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1. Introduction

We, humans, are an inseparable part of our environment and therefore,
continuously encounter a variety of environmental components that may
have the potential of influencing our well-being in either a beneficial or
a detrimental manner. These environmental components that include
microorganisms (i.e. microbes, such as bacteria, viruses, fungi, archaea,
phages, and microbial eukaryotes), parasites, toxins, and allergens, to
name a few, can come into contact with the human body through multiple
routes, such as via the gastrointestinal tract (i.e. gut), the respiratory tract,
and the skin [Janeway et al., 2001]. Along with being subjected to the
harmless components of the environment in our everyday lives, our bodies
are also constantly exposed to various pathogens (i.e. harmful or infectious
agents) that can lead to several diseases and thus jeopardise our well-being
[Tortora and Derrickson, 2013].

Despite this continual exposure to pathogens, the occurrence of diseases
is fortunately rare in an otherwise healthy human being. This is largely
attributable to the defense mechanisms of the human body, i.e. the human
immune system that protects the body from invading pathogens as well
as helps the body to fight infections and other diseases by employing a
complex network of organs, tissues, cells and molecules [Murphy and
Weaver, 2017]. Undoubtedly, a healthy and properly functioning immune
system is critical for maintaining good health and developing immunity
towards harmful pathogens. An important characteristic of a healthy
immune system is its ability to distinguish between the body’s own healthy
cells and molecules that are of no threat (i.e. self), and those that belong
to the invading foreign bodies and are likely to be pathogenic (i.e. non-
self). As the immune system develops and matures, especially during the
early childhood years, it is trained to recognize self from non-self and thus
becomes self-tolerant [Murphy and Weaver, 2017; Simon et al., 2015].

However, a plethora of factors can influence the immune system; some
of which can lead to its dysfunction (i.e. abnormality or impairment in
function). A dysfunctional immune system often gives rise to various
immune-related diseases, including autoimmune diseases (ADs) [Brodin

19



Introduction

and Davis, 2017; Wang et al., 2015]. In ADs, the immune system fails to
distinguish between self and non-self, and erroneously mounts an attack on
the body’s healthy tissues that leads to autoimmunity. There are more than
80 ADs in the world, including type 1 diabetes (T1D), systemic sclerosis
(SSc), and immunoglobulin G4 related disease (IgG4-RD), that affect nearly
10% of the world’s population [Gutierrez-Arcelus et al., 2016; Theofilopoulos
et al., 2017]. In fact, T1D is among the most common of all chronic diseases
in infants, especially in Finland that has the highest incidence of T1D in
the world [Regnell and Lernmark, 2017; Atkinson et al., 2014]. Although
ADs are a diverse collection of diseases, most of them are believed to
employ similar mechanisms for disease development. Even so, the etiology
(i.e. the cause or trigger of a disease) and pathogenesis (i.e. development of
the disease and/or the molecular mechanisms by which a disease develops)
of most ADs remain poorly understood, and no cures exist for any of the
ADs till date [Vojdani, 2014].

It has, however, been indicated through years of research that genetics
and environmental factors play a significant role in the development of
these diseases [Wang et al., 2015]. Even though hundreds of genetic
variants have been associated with ADs, their role in the breakdown of self-
tolerance and development of autoimmunity remains unclear [Rosenblum
et al., 2015]. These genetic variants along with the possible presence of
characteristic autoantibodies in the blood are some of the only markers
that are currently available for predicting the onset of autoimmunity and
assessing the progression of the disease; neither of which can do so in a
reliable manner [Rose, 2016].

Moreover, while many environmental factors have been implicated in
triggering ADs by inducing the breakdown of self-tolerance, the mecha-
nisms by which they do so are still poorly understood [Murphy and Weaver,
2017]. The composition of the human gut microbiome1 is one of the most
prominent environmental factors (among many others) that has been im-
plicated in triggering autoimmunity in genetically predisposed individuals
and has already been associated with several ADs [Khan and Wang, 2020;
Theofilopoulos et al., 2017]. The gut commensals (i.e. the commensal mi-
crobes of the gut) are known to have a major impact on human health
[Tibbs et al., 2019; Belkaid and Hand, 2014]. One of the mechanisms by
which they are believed to influence human health is by regulating the
immune system [Belkaid and Harrison, 2017; Gianchecchi and Fierabracci,
2019]. From an early age, the gut commensals are believed to establish
a cross-talk with the immune system that significantly influences the de-
velopment and education of the immune system. The influence that the

1The human gut, like all surfaces of the human body, is colonized by trillions
of microbial cells (collectively known as the gut microbiome) that are largely
beneficial (i.e. commensal) and perform several important physiological processes
that are essential for human health.
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gut microbiome has on the immune system during the first 2-3 years of
life is especially important as both the gut microbiome and the immune
system are immature and in their developing stages at the time [Zhao
and Elson, 2018; Gensollen et al., 2016]. An infant’s immune system is
uniquely impressionable, and therefore the development and training it
gets during these early years have life-long implications on host immune
responses and health [Gianchecchi and Fierabracci, 2019; Belkaid and
Hand, 2014]. On the other hand, the gut microbial composition during
these early years is highly dynamic and largely modulated by several
intrinsic and extrinsic factors, such as mode of delivery, use of antibiotics,
host genetics, breastfeeding patterns, and diet, to name a few, which can
then indirectly influence the immune system [Zhao and Elson, 2018; Liang
et al., 2018]. Generally, the establishment of a ‘healthy’2 gut microbiome
(or a lack thereof) in early life is believed to encourage proper (or improper)
development and education of the immune system and thus has long-term
implications [Milani et al., 2017]. Nevertheless, the exact mechanisms
by which the gut affects or induces disease pathogenesis remain elusive
and only a small fraction of the intrinsic and extrinsic factors that can
significantly influence the early colonization of the gut has been identified,
leaving many of them yet to be discovered [Liang et al., 2018; Vieira et al.,
2014].

Therefore, there is an urgent need of improving our understanding of the
etiology and pathogenesis of ADs. In other words, we need to identify reli-
able etiological signatures, such as presence of specific microbes, microbial
genes, or other environmental factors, that may be involved in triggering
the development of autoimmunity and thus ADs. Moreover, the pathogen-
esis of a disease can be understood, for instance, by identifying specific
molecular alterations, such as changes in gene expression or disruptions
in regulation of pathways, which take place before the onset of the disease
and/or during disease progression. Identifying such molecular alterations
in an autoimmune disease can lead to the discovery of better predictive
biomarkers for that disease. Eventually, discovery of reliable etiological
and predictive signatures can help tailor strategies for predicting, moni-
toring, treating and even preventing ADs. It is to be noted that the scope
of this thesis is limited to studying T1D, IgG4-RD and SSc. However, the
results from this thesis could perhaps aid in unraveling the pathogenic
mechanisms that are shared by most ADs.

The recent advances in high-throughput (HT) technologies along with
their ever decreasing costs have revolutionized biomedical research by
making it more feasible to generate HT ‘omics’ datasets . In HT ‘omics’

2The word ‘healthy’ is in quotes because an exact definition of a healthy gut mi-
crobiome that can be applied to all individuals does not exist [Huttenhower et al.,
2012]. In this context, a healthy gut microbiome generally refers to colonization by
microbes that are functionally beneficial and carry out all the necessary processes
[Lloyd-Price et al., 2016].
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datasets, several thousands to millions of biological molecules, such as
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins, and metabo-
lites, are interrogated in parallel in an unbiased manner [Hasin et al.,
2017; D’Argenio, 2018]. Needless to say, using ‘omics’ datasets in biomed-
ical studies presents an unprecedented opportunity for elucidating the
potential drivers and mechanisms that may be involved in the etiology and
pathogenesis of diseases as well as discovering novel biomarkers [Light-
body et al., 2019]. However, at the same time, analysing and interpreting
such copious amounts of data can be challenging, especially when coupled
with heterogeneity of the datasets and small sample sizes (common in
human studies) [D’Argenio, 2018]. For instance, due to the heterogeneity
in T1D disease, the data is often heterogeneous. Also, different ‘omics’
datasets often require specialized processing pipelines that account for
the specific intricacies of the dataset [Hasin et al., 2017]. Therefore, in
order to ensure proper interpretation of the data and detection of truly
significant results while ignoring the noise in the data, appropriate data
analysis pipelines must be employed. This often includes quality control
and other pre-processing steps as well as computational and statistical
analyses of the data. For statistical analyses, several powerful methods
already exist for modelling ‘omics’ datasets, but there is still a lot of scope
for improvement and development especially when it comes to analyzing
complex and heterogeneous datasets. For instance, barely any method
exists that can appropriately model longitudinal data, while accounting
for the heterogeneity of the disease.

