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Abstract

Background: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful

taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species

and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore

the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis

(MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases.

Our aim is to analyse the usefulness of these tools for species identification in vibrios.

Results: We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B,

V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these

genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a

tantalizing image of the genomic differences that occur between closely related sister species, e.g. V.

cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome

and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of

V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic

picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and

Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in

MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome

identity. Strains of the same species and species of the same genus will form monophyletic groups on the

basis of MLSA and supertree.

Conclusion: The combination of different analytical and bioinformatics tools will enable the most

accurate species identification through genomic computational analysis. This endeavour will culminate in

the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able

to identify their isolates through a web-based server. This novel approach to microbial systematics will

result in a tremendous advance concerning biodiversity discovery, description, and understanding.
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Background
Taxonomy is at the basis of the biological sciences, being
one of its oldest branches. It deals with identification,
classification (i.e. creation of new taxa) and nomencla-
ture. In the early 1970s, a seminal work done by Colwell
put forward the concept of polyphasic taxonomy that is
currently still in use [1]. According to this concept, in
order to achieve the most natural classification system,
there should be an integration of information from the
molecular to the ecological levels. DNA-DNA hybridiza-
tion (DDH) data had a pivotal role to infer the species
boundaries in the polyphasic taxonomy. Indeed DDH
proved to be the most powerful tool to unambiguously
identify prokaryotes, providing for the first time, a reliable
means of categorizing microbes. However, this technique
suffers from various limitations, including the need to
include reference strains in each new experiment. In addi-
tion, it is not portable and requires special facilities avail-
able in a limited number of international laboratories.
The introduction of 16S rRNA analysis as an alternative
method for use in taxonomy allowed the development of
an evolutionary framework [2,3]. Boundaries for species
identification and a species definition were set on the
basis of extensive empirical data [4]. A bacterial species is
defined as a group of strains (including the type strain),
having > 70% DDH similarity, < 5°C ΔTm, < 5% mol G+C
difference of total genomic DNA, > 97% 16S rRNA iden-
tity [4,5].

The bacterial species definition is pragmatic and opera-
tional, aiming at the establishment of a rapid, reliable,
reproducible, and useful taxonomic framework, based on
microbial evolution, for a variety of applications (e.g.
medicine and agriculture) [6]. This polyphasic definition
is a consensus in microbiology, although it is not based
on a concept (i.e. the biological processes behind specia-
tion and species). It is crucial to highlight that the current
polyphasic framework does not question if this definition
corresponds to a biological reality [7]. Within the frame-
work of polyphasic taxonomy, strains of the same species
have similar phenotypes (e.g. expression of different types
of enzymes, ability to using different types of compounds
as energy source, and growth in different temperatures
and concentrations of acid and salt), genotypes (e.g. rep-
PCR and AFLP), and chemotaxonomic features (e.g. FAME
and polyamines), forming distinguishable tight groups
[7]. Ideally, these groups should be readily identifiable
and differentiated from closely related species. However,
currently there is not a consensus on the definition of a
bacterial genus [7].

The most recent ideas on the species concepts corroborate
polyphasic taxonomy [8]. According to these authors, a
bacterial species concept is a framework that explains how
bacterial strains share common features and how they

maintain genomic cohesion. The cohesion is observed as
recurrent patterns or groups of strains that are recognized
in nature and are termed species for practical reasons.
However, the biological process giving rise and maintain-
ing cohesion of these groups is what matters in a species
concept. Homologous recombination appears to be a
major force leading to genomic cohesion of strains of the
same species. It is more frequent between strains of the
same species than between strains of different species sim-
ply because this genetic process depends on sequence sim-
ilarity. Horizontal gene transfer (HGT) between unrelated
strains would cause an increase in phenotypic variation,
but would not be frequent enough to hamper the forma-
tion and recognition of species. An alternative species
concept is the stable ecotype in which cohesion of bacte-
rial strains of a given species is maintained by accumula-
tion of advantageous mutations and periodic purging of
allelic variability [9]. In contrast with the polyphasic spe-
cies definition which is widely accepted, there is not a con-
sensus on a bacterial species concept. It is of course
possible that one single concept is not sufficient to explain
the complexity of bacterial diversity. In addition, muta-
tion, homologous recombination and HGT may be
detected at varying levels in a single strain, making the sce-
nario even more complex.

