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Abstract

Background: The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the
notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of
Brachyury, but little is known about Brachyury targets in the mouse.

Methodology/Principal Findings: Here we use chromatin immunoprecipitation and mouse promoter microarrays to
identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are
enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that
direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2,
Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury
targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 59-
TCACACCT-39 in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)n repeat sequence, which
is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence,
but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in
rodents.

Conclusions/Significance: Our work identifies the genomic targets of a key regulator of mesoderm formation in the early
mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to
compare the function of Brachyury in different species.
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Introduction

Brachyury (T) is expressed in the primitive streak, tailbud and

notochord of the early mouse embryo [1,2]. It plays a key role in

early development: mouse embryos lacking functional Brachyury

protein do not gastrulate properly, fail to form a differentiated

notochord, lack structures posterior to somite seven, and have

defects in left-right patterning [3,4,5]. The expression patterns of

the Xenopus [6] and zebrafish [7,8] Brachyury orthologues resemble

those of the mouse, and these genes play similar roles in early

development [8,9,10,11], indicating that Brachyury function has

been conserved throughout evolution.

In an effort to understand how Brachyury exerts its effects, we

have searched for genomic targets of this transcription factor. In

previous work using Xenopus embryos we have used differential

screening approaches to isolate target genes such as eFGF [12],

members of the Bix family [13,14] and Wnt11 [15], while a

chromatin immunoprecipitation-microarray (ChIP-chip) ap-

proach in the zebrafish embryo has allowed us to identify more

than 200 potential targets of No-tail a (Ntla), the orthologue of

Brachyury [16]. In this paper, we apply a ChIP-chip approach to

identify targets of Brachyury during mouse embryonic stem (ES)

cell differentiation. ES cells provide an abundant source of

material as they differentiate towards embryoid bodies (EBs), and

we predict that the identification of Brachyury targets in these

cells will shed light on ES cell differentiation as well as help

identify such targets in the early embryo. This work might also

indicate the extent to which the biological function of Brachyury
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has been conserved in vertebrates and provide information on

how Brachyury binding motifs are disposed within target cis-

regulatory regions.

Our results show that Brachyury targets in differentiating ES

cells are enriched for sequence-specific DNA binding proteins

and components of signal transduction pathways that direct cell

fate in the primitive streak and tailbud of the early embryo.

Interestingly, most binding peaks were not enriched for the

canonical T-box binding site 59-TCACACCT-39 [17,18] but

did contain a repeating AC motif. Amongst the signal

transduction pathway components were regulators of the

WNT and FGF pathways. These include Axin2 (Axil/Conductin),

which encodes a negative regulator of Wnt signalling, as well as

Wnt3a and Fgf8. Significantly, expression of all three genes is

down regulated in homozygous Brachyury mutant embryos and

we show by ChIP-qPCR that these are also genomic targets of

BRACHYURY in differentiating human ES cells. These results

are consistent with work in the zebrafish emphasising the

importance of Wnt and Fgf signal transduction pathway

components as Brachyury targets [16]. In demonstrating that

expression of Axin2 in the early mouse embryo is regulated by

Brachyury as well as by TCF/Lef proteins [19,20,21,22], our

results emphasise the complex interplay between signalling

pathways in the regulation of gene expression in the early

embryo.

Results

ES cell culture
Preliminary experiments demonstrated that our ES cell culture

regime yielded embryoid bodies of uniform size, similar to that of

EBs grown on hydrophobic surfaces [23], and that expression of

Brachyury usually peaked at day 4 of differentiation (Fig. 1).

Immunohistochemical analysis indicated that approximately 15%

of cells in our embryoid bodies express Brachyury (data not

shown).

ChIP-chip and bioinformatic analysis
Binding sites of Brachyury were identified by ChIP-chip

experiments and the closest gene was identified using version

NBI35.1 of the annotated mouse genome (see Material and

Methods). Following filtration, our analysis gave a list of 520

enriched probes representing 396 genes (Table S1). Genomic

quantitative PCR on a selection of genes called as bound or

unbound confirmed that our ChIP-chip approach identified

genuine binding events (Fig. S1).

Brachyury is expressed at its highest levels in the primitive streak

and haematopoietic progenitors at E7.5 to E8.5. Later expression

is restricted to the tailbud and notochord (E12.5), and then to

parts of the brain and tail [2]. Of the Brachyury targets identified

in our embryoid body experiments whose expression patterns are

known, most (63%) are activated during this period of 7.5 to

17.5 dpc of mouse development (Fig. 2A). And of these 250

genes, many are restricted to the primitive streak or its

mesodermal derivatives, with 30% (75 transcripts) expressed

exclusively in the mesoderm (Fig. 2A). In addition to Axin2, Wnt3a

and Fgf8, which are discussed below, genes that have been

reported to be co-expressed with Brachyury include Msgn1, whose

expression is down regulated in Brachyury mutants [24], Meis1 [25]

Trim 28 [26] and Zic2 [27], which are expressed in the primitive

streak during gastrulation, Foxa2, present in the node and

notochord [28], and Adam19 (meltrin beta), present in tailbud

mesenchyme [29]. These and other transcripts (see below) are

also co-expressed with Brachyury (or are activated shortly after

Brachyury) in embryoid bodies, and typical profiles of Msgn1, Meis1

and Foxa2 expression are shown in Fig. 2B.

The targets we identify include components of the WNT,

MAPK, JNK, TGF-b, Hedgehog, FGF and G-protein coupled

signal transduction pathways (Table S2). Analysis of the targets

yielded a set of gene ontology (GO) terms consistent with the

function of Brachyury during gastrulation [30].

In particular, cellular component analysis highlights gene

products involved in morphogenesis, cell adhesion and cell

Figure 1. Temporal expression pattern of Brachyury during early ES cell differentiation. The graph shows a quantitative RT-PCR profile
from an embryoid body spinner culture. Brachyury expression is calculated relative to beta actin. Images show undifferentiated R1 cells on mouse
embryo fibroblast feeders at day 0, early blast colonies at day 2, and embryoid bodies at days 3, 4 (when they are cross-linked) and 5.
doi:10.1371/journal.pone.0033346.g001
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polarity. Targets such as Gdf5, Lmx1b and Dlx5 are involved in

morphogenesis (Fig. S2A: GO:0048598; P,1026), Gabra1, Gfra3

and Cbln3 are involved in anchoring the plasma membrane to

cytoskeletal proteins (Fig. S2B: GO:0030054; P = 161023) and

others encode proteins involved in cell adhesion, such as the

glycosyltransferases B4galnt2 and Cml4/Nat8. This last observation

is consistent with data showing that glycosyltransferases, and

especially galactotransferases, are mis-expressed in T/T mutant

mice [31], that the extracellular matrix is reduced in such embryos

[32], and that cells have fewer cytoplasmic processes, especially in

the somites and mesenchyme [32]. Significantly, over-expression

of Cml4, or its Xenopus orthologue Camello (Xcml), inhibits

gastrulation in Xenopus [33].