Therefore, the aim of this thesis was to further our understanding about
the etiology and pathogenesis of three autoimmune diseases namely, T1D,
IgG4-RD and SSc, by analyzing HT ‘omics’ datasets using robust statistical
and computational methods. Specifically, transcriptomics (i.e. study of
gene expression) and microbiomics (i.e. study of the microbial communities)
datasets have been analysed in this thesis. T1D was studied in Publications
I, II and IV, whereas IgG4-RD and SSc were studied in Publication III.
In Publication I, one of the main aims was to identify associated gene
expression markers (from immune cells) that can aid in predicting the
onset of autoimmunity in T1D susceptible infants and/or reflect upon the
progression of the disease. Another aim of this study was to identify the
specific types of immune cells that may be capable of expressing the gene
expression markers. The aim in Publication II was to develop a new method
that can: 1) identify differentially expressed genes (DEGs) by robustly
modelling longitudinal gene expression data from heterogeneous diseases,
such as T1D, in a personalised manner, and 2) summarize the DEGs on a
pathway-level to identify disease-relevant pathways that can help predict
the onset of consequential events in the pathogenesis of the disease and
perhaps even be useful for biomarker identification. While the main aim of
this study was to build the new personalised method, another aim was to

22



Introduction

apply the method on transcriptomics data from T1D susceptible infants to
identify pathways that are enriched or disrupted in the 6 month window
before the onset of autoimmunity and before clinical diagnosis of T1D,
as well as those pathways that are perturbed over the whole time-course
due to the disease phenotype. In Publication III, the main aim was to
identify potential sources of microbial signals that may be contributing
to the etiology of IgG4-RD and SSc. Finally, in Publication IV, one of the
aims of the study was to investigate the influence of several intrinsic and
extrinsic factors on the development of the early gut microbiome in T1D
susceptible infants.

The structure of this thesis is as follows. After this introductory chapter,
Chapter 2 proceeds by giving the basic biological background needed to
understand the importance and relevance of the research conducted in
this thesis. Altogether, the level of biological detail provided in Chapter
2 is designed to equip the reader with sufficient biological knowledge to
understand and appreciate the study designs and results presented in this
thesis. The chapter begins by introducing some of the major constituents
of the human immune system; how the immune system develops self-
tolerance; and how healthy immune responses are carried out in order
to eliminate or inactivate the foreign pathogens. After establishing how
a healthy immune system generally functions, the chapter dives into
discussing how autoimmunity may arise and the factors that may lead up
to it, such as genetic susceptibility and induction via environmental factors.
Towards the end, the chapter also discusses about ADs that may develop
due to autoimmunity. ADs, such as type 1 diabetes (T1D), immunoglobulin
G4 related disease (IgG4-RD), and systemic sclerosis (SSc) are covered in
more detail as these are the diseases that are primarily studied in this
thesis.

Following the biological background, Chapter 3 begins by establishing
the importance of ‘omics’ fields of studies and high-throughput (HT) tech-
nologies in biomedical research. Next, the chapter provides an overview
of two prominent HT technologies availed in biomedical research, namely
DNA microarrays and next generation sequencing (NGS). Thereafter, the
remainder of the chapter focuses on discussing different types of transcrip-
tomics and microbiomics datasets as well as their analyses. In this context,
dataset analysis refers to the processing of the raw data and transforming
it into a format suitable for further statistical and computational inference.

Chapter 4 presents several statistical and computational tools that can be
used to analyse the processed ‘omics’ datasets, especially transcriptomics
and microbiomics datasets, in order to address the research questions
and fulfill the aims of the studies. The focus in this chapter will remain
on covering specifically those analytical tools that have been employed
in the publications of this thesis. In particular, this chapter presents
computational techniques, such as dimension reduction, visualization,
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clustering and microbial diversity estimation techniques, that can be used
to gain insights into the underlying structure and patterns of the data.
Furthermore, it presents statistical modelling tools, such as linear models
and Gaussian processes, that can be used for identifying covariates (such
as disease status or intrinsic/extrinsic factors) that are associated with
the variation in the observed data. The statistical models are commonly
used for differential expression and differential abundance analyses in
transcriptomics and microbiomics studies, respectively.

Finally, Chapters 5-8 present the main results of the four publications
associated with this thesis and Chapter 9 provides the main conclusions
and discussion of this thesis.
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2. The human immune system and
autoimmunity

The human body is continually exposed to various harmful pathogens, such
as bacteria, viruses, fungi and parasites, as well as toxins and allergenic
substances from the environment that can lead to a variety of diseases
and threaten the normal homeostasis of the body. Yet, the incidence of
disease is far less than what it could be due to the protection provided by
the human immune system against the invading foreign bodies[Tortora
and Derrickson, 2013]. To maintain homeostasis in the body, the immune
system employs a complex network of lymphoid organs, tissues, cells,
proteins and other molecules that recognize the presence of a variety
of pathogens and aim at neutralizing or eliminating them. Central to
these protective responses are its mechanisms of ensuring self-tolerance,
i.e. its ability to distinguish between self from non-self, which prevents
the immune system from mounting an attack on the body’s own cells.
There are two major constituents of the human immune system that are
largely determined by the speed, specificity and memory of their responses:
the innate immune system and the adaptive immune system [Parkin
and Cohen, 2001; Murphy and Weaver, 2017; Chaplin, 2006]. Though
initially thought to act independently, the two arms of the immune system
interact with each other in a complementary and cooperative manner
for the efficient recognition and eradication of pathogens [Chaplin, 2006;
Parkin and Cohen, 2001; Clark and Kupper, 2005; Murphy and Weaver,
2017].

2.1 The innate immune system

The innate immune system represents a diverse collection of defense mech-
anisms that are present at birth and provide the initial host response
towards invading pathogens and foreign substances [Tortora and Derrick-
son, 2013; Clark and Kupper, 2005]. Innate immunity is encoded in the
germline genes of the host [Chaplin, 2006; Clark and Kupper, 2005] and
provides an immediate response against invading pathogens (within a
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span of minutes or hours) in a non-specific manner, i.e. it does not target
a specific pathogen and provides similar protection against all pathogens.
Although non-specific, the innate immune cells are able to discriminate
foreign molecules from self, for instance, via pattern-recognition receptors
that recognize a broad repertoire of pathogen-associated molecular pat-
terns present on microbes [Parkin and Cohen, 2001; Jain and Pasare, 2017].
However, after encountering a pathogen, it does not retain an immuno-
logical memory of the event for future reference [Tortora and Derrickson,
2013].

The first line of defense in innate immunity is provided by the physical
and chemical barriers of the skin and mucous membranes of the body
that prevent pathogens from penetrating and spreading throughout the
body. In case a pathogen evades the first line of defense, it encounters
the second line of defense that consists of natural killer (NK) cells, phago-
cytes, inflammation, fever and four main types of internal antimicrobial
substances that prevent microbial growth: interferons (IFNs), complement
proteins, iron-binding proteins and antimicrobial proteins (AMPs) [Tortora
and Derrickson, 2013; Parkin and Cohen, 2001]. More specifically, subse-
quent to penetrating the first line of defense, the next non-specific defense
consists of NK cells and phagocytes [Tortora and Derrickson, 2013]. NK
cells are naturally occurring cytotoxic lymphocytes that represent 5-20%
of the lymphocytes in human [Abel et al., 2018]. They kill a wide variety
of cells in the body that have either become cancerous or infected with
a virus or other intracellular pathogens [Tortora and Derrickson, 2013;
Abel et al., 2018]. However, they do not kill the microbes inside the cells
or released from the cells. The microbes are killed by phagocytes, such
as neutrophils and macrophages, which are specialised cells that ingest
and digest microbes and other particles, such as dying cells, in a process
known as phagocytosis. When lymphocytes, phagocytes or epithelial cells
are infected with viruses, they produce a class of cytokines (Section 2.2.2),
known as interferons, that induce synthesis of antiviral proteins by healthy
neighbouring cells [Tortora and Derrickson, 2013; Molnar and Gair, 2013].
In case of abrasions, chemical irritations, disturbances of cells, etc. caused
by pathogens and toxins, an inflammatory response tries to dispose of
the pathogen or toxin at the site of injury, prevent its further spread to
neighboring tissues and initiate the healing process. Multiple types of
proteins also play a prominent role in innate immunity, where comple-
ment proteins enhance certain immune responses, including phagocytosis;
iron-binding proteins inhibit growth of certain microbes by reducing the
availability of iron; and antimicrobial proteins kill a wide range of microbes
and encourage immune response [Tortora and Derrickson, 2013].
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2.2 The adaptive immune system

When innate immunity is insufficient to control the pathogenic activity of
foreign bodies, the innate immune system activates the adaptive immune
system through multiple highly orchestrated processes [Jain and Pasare,
2017; Clark and Kupper, 2005; Molnar and Gair, 2013]. The lymphatic
system, made up of the thymus, bone marrow, lymph nodes, spleen, lym-
phatic nodules and lymph, is responsible for the adaptive immunity and
some aspects of innate immunity. Adaptive immunity distinguishes from
innate immunity in mainly three ways: (1) it takes much longer time to
establish (days or even weeks), (2) it recognizes specific antigens released
by the pathogens and provides an antigen-specific response, and (3) it
preserves immunological memory for previously encountered antigens so
that a subsequent encounter prompts a quicker and more intense immune
response [Tortora and Derrickson, 2013; Molnar and Gair, 2013].

Antigens are large, complex molecules that are often proteins. They may
originate from within the body as self-antigens or from pathogens and
foreign substances as non-self antigens. They are immunogenic by nature,
which means that they have the ability to provoke an immune response. In
a healthy immune system, self-antigens are ignored by the immune system
and only antigens recognized as non-self prompt an immune response.
Entire microbes; certain parts of microbes, such as flagella, cell walls,
capsules, and bacterial toxins; or non-microbial chemical components,
such as pollen; may act as non-self antigens. Typically, immune response
is triggered by small parts of a large antigen molecule, called epitopes.
Remarkably, the human immune system can recognize at least a billion
different types of epitopes [Tortora and Derrickson, 2013].