Whole microbial genome sequencing studies launched
microbial taxonomy into a new era, with the possibility of
establishing sistematics on the basis of complete genomes
[10]. How does one go about using whole genome
sequences (WGS) for establishing a genomic taxonomy?
And more specifically, how can one taxonomically define
and identify species by means of WGS? WGS may contain
taxonomic information in the form of gene content,
genome wide signatures, phylogenetic markers, amino
acid identity and overall genetic composition that might
be useful for building novel taxonomic schemes [11]. Pio-
neer computational and mathematical studies performed
in the 1990s suggested that genomes contain species-spe-
cific signatures [12]. Genome signature is a compositional
parameter reflecting the dinucleotide relative abundance,
which is similar between closely related species, and dis-
similar between non-related species. Genome signatures
appear to allow the identification of isolates and metage-
nomes into known species [13,14]. Whole genome
sequences also permit the reconstruction of more robust
taxonomic trees (i.e. supertrees) based on all genes of the
core genome [15-17]. A good congruence was obtained by
the traditional 16S rRNA based trees and the novel super-
tree methods [18] proposed that the average amino acid
identity (AAI) could be used to distinguish closely related
sister species. Subsequently, a close relationship between
DDH and AAI was shown [19]. Some studies have sug-
gested that the effective number of codons (Nc) could also
be a species-specific marker [20].
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In Vibrios, the birth of the genomic taxonomy occurred
with a series of papers that attempted to use multilocus
sequence analysis (MLSA) [21-26]. These studies allowed
the establishment of rapid and powerful identification
systems through the internet. Currently there are MLSA
schemes for most of the human pathogens available for
free access in the internet. Establishing a universal MLSA
will not be possible though. Studies accomplished so far
have shown that the resolution of different markers varies
according to the taxonomic groups. For instance, the recA
gene is very useful to differentiate closely related species of
Burkholderia [27], but it is not appropriate for vibrios [24].
Clearly, genes have different molecular clocks in different
microbes, indicating the need of a multigene approach.
With the advent of ultra-rapid genome sequencing, it is
now possible to sequence one almost complete microbial
genome in less than a day [28,29]. The new generation of
DNA sequencers will enable sequencing of more than a
dozen prokaryotic genomes in less than an hour, possibly
making it cheaper and faster to sequence a whole genome
than several genes for MLSA. In future, MLSA might be
used simply as a rapid screen methodology [30].

Vibrios are an excellent test model for genomic taxonomy
because they are ubiquitous in the marine environment,
associated with a wide range of marine life (some species
such as V. cholerae, V. parahaemolyticus and V. vulnificus
cause serious disease in man) and experiencing a variety
of environmental conditions and selection forces, leading
to high genomic plasticity [31,32]. Consequently, differ-
entiation of sister species becomes very difficult. For
instance, V. cholerae and V. mimicus have nearly indistin-
guishable phenotypes. Among the phenotypic tests used
in the Bergey's manual, only sucrose fermentation and
lipase activity may discriminate the two species. Accord-
ing to the most recent version of the Bergey's manual, a
Vibrio species is defined as a group of strains forming
small (0.5-0.8 × 1.4-2.6 μm) comma-shapped rods with
polar flagella enclosed in a sheath, facultative anaerobic
metabolism, capable of fermenting D-glucose and growth
at 20°C [33]. Primarily aquatic, most species are oxidase
positive, reduce nitrate to nitrite, require Na+ for growth,
and ferment D-frutose, maltose, and glycerol. Each vibrio
species is further identified by an array of over 100 pheno-
typic tests. There is not an operational definition for gen-
era within the vibrios [33]. In our hands, vibrio species
may be better defined on the basis of amplified fragment
length polymorphism (AFLP) and MLSA [21,22,25,34].
Strains of the same species (including the type strain)
share more than 60% mutual AFLP band pattern similar-
ity and more than 95% similarity in MLSA (using the loci
rpoA, recA, pyrH, ftsZ, topA, mreB gyrB and gapA). More
importantly, strains of the same species and species of the
same genus will form monophyletic groups on the basis

of MLSA. This was the main argument used to propose the
newly described genus Aliivibrio [35].

In order to test the feasibility of the genomic taxonomy in
vibrios, several markers were analysed in a collection of 32
genomes, including four newly pyrosequenced genomes.
Several Vibrio strains had the genome completely
sequenced and are available on the web. Eleven V. cholerae
and two V. mimicus genomes formed an ideal test case for
taxonomy because of their close relatedness as sister spe-
cies. These sister species have nearly identical 16S rRNA
sequences and around 70% DDH. Disclosing species-spe-
cific patterns for the different genome-wide markers
would reinforce their usefulness in prokaryotic taxonomy.
The aim of this study was to extract taxonomic informa-
tion from vibrio genome sequences by means of a detailed
analysis of MLSA, supertree, Nc, AAI, genomic signatures,
Genome BLAST atlas and pangenome plot that would
allow species identification.

Methods
Genome sequence data

We used 32 genomes of vibrios in this study unless other-
wise stated. The genomic sequences of 28 vibrios were
obtained from the National Center for Biotechnology
Information (NCBI) (Table 1). We have sequenced the
genome of V. alginolyticus 40B, V. harveyi-like 1DA3, and
V. mimicus strains VM573 and VM603. V. alginolyticus 40B
and V. harveyi-like 1DA3 were isolated from Brazilian cor-
als (Mussismilia hispida and Phyllogorgia dilatata in 2007 at
the Abrolhos reef bank, respectively). V. mimicus VM573
(CT and TCP positive) was isolated from a patient with
diarrhea in 1990s in the US, whereas V. mimicus VM603
was isolated from riverine water in the Brazilian Amazo-
nia region in 1990s. These genomes were sequenced by
the Roche-454 pyrosequencing method. Genomic DNA
was extracted using the method of Pitcher [36]. The pyro-
sequencing technique was performed according to [37].
Briefly, genomic DNA was randomly sheared to small
fragments and ligated to common adaptors. Single frag-
ments were attached to beads in an emulsion. Amplifica-
tion by PCR was done in the emulsion and produced ~107

copies of the fragments per bead. After removal of the
emulsion, the beads were deposited on a fiber optic slide.
The DNAs were sequenced using a pyrosequencing proto-
col. Sequencing of V. mimicus VM603 genome was per-
formed on the prototype Roche 454 Genome Sequencer
20™ system, whereas sequencing of V. alginolyticus 40B, V.
mimicus VM573 and V. harveyi-like 1DA3 genomes was
performed on a Roche 454 Genome Sequencer FLX™ sys-
tem. The reads were assembled using the Newbler soft-
ware of the 454/Pyrosequencing. These genomes were
annotated automatically using the software SABIÁ [38]
and have been deposited at DDBJ/EMBL/GenBank under
the project accession number [GenBank:ACZB00000000]

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ACZB00000000
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Table 1: Genomic features of the vibrios genomes.