Interestingly, another group of targets is associated with germ

cells (Table S3), including Asap1 (Ddef1), which encodes an ADP-

ribosylation factor GTPase-activating protein implicated in

metastatic prostate cancer [34], and also the Wilms’ tumour gene

WT1 [35].

Transcription factor targets
Of the 396 genes identified as potential targets of Brachyury,

53 (13.4%) are transcription factors (Table S4), and indeed gene

ontology analysis demonstrates significant enrichment for

sequence-specific DNA binding proteins (Fig. S2C

GO:0043565, p,1025). Several families of transcription factors

are represented, including the Ets, paired box, homeobox,

winged helix/forkhead, bZip and zinc finger families. Under our

ES cell culture conditions, expression of many of these

transcription factors peaks either at the same time as Brachyury

(Foxa2, Foxe1) or just afterwards (BapX1, Ebf2, Erg, Hoxa13, Meis1,

Msgn1, Nkx2.6 and Slug) (Fig. 2B). As we discuss below, our data

provide a basis for deciphering the transcription factor genetic

regulatory network underlying mesoderm formation in ES cells

and in the embryo.

T-box protein binding motifs
Previous work indicates that Brachyury interacts with the

sequence 59-TCACACCT-39 [16,36,37,38]. To our surprise,

neither nested MICA nor RSAT identified this motif as

significantly enriched in the DNA sequences selected in our

experiments. Rather, both packages identified enrichment of the

simple sequence repeat (AC)n (Fig. S3A). However, although it was

not enriched, we did observe that several regulatory regions

contain a sequence resembling a T-box site (in which 1 to 3

nucleotides differ from the consensus) close to an AC repeat. These

genes include Axin2, Ctnnb1/b-catenin, Erg, Etv1, Fgf8, Fev, Foxa2,

Foxe1, Fyb, Id4,Meis1, and Hoxa3 where the T-box like sites may be

positioned either 59 or 39 to the repeat sequence.

To assess the significance of these observations we first

performed electrophoretic mobility shift assays (Fig. S3B). As

expected, the T-domain of mouse Brachyury binds the canonical

TCACACCT sequence, binding can be competed by unlabelled

oligonucleotide, and the complex can be ‘super-shifted’ by a

Brachyury antibody. The (AC)n repeat motif also forms a

complex with Brachyury, but although the complex can also be

‘supershifted’, unlabelled oligonucleotide competes very poorly.

Finally, when both motifs are present in the radiolabelled

oligonucleotide, competition using an excess of cold oligonucle-

otide in which just the T-box site is mutated is poor, and so is

competition in which just the (AC)n region is mutated. Together,

these observations indicate that the (AC)n sequence interacts only

weakly with Brachyury, if at all, and that its role may be

restricted to stabilizing binding to an adjacent or even a distant

T box site.

If true, such a role is likely to be restricted to rodent species.

Our dataset contains 111 peaks with associated AC repeats

longer than eight nucleotides (Table S5). Comparison with rat,

human, zebrafish and Xenopus genomes shows that 38 of these

AC-rich regions are unique to the mouse while 68 are also

present in the rat. Sixteen of the AC repeats are present in the

human genome, of which 11 are also present in rat. However,

none of the repeats are conserved in zebrafish or Xenopus

(Table S5).

Axin2 and Wnt3a as targets of Brachyury
Amongst the identified Brachyury targets are many genes

encoding positive and negative regulators of the Wnt signalling

pathway (Fig. 3A). Enrichment peaks in the promoter regions of

Dkk1, Ctnnb1/b-catenin, Dvl3, and c-catenin/Jup show Brachyury

binding (Fig. 3B, C, D and E) and also reveal the presence of AC

repeats (green bars) and imperfect T-binding sites (blue bars). Of

these Wnt-related genes, Wnt3a and Axin2 both show strong

Brachyury binding peaks around their transcription start sites in

our ChIP-chip analyses (Figs. 4A, 5A), and their temporal

expression patterns both resemble that of Brachyury in our

embryoid body system (Figs. 4B, 5B). For Wnt3a, a variant

Brachyury site is positioned close to an AC repeat sequence in the

first intron, and a canonical TCACACCT Brachyury site is

upstream of the transcription start site (Fig. 4A). In the case of

Axin2, a canonical Brachyury site is positioned close to a variant

site and to an AC repeat (Fig. 5A).

To ask whether Brachyury is required for expression of

Wnt3a and Axin2, we crossed mice that are heterozygous for a

Brachyury mutation [39] and assessed expression of the two

genes. In wild-type embryos at E7.5 the expression patterns of

Brachyury, Wnt3a and Axin2 overlap significantly (Fig. S4).

Expression of Wnt3a in Brachyury homozygous mutant embryos

at this stage resembles that in heterozygous and wild type

individuals, as has been reported previously [40], but by E8.5,

when Wnt3a expression is restricted to the primitive streak, its

expression is significantly down regulated in Brachyury mutant

embryos (Fig. 4C,D).