There are two types of adaptive immunity: (1) cell-mediated immunity,
which involves lymphocytes called T cells and is particularly effective
against intracellular pathogens and (2) humoral immunity (or antibody-
mediated immunity), which involves lymphocytes called B cells and mainly
combats extracellular pathogens in the body humors (i.e. fluids) outside
cells. [Tortora and Derrickson, 2013; Molnar and Gair, 2013]. These two
types of adaptive immune responses often work together to eradicate a
large number of copies of antigens that circulate the body’s humors as well
as invade body’s cells.

2.2.1 Major histocompatibility complex (MHC) molecules

Major histocompatibility complex (MHC) molecule, also known as human
leukocyte antigen (HLA), is a glycoprotein that is displayed on the sur-
face of each cell in the human body, except red blood cells [Tortora and
Derrickson, 2013]. MHC molecules are encoded in a group of over 200
genes, commonly referred to as HLA genes, located on chromosome 6 in
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humans. These HLA genes are known to be the most polymorphic genes
in the human genome. Due to the polygenic and polymorphic properties
of MHC molecules, every individual possesses a unique set of thousand to
several hundred thousand MHC molecules [Murphy and Weaver, 2017].
The function of MHC molecules is to bind to peptide fragments derived
from self or non-self antigens and present them on the cell surface in order
to help T cells assess the possible need to mount an adaptive immune re-
sponse [Murphy and Weaver, 2017; Hewitt, 2003]. In a step called antigen
processing, antigens are digested into peptide fragments and bound with
MHC molecules to create antigen-MHC complexes. These antigen-MHC
complexes are then inserted into the plasma membrane of the cell for pre-
sentation to lymphocytes in a consecutive step, called antigen presentation
[Tortora and Derrickson, 2013]. In a healthy immune system, if the pep-
tide fragment comes from a self-antigen, T cells ignore the antigen-MHC
complex, whereas if the peptide is derived from a foreign protein, T cells
initiate an immune response [Tortora and Derrickson, 2013; Hewitt, 2003].

There are mainly two types of MHC molecules: MHC class I and MHC
class II. MHC class I molecules are present on all body cells, except red
blood cells, where they process and display endogenous antigens that are
present inside the body cells, such as self-proteins, viral proteins, bacterial
toxins, and cancer-related abnormal proteins. MHC class II molecules
appear on a special class of cells called antigen-presenting cells (APCs)
that include dendritic cells, macrophages and B cells that are strategically
located in those areas of the body where antigens are likely to penetrate
innate defenses. APCs detect, engulf and process exogenous antigens, such
as bacteria, bacterial toxins, parasitic worms, pollen and self-antigens
that are present in the humors outside body cells and express the antigen-
derived peptide fragments on the cell surface in an antigen-MHC complex
[Tortora and Derrickson, 2013; Murphy and Weaver, 2017].

2.2.2 Cytokines

Cytokines are small proteins or peptides secreted by a broad range of cells
throughout the body, including lymphocytes, APCs, endothelial cells, and
fibroblasts, which convey regulatory signals from one cell to another cell
that expresses the cytokine receptor [Tortora and Derrickson, 2013]. They
are involved in regulating many routine cell functions, such as growth,
differentiation and activation [Steinke and Borish, 2006; Murphy and
Weaver, 2017; Parkin and Cohen, 2001]. Specifically, they play a central
role in nearly every aspect of immunity and inflammation, including innate
immunity, antigen presentation, and cellular recruitment and activity, as
well as in determining the nature of the immune response [Steinke and
Borish, 2006]. There are more than 60 different cytokines, including
interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNF) and
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chemokines, where many have redundant functionalities [Murphy and
Weaver, 2017; Parkin and Cohen, 2001]. Some cytokines are produced
by a variety of cell types, whereas others are specific to certain types of
cells; and some cytokines influence a wide range of cell types, whereas
others influence a certain few [Murphy and Weaver, 2017]. Moreover, a
cytokine can be pro- or anti-inflammatory, or both. Among other factors,
the cellular source, target, the phase at which a cytokine is released in an
immune response, as well as the presence of other cytokines, govern the
function of a cytokine, especially in the case of cytokines with both pro-
and anti-inflammatory potential [Borish and Steinke, 2003].

2.2.3 T and B cells

T and B cells are two major types of lymphocytes, i.e. white blood cells,
that are produced and made immunocompetent in the primary lymphatic
organs, namely bone marrow and thymus. While the precursor cells of both
populations are derived in the bone marrow from pluripotent hematopoietic
stem cells, only the B cells complete their maturation there and become
immunocompetent. Precursor T cells, on the other hand, migrate to the
thymus where they proliferate, complete their maturation process and
become immunocompetent [Tortora and Derrickson, 2013; Murphy and
Weaver, 2017; Parkin and Cohen, 2001]. During their maturation process,
each immature B or T cell produces a unique antigen-specific receptor
through a process called somatic recombination that recognizes a single
antigen. In this somatic recombination process, several interchangeable
gene segments of receptor genes are randomly rearranged to form unique
gene combinations that give rise to unique T cell and B cell receptors
(i.e. TCRs and BCRs) per cell [Murphy and Weaver, 2017]. As a result, a
remarkably diverse repertoire of millions of TCRs and BCRs are expressed
on the surfaces of B and T cells that recognize a wide range of pathogenic
antigens [Murphy and Weaver, 2017; Parkin and Cohen, 2001; Xing and
Hogquist, 2012]. BCRs can directly recognize and bind to antigens, whereas
TCRs require the antigens to be processed by other cells and presented to
them in an antigen-MHC complex 2.2.1 [Murphy and Weaver, 2017].

Central tolerance

One drawback of producing an incredibly diverse set of receptors is the
inevitable production of receptors that are non-functional or react to self-
antigens, where the latter can result in autoimmune diseases. Therefore,
as soon as the receptors are formed, the developing lymphocytes are sub-
jected to central tolerance mechanisms in their respective sites of mat-
uration, by which developing lymphocytes expressing non-functional or
self-reactive receptors are eliminated [Murphy and Weaver, 2017; Xing
and Hogquist, 2012]. In general, in a process of central tolerance known
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as positive selection, lymphocytes with receptors that weakly interact with
self-antigens are allowed to survive; whereas in another process of central
tolerance known as negative selection, lymphocytes with receptors that
react strongly with self-antigens are eliminated (undergo apoptosis and
die) or inactivated (via anergy, where the cell is alive but unresponsive to
antigenic stimulations). Lymphocytes with receptors that have no affinity
to self-antigens are usually deemed non-functional and are also eliminated
or inactivated [Murphy and Weaver, 2017; Nemazee, 2017; Tortora and
Derrickson, 2013]. These processes help ensure that the surviving reper-
toire of BCRs and TCRs is self-tolerant. In the thymus, dendritic cells and
thymic epithelial cells present antigens on MHC molecules to the TCRs of
developing T cells in order to assess their self-reactivity (self-affinity), thus
determining their fate in the positive and negative selection processes. T
cells that fail to bind to antigen-MHC complexes presented in the thymic
environment, i.e. have no affinity to the self-antigens in that environment,
are considered non-functional as they do not recognize the body’s own
MHC molecules, which is a crucial trait for a T cell to initiate an immune
response [Tortora and Derrickson, 2013; Xing and Hogquist, 2012]. In fact,
only 1-5% of the developing T cells survive elimination by central tolerance
mechanisms and complete the maturation process [Tortora and Derrickson,
2013].

Peripheral tolerance

A limitation of central tolerance is that not all self-antigens, which the
lymphocytes need to be tolerant of, are expressed at the primary sites of
lymphocyte development. There are some self-antigens, such as food anti-
gens and developmental antigens, that lymphocytes only encounter after
leaving the thymus and bone marrow. Therefore, an additional layer of
tolerance mechanisms exist in the immune periphery, known as peripheral
tolerance. It manages and educates the self-reactive lymphocytes that
have escaped central tolerance to circulate the lymph and colonize the
secondary lymphatic organs, such as lymph nodes, spleen, and lymphatic
nodules. Like central tolerance, peripheral tolerance also has several ways
of dealing with self-reactive lymphocytes, including deletion by apoptosis,
inactivation via anergy, and survival [Walker and Abbas, 2002; Xing and
Hogquist, 2012; Nemazee, 2017; Murphy and Weaver, 2017]. In the pe-
riphery, mature lymphocytes are recognized as self-reactive usually when
they react to self-antigens without receiving additional ’co-stimulatory’ or
’danger’ signals that are necessary for their activation (discussed further
in Sections 2.2.4 and 2.2.5) [Gutierrez-Arcelus et al., 2016; Tobón et al.,
2013; Murphy and Weaver, 2017].

