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Estrogen influences the physiology of many target
tissues in both women and men. The long-term
effects of estrogen are mediated predominantly by
nuclear estrogen receptors (ERs) functioning as
DNA-binding transcription factors. Tissue-specific
responses to estrogen therefore result from regu-
lation of different sets of genes. However, it re-
mains perplexing as to what regulatory sequence
contexts specify distinct genomic responses. First,
this review classifies estrogen response se-
quences in mammalian target genes. Of note,
around one third of known human target genes
associate only indirectly with ER, through interme-
diary transcription factor(s). Then, computational
approaches are presented both for refining direct

ER-binding sites and for formulating hypotheses
regarding the overall genomic expression pattern.
Surprisingly, limited evolutionary conservation of
specific estrogen-responsive sites is observed be-
tween human and mouse. Finally, consideration of
the cellular functions of regulated human genes
suggests links between particular biological roles
and specific types of estrogen response elements,
although with the important caveat that only a re-
stricted set of target genes is available. These
analyses support the view that specific, hormone-
driven gene expression programs can result from
the interplay of environmental and cellular cues with
the distinct types of estrogen-response sequences.
(Molecular Endocrinology 18: 1859–1875, 2004)

ESTROGENS ARE IMPLICATED in a wide variety of
physiological processes that affect multiple tis-

sues in the human body. In particular, this group of
steroid hormones plays important roles in cellular
growth, differentiation, and specific organ functions
(1). Estrogens mediate responses via diffusion through
the plasma membrane and signaling through intracel-
lular hormone-specific estrogen receptors (ERs). Two
distinct types of signaling can be mediated, often re-
ferred to as the genomic and the nongenomic or non-
genotropic pathways. In the genomic pathway, estro-
gens bind the receptor in the nucleus, inducing a
conformational change in the receptors that causes
dissociation from chaperones (2), dimerization, and
activation of the receptor’s transcriptional domain.
The canonical model for ER-mediated regulation of
gene expression involves the direct binding of dimeric
ER to DNA sequences known as estrogen response
elements (EREs), which are specific, inverted palin-
dromic sequences. In addition, ER can indirectly as-
sociate with promoters through protein-protein inter-

actions with other DNA-binding transcription factors
(3, 4). In either case, interaction of ER liganded with
estrogen leads to transcriptional activation of the as-
sociated genes via recruitment of coactivators and
components of the basal transcriptional machinery, as
extensively reviewed elsewhere (5–9). In addition to
the nuclear ERs, plasma membrane-associated ER
mediates the nongenomic signaling pathway (10–13),
which can lead both to cytoplasmic alterations and to
regulation of gene expression (14). The genes regu-
lated directly by estrogen-induced nongenomic path-
ways have not yet been extensively analyzed.

Many recent studies have shown that regulation of
transcription by nuclear ER is more complicated than
the classical paradigm would predict (for reviews see
Refs. 4, 6, 8, 15, and 16). The two nuclear ERs, ER�

and ER�, exhibit distinct transcriptional properties and
can form both homodimers and heterodimers (17–19).
In addition, nuclear ER can regulate gene expression
through sequestration of other DNA-binding proteins
in the nucleoplasm. Typically, estrogen-induced inter-
actions between ER and such transcription factors
prevents binding of the secondary transcriptional ac-
tivators to their responsive promoters, thereby inhib-
iting transcription (20–25). Finally, ERs are regulated
by posttranslational modifications (26–29), which can
alter ER activities even in the absence of estrogen.
Recent, exciting studies point to the specific constel-
lation of coactivators and corepressors and to signal-

Abbreviations: ATF, Activating transcription factor; AP-1,
activator protein 1; CREB, cAMP response element-binding
protein; ER, estrogen receptor; ERE, estrogen-response ele-
ment; NMDA, N-methyl-D-aspartate; SFRE, steroidogenic
factor-response element.
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ing pathways as critical modifiers of the role of ERs in
distinct environments (30, 31). Activities not only of the
ERs, but also of such coregulatory molecules, are
modulated by signaling pathways (31).

To understand the connection between physiologi-
cal and molecular functions of ER, the field requires an
in-depth understanding of the spectrum of genes reg-
ulated in each tissue and cell type. This review will
focus on the current state of knowledge regarding
estrogen response sequences in regulatory regions of
genes directly targeted by nuclear ERs.