Like Wnt3a, Axin2 is expressed in Brachyury mutant embryos at

7.5 dpc, but this expression is more variable than that of Wnt3a,
and is sometimes reduced or even absent (data not shown). By

E8.5, when Axin2 is expressed in the headfold, tailbud and

primitive streak of wild type embryos, its expression in the

posterior region of Brachyury mutant embryos is very weak or

absent (Fig. 5C,D). Together, these data indicate that Brachyury is

Figure 2. Analysis of Brachyury targets. (A) Pie chart showing the times in development at which Brachyury target gene expression begins in
the mouse embryo (as a percentage of total; n = 396). Most genes (63%) start to be expressed between E7.5, when Brachyury is expressed in the
primitive streak, notochord and tailbud, and E17.5, when expression is restricted to trunk mesenchyme. Of targets showing this temporal expression
pattern, 30% are restricted to mesodermal derivatives, as indicated in the bar chart to the right. Others are expressed in various combinations of
ectoderm, mesoderm and endoderm. (B) Temporal expression of transcription factor targets of Brachyury during ES cell differentiation in spinner
culture, obtained by RT-PCR. The three panels in the top row were taken from a batch of cells in which Brachyury expression peaked at day 4 of
culture; the rest were taken from a batch in which Brachyury expression peaked at day 3. All show means of triplicate measurements and are
normalised to levels of beta actin. Foxa2 and Foxe1 in the top row peak with Brachyury at day 4; genes in the lower panel peak later than Brachyury.
doi:10.1371/journal.pone.0033346.g002
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Figure 3. Components of the Wnt pathway as Brachyury targets. (A) The Wnt signalling pathway. Arrows indicate positive interactions and
bars represent negative interactions. Targets identified in this study are outlined in bold. (B–E) Brachyury binding in genomic regions around Dkk1
(B); Ctnnb1/b-catenin (C); Dvl3 (D); and c-Catenin/jup/plakoglobin (E). Each target shows fold enrichment against chromosomal position. Blue bars
represent the T box-like site TSACANNT (N= any base, S =G/C) and green bars represent (AC)n. Stars above bars represent sequence on the reverse
strand. Plots are average of triplicate chip results, aligned to the mm8 Feb. 2006 assembly.
doi:10.1371/journal.pone.0033346.g003

Figure 4. Analysis of Wnt3a, a positive regulator of the Wnt pathway. (A) Location analysis of Wnt3a. The figure (and Figs. 5, 6) shows fold
enrichment against chromosomal position. Plot is the mean of triplicate chip results, aligned to the mm8 Feb. 2006 assembly. Blue bars represent the
T box-like site TSACANNT (N= any base, S =G/C); green bars represent (AC)n; red bars the consensus TCACACCT. Stars above bars represent sequence
on reverse strand. (B) Quantitative RT-PCR expression profile forWnt3a during ES cell differentiation, expressed relative to beta actin. (C, D) Expression
of Wnt3a studied by in situ hybridisation; in each, the top image shows a dorsal view, and the bottom image a lateral view. (C) Phenotypically wild
type (+/+ or +/T) embryo at E8.5–8.75, and (D) a mutant (T/T) embryo from crosses of Brachyury heterozygous mutant mice. Wnt3a expression is
detected with NBT/BCIP (purple) and the insets show a lateral view after double staining for Brachyury detected with INT/BCIP (orange brown). Note
that in the wild type embryo Wnt3a is expressed in tailbud and paraxial mesoderm. In the mutant embryo expression of Wnt3a staining is absent or
greatly reduced (n = 3). Scale bars indicate 250 mm.
doi:10.1371/journal.pone.0033346.g004

Genomic Targets of Brachyury in Mouse ES Cells

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33346



required for the proper expression of Wnt3a and Axin2, which

encode key components of the WNT signalling pathway (see

Discussion).

Fgf8 as a target of Brachyury
A strong Brachyury binding peak was also detected 59 of the

transcription start site of Fgf8 (Fig. 6A), with a variant Brachyury

site (59-TCACAGAT-39; underlined bases differ from consensus)

positioned 63 nucleotides from an (AC)19 repeat. The temporal

expression profile of Fgf8 resembles that of Brachyury during

embryoid body differentiation (Fig. 6B), and the gene is co-

expressed with Brachyury in the primitive streak of embryos at E7.5

and E8.0–E8.25 (Fig. S5; Fig. 6C). Expression of Fgf8 in mutant

Brachyury embryos at E8.0 is greatly reduced (Fig. 6C), indicating

that Brachyury is required for expression of this gene as it is for

Wnt3a and Axin2.

Figure 5. Analysis of Axin2, a negative regulator of the Wnt pathway. (A) Location analysis of Axin2. For details see legend to Fig. 4. (B)
Quantitative RT-PCR expression profile for Axin2 during ES cell differentiation, expressed relative to beta actin. (C, D) Expression of Axin2 studied by in
situ hybridisation; in each, the top image shows a dorsal view, and the bottom image a lateral view. (C) Phenotypically wild type (+/+ or +/T) embryo
at E8.5–8.75 and (D) a mutant (T/T) embryo, both derived from crosses of Brachyury heterozygous mutant mice. Axin2 expression is detected with
NBT/BCIP (purple) and the insets show a lateral view after double staining for Brachyury detected with INT/BCIP (orange brown). Note that in the wild
type embryo Axin2 is expressed in tailbud, paraxial mesoderm and lateral margin of the neural folds. In the mutant embryo expression of Axin2 is
greatly reduced (n = 9). Scale bars are 250 mm.
doi:10.1371/journal.pone.0033346.g005
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Figure 6. Fgf8 as a target of Brachyury. (A) Location analysis of Fgf8. For details of methods see legend to Fig. 4. (B) Quantitative RT-PCR
expression profile for Fgf8 during ES cell differentiation, expressed relative to beta actin. (C) Expression of Fgf8 studied by in situ hybridisation. The
images show a phenotypically wild type (+/+ or +/T) embryo (top pair) and a mutant T/T (bottom pair) embryo derived from crosses of Brachyury
heterozygous mutant mice. The wild type embryo is orientated with anterior to the left and posterior to the right; the mutant is viewed from the
posterior. Fgf8 expression is detected with NBT/BCIP (purple) and Brachyury with INT/BCIP (orange brown). In the wild type embryo Fgf8 is expressed
in the primitive streak and paraxial mesoderm; such expression is absent or greatly reduced in the mutant. Scale bars indicate 200 mm.
doi:10.1371/journal.pone.0033346.g006
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AXIN2, JUP, FGF8 and WNT3A are conserved targets of
BRACHYURY in the human
Because some of the Brachyury targets we discovered in the

mouse were not previously identified in the frog or the zebrafish

[16], we decided to investigate whether these are conserved in

other species, in an attempt to further validate our results. For this

purpose we decided to look for BRACHYURY binding in the

human genome.

We have recently optimised culture conditions that cause

human embryonic stem cells to differentiate into mesoderm-like

cells [41]. These cell populations express BRACHYURY at high

levels and, importantly, they also up regulate other mesoderm

markers, including many of the Brachyury targets we have

identified in the mouse, namely, DKK1, HOXA13, ID4, JUP,

KRT8, MEIS1, MSGN1, SNAI2, and WNT3A.