Together, the central and peripheral tolerance mechanisms aim to pre-
vent the development of autoimmune diseases.
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CD4+ and CD8+ T cells

T cells that survive central tolerance mechanisms differentiate into two
major types of T cells before exiting the thymus, namely T helper cells
and cytotoxic T cells. T helper cells indirectly participate in eliminating
foreign cells in the body by regulating the activity of other immune cells
largely via cytokine signalling. Cytotoxic T cells, on the other hand, mount
a direct attack on the foreign cells that destroys them, especially microbe-
infected body cells and cancer cells. These two cell types are phenotypically
distinguished from each other by the proteins expressed on their plasma
membranes. T helper cells express a protein called CD4, which is why
they are also known as CD4+ T cells; whereas, cytotoxic T cells express a
protein called CD8, and hence are also know CD8+ T cells. CD4 and CD8
proteins are co-receptors that help maintain the interaction between the
TCR of the cell and the antigen-MHC complex during antigen recognition
process [Tortora and Derrickson, 2013; Murphy and Weaver, 2017; Parkin
and Cohen, 2001; Molnar and Gair, 2013]. Approximately 1-5% of T cells
that exit the thymus do not express either of the cell-surface proteins
(CD4-CD8- T cells) and thus, do not recognize antigen-MHC complexes
[Völkl, 2019; Parkin and Cohen, 2001].

2.2.4 Cell-mediated immunity

In cell-mediated immunity, T cells carry out an immune response that
eventually leads to the elimination of the infected or foreign cells producing
the pathogenic antigens. This immune response begins with the activation
of a small number of T cells that express TCRs reactive to the pathogenic
antigen. Subsequently, the activated T cells undergo a process called
clonal selection, by which they proliferate and differentiate to form large
populations of effector and memory cells with same antigen-specificity,
that ultimately carry out the immune responses [Tortora and Derrickson,
2013; Murphy and Weaver, 2017].

T cell activation is a crucial process in the regulation of an adaptive
immune response as well as maintenance of peripheral tolerance. Two
simultaneous signals are needed to fully activate naive T cells. The first
signal is provided by the antigen recognition process, in which TCRs
recognize specific antigens presented to them by APCs; and the second
signal is provided by co-stimulatory molecules, such as cytokines and
plasma membrane molecules, in a process called co-stimulation, which
enables adhesion of two cells for a prolonged period of time [Tortora and
Derrickson, 2013; Sharpe, 2009], promotes cell survival, and increases
cytokine production [Podojil and Miller, 2009]. Co-stimulation (or a lack
thereof) is also one of the more prominent peripheral tolerance mechanisms
that determines whether a T cell would become activated or anergic. If
TCR-mediated antigen recognition process takes place in the absence of
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co-stimulation, the corresponding T cells are rendered unresponsive to
subsequent antigenic stimuli [Tortora and Derrickson, 2013; Sharpe, 2009].
Lack of co-stimulation (or negative co-stimulation) often occurs to mediate
peripheral tolerance and prevent autoimmunity when T cells encounter
self-antigens [Xing and Hogquist, 2012].

Dendritic cells (DCs), which are a type of APCs, are the most potent
activators of naive T cells as they excel in picking up virtually any type of
antigen from the sites of infections, injury or vaccination in both lymphoid
and non-lymphoid tissues (skin, intestine, lung, skeletal muscle and liver),
and in presenting them on MHC class I and II molecules for antigen recog-
nition by naive T cells [Murphy and Weaver, 2017; den Haan et al., 2014;
Dalod et al., 2014]. Before encountering antigens, DCs are considered
immature as they express low levels of MHC and co-stimulatory molecules.
In response to activation by an antigen, DCs begin their maturation pro-
cess, in which they increase the expression of MHC and co-stimulatory
molecules at the cell surface while migrating to T-cell-rich zones in lymph
nodes (LNs) [Dalod et al., 2014]. Even though DCs primarily present
antigens on MHC class II molecules, they can also present them on MHC
class I molecules largely under two circumstances: 1) they are directly
infected by a virus, or 2) they belong to a subset of DCs that are capable of
presenting antigens from viral, bacterial and other sources, on MHC class
I molecules without being infected, by a process called cross-presentation
[Murphy and Weaver, 2017]. Since CD4+ and CD8+ T cells recognize
antigens only when associated with MHC class II and class I molecules,
respectively, the mature DCs in the LNs use antigens on MHC class II
molecules to activate CD4+ T cells and MHC class I molecules to activate
CD8+ T cells [Tortora and Derrickson, 2013; Dalod et al., 2014]. Along
with antigen presentation, DCs also provide relevant co-stimulation for
full activation of the T cells through their cell-surface molecules and by
secreting specific cytokines that communicate the nature of antigen and
the type of immune response needed to the T cells [Dalod et al., 2014].

The antigen recognition process and co-stimulation initiated by DCs
(and in some cases, other APCs, such as B cells) are enough to activate
CD4+ T cells. However, possibly due to the destructive actions of CD8+ T
cells, they usually require additional co-stimulation from activated CD4+
T cells (by the same antigen) to become fully activated. Activated CD4+
T cells secrete various cytokines, including IL-2, that act as important
co-stimulators for a variety of immune cells, such as CD8+ T cells, B
cells, NK cells and themselves, and enhance their activity [Murphy and
Weaver, 2017; Tortora and Derrickson, 2013]. Upon activation, naive CD8+
T cells differentiate into cytotoxic effector T cells that can recognize the
foreign antigens associated with MHC class I molecules on infected cells
outside the secondary lymphatic organs and kill the cells; whereas naive
CD4+ T cells can differentiate into several subsets of effector T cells with
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different immunological functions, depending on the cytokines and other
co-stimulatory signals they receive from the APCs during the activation
process. The main CD4+ T cell subsets include T helper 1 (Th1), Th2, Th17,
T follicular helper (Tfh) and regulatory T (Treg) cells [Murphy and Weaver,
2017]. They differ from each other in terms of the cytokines they produce
and the type of pathogens they help in eradicating [Parkin and Cohen,
2001; Molnar and Gair, 2013].

2.2.5 Humoral immunity

In addition to T cells, the body also contains millions of different B cells,
each capable of recognizing and responding to a specific antigen. These
B cells form an integral part of humoral immunity, which protects the
extracellular spaces of the body, i.e. body fluids or humors, from invading
pathogens and toxins upon activation. Similar to T cells, activation of
B cells takes place in the secondary lymphatic organs, but unlike TCRs,
BCRs are capable of directly recognising and binding to their specific
antigens. Nevertheless, most naive B cells require ‘help’ or co-stimulation
from CD4+ T cells for optimal activation. Without the co-stimulation
from CD4+ T cells, the B cells are usually rendered inactive or deleted,
which commonly happens when a B cell recognizes self-antigens [Tobón
et al., 2013]. Notably, B cells can also act as APCs where they engulf
certain antigens, process them into peptide fragments and present them
on MHC class II molecules to activate or interact with antigen-specific
CD4+ T cells, and in turn, receive co-stimulation for furthering their own
activation. Upon activation, like T cells, B cells undergo clonal selection
that produces a clone of plasma and memory cells. Plasma cells are the
effector B cells that secrete hundreds of millions of copies of antibodies, i.e.
immunoglobulins, specific to the antigen at hand [Tortora and Derrickson,
2013; Murphy and Weaver, 2017]. Antibodies are secreted forms of the
receptors on the B cells [Murphy and Weaver, 2017] and are chemically
similar to the antigen that triggered its production [Tortora and Derrickson,
2013]. They are the agents of the humoral immunity that circulate in
the lymph and blood, and bind with its specific antigen whenever it is
encountered in order to prevent its ability to infect cells. By binding to the
antigens, antibodies act to disable them in many possible ways, such as
neutralization, immobilization, agglutination, activation of complement
system, and enhancement of phagocytosis [Molnar and Gair, 2013]. There
are 5 types of antibodies, namely immunoglobulin G (IgG), IgA, IgM, IgD
and IgE, that are characteristically and structurally different, but all aim
to avert infection by pathogenic antigens or toxins in some way [Tortora
and Derrickson, 2013].
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2.3 Autoimmunity

Maintaining a healthy immune system is crucial for preserving home-
ostasis within the body and for efficiently protecting it against invading
pathogens and potential diseases. However, a broad range of factors can
perturb the human immune system and lead to its dysfunction [Brodin and
Davis, 2017], which in turn gives rise to various chronic immune-related
complications, including immune deficiencies, allergies and autoimmunity
[Wang et al., 2015].

Autoimmunity is the abnormal response of the adaptive immune system
to self-antigens, where it fails to distinguish between pathogenic- and
self-antigens, and erroneously mounts immune responses that damage
body’s healthy tissues [Murphy and Weaver, 2017; Gutierrez-Arcelus et al.,
2016]. Analogous to normal immune responses to pathogens, autoimmune
responses are activated by specific antigens, called self-antigens, and give
rise to effector lymphocytes as well as antibodies, called autoantibodies
[Murphy and Weaver, 2017]. It creates an inflammatory environment
involving multiple immune cells, cytokines, and other mediators that
amplify the reaction [Rosenblum et al., 2015].