ASSOCIATION OF ERs WITH DNA REGULATORY
SEQUENCES: A FUNDAMENTAL MEANS OF
GENE REGULATION IN RESPONSE TO
HORMONE

The first identified transcription regulatory sequences
bound by ER upon ligand activation were 13-bp pal-
indromic response elements. More and more variabil-
ity has subsequently been uncovered among se-
quences with which ERs associate in response to
hormone (4, 32). To categorize and analyze EREs fur-
ther, known, primary, ER-regulated mammalian genes
were compiled (see Tables 1–4). Only mammalian
genes were included, as the ultimate goal was to un-
derstand human physiology, which mammalian genes
are more likely to reflect. Two experimental criteria
were used to identify primary response genes and to
prevent inclusion of secondary response genes (genes
indirectly regulated by estrogen, e.g. they may be
stimulated by a transcription factor the expression of
which is directly activated by ER). Secondary re-
sponse genes would skew analysis of sequence con-
texts. The first criterion was demonstration that a
promoter/enhancer region directly responded to es-
trogen, usually coupled with mutational analyses to
delineate specific sequences that directed this re-
sponsiveness. Generally, these results were obtained
by transient transfection assays in which the promot-
er/enhancer was linked to a reporter gene. The second
criterion was demonstration of in vitro association of
ER with this regulatory region, or in vivo association in
cells through chromatin immunoprecipitation assays.

Given the strict criteria, many genes that are estro-
gen responsive in their expression (33–35), but have
not been demonstrated to be primary target genes or
to directly associate with ER, are not included. In
particular, in cell types that are not readily transfect-
able, the primary and secondary response genes have
not generally been distinguished. With the advance of
chromatin immunoprecipitation methodology to iden-
tify ER-bound regulatory regions, such barriers should
soon be overcome. Nonetheless, the current set of
primary response genes were mainly identified as es-
trogen responsive in breast cancer cells, with only a
few studied in bone (e.g. progesterone receptor, c-fos,
IGF-I; see references in Ref.33), vascular [e.g. vascular

endothelial growth factor, progesterone receptor, c-
fos; (34)], neuronal [oxytocin, N-methyl-D-aspartate
(NMDA) receptor 2D subunit; see references in tables],
or liver cells [low density lipoprotein receptor (36)]. A
number of the genes expressing general housekeep-
ing functions are widely expressed, however, and may
be estrogen responsive in many ER-positive cell types.

In general, the primary, ER-regulated promoter/en-
hancers fall into two major categories (4, 32): those in
which ER directly binds DNA (Tables 1–3) and those in
which ER associates with the regulatory sequences
due to interactions with other DNA-binding proteins
(Table 4).

Estrogen-Response Sequences Containing a
Direct ER-Binding Site

Even among the promoters directly binding ER, the
types of response elements vary widely. The predom-
inant sequence for direct binding is, indeed, palin-
dromic EREs (Table 1). Other enhancers have been
reported to include only half-ERE sites in multiple cop-
ies (Table 2), in which distant half-EREs may cooper-
atively bind ER (37). Alternatively, some of these se-
quences may represent low-affinity, full EREs (see
below). Yet other regulatory regions contain only ex-
tended half-site response elements, tcaaggtca, of the
orphan nuclear hormone receptor steroidogenic factor
1 (SFREs) (Table 2). ER�, but not ER�, is capable of
binding to SFREs (38), presumably due to an ER�-
specific C-terminal extension adjacent to the zinc fin-
ger DNA-binding domain (4). Finally, estrogen respon-
siveness can be driven by a half-ERE site in strict
combination with a nearby Sp1 site, both of which
must be occupied for maximal activation (Table 3).
Gene-regulatory regions can incorporate a combina-
tion of direct ER-interaction sites, such as the TGF�
promoter that contains two full nonconsensus EREs
plus an Sp1-binding site with an adjacent ERE half-
site, all of which are functional in estrogen responsive-
ness (see Tables 1 and 3 for references). It is tempting
to speculate that ER may regulate expression of the
same gene under differing cellular environments
through distinct types of responsive sequences.

Overall, the palindromic ERE binding sequence for
ER is well defined and represents a typical DNA-bind-
ing element for a transcription factor, with variability
permitted to some extent at all positions in the recog-
nition sequence (Fig. 1; shown as a matrix and picto-
gram derived from sequences in Table 1). However,
the rules for binding to half-EREs (with or without
accompanying Sp1 sites) and SFREs are less defined;
less sequence variability in the single half-ERE site
may be tolerated given the already lower affinities of
ER for these half-site(s), and possibly additional pro-
tein interactions may be required in the genomic con-
text for efficient binding. For most classes of mamma-
lian transcription factors, half-binding sites have not
been identified as functional elements; thus, such re-
sponse sites are unusual.
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Biological Relevance of Specific ERE Sequences.
The consensus ERE was initially described based on
the estrogen-responsive sequence in the Xenopus
laevis vitellogenin A2 promoter: 5�-GGTCANNNT-
GACC-3� (39). As is true for most DNA-binding tran-
scription factors, only a fraction of the known mam-
malian estrogen-responsive palindromic EREs reflect
this consensus, instead consisting of variations on this
sequence (Table 1). In a synthetic promoter context, in
which the promoter activity is due mainly to the in-
serted ERE, the affinity of the ER-ERE interaction can
reflect the degree of transcriptional activation by ER
(40, 41). However, within native promoter contexts, the
affinity of ER to the respective ERE is not the major
determinant of the degree of stimulation of the gene by
estrogen. Specifically, upon comparison of reported
induction by different promoters in reporter gene as-
says, no correlation was discernible between the fold
induction and either the degree of similarity of an ERE
to the consensus sequence or the type of direct ER-
binding site [data not shown; (32)]. Furthermore, the
degree to which liganded ER activates any particular
promoter is often cell type dependent. Thus, the over-
all context, including the other transcription factor-
binding sites in the promoter/enhancer, the chromatin
structure of the regulatory region, and the spectrum of
cellular coregulators, is critical for translating the bind-
ing of ER into activation of gene expression.