We therefore made use of this newly developed in vitro
differentiation system to ask if BRACHYURY binds the homologous

human regulatory regions of some key mouse targets: AXIN2, FGF8,
JUP and WNT3A. As in the mouse, these regions contain imperfect

T-binding motifs (data not shown). Our experiments involving ChIP-

qPCR with hESC-derived mesoderm cells indeed detected a strong

enrichment for these sequences, thus indicating that BRACHYURY

binds to the same genomic regions in the human (Fig. 7A).

Interestingly, these promoter sequences seem to be conserved

between the mouse and human genomes, but not in the zebrafish

or in other vertebrates (Fig. 7B) suggesting that these targets might

be unique to mammals.

Discussion

We have identified genomic targets of Brachyury in differen-

tiating mouse ES cells, demonstrating that embryoid bodies

provide sufficient material for chromatin immunoprecipitation

experiments and that they represent an effective model of early

mouse development. Although they do not undergo proper

morphogenesis, they do generate pattern, as illustrated by the

formation of beating cardiomyocytes [42]. The embryoid bodies

produced in our experiments form cardiomyocytes after eight to

ten days in culture, close to the time at which the heart tube forms

during normal development. As discussed below, at least three

Brachyury targets (Wnt3a, Axin2 and Fgf8) are expressed in the

early mouse embryo during formation of the primitive streak, and

their proper expression during development requires Brachyury

function. We also note that several targets are expressed in

primordial germ cells, perhaps the first differentiated population to

emerge during early gastrulation [43,44,45]. These cells express

Brachyury until E12.5, when the gene is down regulated in a non-

migrating population [46,47]. Although Brachyury may not be

involved directly in the specification of the germ cells [48,49] it

may regulate their migration and their potency.

Classification of Brachyury targets and comparison with
zebrafish and frog
Our work has identified 396 potential targets of Brachyury, and

gene ontology analysis indicates that many of these encode

sequence-specific DNA binding proteins and proteins involved in

cell adhesion and embryonic morphogenesis. Analysis of the

former category will help in the elucidation of the genetic

regulatory network that underlies mesoderm formation (see

below). The latter category includes cell junction proteins and

glycosyltransferases [31], consistent with the finding that the

extracellular matrix of homozygous mutant Brachyury mouse

embryos is poorly developed [32] and that cells have fewer

Figure 7. Conservation of BRACHYURY binding in the human genome. (A) ChIP-qPCR performed on samples from differentiated hECSs
using a specific anti-BRACHYURY IgG and a non-specific control IgG. Graph shows enrichment for regulatory regions of Brachyury targets (AXIN2,
FGF8, JUP, WNT3A) and a negative control region (NCAPD2). Results are expressed relative to input chromatin divided by the enrichment for the non-
specific control antibody. (B) BRACHYURY binding in the human genome. The short red lines below the chromosomal coordinates (hg19) depict the
position of the PCR amplicons relative to the beginning of the human genes (blue). The three bottom tracks show the genome sequence
conservation between human and mouse, zebrafish and vertebrate genomes (Genome Browser, http://genome.ucsc.edu/).
doi:10.1371/journal.pone.0033346.g007
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cytoplasmic processes, both of which may contribute to the failure

of mutant cells to move out of the primitive streak and to the

failure of elongation of the antero-posterior axis [30]. Amongst the

other genes regulated by Brachyury are those encoding cytokines

and components of signal transduction pathways, and in most of

these respects our results are reminiscent of those obtained in

similar experiments using the zebrafish embryo [16].

It is significant that embryoid bodies resemble developing

embryos in this way, and it is also important to note the overlap

between the Brachyury targets identified in this study and the Ntl

targets identified in the zebrafish [16]. Both studies identified

transcriptional regulators as being enriched, including members of

the homeobox, winged helix, paired box, zinc finger and odd-

paired families. There are also similarities in the functions of genes

regulated by the two orthologues. These functions include

gastrulation (where the zebrafish study identified wnt11, snail1a

and blf and this analysisWnt3a, Snail2 and genes such as Gdf5, Etv1,

Krt5, Krt8, Lmx1b, Syk, and Gnaq); muscle specification (where both

studies identified Msgn1 and Pax3); posterior identity (where the

zebrafish study identified fgfr4, fgfr28, vent, vox, and notch3 and this

analysis Fgf8 [50]) and left-right patterning (zebrafish genes include

cx43.4 [51] and our mouse targets Rttn [52], Fgf8 [53], and

cytoplasmic dyneins Dync1li1, Dync2li1 [54] and Dpcd [55]).

The fact that there are some differences between the mouse and

zebrafish targets may derive from the presence of an additional

Brachyury gene in the zebrafish genome [8] or from the ‘sharing’ of

gene function between different T box family members. For

example, the Bix genes were identified as targets of Brachyury and

VegT in Xenopus [13,14], but their mouse ortholog Mixl1 seems to

be regulated mainly by Eomesodermin [56,57]. Furthermore, as

illustrated in Fig. 7B, some regulatory sequences of mammalian

genes (Axin2, Fgf8, Jup and Wnt3a) share little homology with those

of their zebrafish orthologues. It is possible that Brachyury binds

different locations in different genomes, which has been noted for

other transcription factors [58], despite target conservation. It is

also likely that Brachyury binds not only to promoters near the

gene transcription start site but also to distant enhancers [59],

which is indeed the case in the human genome (T. Faial et al., in

preparation). We note that both the mouse and zebrafish arrays

were based on promoter regions, so that enhancer binding is not

available in these datasets, perhaps explaining why some targets

seem to be unique to each species.

Canonical and non-canonical T-box binding sites
Our previous work searching for targets of zebrafish Ntl showed

that the canonical T-box site TCACACCT was enriched in the

vicinity of Ntl target genes [16]. A significant enrichment of this

motif was not observed in the present experiments for the majority

of targets. Rather, we identified a novel (AC) n repeat sequence

that recognised, albeit weakly, the Brachyury T domain in

electrophoretic mobility shift experiments. We do not yet fully

understand the significance of this observation. Mouse Brachyury

binds to an imperfect T-box site palindrome in the Nanog promoter

[60], but no other Brachyury target has been characterised in any

detail in this species. It is possible that mouse Brachyury resembles

Drosophila Brachyenteron, where modular variations on the T-box

consensus binding sequence determine the degree of transcrip-

tional activation [61]. A similar system controls notochord

formation in Ciona, with regulatory motifs comprising Ci-

Brachyury and Ci-foxA binding sites [62].