Organism Accession no. Genome size (nt) G+C (mol%) No. of CDS %
coding region

Nc*

Aliivibrio salmonicida FLI1238 FM178379 3325164 39 77 48

Chromosome I FM178380 1206461 38 2820 77

Chromosome II 984

Photobacterium profundum SS9

Chromosome I CR354531 4085304 41 3416 82 51

Chromosome II CR354532 2237943 41 2006 80

Vibrio alginolyticus 40B ACZB00000000 5234286 45 4341 81 53

Vibrio alginolyticus 12G01 AAPS00000000 5160431 44 4732 86 53

Vibrio angustum S14+ AAOJ00000000 5101447 39 4558 84 48

Vibrio campbellii AND4 ABGR00000000 4255798 44 3935 85 53

Vibrio cholerae N16961 AE003852 2961149 47 87 52

Chromosome I AE003853 1072315 46 2742 84

Chromosome II 1093

Vibrio cholerae 0395 CP000627 3024069 47 88 52

Chromosome I CP000626 1108250 46 2742 86

Chromosome II 1133

Vibrio cholerae 1587 AAUR00000000 4137501 47 3758 82 52

Vibrio cholerae 2740-80 AAUT00000000 3945478 47 3771 87 52

Vibrio cholerae 623-39 AAWG00000000 3975259 47 3777 86 52

Vibrio cholerae B33 AAWE00000000 4026835 47 3677 83 53

Vibrio cholerae MAK757 AAUS00000000 3917446 47 3501 82 52

Vibrio cholerae MZO-2 AAWF00000000 3862985 47 3425 83 52

Vibrio cholerae MZO-3 AAUU00000000 4146039 47 3897 86 52

Vibrio cholerae NCTC8457 AAWD00000000 4063388 47 3975 86 53

Vibrio cholerae V52 AAKJ00000000 3974495 47 3815 86 52

Vibrio fischeri ES114+ CP000020 2897536 38 45

Chromosome I CP000021 1330333 37 2586 86

Chromosome II 1175 87

Vibrio fischeri MJ11+ 45

Chromosome I CP001139 2905029 38 2590 86

Chromosome II CP001133 1418848 37 1254 87

Vibrio harveyi-like 1AD3 ACZC00000000 5989646 46 4954 66 51

Vibrio harveyi ATCC BAA-1116 CP000789 3765351 45 85 53

Chromosome I CP000790 2204018 45 3546 86

Chromosome II 2374

Vibrio harveyi HY01 AAWP00000000 5400985 45 4327 75 51

Vibrio mimicus VM573 ACYV00000000 4373300 46 3744 86 53

Vibrio mimicus VM603 ACYU00000000 4421792 46 3790 86 53

Vibrio parahaemolyticus RIMD2210633

Chromosome I BA000031 3288558 45 3080 86 52

Chromosome II BA000032 1877212 45 1752 86

Vibrio parahaemolyticus AQ3810 AAWQ00000000 5771228 45 5509 80 53

Vibrio shilonii AK1 ABCH00000000 5701826 43 5360 88 54

Vibrio sp Ex25 AAKK00000000 4844262 44 4240 84 53

Vibrio sp MED222 AAND00000000 4891901 43 4590 85 52

Vibrio splendidus 12B01 AAMR00000000 5596386 44 5231 85 53

Vibrio vulnificus CMCP6

Chromosome I AE016795 3281944 46 2915 83 53

Chromosome II AE016796 1844853 47 1557 86

Vibrio vulnificus YJ016 BA000037 3354505 46 87 53

Chromosome I BA000038 1857073 47 3259 89

Chromosome II 1696

The genomes sequenced by this study are in bold. +Vibrio angustum and Vibrio fischeri were reclassified as Photobacterium angustum [67] and Aliivibrio fischeri 
[35], respectively. *calculated using concatenated chromosome sequences.
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FM178380
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR354531
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR354532
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAUS00000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAWF00000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAUU00000000
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(V. alginolyticus 40B), [GenBank:ACZC00000000] (V. har-
veyi-like 1DA3), [GenBank:ACYV00000000] (V. mimicus
VM573) and [GenBank:ACYU00000000] (V. mimicus
VM603). The version described in this paper is the first
version. The genomes are also available online http://
www.vibrio.lncc.br. The DNA G+C content of V. alginolyti-
cus 40B, V. mimicus VM573 and V. harveyi-like 1DA3
genomes was calculated using MEGA version 4.0 [39]. We
used concatenated genomic sequences of the two chromo-
somes of vibrios for our analyses.

Genome BLAST Atlas, proteome matrix, and pangenome 

plot

The BlastAtlas plots were constructed as described previ-
ously [40,41]. The pangenome plot, and proteome matrix
were constructed as described [42]. For building the atlas,
the genomes were automatically annotated and were
compared to the reference chromosome (V. cholera strain
N16961 in this case). The BLAST matrix perl script per-
forms an all-against-all BLAST comparison of genomes
from multiple organisms. For every combination, a pro-
tein blast is carried out, finding all homologous proteins.
For our purposes, we use the "50-50 rule", which requires
both of the following characteristics: 1.) at least 50% of
the query protein must overlap in the alignment, and 2.)
at least 50% of the residues within the alignment must be
identical. After the homologous proteins are identified,
the proteins are clustered into protein families and the
number of families containing proteins from both strains
are counted. The fraction of these shared families out of
the total number of families is the number reported in the
BLAST matrix. Since the direction of comparison of the
two organisms will give identical results under these con-
ditions, one redundant half of the square matrix plot is
left out. Thus, we use a triangular shaped diagram where
the hypotenuse corresponds to the paralogs (red), which
are the internal homologous proteins (e.g., repeated
genes). Since this is a comparison of all the proteins in a
genome, compared to the pan-genome, it is possible to
see related organisms, in terms of their similar composi-
tion of gene families.