Despite the potential continuum of simply decreas-
ing affinity of dimeric ER with sites ranging from con-
sensus EREs to half-EREs, the ERE is not only a quan-
titative determinant of the affinity of the interaction, but
also a qualitative determinant of the conformation of
bound ER. Protease digestion patterns and reactivity
to peptide libraries have demonstated highly specific
alterations in the conformation of the receptor when
bound to different response element sequences (40–
44). In fact, different coactivators can interact with ER,
depending on the DNA site to which it is bound (44).
Because each specific direct binding site can act as a

differential allosteric modulator of ER conformation,
the ERE is one determinant of the overall promoter
context, and the specific sequence to which ER binds
could therefore contribute to differential responses to
hormone.

Response Elements in which ER Association with
DNA Is Indirect

Another category of estrogen-responsive DNA se-
quences contain no sequence similarity to the ERE
and do not directly interact with ER. The promoters
that lack any ERE-like sequences require a second
DNA-binding transcription factor to mediate ER asso-
ciation with the DNA, and make up roughly 35% of the
categorized human primary responsive genes (Table
4). In nonhuman mammalian species, known estrogen
response sequences are predominantly direct ER-
binding sites, with 10 of 15 promoters containing a
palindromic ERE element (Table 1) and another three
promoters containing nonpalindromic ER-binding
sites (Tables 2 and 3). Therefore, considering known
response elements, human regulatory regions appear
to be more diverse in the sequences responsible for
estrogen response.

Of the human genes in which indirect binding of ER
can result in estrogen regulation, Sp1 is the predom-
inant mediator, implicated in 12 of 13 known regula-
tory regions (Table 4). In response to estrogenic stim-
ulation, Sp1 binds its site in the estrogen-responsive
DNA-regulatory region, with ER enhancing the binding
of Sp1 to the DNA and contributing to coactivator
recruitment; the DNA-binding domain of ER is dis-
pensable for such activation (for references, see Table
4). Other intermediary factors through which ER can
associate with promoter/enhancers include: activating
transcription factor (ATF)-2/c-jun or ATF-2/cAMP-
response element binding protein (CREB) for the cyclin
D1 gene, ATF-1/CREB for the Bcl2 gene, activator
protein 1 (AP-1) (jun/fos) for the IGF-I gene, and nu-

Table 3. Genes Regulated by ER that Contain Half-ERE Sequences in Proximity to Sp1-Binding Sites

Gene Organism Estrogen-Responsive
Regiona Sp1 Sites and Half-ERE Sequence(s) Ref.

TGF� (also Table 1) Human �625 to �581 cCCCGCCcc 30 bp aGGTAA 88, 89
Cathepsin Db also Table 1 Human �199 to �165c

(multiple TSS)
GGGCA 23 bp GGCGGG 79–81

RAR� Human �82 to �62 GGTGA ttggtcggtg GGCGGG 98
Progesterone receptor (A) Human �565 to �601

(relative to PR B
promoter)

TGACC agc GCCGCC ctcc CCCGCC c 99

Creatine kinase B
(also Table 4)

Rat �568 to �523 ttagggCCCGCCc
aaGGTCAgaaCACCCtg
ggtgcttccgGGCGGGacc

100, 101

Sp1 sites and half-ERE sequences appear in purple in the figures.
a The locations of the estrogen-responsive regions were obtained from the references indicated.
b The human cathespin D gene requires the factor USF for maximal activation by estrogen (62).
c The location of this estrogen-responsive element is listed relative to the translation initiation codon, due to presence of multiple
transcription start sites (TSS).
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clear transcription factor-Y for the mouse E2F1 gene
(Table 4). The DNA recognition sequences for the AP-1
family of transcription factors are related, but not iden-
tical, to those for the ATF/CREB transcription factors.
It has been suggested that AP-1-mediated estrogen-
responsive genes contribute to the tissue-specific re-
sponses to estrogen analogs, via differential activation
of ER� and ER� (45–47). Proof of this hypothesis
awaits demonstration of additional AP-1-dependent
estrogen-responsive genes.