Moreover, many transcription factors bind directly to DNA in

distal enhancer elements [59], and are then linked to the promoter

region by chromatin looping, allowing interaction with other

proteins involved in transcription regulation [59]. It is likely that in

some mouse targets, canonical Brachyury binding motifs are not

present in the promoter region but rather in upstream or

downstream regulatory regions. Our results show that this does

occur in the human genome (T. Faial et al., in preparation).

It is also possible that the AC repeats cause the transient

formation of left handed DNA helices and bends, changing the

chromatin architecture and encouraging transcription factor

binding [63]. Brachyury may be an example of a protein with a

secondary recognition motif [64] and that the presence of both an

AC repeat and a TCACACCT sequence allows stable binding

that cannot be competed by an excess of just the TCACACCT

sequence (Fig. S3B). Repetitive sequences may also function as

pre-sites; that is, as regions of DNA that are predisposed to evolve

into new regulatory sequences [65].

Brachyury modulation of Wnt and Fgf signalling
Several components of the Wnt signal transduction pathway

were identified as Ntl targets in the zebrafish, and we find that the

same is true for Brachyury in the mouse. In an effort to determine

whether Brachyury regulates expression of these potential targets

during normal mouse development we asked whether Wnt3a and

Axin2 are expressed normally in Brachyury homozygous mutant

embryos, and found that although both genes are expressed at

E7.5 (albeit rather variably in the case of Axin2), neither is

expressed at E8.5 in mesodermal derivatives (Figs. 4, 5). This

suggests that Brachyury is not required for the initial activation of

Wnt3a or Axin2, but is needed for maintenance of their expression.

Together with the observation that Wnt3a maintains Brachyury

expression in the early mouse embryo via TCF/Lef signalling

[20,21], and that Axin2 is down regulated in Wnt3a mutants [66],

our data indicate that Brachyury and Wnt signalling cooperate to

create a regulatory network that specifies the formation of

posterior mesoderm in the mouse embryo.

Part of this network may involve Fgf signalling. Brachyury and

Fgf signalling form part of an autoregulatory loop in Xenopus and

zebrafish embryos [67,68,69,70], and we note that Fgf8 is a target

of Brachyury in embryoid bodies, and that its expression is down

regulated in Brachyury mutant embryos (Fig. 6).

Finally, our work reveals that the promoter regions of AXIN2,

FGF8 and WNT3A are also bound by BRACHYURY (Fig. 7A) in

human ES cells as they differentiate into mesoderm-like cells [41].

These results further substantiate the identity of these genes as bona

fide Brachyury targets and suggest that the regulation of these key

signalling components is conserved during human development.

Making a genetic regulatory network for mesoderm
Attempts to understand the Brachyury genetic regulatory

network are important not only because Brachyury is required

for proper formation of mesoderm in the vertebrate embryo, but

because it is sufficient for the formation of some mesodermal cell

types, at least in Xenopus [71]. The identification of new Brachyury

targets will enable the integration of Brachyury with other

components of genetic regulatory networks that include it, such

as the Ets family member Elk-1 and the caudal homologue, Cdx2

[72] and to ask to what extent such networks have been conserved

during evolution.

Materials and Methods

Ethics statement
Animal procedures were performed under a UK Home Office

project license within the conditions of the Animals (Scientific

Procedures) Act 1986.
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Mouse ESC culture
Embryonic stem (ES) cell culture was as described [73] except

that mitotically inactivated primary mouse embryonic fibroblasts

(MEFs) were used as feeders. Culture dishes were coated with

0.1% gelatin (Sigma-Aldrich). MEFs and ES cells were maintained

in DMEM (Sigma-Aldrich) supplemented with 0.1 mM b-

mercaptoethanol, non-essential amino acids (Gibco Invitrogen),

2 mM glutamate (Gibco Invitrogen), and batch-tested 10%

(MEFs) or 15% (ES cells) foetal bovine serum (FBS) (Gibco

Invitrogen). ES cell medium was also supplemented with

Leukaemia Inhibitory Factor (LIF) (ESGROH, Millipore) at 103

units/ml [74]. Early passage R1 mouse ES cells [75] were

passaged every 2 days and medium was changed daily to prevent

differentiation.

ES cells were differentiated in spinner flasks to produce large

numbers of embryoid bodies (EBs) undergoing synchronized

differentiation [76,77]. The Cellspin culture system (Integra

Biosciences) was set at 25 rpm and spin angle 720u so as to avoid

aggregation of EBs. Spinner medium was prepared as above, but

with LIF omitted and FBS increased to 20%. On day 0, adherent

log phase ES cell colonies were dissociated and resuspended in

10 ml spinner medium. Feeder cells were depleted by differential

sedimentation at 37uC for 20 min.

Medium (45 ml) was pre-equilibrated in 100 ml silicon-coated

(Sigmacote, Sigma-Aldrich) spinner flasks (Integra Biosciences). ES

cells were recovered from the gelatin-coated differential sedimen-

tation plates and centrifuged at 800 g for 5 min. Cells were fully

dissociated to ensure that cultures were initiated from single cells,

and each spinner flask was inoculated with 107 cells in 5 ml

medium. After 24 h (day 1 of differentiation) a further 50 ml

spinner medium was added to each flask. Each day thereafter EBs

were allowed to sink and 50 ml medium was aspirated and

replaced with 50 ml fresh pre-warmed spinner medium.

Human ESC culture
Human ESCs (H9 [WiCell, Madison, WI]) were maintained

and differentiated as previously described [41]. Briefly, hESCs

were induced to express BRACHYURY by culturing them in a

chemically defined medium (CDM) supplemented with FGF2

(20 ng/ml), LY294002 (10 mM) and BMP4 (10 ng/ml) (termed

FLyB medium). Cells were collected for ChIP after 36 h of culture

in FLyB medium, when BRACHYURY expression peaked.

