/2020	EPI_ISL_456089	NPS	B.1.1.BR	Rio de Janeiro	09/04/2020	06/04/2020	unknown	F	59y	outpatient
hCoV-19/Brazil/RJ- 1943/2020	EPI_ISL_456094	NPS	B.1.1.BR	Rio de Janeiro	13/04/2020	11/04/2020	unknown	F	38y	outpatient
hCoV-19/Brazil/RJ- 1966/2020	EPI_ISL_456097	NPS	B.1.1.BR	Rio de Janeiro	13/04/2020	unknown	unknown	М	unknown	outpatient
hCoV-19/Brazil/RJ- 2000/2020	EPI_ISL_456098	NPS	B.1.1.BR	Rio de Janeiro	13/04/2020	13/04/2020	unknown	F	29y	unknown
hCoV-19/Brazil/RJ- 2007/2020	EPI_ISL_456099	NPS	B.1.1.BR	Rio de Janeiro	13/04/2020	10/04/2020	unknown	F	58y	unknown
hCoV-19/Brazil/RJ- 2033/2020	EPI_ISL_456100	NPS	B.1.1.BR	Rio de Janeiro	15/04/2020	09/04/2020	unknown	F	37y	unknown
hCoV-19/Brazil/RJ- 2044/2020	EPI_ISL_456101	NPS	B.1.1.BR	Duque de Caxias	15/04/2020	14/04/2020	unknown	F	28y	unknown
hCoV-19/Brazil/RJ- 2062/2020	EPI_ISL_456103	NPS	B.1.1	Rio de Janeiro	16/04/2020	13/04/2020	unknown	F	49y	unknown
hCoV-19/Brazil/RJ- 2072/2020	EPI_ISL_456104	NPS	B.1.1.BR	Rio de Janeiro	16/04/2020	12/04/2020	unknown	F	51y	unknown

hCoV-19/Brazil/RJ- 2077/2020	EPI_ISL_456105	NPS	B.1.1.BR	Rio de Janeiro	16/04/2020	unknown	unknown	F	38y	unknown
hCoV-19/Brazil/RJ- 2078/2020	EPI_ISL_456106	NPS	B.1.1.BR	Rio de Janeiro	16/04/2020	14/04/2020	unknown	F	34y	unknown
hCoV-19/Brazil/RJ- 2091/2020	EPI_ISL_467347	NPS	B.1.1.BR	Rio de Janeiro	16/04/2020	12/04/2020	unknown	F	51y	unknown
hCoV-19/Brazil/RJ- 2195/2020	EPI_ISL_467348	NPS	B.1.1.BR	Rio de Janeiro	17/04/2020	14/04/2020	unknown	М	45y	unknown
hCoV-19/Brazil/RJ- 2197/2020	EPI_ISL_467349	NPS	B.1.1.BR	Rio de Janeiro	17/04/2020	14/04/2020	unknown	М	32y	unknown
hCoV-19/Brazil/RJ- 2208/2020	EPI_ISL_467350	NPS	B.1.1.BR	Rio de Janeiro	17/04/2020	15/04/2020	unknown	М	43y	unknown
hCoV-19/Brazil/RJ- 2233/2020	EPI_ISL_467351	NPS	B.1.1.BR	Rio de Janeiro	17/04/2020	13/04/2020	unknown	F	30y	unknown
hCoV-19/Brazil/RJ- 2422/2020	EPI_ISL_467352	NPS	B.1.1.BR	Queimados	20/04/2020	18/04/2020	unknown	F	27y	inpatient
hCoV-19/Brazil/RJ- 2669/2020	EPI_ISL_467353	NPS	B.1.1.BR	Niteroi	24/04/2020	21/04/2020	unknown	F	25y	outpatient
hCoV-19/Brazil/RJ- 2676/2020	EPI_ISL_467354	NPS	B.1.5	Rio de Janeiro	24/04/2020	23/04/2020	unknown	М	48y	unknown
hCoV-19/Brazil/RJ- 2678/2020	EPI_ISL_467355	NPS	B.1.1.BR	Rio de Janeiro	24/04/2020	23/04/2020	unknown	М	29y	unknown
hCoV-19/Brazil/RJ- 2682/2020	EPI_ISL_467356	NPS	B.1.1	Rio de Janeiro	24/04/2020	22/04/2020	unknown	F	29y	unknown
hCoV-19/Brazil/RJ- 2683/2020	EPI_ISL_467357	NPS	B.1.1.BR	Rio de Janeiro	24/04/2020	20/04/2020	unknown	F	31y	unknown
hCoV-19/Brazil/RJ- 2696/2020	EPI_ISL_467358	NPS	B.1.1.BR	Rio de Janeiro	24/04/2020	19/04/2020	unknown	F	65y	unknown
hCoV-19/Brazil/RJ- 2717/2020	EPI_ISL_467359	NPS	B.1.1	Rio de Janeiro	24/04/2020	21/04/2020	unknown	F	36y	unknown
hCoV-19/Brazil/RJ- 2733/2020	EPI_ISL_467360	NPS	B.1.1.BR	Duque de Caxias	25/04/2020	22/04/2020	unknown	F	49y	unknown
hCoV-19/Brazil/RJ- 2769/2020	EPI_ISL_467361	NPS	B.1.1.BR	Rio de Janeiro	27/04/2020	22/04/2020	unknown	F	30y	unknown
hCoV-19/Brazil/RJ- 2770/2020	EPI_ISL_467362	NPS	B.1.1.BR	Rio de Janeiro	27/04/2020	22/04/2020	unknown	F	30y	unknown
hCoV-19/Brazil/RJ- 2776/2020	EPI_ISL_467363	NPS	B.1.1.BR	Rio de Janeiro	27/04/2020	21/04/2020	unknown	М	64y	unknown