Overall, the ability of ER to associate indirectly with
promoter/enhancers through binding to other tran-
scription factors dramatically expands the set of target
genes capable of responding to estrogen induction
and may also determine how estrogen responsiveness
can be modified in different cellular environments.

Given the wide diversity in EREs, we considered
whether distributions of distances from the transcrip-
tion initiation sites would vary with the type of se-
quence elements. Distances were deduced either from
experimental determinations of the transcription start
sites or, when these values were not available, were
computed using databases of expressed sequence
tag and cDNA sequences (see supplemental Table 2,
published as supplemental data on The Endocrine
Society’s Journals Online web site at http://mend.
endojournals.org, for details and specific values).
Upon plotting such distributions of distances, all are in
fact similar, with binding sites concentrated in the few
hundred bp upstream of the transcription initiation
sites, and more scarce at greater distances (see sup-
plemental Fig. 5, published as supplemental data on
The Endocrine Society’s Journals Online web site at
http://mend.endojournals.org). We note that these dis-
tributions do have potential for bias, in that investiga-
tors may have focused on the immediate upstream

region when searching for functional sites. However,
the presence of a number of distant sites suggests
that the bias may not be overwhelming.

COMPUTATIONAL ANALYSES OF
ER-BINDING ELEMENTS

This compilation of mammalian ER-responsive ele-
ments allowed analysis of the sequence requirements
for transcriptional regulation mediated by direct con-
tact of ER with DNA, to extend known patterns of
sequence requirements. As expected, when ER di-
rectly interacts with the promoter/enhancer, binding to
a full ERE is apparently the dominant mode of inter-
action (Table 1). Of the 27 full EREs listed, all but two
have a 3-bp spacer between the two half-sites, the
exceptions being response elements in the human
TGF� promoter, with a 4-bp spacer, and in the rat LH
B promoter, with a 5-bp spacer. As ER does not sig-
nificantly bind ERE half-sites separated by 2, 4, or 5 bp
in vitro (32), ER may recognize these latter two ele-
ments as single half-sites, or as EREs with a 3-bp
spacer and one extremely degraded half-site. We fa-
vor the latter case, as even half-EREs may actually
represent degenerate full EREs (see below). An alter-
native model, however, is that DNA bending in vivo,
caused by other factors, may allow ER to recognize
such longer spacers (48).

Analysis of the full EREs with a 3-bp spacer indi-
cate possible evolutionary pressure for an ERE to
contain at least one consensus, or perfect, half-site.
Considering the consensus half-site of 5�-ggtca-3�
(or its complement), three of the full EREs with a
3-bp spacer have two perfect half-sites, 15 have one
perfect half-site (oriented in Table 1 with the con-

Fig. 1. Count Matrix and Pictogram Obtained from Alignment of 25 EREs
The optimal alignments of each sequence were determined computationally, as described in the text. In this alignment, some

EREs were reversed relative to the direction shown in Table 1: pS2, lactoferrin, keratin 19, angiotensin, lipocalin 2, cathepsin D,
hepatocyte growth factor, uteroglobin, and oxytocin receptor. The positions in the ERE are labeled from �6 to �7; positions
beyond this to either side did not demonstrate a sequence preference. The numbers in the body of the matrix give the counts of
each nucleotide observed at each position in the alignment. The graphical representation of the ERE count matrix is presented
according to the guidelines at http://genes.mit.edu/pictogram.html.
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sensus half-site on the left), and seven have only
imperfect half-sites (oriented in Table 1 with the
half-site most similar to the consensus on the left).
This indicated slightly more pairings of one perfect
with one imperfect half-site than expected by ran-
domly pairing 21 perfect with 29 imperfect half-
sites. We also observed that the central base pair in
the 3-bp spacer exhibits a striking asymmetry.
When the perfect half-site is aligned on the left, a
G:C generally occupies the central position in the
spacer, generally with the G on the same strand as
the GGTCA.

Sequences of a cis-element are often represented
by a matrix of numbers. The simplest construction is
the count matrix (49), which records counts of the four
nucleotides observed in each position in an alignment
of cis-elements. For palindromic cis-elements (e.g.,
the ERE), the sequences must be aligned without bias,
so as to maintain asymmetric properties. Using a
Gibbs sampling algorithm (50, 51) that includes an
automatic width determination (52), either the direct or
the complementary strand for each ERE with a 3-bp
spacer was optimally aligned. The resulting count ma-
trix and pictogram for the ER recognition sequence are
shown in Fig. 1. As was suggested by manual align-
ment (above), the central spacer position significantly
prefers a G in the orientation shown, as does one
additional spacer position. In agreement with previous
reports (32, 53), an A is also preferred preceding the
ggtca, but only for one of the half-sites (shown here as
a T at the end of the sequence); no preferences are
apparent at more distant positions.