Quantitative RT-PCR
Gene expression was analysed by real-time RT-PCR. RNA was

isolated from differentiated EBs using Tri-Reagent LS (Sigma-

Aldrich), digested with DNA-free DNAse I (Ambion), and checked

for integrity using an Agilent Technologies 2100 Bioanalyser.

cDNA was generated from l mg RNA using Superscript III Reverse

Transcriptase (Invitrogen, Life Technologies), and this was followed

by real-time PCR using the LightCycler 480 SYBR Green I master

kit (Roche). Mouse beta actin primers were used as an endogenous

control to express relative expression levels (Table S6).

Antibodies
Several anti-Brachyury antibodies were tested for use in this

work. Of these, the goat polyclonal C19 antibody (SC-17745,

Santa Cruz Biotechnology), raised against a C-terminal sequence

of human Brachyury, performed best in chromatin immunopre-

cipitation. This antibody, raised against a divergent region of

Brachyury that does not include the T box, has been well

characterised in previous studies [78,79,80]. It gave the expected

pattern of staining in early mouse embryos (Fig. S6A,B) and

recognised Brachyury protein (of the correct size) in immunopre-

cipitation experiments followed by western blots (Fig. S6C). Such

experiments failed to detect Brachyury in ES cells in which

Brachyury expression was inhibited by use of ShRNA constructs

(Fig. S6D,E).

Whole-mount in situ hybridization
Wild type mouse embryos were collected from MF1 or 129

strains, and Brachyury mutant embryos from BTBR T+tT/

J6BTBR T+tT/J heterozygote crosses [39]. Embryos were fixed

overnight in 4% paraformaldehyde in phosphate-buffered saline

(PBS), after which they were dehydrated and stored in 100%

methanol at 220uC. The mouse Brachyury coding sequence was

subcloned into pCS2+ and used to generate a probe. An Axin2
probe was generated from IMAGE clone 1361800 (Geneservice), a

Wnt3a probe from IMAGE clone pENTR223.1 100015989 after

subcloning into pCS2+ (Table S7), and an Fgf8 probe from

IMAGE clone 6513131 (Geneservice) in pCMV-SPORT 6.1.

Digoxigenin labelled or fluorescein labelled antisense RNA probes

were generated using T7 RNA polymerase from linearised

templates and whole mount in situ hybridisation was performed

as described [81]. Alkaline phosphatase was detected using (i) BM

purple; (ii) 2-[4-iodophenyl]-3-[4-nitrophenyl]-5- phenyltetrazo-

lium chloride (250 mg/ml) plus magenta phosphate (250 mg/ml)

(INT/Mag); or (iii) nitro blue tetrazolium (175 mg/ml) plus 5-

bromo-4-chloro-3-indolyl phosphate (337.5 mg/ml) (NBT/BCIP)

(Roche). These gave dark blue, orange brown or purple staining

respectively. A final concentration of 5% polyvinyl alcohol (Sigma-

Aldrich) was used in the staining reaction.

Whole-mount immunohistochemistry
Embryos were fixed as described above and rehydrated to PBS

for staining. Free aldehyde groups were blocked using 1 M

glycine, embryos were washed in PBS/0.1% Tween 20 (PBST),

and endogenous peroxidases were blocked using 3% hydrogen

peroxide in PBS. Embryos were incubated overnight at 4uC in

1:400 C19 antibody in PBST supplemented with 0.2% bovine

serum albumin (BSA) and 10% heat inactivated FBS. They were

then washed, incubated with 1:400 rabbit anti-goat biotinylated

IgG (E0466, Dako), and stained using Vectastain Elite ABC

substrate (Vector laboratories) with Sigma Fast Nickel Enhanced

DAB chromagen (Sigma).

In vitro translation and western blotting
Brachyury mRNA was synthesized using the pCS2+ construct

described above and the Ambion mMessage mMachine (Applied

Biosystems/Ambion). mRNA was translated in a rabbit reticulo-

cyte lysate (Promega). In vitro translation products and embryoid

body extracts were subjected to polyacrylamide gel electrophoresis

(PAGE) and western blots were performed using CAPS transfer

buffer (10 mM CAPS pH 11, 10% Methanol). Membranes were

blocked with 5% milk powder in PBST overnight, and antibodies

were diluted in the same solution. Washes were in PBST. Primary

antibodies were R&D Systems anti-T and SantaCruz anti-T (see

above). Both were used at a dilution of 1:250. Secondary

antibodies were HRP-linked SantaCruz D anti-goat IgG

(1:20,000) and HRP-linked Amersham NA934V anti-rabbit IgG

(1:100,000). All antibody incubations were 1 hour at room

temperature. Both endogenous and in vitro translated T proteins

were immunoprecipitated for western blotting using the Santacruz

Exactacruz D anti-goat system (SC-45041, Santa Cruz) to avoid

detection of heavy and light chains of the IP antibody. Detection

used the Pierce Supersignal West Dura Extended Duration

Substrate (Thermo Scientific).
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Chromatin immunoprecipitation (mouse ESCs)
Chromatin immunoprecipitation/location analysis was based

on the Agilent Mammalian ChIP-chip Protocol, incorporating the

Whole Genome Amplification GenomePlex Kit (Sigma) [82].

Intact EBs (1.56109 cells) were fixed in 1 M formaldehyde for

20 min when Brachyury expression was at its highest level (usually

after 4 days of differentiation). This was followed by quenching

and isolation of nuclei. Our protocol differs from a previously-

published procedure [83] in that EBs are not disrupted before

fixation. Nuclei were sonicated using a Misonix 3000 ultrasoni-

cator to create fragments of 500 bp, and these were immunopre-

cipitated using polyclonal goat anti-Brachyury C-19 (Santa Cruz

Biotechnology) or normal goat IgG (Santa Cruz Biotechnology) as

an isotype control. Following washing and elution steps, cross-links

were reversed overnight at 65uC. Samples were analysed by

promoter-specific primers or amplified by GenomePlex whole

genome amplification for microarray studies.

Chromatin immunoprecipitation (human ESCs)
ChIP was performed as previously described [83] with some

modifications. Briefly, H9 hESCs (one confluent 10 cm dish) were

collected after 36 hr of culture in FLyB medium [41], when

BRACHYURY expression peaked. Cells were fixed as described

[83], the nuclei were isolated and sonicated using a Misonix 4000

to obtain DNA fragments of around 1000 bp. Samples were

incubated at 4uC overnight using 10 mg of an anti-BRACHYURY

goat IgG (R&D systems) and with10 mg of a non-specific goat IgG

as a control. The chromatin was immunoprecipitated by adding

100 ml of Protein G Dynabeads (Invitrogen), then incubating at

4uC 1 h, and collecting the beads using a magnetic rack. After

washing the beads, the chromatin was eluted and the crosslinking

was reversed at 65uC overnight. Samples were then treated with

RNAse and Proteinase K and the DNA was extracted by phenol/

chloroform, ethanol-precipitated and finally eluted in nuclease-free

water. This experiment was repeated three times with similar

results.