hCoV-19/Brazil/RJ- 2777/2020	EPI_ISL_467364	NPS	B.1.1.BR	Nova Iguaçu	25/04/2020	25/04/2020	unknown	F	34y	unknown
hCoV-19/Brazil/RJ- 2811/2020	EPI_ISL_467365	NPS	B.1.1.BR	Rio de Janeiro	27/04/2020	25/04/2020	unknown	М	44y	unknown
hCoV-19/Brazil/RJ- 2812/2020	EPI_ISL_467366	NPS	B.1.1	Rio de Janeiro	27/04/2020	20/04/2020	unknown	М	38y	unknown
hCoV-19/Brazil/RJ- 2822/2020	EPI_ISL_467367	NPS	B.1.1.BR	Niteroi	27/04/2020	23/04/2020	unknown	М	62y	inpatient
hCoV-19/Brazil/RJ- 2840/2020	EPI_ISL_467368	NPS	B.1.1.BR	Rio de Janeiro	28/04/2020	25/04/2020	unknown	М	36y	unknown
hCoV-19/Brazil/RJ- 2844/2020	EPI_ISL_467369	NPS	B.1.1.BR	Rio de Janeiro	28/04/2020	24/04/2020	unknown	F	29y	outpatient
hCoV-19/Brazil/RJ- 2847/2020	EPI_ISL_467370	NPS	B.1.1.BR	Rio de Janeiro	28/04/2020	22/04/2020	unknown	F	35y	unknown
hCoV-19/Brazil/RJ- 2868/2020	EPI_ISL_467371	NPS	B.1.1.BR	Rio de Janeiro	28/04/2020	25/04/2020	unknown	F	49y	unknown
hCoV-19/Brazil/AP- 161167-IEC/2020	EPI_ISL_450873	Sputum	B.1.1.BR	Масара	17/03/2020	12/03/2020	No	F	36y	unknown
hCoV-19/Brazil/PA- 161548-IEC/2020	EPI_ISL_450874	NPS	B.1.1.BR	Maraba	20/03/2020	16/03/2020	Sao Paulo	F	28y	unknown
hCoV-19/Brazil/AP- 162741-IFC/2020	EPI_ISL_458138	Sputum	B.1.1.BR	Масара	03/04/2020	02/04/2020	unknown	F	37у	unknown
hCoV-19/Brazil/AC-	EPI_ISL_458139	NPS	B.1.1.BR	Rio Branco	18/03/2020	15/03/2020	No	М	81y	unknown
hCoV-19/Brazil/PA-	EPI_ISL_458140	NPS	B.1.1	Belem	07/04/2020	06/04/2020	No	М	63y	inpatient
hCoV-19/Brazil/PA-	EPI_ISL_458141	NPS	B.1.1	Ananindeua	26/04/2020	24/04/2020	No	М	38y	outpatient
hCoV-19/Brazil/AP-	EPI_ISL_458142	NPS	B.1.1.BR	Масара	05/04/2020	05/04/2020	No	F	37у	unknown
hCoV-19/Brazil/AP-	EPI_ISL_458143	Sputum	B.1.1.BR	Масара	15/04/2020	13/04/2020	unknown	М	44y	unknown
hCoV-19/Brazil/AP-	EPI_ISL_458144	Sputum	B.1.1.BR	Масара	15/04/2020	12/04/2020	unknown	М	44y	unknown
163972-IEC/2020 hCoV-19/Brazil/AP-	EPI_ISL_458145	Sputum	B.1.1.BR	Масара	20/04/2020	28/04/2020	unknown	F	62y	unknown
164346-IEC/2020										