As explained in Section 2.2.3, the immune system has installed a succes-
sion of tolerance mechanisms that act as synergistic checkpoints in order
to eliminate self-reactive lymphocytes. However, the central tolerance
mechanisms are not very stringent by design as they allow a small num-
ber of weakly self-reactive lymphocytes to escape elimination and exist
in the periphery. This is because many weakly self-reactive lymphocytes
also have the potential to respond to pathogenic antigens, and deleting
them would dangerously narrow the repertoire of receptors available to
respond to the foreign pathogens, which would inadvertently impair the
immune system [Wang et al., 2015; Walker and Abbas, 2002]. Therefore,
self-reactive lymphocytes are a natural part of the immune repertoire that
are not often activated by self-antigens, but if activated, they are usually
suppressed by peripheral tolerance mechanisms.

Clearly, in order to induce tolerance mechanisms, the immune system
should be able to efficiently distinguish between self and non-self. There
are several clues that enable them to do so, but they are all imperfect and
error-prone [Murphy and Weaver, 2017]. Isolated breakdowns in tolerance
at one or more checkpoints are common in healthy individuals. However,
it is the persistent breakdown of tolerance at multiple checkpoints and
sustained activation of self-reactive lymphocytes that lead to loss of self-
tolerance and autoimmunity, which in turn leads to various autoimmune
diseases (ADs). Moreover, an imbalance between activated self-reactive T
cells and Tregs (T cells that suppress immune response and help maintain
homeostasis and self-tolerance [Xing and Hogquist, 2012]) is believed to
play a role in the development of T cell-dependent ADs [Rosenblum et al.,
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2015].
The mechanisms by which autoimmunity occurs are still incompletely

understood [Murphy and Weaver, 2017; Gutierrez-Arcelus et al., 2016], and
thus the etiology and pathogenesis of most autoimmune diseases remain
elusive [Vojdani, 2014; Wang et al., 2015]. However, decades of research
have indicated that most autoimmune diseases develop as a result of
genetic susceptibility as well as induction via environmental factors, such
as microbial exposure, dietary habits and other lifestyle choices [Wang
et al., 2015; Vojdani, 2014; Brodin and Davis, 2017].

2.3.1 Genetic susceptibility

In the past decade or so, hundreds of large-scale genome-wide association
studies (GWAS) have been conducted to assess the genetic susceptibility
of autoimmune diseases (ADs) in humans [Rosenblum et al., 2015; Wang
et al., 2015]. These studies have identified hundreds of risk variants,
typically single nucleotide polymorphisms (SNPs), in ~80 ADs [Gutierrez-
Arcelus et al., 2016; Brodin and Davis, 2017], where more than 80% of
the risk variants fall in non-coding regions of the genome [Gutierrez-
Arcelus et al., 2016; Murphy and Weaver, 2017]. Also, most risk variants
associated with ADs have small to moderate effect sizes (i.e. strength
of association), making the contribution of each variant to a particular
disease small [Gutierrez-Arcelus et al., 2016; Rosenblum et al., 2015]. In
fact, in a majority of the ADs, the disease development is attributed to
multiple genetic variants [Rosenblum et al., 2015]. Furthermore, many of
the risk variants, as well as the immune pathways that they are involved
in, are common across different ADs, which indicates that many ADs have
a common genetic etiology [Gutierrez-Arcelus et al., 2016; Murphy and
Weaver, 2017].

As established earlier, the MHC molecules (Section 2.2.1) play a critical
role in distinguishing self from non-self as it is involved in the antigen
presentation process. The HLA genes encoding these molecules are highly
polymorphic and contain variants that have been known to be associated
to ADs for over 50 years [Matzaraki et al., 2017]. Interestingly, despite
discovering hundreds of risk variants contributing to ADs via GWAS,
till date, the polymorphisms in the HLA gene locus remain the most
significantly and consistently associated genetic variants to ADs with large
effect sizes [Wang et al., 2015; Rosenblum et al., 2015]. In fact, most
associations are mediated by a handful of HLA genes [Gutierrez-Arcelus
et al., 2016]. It is hypothesised that certain variants (or genotypes) of
MHC molecules may be more susceptible to presenting peptides from self-
antigens to self-reactive T cells, or they may influence the shaping of the T
cell receptor repertoire in the thymus during development by promoting
positive selection of self-reactive T cells and avoid their negative selection
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[Murphy and Weaver, 2017].
Unfortunately, regardless of the increased knowledge on the genetic vari-

ants associated with a number of ADs, the role of most of these genetic
variants in the breakdown of self-tolerance and the development of au-
toimmunity is still poorly understood and remains a challenging task to
resolve [Rosenblum et al., 2015] perhaps because many of them occur in
non-coding regions [Theofilopoulos et al., 2017]. In fact, the way in which
different HLA genotypes contribute to any ADs is still inadequately under-
stood [Rosenblum et al., 2015]. Moreover, most of these genetic variants,
including HLA genotypes, fail to exhibit significant predictive strength to
indicate onset of autoimmunity [Wang et al., 2015]. Nevertheless, GWAS
have been remarkable in identifying several genetic variants that would
otherwise have not been possible [Wang et al., 2015]. Notably, genetic
variants are known to affect transcript levels or mRNA stability, which in
turn could alter protein levels [Gutierrez-Arcelus et al., 2016].

2.3.2 Environmental triggers

The alarming rate at which the prevalence and incidence of ADs have risen
worldwide, especially in industrialized or urbanized countries, as well
as the highly varying ranges of concordance rates in monozygotic twins,
indicate non-genetic factors, i.e. environmental factors, to be involved in
triggering autoimmunity in genetically susceptible individuals [Vojdani,
2014; Rose, 2016; Wang et al., 2015]. In fact, environmental factors are
considered to account for up to 70% of all ADs [Khan and Wang, 2020].
Some known environmental factors that have been linked to various ADs
include—but are not limited to—infections [Kivity et al., 2009; Danzer
and Mattner, 2013], environmental toxins [Murphy and Weaver, 2017],
dietary factors [Manzel et al., 2014; Vieira et al., 2014; Mackay, 2020],
usage of drugs & vaccines [Wang et al., 2015; Murphy and Weaver, 2017],
vitamin D levels [Yang et al., 2013; Murdaca et al., 2019; Rebeca et al.,
2019], and gut microbial composition [Khan and Wang, 2020; Gianchecchi
and Fierabracci, 2019; Opazo et al., 2018].

The transition from an initial trigger to full-blown autoimmunity is not
a well understood concept, but it is believed to be a cumulative process
that is driven by a combination of factors, rather than a single one [Kivity
et al., 2009; Danzer and Mattner, 2013]. For instance, instead of a single
infection, a ‘burden of infections’ from early childhood is considered to be
responsible for the induction of autoimmunity in susceptible individuals
[Kivity et al., 2009].

Infections

Infections caused by infectious agents, such as bacteria, viruses and par-
asites, have long been suggested to play an important role in eliciting
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autoimmunity in susceptible individuals [Kivity et al., 2009; Rosenblum
et al., 2015; Danzer and Mattner, 2013]. Indeed, almost every AD has
been associated with one or more infectious agents [Vojdani, 2014]. Au-
toimmunity can be induced by infectious agents via multiple mechanisms,
including molecular mimicry, epitope spreading, bystander activation, viral
persistence and polyclonal activation, among others [Kivity et al., 2009; Voj-
dani, 2014]. Molecular mimicry is believed to be the most likely mechanism
by which infectious agents promote autoimmunity [Vojdani, 2014] and it
has been implicated in the pathogenesis of several microbe-associated
diseases [Danzer and Mattner, 2013]. In this mechanism, pathogenic anti-
gens that bear structural similarity to self-antigens and are recognized by
the same (auto)antibodies, may result in activation of T cells and produc-
tion of (auto)antibodies that are cross-reactive with self-antigens [Murphy
and Weaver, 2017; Danzer and Mattner, 2013; Vojdani, 2014]. Here, the
structure of the pathogenic antigen need not be identical, but sufficiently
similar, to the self-antigen [Murphy and Weaver, 2017].

Influence of the gut microbiome on host defenses

All areas of the human body, including the skin, gut (i.e. gastrointestinal
tract), oral cavity, nasal cavity and urogenital tract, are colonized by
trillions of commensal microbes (or microorganisms), such as bacteria,
archaea, fungi, microbial eukaryotes, viruses and phages, that together
constitute the human microbiome (or microbiota1). In fact, there are
approximately as many microbial cells in or on the human body as human
cells [Sender et al., 2016; Allaband et al., 2019] that humans have co-
evolved with for millenia, establishing a symbiotic relationship [Liang
et al., 2018; Belkaid and Harrison, 2017; Vieira et al., 2014]. Humans
rely on the vast enzymatic properties and metabolic pathways of these
microbes for regulating its various physiological processes [Belkaid and
Hand, 2014; Liang et al., 2018]. As a result, each body-site has evolved to
harbour specific microbes essential for its physiological activities, resulting
in strikingly different microbial communities between body-sites of an
individual [Huttenhower et al., 2012].