Verification of target enrichment was performed on a selection

of targets using genomic quantitative PCR. DNA fragments were

amplified using Fast SYBRH Green Master Mix (Applied

Biosystems) according to manufacturers instructions on a 7500

Fast Real-Time PCR System (Applied Biosystems). Promoter

specific primers (Table S8) were designed to amplify the

homologous regions of mouse T-binding sites (AXIN2, FGF8,

JUP and WNT3A). NCAPD2 was used as a negative control gene.

Microarray hybridization, analysis and verification of
binding targets
Agilent Technologies mouse promoter 244K (G4490A) 60-mer

oligonucleotide arrays (‘‘chips’’) covering 17,000 mouse genes and

extending 5.5 kb upstream and 2.5 kb downstream of transcrip-

tional start sites were hybridized with 5 mg amplified chromatin

per sample. Arrays were annotated to NBI35.1 of the mouse

genome. Immunoprecipitated (or isotype control) and total input

samples were labelled with Cy5 or Cy3 respectively. Hybridiza-

tions were performed and analysed in triplicate using indepen-

dently differentiated cultures. The isotype control experiment was

performed once to confirm no significant enrichment over input

chromatin (data not shown).

Microarrays were scanned using an Agilent scanner to a

resolution of 5 mm. Data were extracted using Agilent G2567AA

Feature Extraction Software (v.9.1). The significance of binding

events was determined using Agilent Chip Analytics 1.3 software.

Initial analysis was done using Chip Analytics defaults settings and

then further filtered using the parameters P(x) ,0.01 and P(x)

,0.005. The confidence of binding calls is represented as a P-

value: P(x) defines the value for each probe, and P(x) uses the

intensities of neighbouring probes to assess peak shape, in an effort

to eliminate false positives. Original raw data files can be accessed

from GEO Gene Expression Omnibus http://www.ncbi.nlm.nih.

gov/geo (accession GSM417692/GSM417704 for design 1 and 2

Brachyury data; GSM417714/GSM417756 for design 1 and 2

isotype control data).

Verification of enrichment was performed on a selection of

targets using promoter specific genomic quantitative PCR.

Promoter specific primers (Table S8) were designed so as to span

bound peaks using mouse build mm8 promoter sequence retrieved

from the UCSC genome browser (http://genome.ucsc.edu/).

Negative control genes from the list not called as bound were

included. Results were expressed relative to input chromatin

divided by relative enrichment for the isotype control antibody.

Bioinformatic analyses and Motif Finding
The GOToolBox (http://burgundy.cmmt.ubc.ca/GOToolBox/)

[84] was used to access Gene Ontology (GO) resources and to search

for any functional bias in our dataset. The Benjamini and Hochberg

multiple testing correction was applied to assess the significance of

enrichment ratios. Target probes and surrounding promoter

sequences were scanned for the published consensus in vitro T-box

binding motif TCACACCT [17,18] using NestedMICA http://

www.sanger.ac.uk/Software/analysis/nmica/index.shtml [85]. We

also used Regulatory Sequence Analysis Tools (RSAT) http://rsat.

ulb.ac.be/rsat/ [86], to scan each target gene over a region25 kb to

+1 kb relative to its ATG for over-represented cis-regulatory

modules, applying background models and taking promoter

sequences from 400 random mouse promoters as the control set.

Sequences representing enriched motifs were then stacked into

positional weight matrices and converted to sequence logos using

WebLogo (http://weblogo.berkeley.edu/logo.cgi) [87].

Electrophoretic mobility shift assays
The T domain of mouse Brachyury was amplified by PCR

(primer sequences in Table S7) and inserted in-frame into the

glutathione-S-transferase (GST) fusion vector pGEX-6P-1. The

fusion protein was expressed in E. coli by isopropyl-b-D-

thiogalactoside induction and purified at 4uC using GSTrap FF

columns and Pre-Scission Protease (GE Healthcare), leaving only a

glycine and a proline residue attached to the protein. This was

concentrated using Amicon Ultra 4 columns (Millipore), and the

identity of the resulting protein was confirmed by SDS PAGE and

mass spectrometry.

Double stranded oligomers containing (i) the core Brachyury

consensus binding sequence TCACACCT, (ii) a simple AC repeat,

or (iii) the core Brachyury sequence together with the AC repeat,

and mutated versions of each, had identical BglII/BamH1 59

overhangs (Table S7). These were PAGE purified, annealed, and

end-labelled with [a-32P] dCTP using Klenow fragment. Unin-

corporated nucleotides were removed using Sephadex G-50

columns (GE Healthcare). Binding reactions were incubated on

ice for 40 minutes in 16 EMSA binding buffer (25 mM HEPES

pH8.0, 100 mM KCl, 1 mM DTT, 0.1% NP-40, 5% glycerol,

10 mM EDTA), 0.5% milk powder and 50 ng/ml dI/dC using

30,000 cpm/ml and 8–10 fmol labelled oligomer. Competition

reactions using 4 pmol cold oligomers were pre-incubated for

10 min on ice. In supershift experiments goat polyclonal anti-

Brachyury N19 antibody (SC-17743, Santa Cruz) was added after

binding and then incubated a further 20 min on ice.
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Supporting Information

Figure S1 Validation of targets. Box plot showing genomic

quantitative PCR of bound promoter regions for targets Axin2,

Foxe1, Mapre2, Nkx2.6, Pax3, Rttn, Van Gogh and the published

target Nanog, and unbound or negative promoter regions Nanog 39,

1700010C24Rik and beta actin. Boxes represent the interquartile

range, the upper edge being the 75th percentile and lower edge the

25th percentile. The whiskers show the minimum and maximum

values. Values above the line are enriched in chromatin

immunoprecipitations. Data were obtained from five independent

chromatin immunoprecipitations. Probes recognising Nanog were

not present on Agilent 244K promoter arrays.