16S rRNA tree, Multilocus Sequence Analysis (MLSA) and 

Supertree approach

MLSA and supertree approach were based on the concate-
nated sequences of house-keeping genes [15,21]. The 16S
rRNA gene sequences, the gene sequences used for MLSA
(i.e. ftsZ, gyrB, mreB, pyrH, recA, rpoA and topA) and the
gene sequences used for supertree (i.e. aminopeptidase P,
alaS, aspS, ftsZ, gltX, gyrB, hisS, ileS, infB, metG, mreB, pntA,
pheT, pyrH, recA, rpoA, rpoB, rpsH, signal recognition parti-
cle protein, threonyl-tRNA synthetase, topA, valS and 30S
ribosomal protein S11) were obtained from the NCBI.
The concatenated sequences were aligned by CLUSTALX.
Phylogenetic analyses were conducted using MEGA ver-

sion 4.0 [39] and PAUP version 4.0b10 [43]. The phyloge-
netic inference was based on the maximum-parsimony
character method (MP), the neighbour-joining genetic
distance method (NJ) [44], and the maximum likelihood
method (ML). Distance estimations were obtained
according to the Kimura-2-parameter for 16S rRNA gene
and Jukes-Cantor [45] for MLSA and supertree for NJ. The
program Modeltest was used to select the GTR+I+G as the
model for MLSA and supertree and Tamura-Nei+I+G as
the model for 16S rRNA in the ML analysis. The reliability
of each tree topology was checked by 2000 bootstrap rep-
lications [46].

Average amino acid identity (AAI)

The AAI was calculated according to [18]. Genes con-
served between a pair of genomes were determined by
whole-genome pairwise sequence comparisons using the
BLAST algorithm release 2.2.5 [47]. For these compari-
sons, all protein-coding sequences (CDSs) from one
genome were searched against the genomic sequence of
the other genome. CDSs that had a BLAST match of at
least 40% identity at the amino acid level and an alignable
region with more than 70% of the length of the query
CDS were considered as conserved genes [48]. This cutoff
is above the twilight zone of similarity searches, where
inference of homology is error prone due to low similarity
between aligned sequences. Thus, query CDSs were pre-
sumably homologous to their matches. The genetic relat-
edness between a pair of genomes was measured by the
average amino acid identity of all conserved genes
between the two genomes as computed by the BLAST
algorithm.

Codon usage

Codon usage bias was calculated for each genome. The
effective number of codons used in a sequence (Nc) [20],
was calculated using CHIPS (EMBOSS). Nc values range
from 20 (in an extremely biased genome where only one
codon is used per amino acid) to 61 (all synonymous
codons are used with equal probability) [20]. The rose
plot of codon usage was constructed as described previ-
ously [42].

Determination of dinucleotide relative abundance values

We determined the dinucleotide relative abundance value
for each genome. Sequences were concatenated with their
inverted complementary sequence using REVSEQ, YANK
and UNION (EMBOSS). Mononucleotide and dinucle-
otide frequencies were calculated using COMPSEQ
(EMBOSS). Dinucleotide relative abundances (ρ*XY) were
calculated using the equation ρ*XY = fXY/fXfY where fXY
denotes the frequency of dinucleotide XY, and fX and fY
denote the frequencies of X and Y, respectively [12]. Sta-
tistical theory and data from previous studies [12,49] indi-
cate that the normal range of ρ*XY is between 0.78 and

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ACZC00000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ACYV00000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ACYU00000000
http://www.vibrio.lncc.br
http://www.vibrio.lncc.br
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1.23. The difference in genome signature between two
sequences is expressed by the genomic dissimilarity (δ*),
which is the average absolute dinucleotide of relative
abundance difference between two sequences. The dis-
similarities in relative abundance of dinucleotides
between both sequences were calculated using the equa-
tion described by [12]: δ*(f,g) = 1/16Σ|ρ*XY (f) - ρ*XY (g)|
(multiplied by 1000 for convenience), where the sum
extends over all dinucleotides.

Results
General features of the sequenced genomes

The new genomic sequences generated in this study for V.
alginolyticus 40B (ACZB00000000), V. harveyi-like 1DA3
(ACZC00000000), V. mimicus strains VM573
(ACYV00000000), and VM603 (ACYU00000000), had
290, 229, 82 and 488 contigs with a total length of
approximately 5,234,286, 5,989,646, 4,373,300 and
4,321,792 bp, respectively. The estimated coverage depth
was 18, 22, 24 and 20×, respectively. The average GC con-
tent for the draft genomes were 45%, 46%, 46%, and

46%, respectively (Table 1). A first attempt to have a glo-
bal visualization of the differences in gene content
between the reference genome V. cholerae N16961 and the
genomes of the other vibrios was obtained by the genome
BLAST atlas which per se is not meant to be a taxonomic
tool (Figure 1 and Figure 2). There are several regions
(lightly colored) of low conservation throughout the
chromosomes 1 and 2. In chromosome 2 there is a large
region in the low right area that is poorly conserved
within the other vibrios. This region corresponds to the
superintegron [50]. We can observe in chromosome 1 and
2 that there are regions which contain genes that are con-
served only in V. cholerae, missing in the other vibrio
genomes. These regions might encode for some sort of
environmental niche-specific genes. V. cholerae strains
have little mutual gene content variation even in the
hypervariable superintegron region (see chromosome II
midpoint 375 Kb). The two V. mimicus genomes were the
closest to the N16961 according to the atlas.