Although some regulatory regions responding to ER
are reported to contain only ERE half-sites, ER� does
not avidly bind individual half-sites in vitro (32). Only at
high concentrations can binding be observed (54, 55).
Thus, binding in vivo could be due either to the pres-
ence of cryptic, full EREs in the regulatory regions, to
highly cooperative binding between two half-EREs
(37), or to cooperative binding with unrelated tran-
scription factors. Using the ERE matrix represented by
Fig. 1 and the matrix comparison algorithm Possum
(http://zlab.bu.edu/�mfrith/possum/), we investigated
whether cryptic full EREs could be identified in regu-
latory regions containing SFREs or multiple ERE half-
sites. Indeed, potential, weak full EREs were discov-
ered overlapping or within the ER-binding regions in
almost all cases. Examples include agctga tcc agaacc
for human c-H-ras1 and agacct cga tgaccc for rat
NMDA receptor 2D subunit (underlined, Table 2). Only
for the regulatory regions of the human NMDA recep-
tor 2D subunit and human ER genes were the pre-
dicted full EREs somewhat questionable (for details of
all predicted sites, see supplemental Table 3, pub-
lished as supplemental data on The Endocrine Soci-
ety’s Journals Online web site at http://mend.
endojournals.org). The relevance of such sequences,
however, remains to be experimentally determined.

Rules for Relative Orientations of ERE Half-Sites
to Sp1-Binding Sites

The primary ER-regulated promoters include five ex-
amples in which interaction of ER with an ERE half-site
is assisted by binding of Sp1 to a nearby GC-rich motif
(Fig. 2). Somewhat unexpectedly, there appears to be
no consistent pattern regarding the relative orienta-
tions or positions of these sites. In most cases, the
sequence ggtca of the half-ERE is on the same strand
as ggcggg of the GC-rich motif, but not in all. The
distance between the sites, as well as the position and
strandedness of these elements relative to the tran-
scription start site, is variable. These observations
suggest that ER and Sp1 do not form a rigid complex
on the DNA sequence, but rather a flexible structure,
perhaps facilitated by hinge regions in the proteins.

Summary: Directly Interacting ER-Response Sites

In conclusion, transcriptional regulation by direct in-
teraction of ER with DNA is predominantly mediated
by full EREs containing two inverted half-sites, sepa-
rated by a 3-bp spacer. Our newly constructed ERE
matrix (Fig. 1) should assist in identifying novel, bio-
logically relevant EREs. In a few cases, ER can bind to
half-sites when assisted by the binding of Sp1 to
nearby GC-rich motifs. However, in other circum-
stances, reported half-EREs may either bind ER co-
operatively, or actually reflect more divergent full
EREs.

LIMITED EVOLUTIONARY CONSERVATION OF
ESTROGEN RESPONSE SEQUENCES BETWEEN
HUMAN AND MOUSE

Additional information regarding gene-regulatory se-
quences can sometimes be inferred from conservation

Fig. 2. Schematic of the Organization of cis-Elements in Five
Sequences in which ER and Sp1 Jointly Interact with DNA

The white arrows indicate the ERE half-site sequence 5�-
ggtca-3�; the gray arrows indicate the GC-rich motif se-
quence 5�-ggcggg-3�; the numbers indicate the distances
between sites (bp). The thin hooked arrows indicate the tran-
scription start site.
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of sequences between evolutionarily related species.
Given the availability of mouse genome sequence, we
compared estrogen-responsive regulatory regions
from human with those of mouse. Conservation of
both direct and indirect ER-binding sites was analyzed
using the whole-genome human-mouse alignments
generated by the Mouse Genome Sequencing Con-
sortium (http://genome.ucsc.edu/) (56, 57). Such
alignments cover about 40% of the human genome
(the remaining 60% corresponding to lineage-specific
insertions or deletions); it is therefore noteworthy that
35 of 42 estrogen-responsive human binding sites are
contained completely within aligning regions between
the human and mouse genomes (supplemental
Table 3).