(TIF)

Figure S2 Functional analysis of target genes. Bar charts
show Gene Ontology (GO) annotations for (A) biological process;

(B) cellular component; and (C) molecular function using the

GOToolBox. Horizontal bars represent enrichment ratio (ob-

served frequency/expected frequency) and vertical axis gives the

GO term followed by the GO identification number in brackets

and hierarchy level. Colour bars indicate statistical significance.

GO terms related to the function of Brachyury are highlighted in

red boxes.

(TIF)

Figure S3 Interaction of the mouse Brachyury T domain
with DNA. (A) Sequences surrounding bound probes are

enriched for an (AC)n repeat relative to their genomic neighbours.

The motif was generated using the NestedMICA position weight

matrix. This may represent a secondary Brachyury recognition

motif. (B) Electrophoretic mobility shift assays. Panel a: Binding

reactions using 32P-labelled TCACACCT. Lane 1, no protein;

lane 2, control protein derived from empty vector; lanes 3–6,

mouse T domain protein: lane 4 includes excess unlabelled probe;

lane 5 includes excess unlabelled mutated probe; lane 6 is a

‘supershift’ using anti-T N-19 (SC-17743, Santa Cruz). Notice that

the Brachyury T domain binds the T site oligonucleotide and that

binding is competed by cold wild-type oligonucleotide but not by a

mutated oligonucleotide. Panel b: Lanes 7–9 include 32P-labelled

TCACACCT; lane 10 uses the indicated mutated version of this

oligonucleotide. Note that the Brachyury T domain does not bind

the mutated oligonucleotide. Panel c: Binding reaction using a 32P-

labelled AC repeat oligonucleotide. Lanes 11–13 as panel a; lane

14 includes excess unlabelled probe; lane 15 includes excess of an

unlabelled mutated probe; lane 16 is a ‘supershift’. Notice that the

Brachyury T domain binds the AC repeat oligonucleotide weakly

but that binding does not seem to be competed by cold wild-type

oligonucleotide. The complex however is ‘supershifted’ using the

Brachyury antibody. Panel d: Binding reactions using a 32P

labelled motif that includes both the T site TCACACCT and an

AC repeat. Lanes 17–20 show that Brachyury binds this

oligonucleotide, and that binding is competed by cold wild-type

oligonucleotide. Lanes 21 and 22 show that binding is not

competed significantly by unlabelled oligonucleotides in which

either motif is mutated. Lane 23 shows a ‘supershift’. Experiments

in (a–d) were performed under identical conditions and exposed

for the same times.

(TIF)

Figure S4 The expression domains of Brachyury, Wnt3a

and Axin2 overlap in E7.75 mouse embryos. (A) Expression
of Axin2 analysed using a fluorescein labelled antisense probe

detected with NBT/BCIP (purple). (B) The embryo in (A) analysed

using a digoxigenin labelled antisense Brachyury probe detected

with INT/Mg phosphate (brown). (C) Expression of Wnt3a

analysed using a fluorescein labelled antisense probe detected

with NBT/BCIP (purple). (D) The embryo in (C) analysed using a

digoxigenin labelled antisense Brachyury probe detected with INT/

Mg phosphate (brown). All embryos orientated as in (A). Scale bars

are 200 mm.

(TIF)

Figure S5 The expression domains of Brachyury and

Fgf8 overlap in the primitive streak of E7.75 mouse

embryos. (A). Expression of Fgf8 analysed using a fluorescein

labelled antisense probe detected with NBT/BCIP (purple). (B).

The embryo in (A) analysed using a digoxigenin labelled antisense

Brachyury probe detected with INT/Mg phosphate (brown). Black

bars are 200 mm.

(TIF)

Figure S6 Verification of anti Brachyury antibody. (A)

Immunohistochemistry of E9.5 embryo using Santa Cruz anti-

human T C19 with nickel enhanced DAB substrate. Staining is

present in the notochord (arrowhead), pre-somitic mesoderm

(arrow) and tailbud. Staining was absent in controls in which

primary or secondary antibodies were omitted. (B) Expression of

Brachyury RNA in an E9.5 embryo studied by in situ hybridisation.

Note similarity to (A). Bars in (A) and (B) represent 250 mm. (C)

Western blot testing antibody specificity. Size markers are shown

to the left. Lane 1: Mouse Brachyury reticulocyte lysate translation

product; lane 2: unprogrammed reticulocyte lysate translation

product; lane 3: Immunoprecipitated material derived from

Brachyury reticulocyte lysate translation product; lane 4: Super-

natant of immunoprecipitated material in lane 3; lane 5:

Immunoprecipitated material derived from day 4 embryoid

bodies; lane 6: Supernatant of immunoprecipitated material in

lane 5; lane 7: Immunoprecipitated material derived from day 4

embryoid bodies, having omitted first antibody; lane 8: Superna-

tant of immunoprecipitated material in lane 7. All immunopre-

cipitations used Santa Cruz anti-T C19. Western blots used R&D

Systems anti-T as a primary antibody and SantaCruz D anti-goat

IgG HRP linked secondary antibody. (D) Strategy to create ES cell

clones lacking Brachyury. Clones were created using 65 bp

ShRNA duplexes targeting the first exon of Brachyury (T).

Sequences were inserted into the XhoI/HindIII site of the pSingle

ShRNA vector (Clontech) which includes a tetracyclin-controlled

transcriptional repressor that in turn regulates the expression of

the ShRNA sequence. Selection of stable lines is achieved by

culture in G418 and induction of ShRNA expression occurs

through addition of 1 mg/ml doxycycline. (E) Western blot analysis

of day 5 embryoid body extracts from clones containing ShRNA

constructs targeted to Brachyury exon 1 (T1) or a scrambled version

of this sequence (Ts), either treated with doxycycline (+) or left

untreated (2). Samples were immunoprecipitated as in (C). Note

loss of Brachyury band in lane 3.

(TIF)

Table S1 Full gene list.

(DOC)

Table S2 Targets involved in key signalling pathways.

(DOC)

Table S3 Genes associated with germ cell development.

(DOC)

Table S4 Targets identified as transcription factors.

(DOC)

Table S5 Conservation of AC repeats.

(DOC)
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Table S6 Quantitative PCR primers.
(DOC)

Table S7 In situ hybridisation, T box, and electropho-
retic mobility shift assay primers.
(DOC)

Table S8 Genomic quantitative PCR primers.
(DOC)
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