The gut—being the largest area of the body that is constantly exposed to
environmental antigens and microbes [Gianchecchi and Fierabracci, 2019;
Lynch and Pedersen, 2016]—houses the largest, most influential and a
highly diverse reservoir of microbes (and antigens) in the human body

1The definitions of the terms ‘microbiome’ and ‘microbiota’ are inconsistent in
literature and may be used interchangeably. Marchesi and Ravel [2015] have
proposed a specific terminology where ‘microbiota’ refers to the collection of
microbes in a defined environment, and ‘microbiome’ refers to the collection
of microbes as well as their genomes (i.e. genes). However, the definition of
‘microbiome’ differs in Allaband et al. [2019] and clashes with the definition of
‘metagenome’ given in Marchesi and Ravel [2015]. Therefore, in this thesis, both
of these terms refer to definition of ‘microbiome’ proposed by Marchesi and Ravel
[2015].
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[Tibbs et al., 2019; Vieira et al., 2014]. The gut microbiome consists tens of
trillions of microbial cells that contain millions of unique genes [Zhu et al.,
2010; Lynch and Pedersen, 2016], which are approximately 150 times more
genes than in the human genome [Zhu et al., 2010]; and include about
2000 bacterial species [Opazo et al., 2018]. In addition to microbes, the gut
harbours the largest number of immune cells in the human body (up to
70% of the body’s immune cells) [Takiishi et al., 2017; West et al., 2015;
Mason et al., 2008].

A rich and diverse gut microbiome plays an essential role in human
health [Tibbs et al., 2019; Belkaid and Hand, 2014]. In addition to playing
a central role in nutrient and drug metabolism [Zhu et al., 2010], from an
early age, commensal microbes of the gut microbiome (i.e. gut commensals)
calibrate nearly all aspects of the innate and adaptive immune systems,
both local and systemic, [Belkaid and Harrison, 2017; Lazar et al., 2018] in
order to promote immune homeostasis [Gianchecchi and Fierabracci, 2019;
Belkaid and Hand, 2014]. Here, immune homeostasis refers to the ability
of protecting the human body from pathogenic microbes, while remaining
tolerant to harmless food, commensals and self-antigens [Mason et al.,
2008]. By establishing a cross-talk with the immune system using a large
repertoire of signalling mechanisms and pathways [Levy et al., 2017; Lazar
et al., 2018; De Luca and Shoenfeld, 2019], the gut commensals signifi-
cantly influence the development of the immune system, especially during
early childhood [Zhao and Elson, 2018; Gensollen et al., 2016; Tibbs et al.,
2019]. (In this context, the term development also refers to maturation and
education of the immune system.) These actions train the immune system
to differentiate between commensals and pathogenic microbes [Lazar et al.,
2018] as well as self and non-self antigens [Tibbs et al., 2019], which in
turn enables the immune system to shape and preserve the microbial ecol-
ogy of the gut [Belkaid and Harrison, 2017; Levy et al., 2017]. Moreover,
gut commensals and components of the immune system compose the first
two (of three) layers of the gut barrier [Assimakopoulos et al., 2018], which
contributes to the containment of the gut microbial cells [Assimakopoulos
et al., 2018; Opazo et al., 2018]. This containment is especially crucial to hu-
man health as they prevent gut microbes (both commensal and pathogenic)
from translocating to other parts of the body or into the systemic blood
circulation, which can lead to systemic inflammatory response in vari-
ous organs or sepsis [Assimakopoulos et al., 2018; Belkaid and Harrison,
2017]. Furthermore, a thriving and symbiotic gut microbiome is also vital
for inhibiting pathogens from invading the host and initiating infections
[Belkaid and Hand, 2014; Opazo et al., 2018] as well as in clearing existing
infection [Pickard et al., 2017]. This phenomenon is known as ‘colonization
resistance’, which the gut commensals mediate via various mechanisms,
such as direct killing, successfully competing for limited supply of nutri-
ents, and promoting fast immune responses [Pickard et al., 2017; Opazo
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et al., 2018]. Thus, throughout life, the gut commensals plays an extremely
significant role in protecting the host from various diseases, including
intestinal, non-intestinal, autoimmune and inflammatory diseases [Brodin
and Davis, 2017; Milani et al., 2017; Khan and Wang, 2020].

The early microbial colonization of an infant’s gut plays an instrumental
role in the development of the immune system, and has long-term impli-
cations on host immune responses and health [Belkaid and Hand, 2014;
Gensollen et al., 2016; Rackaityte et al., 2020]. The initial colonization
of the gut happens in utero [Tanaka and Nakayama, 2017; Gianchecchi
and Fierabracci, 2019; Rackaityte et al., 2020]. However, the extensive
colonization begins immediately after birth [Ferretti et al., 2018; Gensollen
et al., 2016] and continues until 2-3 years (or ~1000 days [Lazar et al.,
2018]) of age. After these early years, the complex and highly dynamic
gut microbial community of an infant stabilizes to resemble that of an
adult [Zhao and Elson, 2018; Gensollen et al., 2016] and remains hence-
forth relatively unchanged throughout life [Tibbs et al., 2019; Gensollen
et al., 2016]. The establishment and development of the gut microbiome
(or a lack thereof) during the first few years of life are driven and mod-
ulated by several extrinsic factors, such as maternal (gut) microbiome,
[Ferretti et al., 2018; Yassour et al., 2018], mode of delivery (cesarean vs.
vaginal delivery) [Gianchecchi and Fierabracci, 2019; Opazo et al., 2018],
breastfeeding patterns [Belkaid and Hand, 2014; Isolauri, 2012], use of
antibiotics [Opazo et al., 2018; Zhao and Elson, 2018] (by both mothers
and infants [Ferretti et al., 2018]), age at weaning [Tanaka and Nakayama,
2017], socio-economic status [Lazar et al., 2018], geographical location [Ar-
rieta et al., 2014], exposure to farm environment [Brodin and Davis, 2017],
infections [Wang et al., 2015]; as well as intrinsic factors, such as host ge-
netics [Zhuang et al., 2019; Levy et al., 2017] and gender [Mohammadkhah
et al., 2018]. While these factors can regulate the diversity, richness and
composition of the microbes in the environment, the capability of accepting
the microbes into the environment (i.e. allowing them to colonize) without
an inflammatory response, can be explained by the unique nature of the
infant immune system at the time [Belkaid and Hand, 2014]. During
these early years of life, along with the gut microbiome, the infant im-
mune system is also developing and is relatively immature [Gianchecchi
and Fierabracci, 2019]. It is characterized by blunted inflammatory re-
sponses and a regulatory environment [Belkaid and Hand, 2014]. Simply
put, the infant immune cells—unlike those of adults—favour regulatory
responses, where they preferentially develop tolerance towards antigens
and commensals introduced by the infant’s new environment after birth,
such as via food and gut microbes, ensuring establishment of a rich and
stable gut microbiome without inflammatory responses [Lazar et al., 2018].
Furthermore, the infant immune system is considered to be more durable
and permissive to microbial instructions during infancy; providing a ‘win-
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dow of opportunity’ for proper (or improper) immune development , and
thus resilience (or susceptibility) towards diseases later in life [Zhao and
Elson, 2018; Gensollen et al., 2016]. A ‘healthy’ colonization of the gut by
beneficial microbes during this critical window is believed to encourage
proper development and training of the immune system, and thus promote
immune homeostasis as well as long-term health. Even though a formal
definition of what constitutes a ‘healthy’ infant gut microbiome has been
difficult to ascertain, certain colonization trends of specific beneficial mi-
crobes for infant development have been inferred through various studies
[Milani et al., 2017].

However, owing to the high instability of the gut microbial composition
during the early years of life, it is more vulnerable to environmental and
host-related factors [Gensollen et al., 2016; Milani et al., 2017], such as
those listed above. Certain factors can lead to reduced diversity or aber-
rant colonization of the infant gut, which in turn may result in significant
defects or abnormalities in the development of the immune system and
thus defective immunological tolerance [Gensollen et al., 2016; Lazar et al.,
2018; Milani et al., 2017]. In fact, many recent metagenomic studies have
linked reduced diversity, aberrant colonizations or compositional shifts
during infancy to illnesses that manifest during childhood or later in life,
including type 1 diabetes (T1D), inflammatory bowel disease (IBD), asthma
and metabolic disorders [Milani et al., 2017; Kostic et al., 2015]; although
the mechanisms involved in disease pathogenesis remain largely elusive
[Lazar et al., 2018; Khan and Wang, 2020]. For instance, cesarean section
(c-section)- delivery, which has shown to drive reduced gut microbial com-
plexity in infants, has been associated with an increased risk of immune
diseases, such as T1D [Milani et al., 2017; Gianchecchi and Fierabracci,
2019]. Also, as proposed in the hygiene hypothesis (first suggested by
Strachan in 1989 [Strachan, 1989]), the lack of infections (or insufficient
microbial exposure) during childhood in westernised/urbanised countries
(or cities) due to overuse of antibiotics, changes in diet, socioeconomic
status, higher hygiene levels, etc., may result in underdeveloped gut mi-
crobiomes that lack the maturity and diversity required for establishing
a stable and homeostatic immune system [Belkaid and Hand, 2014]. The
hygiene hypothesis has been used to explain the recent worldwide increase
in incidences of autoimmune diseases, especially T1D and IBD [Wang et al.,
2015]. Nonetheless, elucidating the exact impact of a specific microbe on
human health or ascertaining the influences of certain extrinsic and in-
trinsic factors on the gut microbial composition, is still in its infancy and
requires further research [Tibbs et al., 2019].