Genome BLAST atlas. The chromosome I of vibriosFigure 1
Genome BLAST atlas. The chromosome I of vibrios. The Atlas was constructed using the genome of V. cholerae 
N16961 as the reference strain on which the genes of the other strains are mapped. Genomic regions unique to this strain and 
not appearing in other vibrio strains are lightly colored. The position of the genes in the different replicons may not be the 
same.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ACZB00000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ACZC00000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ACYV00000000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ACYU00000000
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Proteome BLAST

The BLAST proteome for all vibrio strains varied between
23.1% (V. harveyi-P. profundum) and 79.8% (V. mimicus-V.
mimicus) similarity, whereas the percentage of paralogs
varied between 1.8% (V. mimicus-V. mimicus) to 9.3% (V.
parahaemolyticus-V. parahaemolyticus). The BLAST compar-
ison indicated that V. cholerae genomes had mutual pro-
teome identity at minimum 61.8% and at maximum
78.4% (Figure 3 and see Additional file 1; Table S1). The
intraspecific proteome identity in V. cholerae varied
between 61.8% and 78.3%, whereas the paralogs in V.
cholerae genomes varied from 2.8% (99 proteins) to 3.8%
(130 proteins). The sister species V. cholerae-V. mimicus, V.
parahaemolyticus-V. alginolyticus and V. harveyi-V. campbel-
lii had proteome identity at maximum 65.7%, 64.4% and
45%, respectively. The maximum proteome identity
between the genera Vibrio and Aliivibrio was 38.6% (i.e. V.
splendidus and A. fischeri), whereas the identity between
Vibrio and Photobacterium was 31.8% (i.e. V. splendidus and

P. angustum). Aliivibrio and Photobacterium had at maxi-
mum 32.3% identity.

Phylogenetic reconstructions by 16S rRNA, MLSA and 

supertree

We selected both conserved and variable single copy genes
belonging to different functional groups, from both chro-
mosomes of vibrios and that have been used in several
taxonomic studies [15,21,22,24,25,51]. Phylogenetic
trees based on 16S rRNA gene sequences, MLSA and the
supertree approach were constructed using the ML (Figure
4), MP (see Additional file 2; Figure S1) and NJ methods
(see Additional file 3; Figure S2). The trees based on 16S
rRNA gene sequences, MLSA and supertree showed simi-
lar topology in the three methods. Bootstrap analysis indi-
cated that, most branches were highly significant. The
phylogenetic reconstruction indicated a clear separation
of groups (i.e. genera) within the vibrio clade. The genera
Photobacterium and Aliivibrio were clearly separated from
the genus Vibrio. The sister species of vibrios, V. cholerae-

Genome BLAST atlas. The chromosome II of vibriosFigure 2
Genome BLAST atlas. The chromosome II of vibrios. The Atlas was constructed using the genome of V. cholerae 
N16961 as the reference strain on which the genes of the other strains are mapped. Genomic regions unique to this strain and 
not appearing in other vibrio strains are lightly colored. Notice the hyper-variable region (midpoint at 375 K) in the chromo-
some II of vibrios (the super-integron), corresponding to 1/6 of this replicon. The position of the genes in the different repli-
cons may not be the same.
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V. mimicus, V. parahaemolyticus-V. alginolyticus were sepa-
rated from each other in the MLSA and supertree
approaches in all three phylogenetic methods. These pairs
of species had almost identical 16S rRNA gene sequences
(≥ 99% sequence identity) though. Slight grouping differ-
ences were observed. V. alginolyticus appeared to be at the
outskirts of the V. parahaemolyticus branch in the MLSA
tree while in the supertree V. alginolyticus appeared at the
outskirts of the V. harveyi branch in the three phylogenetic
methods, simply because the number of genes used for
each analysis was different. The difference may be due to
different molecular clocks of the different genes. In the ML
analysis, V. vulnificus appeared between V. cholerae and
the vibrio core group. In all three phylogenetic methods,
MLSA and supertree had the same taxonomic resolution
to discriminate between species.

Average amino acid identity (AAI)

The percentage of identity of putative orthologous pro-
tein-encoding genes detected in the pairwise comparison
is shown in Figure 3 (and see Additional file 4; Table S2).