For evaluation of whether or not a specific estrogen
response sequence is evolutionarily conserved, the
preferable method is to determine the extent to which
the aligned mouse sequence matches a count matrix
for the transcription factor, such as that for ER or Sp1.
Simple sequence conservation does not prove func-
tional conservation, as a single base pair change in a
position critical for DNA-protein recognition may abol-
ish the biological function and, conversely, divergent
sequences can bind a transcription factor with similar
affinities. Using the matrix comparison tool Possum,
which determines probabilistic scores [log (base e)
likelihood ratios for the site vs. background] that a
sequence represents a specific transcription factor
binding site, we compared predicted binding proba-
bilities for both human and mouse aligned estrogen-
response sequences. For the set of palindromic ERE
sites (using Fig. 1 as the matrix), only four of the 16
human sites are similar in mouse, 11 are absent or
severely degraded, and one is borderline in the degree
of conservation of a functional ERE (supplemental Ta-
ble 3A). Thus, fewer than one third (31%) of these
EREs should function in mouse. This level of conser-
vation is strikingly low compared with protein-coding
genes, 80% of which are conserved as 1:1 orthologs
between these species (57). Of the other types of
estrogen-responsive binding sites, only one in four
(25%) ERE � Sp1 sites and seven of 13 (54%) Sp1
sites were functionally conserved (supplemental Table
3B). The statistical significance of the apparent differ-
ences in degrees of conservation among different
types of response sequences cannot be established,
due to the low sample sizes. Consistently, however,
the degree of conservation of estrogen-response se-
quences is remarkably low. In contrast, in another
human-mouse comparison study, 60–68% of a variety
of functional human transcription factor-binding sites
remained functional in mouse (58).

Some of the most notable differences between the
human and mouse genomes, in fact, involve gene
families associated with reproductive physiology (57).
This physiological divergence could explain the de-
gree of conservation of estrogen response sequences
being lower than that for other regulatory programs.
An alternative viewpoint is that many of these genes

may be similarly regulated in human and mouse, de-
spite the low degree of conservation of specific sites,
due to binding site turnover. In other words, mutations
that weaken one binding site may have been compen-
sated by mutations that strengthen an alternative
binding site (58, 59). In other evolutionary studies,
enhancer elements encompassing many binding sites
may exhibit significant functional and sequence con-
servation, whereas individual binding sites within them
are not notably conserved (Ref. 60 and E. Davidson,
personal communication).

To assess this possibility, the degree of conserva-
tion between human and mouse promoter sequences
was plotted for 2-kb regions surrounding each human
ERE. These conservation graphs (http://genome.
ucsc.edu/) (56) take into account the rate of neutral
evolution (representative plots are in Fig. 3A; method
details and all graphs in supplemental Fig. 6 published
as supplemental data on The Endocrine Society’s
Journals Online web site at http://mend.endojournals.
org). The y-axis represents a log scale of the degree of
conservation, with an increasing score indicating
greater similarity of sequence between human and
mouse. For some EREs, particularly where binding
sites are functionally conserved between human and
mouse (as determined by matrix scores), visual exam-
ination suggests that the estrogen-responsive sites
are located as anticipated within peaks of similarity
between mouse and human sequences (e.g. EBAG9,
adenosine deaminase, c-H-ras1). However, excep-
tions are noted where functionally conserved binding
sites are located in regions of limited sequence simi-
larity (e.g. ERE in lactoferrin). Sites that are not func-
tionally conserved (by matrix comparisons) are pre-
dominantly located in regions of low conservation or in
unalignable regions (e.g. complement 3, c-fos, SFRE
in lactoferrin, one Sp1 site in IGF-binding protein 4).
However, again exceptions appear, where noncon-
served binding sites reside in regions of overall simi-
larity (e.g. the other Sp1 site in IGF-binding protein 4,
angiotensin).

For a more precise determination of the relationship
between functional conservation of binding sites and
conservation of the surrounding regulatory sequences,
we compared the degree of human-mouse conservation
of the site itself with the average sequence conservation
of 100 bp of flanking sequences (50 bp to either side),
for all regulatory regions that could be aligned between
human and mouse. By plotting the matrix score (repre-
senting the strength of the binding site) of the human
palindromic ERE-regulatory sites against the ratio of
sequence conservation of the ERE to its flanking se-
quences, there appeared a general trend that the stron-
ger the binding site, the more its sequence was con-
served during evolution relative to flanking sequences
(Fig. 3B). More strikingly, for sites predicted to be func-
tionally conserved from human to mouse (solid dia-
monds), the sequence conservation in the site itself was
always greater than the sequence conservation of the
surrounding sequences (mean ratio of 6.9, indicating that
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Fig. 3. Sequence Conservation between the Human and Mouse Genomes in Regions Surrounding the Human Estrogen-
Responsive Sites
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sequence conservation in the ERE site is, on average,
6.9-fold higher than that in ERE-flanking sequences). In
contrast, sequences for functionally nonconserved sites
were maintained, on average, approximately to the same
extent as their surrounding sequences (open diamonds;
mean ratio of 2.3). These differences in the relative con-
servation of the site to flanking sequence between the
two groups is statistically significant (P � 0.036). A sim-
ilar analysis of other types of estrogen response sites
(Sp1 sites and half-ERE/Sp1 combinations, triangles;
and AP-1, ATF, CREB binding sites, squares; Fig. 3C)
provided a comparable conclusion: for the group of sites
predicted to be functionally conserved, 10 of 12 showed
higher conservation of their specific sequences than their
surrounding sequences (solid triangles and squares;
mean ratio of all sites of 20), whereas for functionally
nonconserved sites, only two of six were more highly
conserved at the sequence level than surrounding se-
quences (open triangles; mean ratio of 1.3). This is con-
sistent with the loss of functionality of these sites across
evolution. Once again, the difference in these groups is
statistically significant (P � 0.021). These results suggest
that there is significant evolutionary pressure to specifi-
cally preserve biologically relevant transcription factor
binding sites, as opposed to the entire surrounding reg-
ulatory region. Conversely, where there is no biological
imperative, the degree of sequence conservation in the
binding sites may simply reflect that of flanking regions.