hCoV-19/Brazil/PA-	EPI_ISL_458146	NPS	B.1.1	Ananindeua	23/04/2020	20/04/2020	unknown	F	38y	unknown
164173-IEC/2020										
hCoV-19/Brazil/PA-	EPI_ISL_458147	NPS	B.1.1	Belem	24/04/2020	unknown	unknown	Μ	45y	unknown
164218-IEC/2020										
hCoV-19/Brazil/PA-	EPI_ISL_458148	NPS	B.1.1.BR	Belem	27/04/2020	26/04/2020	no	Μ	38y	unknown
164684-IEC/2020										
hCoV-19/Brazil/MA-	EPI_ISL_458149	NPS	B.1.1.BR	Sao Luis	06/04/2020	unknown	unknown	F	40y	unknown
163069-IEC/2020										

NPS, Nasopharyngeal swab

1 Supplementary Table 2. Prevalence of SARS-CoV-2 lineages B.1.1.EU/BR and B.1.1.BR across

2 countries.

Region	Country	Total SARS-Cov-2	Lineage B.1.1.EU/BR	Lineage B.1.1.BR
South America	Brazil	170	10 (6%)	74 (44%)
	Argentina	29	-	4 (14%)
	Chile	153	-	7 (5%)
	Uruguay	45	-	1 (2%)
North America	Canada	227	-	1 (<1%)
	US	7,605	-	10 (<1%)
Oceania	Australia	1,899	1 (<1%)	4 (<1%)
Europe	United Kingdom	18,391	4 (<1%)	1 (<1%)
	Switzerland	325	4 (1%)	-
	Netherlands	840	2 (<1%)	-

3

4 Supplementary Table 3. Prevalence of SARS-CoV-2 lineages B.1.1.EU/BR and B.1.1.BR across

5 Brazilian states.

State	Total SARS-Cov-2	Lineage B.1.1.EU/BR	Lineage B.1.1.BR
Rio de Janeiro	77	-	59 (76%)
Minas Gerais	45	9 (20%)*	-
Sao Paulo	18	-	-
Distrito Federal	7	1 (14%)	5 (71%)
Amapa	6	-	6 (100%)
Para	6	-	2 (33%)
Others	11	-	2 (18%)
Total	170	10 (6%)	74 (44%)

6 * Sequences CV34 and CV45 harbor the substitution T29148C, but displayed an ambiguous
7 nucleotide at position 27299, hence assigned to lineage B.1.1.EU/BR.

8

9

10	Supplementary	Table 4. Phylogeny-trait association tests to assess phylogeographic structure of
11	the dataset	

Metric		Data		Nı	ıll hypotl	nesis	p value	
	mean	lower 95%	upper 95%	mea n	lower 95%	upper 95%		
		CI	CI		CI	CI		
AI	4.15	3.13	5.15	6.79	6.28	7.29	0.000	
PS	30.74	29.00	32.00	37.9 9	37.07	38.47	0.000	
MC (Argentina)	2.98	3.00	3.00	1.03	1.00	1.07	0.001	
MC (Australia)	1.06	1.00	2.00	1.05	1.00	1.14	1.000	
MC (Brazil)	9.41	6.00	15.00	6.18	5.34	7.10	0.007	
MC (Canada)	1.00	1.00	1.00	1.00	1.00	1.00	1.000	
MC (Chile)	1.13	1.00	2.00	1.11	1.02	1.28	1.000	
MC (Europe)	2.88	2.00	4.00	1.26	1.09	1.82	0.001	
MC (USA)	1.25	1.00	2.00	1.22	1.06	1.70	1.000	
MC (Uruguay)	1.00	1.00	1.00	1.00	1.00	1.00	1.000	

12 AI - Association index; PS - Parsimony score; MC - Monophyletic clade

13

14 **Supplementary Table 5.** GISAID acknowledgment table of South America SARS-CoV-2

15 genomes.

16

17 **Supplementary Table 6.** GISAID acknowledgment table of Global SARS-CoV-2 genomes

18 B.1.1 lineage.