After reaching an adult-like composition, the gut microbiome is consid-
ered mostly stable and symbiotic, but due to certain factors, such as use
of antibiotics and drugs, diet, infections, host genetics, etc., dysbiosis may
originate [Levy et al., 2017]. Here, dysbiosis refers to the compositional
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and functional aberrations in the gut microbiome that are typically driven
by an overgrowth of pathobionts (i.e. commensals that have the potential
to be pathogenic under certain circumstances), loss of gut commensals,
and/or loss of overall microbial diversity [Levy et al., 2017; De Luca and
Shoenfeld, 2019]. Gut microbial dysbiosis may increase local and systemic
susceptibility to infections; induce chronic immune responses that may
lead to inflammation and tissue damage [Lazar et al., 2018]; as well as
compromise gut barrier that may lead to increased microbial transloca-
tion [Assimakopoulos et al., 2018] and gut permeability [Gianchecchi and
Fierabracci, 2019]. Even though the precise mechanisms by which the gut
microbiome affects disease pathogenesis are not well-known, many studies
have associated gut microbiome dysbiosis to the pathogenesis of a plethora
of diseases, including autoimmune diseases [Gianchecchi and Fierabracci,
2019; Theofilopoulos et al., 2017].

2.4 Autoimmune diseases

Till date, there are more than 80 distinct autoimmune diseases (ADs)
affecting 7.6-9.4% of the world’s population [Gutierrez-Arcelus et al., 2016]
and have a significant effect on mortality and morbidity in populations
[Wang et al., 2015; Theofilopoulos et al., 2017]. Being a diverse collection
of diseases, there are various important demographic differences between
different ADs [Cooper and Stroehla, 2003]. In particular, nearly all ADs
disproportionately affect women more than men [Theofilopoulos et al.,
2017]; the age distribution among ADs is notably different [Wang et al.,
2015]; and specific ADs are more prevalent in certain countries or ethnic
groups [Cooper and Stroehla, 2003; Gutierrez-Arcelus et al., 2016].

Most ADs can be classified into two categories: organ-specific ADs, those
affecting specific organs of the body, such as type 1 diabetes (T1D); and
systemic ADs, those affecting various tissues of the body, such as sys-
temic sclerosis (SSc), immunoglobulin G4 related disease (IgG4-RD), sys-
temic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Despite
varying greatly in the organs or tissues they affect as well as in their
clinical manifestations, many of the ADs employ similar mechanisms for
immunopathogenesis [Vojdani, 2014].

2.4.1 Prediction and prevention

Unfortunately, no definitive cures exist for any of the ADs, probably be-
cause most ADs develop over a prolonged period of time in a clinically
asymptomatic manner and become diagnostically detectable only after
irreversible damage has taken place in the affected organs or tissues [Rose,
2016; Rosenblum et al., 2015]. This has strengthened the need for etiologi-
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cal and predictive signatures (or factors or markers) that can enable early
diagnosis of ADs and even provide an opportunity to prevent it altogether.
Currently, genetic susceptibility conferred by HLA and non-HLA genes
along with detection of characteristic autoantibodies in the serum are
some of the most common and only indicators used to predict the onset of
autoimmunity and to assess the prognosis of the disease. However, in most
ADs, neither of these factors are able to do so in a reliable manner [Rose,
2016], especially since none can definitively assure a clinical illness in the
future [Vojdani, 2008; Castro and Gourley, 2010], such as in T1D (Section
2.4.2) [Kallionpää et al., 2014]. In fact, the presence of autoantibodies
is indicative of an already active autoimmune response (i.e. loss of self-
tolerance), which makes them poor predictive or prognostic biomarkers in
most ADs, including T1D [Kallionpää et al., 2014]. Furthermore, various
environmental factors have also been implicated in the etiology of ADs,
but the mechanisms by which they induce autoimmunity remain unclear
[Theofilopoulos et al., 2017; Vojdani, 2014].

Therefore, there is an urgent need of more reliable predictive signa-
tures, such as gene expression profiles and pathways, as well as etiological
signatures, such as microbes, microbial genes, and other environmental
factors, that can help in monitoring and predicting the progression of ADs
as well as establishing preventive treatments. These goals can efficiently
be met by exploring high-throughput ‘omics’ datasets derived from host
(i.e. humans) and gut microbial populations as well as by investigating the
environmental factors that influence them.

2.4.2 Type 1 diabetes

Type 1 diabetes (T1D)—studied in Publications I, II and III—is a complex
autoimmune disease that is characterised by the continuous infiltration of
pancreatic islet cells by immune cells, particularly CD4+ and CD8+ T cells
as well as NK cells and macrophages, that typically results in insulitis, i.e.
islet inflammation [Bending et al., 2012; Clark et al., 2017; Regnell and
Lernmark, 2017; DiMeglio et al., 2018]. Over time, insulitis culminates in
the selective destruction of insulin-producing β-cells that make up about
60% [Da Silva Xavier, 2018] of the pancreatic islet cells, and consequently
leads to diminished insulin production [Bending et al., 2012; Clark et al.,
2017].

T1D is among the most common chronic diseases in infants and ado-
lescents; more common in males than in females [Atkinson et al., 2014].
Globally, an annual increase of both the incidence and prevalence of T1D
has been reported, with 2-3% increase in incidence per year. However, the
disease incidence varies substantially between countries [DiMeglio et al.,
2018], including neighbouring countries (or regions) [Atkinson et al., 2014].
For instance, Finland has the highest incidence of T1D in the world with
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more than 60 cases per 100,000 people each year [Regnell and Lernmark,
2017; Tuomilehto, 2013], which is about 6-times and 3-times higher than
the incidence of T1D in the neighbouring countries (or regions) of Russian
Karelia [Kondrashova et al., 2013] and Estonia [Atkinson et al., 2014;
Tuomilehto, 2013], respectively.

Like most ADs, T1D can be caused by both genetic and environmental
factors. An individual’s genetic susceptibility to T1D can be conferred
primarily using HLA genes, particularly two HLA class II haplotypes that
are linked to 50% of the total genetic risk [Pociot and Lernmark, 2016;
Atkinson, 2012]. These haplotypes are also used to identify individuals at
high risk of T1D [Pociot and Lernmark, 2016; DiMeglio et al., 2018] and
classify all susceptible individuals into risk groups, termed as HLA risk
classes [Kallionpää et al., 2014]. Additionally, GWAS have identified over
60 non-HLA loci to be modestly associated with the risk of T1D, which has
been shown to offer improved predictions of risk of T1D when combined
with HLA loci screening [Pociot and Lernmark, 2016].

However, the rapidly increasing incidence of T1D globally and in ge-
netically low-risk individuals; the large disparity in incidences between
genetically similar populations that are separated by socioeconomic bor-
ders; concordance rates of only 30-60% in identical twins; <10% risk in
children with a parent or sibling with T1D; and the increasing risk in
second generation immigrants; cannot be explained by genetic factors and
implicate a crucial role of environmental factors in the etiology as well as
pathogenesis of T1D [DiMeglio et al., 2018; Rewers and Ludvigsson, 2016;
Dedrick et al., 2020]. A plethora of environmental influences have been
associated with T1D pathogenesis already, including dietary factors (e.g.
breastfeeding), vitamin D insufficiency [Miettinen et al., 2020], early-life
viral infections (e.g. by enteroviruses) [DiMeglio et al., 2018; Rewers and
Ludvigsson, 2016], toxins [Rewers and Ludvigsson, 2016], gut microbial
composition, and gut diversity [Vatanen et al., 2018; Kostic et al., 2015].
The hygiene hypothesis has also been strongly implicated in prevalence
of T1D [Rewers and Ludvigsson, 2016; Atkinson, 2012; Kallionpää et al.,
2014]. However, the mechanisms by which environmental factors affect
the disease process are poorly understood [Clark et al., 2017] and largely
debated [Regnell and Lernmark, 2017].

Currently, T1D-associated autoantibodies against islet antigens: insulin
(IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A) and
zinc transporter 8 (ZnT8A), are the first and only measurable biomarkers
that can help predict the prognosis of T1D [Pociot and Lernmark, 2016;
Kallionpää et al., 2014]. Positive detection of one or more of these au-
toantibodies in at least 2 consecutive blood samples, called seroconversion
[Ziegler et al., 2013], can happen as early as 6 months of age [Atkinson
et al., 2014], with a median age of seroconversion for multiple autoanti-
bodies at 2 years [Atkinson et al., 2014; Ziegler et al., 2013]. Notably,
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Figure 2.1. Disease progression of type 1 diabetes (T1D)

seroconversion is detected in >90% of the newly diagnosed individuals at
the disease onset (~70% of diabetics present 3-4 autoantibodies and only
10% present 1 autoantibody [Regnell and Lernmark, 2017]) [Regnell and
Lernmark, 2017; Atkinson et al., 2014]. Generally, a larger number of circu-
lating autoantibodies is indicative of a greater risk of rapid progression to
clinical onset of T1D [Pociot and Lernmark, 2016; Kallionpää et al., 2014].
However, seroconversion does not necessarily mean that autoantibodies
are pathogenic [Pociot and Lernmark, 2016] since individuals can remain
asymptomatic for months or years after seroconversion [Atkinson et al.,
2014], and some may not develop clinical T1D [Jasinski and Eisenbarth,
2005].