The identity of protein-encoding genes between different
genera of vibrios varied considerably. The mutual AAI for
the pairs Vibrio and Photobacterium, Vibrio and Aliivibrio,
and Photobacterium and Aliivibrio were at most 67%, 70%
and 68%, respectively. The AAI within the genus Phobacte-
rium (represented by P. angustum S14 and P. profundum
SS9) was only 73%, whereas the AAI within the genus Ali-
ivibrio was 85%. The AAI within the genus Vibrio varied
between 70 and 91%. The Vibrio core group (i.e. V. algino-
lyticus, V. campbellii, V. harveyi and V. parahaemolyticus)
shared at most 75% of their protein-encoding genes. The
wider range of variation is explained by the higher
number of representatives in the latter genus. The sister
species V. cholerae-V. mimicus, V. harveyi-V. campbellii, V.
parahaemolyticus-V. alginolyticus shared 90-91% AAI,
whereas the intra-species AAI in V. cholerae varied between
98 and 99.5%. Vibrio sp. EX25 and V. alginolyticus 40B had
95% identity, suggesting that EX25 belongs to the species
V. alginolyticus. The rather low AAI within the species V.
harveyi (i.e. 90%) may be due to the incomplete genome
sequences and to unresolved taxonomic issues. V. harveyi-

Taxonomic resolution of AAI, BLAST proteome and genome dissimilarity [δ*(f,g)] of vibriosFigure 3
Taxonomic resolution of AAI, BLAST proteome and genome dissimilarity [δ*(f,g)] of vibrios. Mean and standard 
deviations. Red = AAI; Green = proteome; yellow = [δ*(f,g)]. The taxonomic resolution of AAI is down to the intergenera 
level, whereas [δ*(f,g)] has a resolution at interspecies level. The dashed lines delimit (p < 0.001) the different taxonomic levels 
for AAI and [δ*(f,g)] but not for the proteome. The proteome did not completely fit this figure (and dashed lines limits), show-
ing some noise signal for V. harveyi-V.harveyi.
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A-C. Phylogenetic trees based on the maximum likelihood method using 16S rRNA geneFigure 4
A-C. Phylogenetic trees based on the maximum likelihood method using 16S rRNA gene, MLSA (i.e. ftsZ, gyrB, 
mreB, pyrH, recA, rpoA and topA; 10,141 bp), and supertree (i.e. aminopeptidase P, alaS, aspS, ftsZ, gltX, gyrB, hisS, ileS, infB, metG, 
mreB, pntA, pheT, pyrH, recA, rpoA, rpoB, rpsH, signal recognition particle protein, threonyl-tRNA synthetase, topA, valS and 30S 
ribosomal protein S11; 41,617 bp). Bootstrap percentages after 2000 replications are shown. Because some genomes used in 
this study are not completely sequenced, for the comparison of 16S rRNA, MLSA and supertree, we used 16 genomes of 
vibrios. The genes used in MLSA and supertree were found only in these 16 genomes.
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like 1DA3 had 70% DDH in previous experiments and
formed a separate genomic group on the basis of molecu-
lar fingerprinting [52].

Dinucleotide relative abundance values (ρ*) and species-

especifc genome signatures [δ*(f,g)]

ρ* values were in the normal range for all dinucleotides in
all taxa investigated except for CG (over-represented in
almost all genomes except in V. campbellii, V. harveyi, V.
shilonii, V. splendidus and Vibrio sp. MED222) and TA
(under-represented in almost all genomes except in V. shi-
lonii, P. angustum, P. profundum, A. fischeri and A. salmoni-
cida) (data not shown). The genomic dissimilarity value
[δ*(f,g)] of the genus Vibrio towards the genera Photobac-
terium and Aliivibrio was 38-66 and 35-59, respectively.
The δ*(f,g) value between the genera Photobacterium and
Aliivibrio were in the range of 20 to 34. δ*(f,g) values
within the genera Alliivibrio and Photobacterium were 26.5
and 13, respectively.

δ(f,g) values within each vibrio species were between 1
and 4, whereas the interspecies δ(f,g) were between 10
and 61 (Figure 3 and see Additional file 5; Table S3). Thus,
the interspecies value was higher than the intergenus
value. The δ(f,g) values among the Vibrio core group mem-
bers and V. cholerae/V. mimicus were at least 38. The δ(f,g)
values between the sisters species V. cholerae-V. mimicus,
V. harveyi-V. campbellii and V. parahaemolyticus-V. algino-
lyticus were 14, 13 and 17, respectively. As vibrio species
contain two chromosomes (one larger ca. 2.9 Mb and one
smaller chromosome ca. 1.0 Mb) we also calculated the
δ(f,g) between the two chromosomes of the same strain.
The δ(f,g) values of the intragenomic comparison of the
two chromosomes of complete vibrio genomes were
between 10 and 18. The two chromosomes are essential
for the cell survival and persistence, but yet they showed
distinct patterns, suggesting a high genomic plasticity.

Codon usage bias

Overall codon usage bias was very similar among the
vibrio species investigated (Table 1). There was little vari-
ation in Nc among the different genomes, with Nc ranging
from 45 to 54. The Ncwithin the genera Vibrio, Photobacte-
rium and Aliivibrio were 51-54, 48-51, and 45-48, respec-
tively. Sister vibrio species had similar Nc values. Thus,
there was not a clear differentiation of closely related taxa
using the Nc.

The rose plot shows the difference of codon usage for rep-
resentative vibrios. The frequency of each codon is plotted
in red. Distinguishable signatures for each genus are
apparent (Figure 5). For instance, the genus Vibrio repre-
sented by V. cholerae and V. harveyi do not have a prefer-
ential codon usage, while the genera Photobacterium and
Alliivibrio use codons that tend to end in either A or U. For

instance, the frequency of UUA in Photbacterium and Ali-
ivibrio genomes is higher than in Vibrio genomes, while
the frequency of GCG is higher in Vibrio than Photobacte-
rium and Aliivibrio.