Overall, there is limited association of estrogen-
responsive binding sites with regions of striking
human-mouse sequence conservation. We conclude
that either hormonal regulation of these genes is mod-

Fig. 3. Continued
A, Representative examples of sequence conservation in

2-kb regions surrounding sites that associate, directly or
indirectly, with ER. The curves reflect the probability that the
degree of conservation observed in 50-bp windows would
occur by chance under neutral evolution (see supplemental
data and http://genome.ucsc.edu/) (56). The degree of con-
servation is presented as �log(probability); the maximum
value of the y-coordinate of 5, indicating the greatest con-
servation between human and mouse, corresponds to a
probability of 10�5. Breaks in the curve indicate regions of the
human genome that could not be aligned to mouse by Blastz.
Positions of binding sites are indicated with colored blocks:
red, full ERE; blue, SFRE or half-ERE; purple, ERE/Sp1;
green, indirect ER-binding sites. B, EREs predicted to be
functionally conserved from human to mouse are more highly
conserved at the sequence level than flanking sequences.
For each ERE, the relative mouse-human sequence conser-
vation of the ERE compared with the average sequence
conservation of its 100 bp of flanking sequence (50 bp to
either side of the site) was determined (see supplemental
data for details). Estrogen-responsive sites predicted to be
functionally conserved from human to mouse were identified
by comparing the functional conservation scores [log (base e)
likelihood ratios] for EREs in the human sequence and the
aligned mouse sequence; likelihoods were calculated using
the Possum algorithm and the count matrix for ERE shown in
Fig. 1 (see supplemental Table 3). Mouse sequences with site
matrix scores similar to the human scores (likelihood within
10-fold) were taken to be functionally conserved; those in
which the likelihood of representing a binding site was 100-

fold less than the human site were defined to be functionally
nonconserved. Solid diamonds, Functionally conserved
EREs; open diamonds, functionally nonconserved EREs;
cross, functionally borderline ERE. By the Wilcoxon one-
tailed test, the nonconserved sites displayed relative se-
quence conservation (conservation of the site compared with
flanking sequences) significantly less than that of the con-
served sites (P � 0.036). C, Other estrogen-response sites
(exclusive of palindromic EREs) predicted to be functionally
conserved from human to mouse are more highly conserved
at the sequence level than flanking sequences. The analysis
shown in panel B was repeated for non-ERE, estrogen-re-
sponse sites. The functional conservation of the sites was
determined by comparison against count matrices for the
relevant transcription factor-binding sites, as available
through TRANSFAC (see supplemental data). Solid triangles,
Functionally conserved Sp1 sites and half-ERE/Sp1 sites;
open triangles, functionally nonconserved Sp1 sites and half-
ERE/Sp1 sites; solid squares, functionally conserved AP-1,
ATF, CREB-binding sites. By the Wilcoxon one-tailed test,
the nonconserved sites displayed relative sequence conser-
vation values (conservation of the site compared with flanking
sequences) significantly less than that of the conserved sites
(P � 0.021). Using all the data in panels B and C, an even
more significant difference was observed in the relative se-
quence conservation for functionally conserved vs. noncon-
served estrogen-response sites, P � 0.0026 by the Wilcoxon
one-tailed test.
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Fig. 4. Protein Functions and Cellular Roles of Human Gene Products Regulated by ER, as Related to the Types of EREs in Their
Regulatory Regions

Binding sites are indicated with colored boxes in the grid, as follows: red, full ERE; blue, SFRE or half-ERE; purple, ERE/Sp1;
green, indirect ER-binding sites. Protein functions are listed to the right of the grid, and cellular functions are listed across the top.
Descriptions of the products were obtained mainly from LocusLink (http://www.ncbi.nlm.nih/LocusLink). Genes were grouped
into four categories of cellular function based on the following considerations. 1) Cell Cycle: gene products directly involved in
regulation of cell cycle, as well as those required for or involved in cell cycle progression, such as in biosynthesis of nucleotides.
2) Cell Growth, Cell Survival: gene products involved in signaling pathways that promote cell growth and/or survival, including
those exerting protective effects against cell death caused by any insult. 3) Signaling molecules (intracellular, secreted, or
membrane associated): gene products directly involved in a cellular signaling pathway, either as a ligand, as a membrane-bound
or intracellular receptor involved in transmission of the signal, or as an effector in the signaling pathway. 4) Cellular Maintenance:
gene products involved in cellular processes contributing to normal cell function.
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ified significantly between human and mouse, or that
selection for conserved regulatory function by estro-
gen imposes such weak sequence constraints that it is
not readily detectable by sequence conservation.

POTENTIAL CORRELATIONS OF TYPES OF
ESTROGEN-RESPONSE SEQUENCES TO
CELLULAR FUNCTIONS OF REGULATED GENES

The identified primary human ER-regulated genes (Ta-
bles 1–4) encode diverse types of protein products,
including receptors, ligands, G proteins, transcription
factors, enzymes, chaperones, and structural mole-
cules. These proteins function in a multitude of cellular
pathways, serving a variety of cellular roles: cell cycle
progression, cellular maintenance, cell growth and
survival, and signaling cascades. In general, the set of
primary target genes induced in any particular circum-
stance would initiate a cascade of downstream
events, leading to the overall physiological changes
induced by estrogen.

We probed the hypothesis that particular types of el-
ements may generate a coordinated cellular response,
such as cell cycle progression, cell growth and/or sur-
vival, or cellular maintenance. In particular, we searched
for correlations between the types of estrogen-response
sequences regulating the known human primary target
genes (color coded according to the type of response
sequence) and either the biochemical functions of these
gene products (Fig. 4, categories to the right) or the
cellular functions of the gene products (Fig. 4, categories
at the top). This analysis revealed several encouraging
trends. 1) Of the four genes involved in cell cycle pro-
gression, three contain response elements in which Sp1
mediates ER binding; these three gene products also
encode enzymes, or required subunits of enzymes. 2) Of
the genes encoding secreted, signaling molecules, eight
of nine are regulated by full EREs. 3) Of the genes en-
coding cell surface receptors, three of four genes are
regulated through Sp1 sites. 4) Finally, induction of three
of four genes encoding transcription factors requires
Sp1, with or without associated ERE half-sites. The re-
maining functional categories of genes are more evenly
distributed with respect to the types of response ele-
ments they contain. We note that both the types of genes
the regulation of which has been studied and the types of
estrogen-response sequences that have been uncov-
ered may have been influenced by the goals of past
researchers, and that the numbers are too small to gar-
ner statistical significance. Although these observations
provide only clues and not proof, they nonetheless sup-
port the hypothesis that the expression of sets of func-
tionally related, estrogen-responsive genes are coordi-
nately regulated in many cellular settings, due to
common motifs in their promoters. This would provide
one mechanism for generation of the appropriate phys-
iological responses to estrogen.

TOWARD AN UNDERSTANDING OF THE
ESTROGEN GENOMIC RESPONSE

Coordinated expression of specific sets of target
genes initiate the characteristic cell type-specific,
long-term effects of estrogen in each tissue. The over-
all response is generated by cross-talk among cellular
signaling pathways, the genomic regulation by ligan-
ded nuclear ERs, the nongenotropic estrogen path-
way, and nuclear sequestration of secondary tran-
scription factors by ER. Nonetheless, enumeration of
primary ER response genes in each cell type is critical
for uncovering the molecular basis of the tissue-
specific physiological responses. The computational
analyses described here suggest refinements to the
understanding of DNA sequences directly binding ER,
both in the details of canonical, palindromic EREs, and
an alternative view for half-EREs. Furthermore, the
cross-species comparisons suggest that estrogen
responsiveness at a genomic level may be less con-
served than for other transcriptional regulatory pro-
grams. Given the variability in types of estrogen-
response sequences, an attractive hypothesis, partially
supported by investigation of existing human target
genes, is that estrogen regulation of a pathway of
genes may relate to particular sequence contexts and
response elements in those genes. In other words, the
cell type and activity of cellular signaling pathways
may differentially impact estrogen regulation, depend-
ing on the gene-regulatory elements.

For predictions of coregulated sets of genes involv-
ing nuclear ERs, the constellation of secondary tran-
scription factor binding sites within the sequence con-
text of the estrogen-responsive regulatory regions is
also likely to be crucial. For some genes, transcription
factors have already been experimentally identified as
essential for regulation by ER: Pit-1 for the rat prolactin
promoter (61), and upstream stimulatory factor for the
human cathepsin D promoter (62). We and others have
developed algorithms to identify binding sites that are
overrepresented in regulatory regions from sets of co-
expressed genes (52, 63–65). Armed with a group of
binding sites important for estrogen regulation either in
a particular cell type or in combination with a particular
signaling cascade, regulatory regions containing clus-
ters of transcription factor-binding sites can then be
predicted using clustering algorithms (66). Combining
such computational predictions with experimental
testing of hypotheses should accelerate progress to-
ward understanding the underlying molecular bases of
the physiological responses to estrogen.
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