Discussion
Genomic taxonomy

This study aimed at providing the underpins for the estab-
lishment of an online genomic taxonomy of vibrios. The
methods used to extract taxonomic information from
vibrios genomes are freely available in the web, have com-
plementary taxonomic resolutions and are all amenable
to automation for species and genera identification. Spe-
cies identification is the major goal of microbial taxon-
omy. The identification of closely related sister species V.
cholerae - V. mimicus, V. alginolyticus - V. parahaemolyticus,
and V. harveyi - V. campbellii were evident in our study. The
methods with the higher resolution for species and genera
identification were, in order, MLSA, supertrees, and AAI.
Karlin's genomic signature (δ(f,g)) performed well for spe-
cies identification, whereas Nc appeared to be useful for
differentiating genera.

AAI

According to our analyses the AAI is one of the most use-
ful genomic features for figuring out vibrio taxonomy.
With the ever growing number of whole-genome
sequences, this new method could be incorporated in a
future re-valuation of the bacterial species definition. It is
important to bear in mind that the number of ortholo-
gous genes shared between species depends on genome
size and phylogenetic relationship [53,54]. Vibrio
genomes have a wide variation in genome size, varying
from 4 to 6 Mb (Table 1). As the genome size may influ-
ence the AAI, possibly the cut-off for species delineation
will vary slightly when additional vibrio species are ana-
lysed.

Genome signature dissimilarity δ*(f,g))

Karlin's genomic signature dissimilarity δ*(f,g)) can be
used for species identification in vibrios. Overall, the
genomic signature of vibrios was more similar between
closely related species than to distantly related species.
However, species from different genera may have similar
signatures. For instance, V. mimicus and Photobacterium
spp. shared values of genomic signature dissimilarity in
the range of 38-40, whereas V. mimicus and V. splendidus
had a genomic signature dissimilarity of 57. V. campbellii
and Aliivibrio fischeri had a genomic signature dissimilarity
of 35, indicating that the taxonomic resolution of Karlin's
genomic signature δ*(f,g)) is lower for discriminating
genera. Similar results were found in other studies con-
cerning the resolution of this type of signature [55].
Genome signatures alone have significant limitations
when used as phylogenetic markers for higher taxonomic
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levels e.g. genera to phyla. Apparently, the primary limita-
tion is the lack of divergence in some phylogenetically dis-
tant related species that could result from absence of
molecular clock. The equilibrium between mutational
biases and selective constraints results in equilibrium in
the oligonucleotide composition of a genome. Similar
genome signatures between phylogenetically distant
related species could arise from coincidental convergence
due to crowding of the genome signature space derived
from dinucleotide frequencies, which may not capture
sufficient information to differentiate between distant
taxa e.g. genera to phyla.

Concordance between the methods

The vibrio genome BLAST atlas was an useful tool for
depicting compositional differences between genomes of
different species. Using this tool, differences between the

sister species V. cholerae and V. mimicus in terms of gene
content and DNA features were observed. Overall there
was a significant correlation between the different meth-
ods (Table 2), but some methods had a stronger evolu-
tionary signal and different taxonomic resolution than
others. For instance, AAI and supertree showed the closest
correlation with MLSA. All methods, except 16S rRNA and
codon usage, provided significant (P < 0.001; T test) taxo-
nomic resolution for differentiation of species and genera
of vibrios. In general, the taxonomic resolution of 16S
rRNA and codon usage was restricted to differentiation of
genera.

The AAI and the proteome matrix correlated well, yet the
latter is measuring the fraction of proteins that are the
same in both genomes, and the former is measuring the
average identity of the amino acids of the proteins in

Codon usage rose plots for four representatives of different vibrio generaFigure 5
Codon usage rose plots for four representatives of different vibrio genera. The vibrios with a higher AT content 
(bottom rose plots) have a codon usage bias of A or U at the third position of the codon. The frequency scale is represented 
at the right side of the rose plots.
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those matches. In addition, AAI uses 40% amino acid
identity and > 70% of the aligned length of a protein
which is stricter than the settings used (50% identity-50%
length) to construct the proteome matrix. Because the Kar-
lin's genomic signature dissimilarity indexes genome
wide variation, its phylogenetic resolution is distinct of
individual genetic marker genes. In addition, this signa-
ture considers variation in both coding and non coding
genomic regions. This may explain why the correlation
between the signature and the gene sequence based meth-
ods obtained in this study is slightly lower.

Towards a new species definition in vibrios

A new species definition is mandatory if one aims to
establish an automatic identification of vibrios through a
web-based server. So far, the 16S rRNA gene analysis has
been applied for species definition and identification [2].
Its value for these purposes in vibrios is limited because of
its low taxonomic resolution. This study showed enough
WGS-based evidence to propose a new species definition
in vibrios. In our hands, a vibrio species is defined as a
group of strains that share > 95% DNA identity in MLSA
and supertree gene sequence, > 96% AAI, ≤ 10 genome
signature dissimilarity, and > 61% proteome identity.
Strains of the same species and species of the same genus
will form monophyletic groups on the basis of MLSA and
supertree.

Ecology and genomic features

Each Vibrio species appear to have a specific ecologic
niche. Genomes exhibit diverse patterns of species-spe-
cific compositional bias, i.e GC content, GC and AT skews,
codon bias, and mutation bias. The exact mechanisms
that generate and maintain the genome signatures are
complex, but possibly involve differences in species-spe-
cific properties of DNA replication and repair machineries
[49,56]. In Borrelia burgdoferi, there is a bias related to the
speed of the replication [57], whereas in Proteobacteria,
DNA repair enzymes co-evolve with the genome signature
[58]. The evolutionary distances between DNA repair and
recombination orthologous enzymes (mainly those
involved in the nucleotide excision repair system) were
highly correlated with genome signature distances. On the
other hand, there was a significantly lower correlation

between the evolutionary distances of the structural and
metabolic enzymes and genome signature.

Environmental temperature and oxygen appear to influ-
ence the GC content of bacteria [59]. The frequencies of
AA, TA, and TT dinucleotides were higher than the fre-
quencies of AT, GC, and CG dinucleotides in the vaccine
strain of Pasteurella multocida compared to the virulent
strain. Although the vaccine strain is cultured at higher
temperature, its GC content is lower than the virulent
strain. The AA + TT dinucleotide increased significantly in
the vaccine strain, which may represent an adaptation to
increased culturing temperature because AA/TT dinucle-
otides are conformationally very stable. Higher culturing
temperature increases spontaneous hydrolytic deamina-
tion of cytosine and 5-methylcytosine which, in turn, tend
to decrease GC content [60,61]. Deamination and meth-
ylation favour nucleotide changes from G and C to A and
T in a variety of microbial genomes [62].

Horizontal gene transfer may influence the genomic fea-
tures of vibrios. The three genetic processes that mediate
HGT often occur in vibrios and may cause phenotypic var-
iation [63,64]. Such variation may confound a phenotype
based identification. Another interesting feature of vibrios
genomes is the presence of two chromosomes. The
intragenomic dissimilarity between the two chromo-
somes of each vibrio strain is higher than the genomic dis-
similarity between chromosome I of two strains of the
same species. For instance, V. cholerae N16961 chromo-
ssomes I and II genomic dissimilarity δ(f,g)) was 12 and
V. cholerae N16961 chromossome I and V. cholerae O395
chromossome I was 1. The fact that the two chromosomes
of vibrios are dissimilar, with chromosome II less con-
served than the chromosome I might support the hypoth-
esis that the chromosome II was acquired by horizontal
gene transfer [50]. The chromosome II has only a few
essential housekeeping protein coding genes. This chro-
mosome might have been a megaplasmid acquired by an
ancestor prior diversification of the vibrios. Nearly 1/6 of
the chromosome II (ca. 150 Kb) corresponds to a super-
integron, a rapidly evolving region specialized in capture
and loss of genes, and gene expression [65]. It is impor-
tant to highlight that the fact that the two chromosomes

Table 2: Pearson correlation coefficient (expressed as percentage) between different methods

1 2 3 4 5 6

1. 16S rRNA gene identity 100

2. Identity in MLSA 86.5 100

3. Identity in supertree analysis 91.1 98.4 100

4. Average aminoacid identity (AAI) 85.9 97.7 96.9 100

5. Karlin genome signature dissimilarity 71.5 85.3 82.3 84.9 100

6. BLAST proteome identity 77.1 89.0 86.4 92.5 85.5 100
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of the same strain are more dissimilar than the chromo-
somes of different strains does not hamper the use of
genome signatures for identification. Chromosomes I of
V. cholerae and V. mimicus have signature dissimilarity
higher than the signature dissimilarity between chromo-
some I of two V. cholerae strains. The same holds true for
the chromosome II.

The pangenome (N = 26504 genes) and the core genome
(N = 488 genes) of all vibrios correspond to a vast reser-
voir of genetic diversity (Figure 6). The core genome of V.
cholerae (N = 1520 genes) might represent the minimum
set of genes that allow survival of the species in the envi-
ronment, whereas the V. cholerae pangenome (N = 6923
genes) reflects the ability of this species to occupy differ-
ent niches in the environment. The increase in the pange-
nome is due to new strain-specific genes which were
found in each new V. cholerae strain analysed. Unique
genes, e.g. the sensor kinase rscS, found in the A. fischeri
allow this strain to occupy a specific niche in the environ-
ment (i.e. to colonize its squid host) [66]. The major toxin
genes (CT and TCP) of V. cholerae toxigenic strains allow
these strains to cause disease, but they were also found in
V. mimicus. However, V. mimicus has not caused epidemics
so far.

Conclusion
The availability of new technologies for ultra-rapid whole
genome sequencing and the development of concepts in
comparative genomics will allow for rapid and reliable
automatable identification of microbial isolates through a
web-based server. The concept of an online electronic tax-
onomy based on whole genome features as illustrated in
this study will improve microbial taxonomy. Environ-
mental biodiversity surveys and ecologic studies on
vibrios will also benefit from this new approach to identi-
fication. In this new context, traditional molecular
approaches (i.e. DDH, MLSA, AFLP, rep-PCR) may still be
useful for the screen of large collections of strains that will
subsequently be used in whole genome based identifica-
tion schemes.

Abbreviations
DDH: DNA-DNA hybridization; AFLP: Amplified Frag-
ment Lenght Polymorphism; HGT: Horizontal Gene
Transfer; HR: Homologous Recombination; WGS: Whole
Genome Sequencing; Tm: is the melting temperature of a
double strand DNA molecule; ΔTm: is the difference
between the Tm of a given double strand DNA molecule
and the Tm of a hybrid of this molecule formed under
controlled experimental conditions; CT: Cholera Toxin;
TCP: Toxin Co-regulated Pilus.

Pangenome plot of vibriosFigure 6
Pangenome plot of vibrios. Pangenome consists of panel A and panel B. The vibrio pangenome is around 26504 genes. V. 
cholerae has a pangenome of 6923 genes with clear increment of genes of its sister species V. mimicus (8306 genes).
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