To date, there is no cure for T1D and it is managed with life-long insulin
replacement therapies [DiMeglio et al., 2018; Atkinson et al., 2014]. The
lack of cure is partly because the clinical diagnosis of T1D occurs at a very
late stage of disease progression when 80-90% of the β-cells have already
been destroyed [Kallionpää et al., 2014]. Due to the heterogeneity of this
disease [DiMeglio et al., 2018; Pociot and Lernmark, 2016], predicting the
onset of T1D remains a stiff challenge [DiMeglio et al., 2018; Kallionpää
et al., 2014]. For instance, the age of seroconversion as well as clinical
diagnosis of T1D varies extensively between individuals [Knip, 2017].

Figure 2.1 illustrates the loss of β-cell mass with age in a T1D susceptible
individual, while highlighting the likely sequence of the events that take
place in the pathogenesis of the disease as well as the involvement of the
above-discussed factors.
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2.4.3 Immunoglobulin G4 related disease and systemic sclerosis

Immunoglobulin G4 related disease (IgG4-RD) and systemic sclerosis
(SSc)—studied in Publication III—are two complex autoimmune diseases
that are characterized by chronic inflammation and generalised fibrosis in
multiple organs as well as dysregulation of adaptive and innate immune
responses [Stone et al., 2012; Mahajan et al., 2014; Brito-Zerón et al., 2014].
IgG4-RD is a newly coined concept introduced in early 21st century [Ma-
hajan et al., 2014; Yamamoto et al., 2014], which unifies a large number
of single- or multi-organ fibroinflammatory conditions that were once re-
garded as entirely separate disorders, including autoimmune pancreatitis
(AIP) and IgG4-associated cholangitis (IAC) [Stone et al., 2012]. It has been
reported in nearly every organ [Mahajan et al., 2014] with similar serologi-
cal and histopathological features regardless of the site of disease [Hubers
et al., 2018; Della-Torre et al., 2015]. IgG4-RD has been reported mostly
in Asian populations, but with increasing global awareness, incidences
of the disease have been emerging in Europe and USA also [Yamamoto
et al., 2014; Kamisawa et al., 2015]. Unfortunately, this disease has often
been challenging to diagnose [Abraham and Khosroshahi, 2017] and is
often overlooked as it may mimic other diseases [Celis et al., 2017] and
has neither sufficient genetic nor antibody biomarkers. Most of the genetic
association studies in IgG4-RD are still in their infancy [Stone et al., 2012]
and have largely been conducted in Japanese and Korean populations with
AIP, which have identified certain HLA haplotypes to be associated with
AIP [Yamamoto et al., 2014; Stone et al., 2012]. High serum levels of IgG4,
an anti-inflammatory antibody [Mattoo et al., 2016; Mahajan et al., 2014]
with unique immunological properties [Hubers et al., 2018], is a diagnostic
hallmark of IgG4-RD. However, IgG4 is insufficient as a single diagnostic
marker [Kamisawa et al., 2015] since it is not elevated in all IgG4-RD
patients [Stone et al., 2012; Mahajan et al., 2014] and the measurement
of its concentration is error-prone [Kamisawa et al., 2015; Mahajan et al.,
2014]. In fact, the role of IgG4 in the pathogenesis of IgG4-RD remains
unclear [Yamamoto et al., 2014; Mattoo et al., 2016; Celis et al., 2017] and
it is usually not considered a driver of the pathogenesis [Kamisawa et al.,
2015].

SSc is a rare connective tissue disease [Steen, 2005] that may present
patient-to-patient heterogeneity [Allanore et al., 2015]. It is often classified
into four major subgroups: limited cutaneous SSc (lcSSc), diffuse cutaneous
SSc (dcSSc), sine scleroderma and overlap scleroderma, based on the extent
of skin involvement, localization of the fibrosis, circulating autoantibodies
and occurrence of other connective tissue disease [Allanore et al., 2015;
Denton and Khanna, 2017]. Moreover, SSc has a higher prevalence in
Southern Europe, North America and Australia as well as in certain ethnic
groups. For instance, a majority of African Americans develop the more
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severe form of the disease, i.e. dcSSc, that too at a younger mean age
and have a higher mortality rate [Allanore et al., 2015]. The genetic
susceptibility of SSc has been strongly attributed to multiple HLA and non-
HLA haplotypes [Burbelo et al., 2019]. Additionally, distinct autoantibodies
are commonly used to diagnose the disease, classify patients into subgroups
[Allanore et al., 2015], and predict the prognosis of the disease [Desbois and
Cacoub, 2016], but they are not known to have a role in the pathogenesis
of the disease [Steen, 2005]. Despite these biomarkers, early diagnosis of
SSc is often challenging due to its similarity to some other ADs [McMahan
and Hummers, 2013; Bellando-Randone, 2010].

While both diseases can lead to organ-failure, IgG4-RD is a relapsing-
remitting disorder [Della-Torre et al., 2015], whereas SSc has high mortal-
ity and morbidity with no cure and limited therapeutic options [Desbois
and Cacoub, 2016; Steen, 2005; Patrone et al., 2017]. Moreover, in line
with most ADs, the etiology and pathogenesis of both IgG4-RD and SSc
remain elusive [Allanore et al., 2015; Kamisawa et al., 2015; Yamamoto
et al., 2014]. However, it is known that the immunological characteristics
of both the diseases are similar, where CD4+ T cells play a central role
in the pathogenesis of the disease [Mattoo et al., 2016; Allanore et al.,
2015] and are the primary immune cell type to infiltrate the fibrotic lesions
[Mahajan et al., 2014; Mattoo et al., 2016; Laurent et al., 2018]. Recently,
an unusual subpopulation of CD4+ T cells that secrete IFN-γ, IL-1β and
TGF-β, termed CD4+ cytotoxic T lymphocytes (CD4+ CTLs), were found to
be clonally expanded in the blood and fibrotic lesions of both IgG4-RD and
SSc [Mattoo et al., 2016]. Also, B cells have been suggested to contribute
to the pathogenesis of the diseases by acting as APCs to CD4+ CTLs and
producing various autoantibodies [Sakkas and Bogdanos, 2016; Haldar
and Hirschfield, 2018]. Furthermore, studies suggest these diseases to be
driven by antigens (Section 2.2) [Haldar and Hirschfield, 2018; Kamisawa
et al., 2015], such as Annexin A11 [Hubers et al., 2018] and galectin-3
[Perugino et al., 2019], via mechanisms like molecular mimicry (Section
2.3.2) [Mahajan et al., 2014]. These antigens are hypothesized to stem
from environmental factors, such as long-term exposure to toxic industrial
chemicals [Hubers et al., 2018; Denton and Khanna, 2017] and microbial
encounter.
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3. High-throughput ‘omics’ datasets
and their analyses

Over the last few decades, rapid advances in high-throughput (HT) tech-
nologies, such as DNA microarray and next generation sequencing (NGS),
have revolutionized biomedical research by facilitating unprecedented de-
velopment in the ‘omics’ fields of studies, such as genomics, epigenomics,
transcriptomics, proteomics, metabolomics, and microbiomics, to name a
few [D’Argenio, 2018; Hasin et al., 2017; Manzoni et al., 2018]. The ‘omics’
fields of study are the fast emerging disciplines in science and medicine
that focus on obtaining global assessments of the concerned set of bio-
logical molecules in each field—such as DNA or genes in genomics and
epigenomics, RNA in transcriptomics, proteins in proteomics, metabolites
in metabolomics and microbes in microbiomics—instead of investigating
single molecules at a time, as has been done previously [Yadav, 2007; Hasin
et al., 2017; Debnath et al., 2010]. Indeed, pursuing these goals have been
driven by the increased capacity, reliability, accuracy and availability of
HT technologies. These technologies are capable of performing diverse
simultaneous measurements on several thousands or millions of biological
molecules at substantially reduced costs as well as time [D’Argenio, 2018;
?; Hasin et al., 2017]. Notably, the wealth of information that is supplied by
the parallel interrogation of entire volumes of biological molecules in HT
‘omic’ datasets, has been highly beneficial in the biomedical domain. They
have enabled the identification of large-scale disease-associated variations
on genetic (or gene), protein, transcript, metabolite, microbial and other
molecular levels that can aid in elucidating the drivers and mechanisms
underlying disease development and progression as well as discovering
novel biomarkers [D’Argenio, 2018; Lightbody et al., 2019; Hasin et al.,
2017]. These insights into the etiology and pathogenesis of diseases will
not only lead to improved disease diagnosis, monitoring and treatments,
but can also provide an opportunity for early prediction and intervention of
diseases in order to completely prevent the onset of disease or at least slow
down its progression [D’Argenio, 2018]. However, the massive amounts
of data that are generated by HT technologies coupled with small sample
sizes (in human studies), heterogeneity and complexity of various datasets,
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as well as considerable differences between different ‘omic’ datasets, often
pose great challenges in terms of analysis and interpretation [D’Argenio,
2018; Hasin et al., 2017; Lightbody et al., 2019]. While general pipelines
usually exist for analysing each type of ‘omics’ dataset, many ‘omics’ fields
of studies do not yet have a gold standard pipeline or method [Hasin et al.,
2017]. Moreover, novel HT strategies are continually being developed, for
instance, single cell approaches [D’Argenio, 2018] where standard tools
for analysis may not be applicable and may need special considerations
[Lightbody et al., 2019]. Therefore, there is a constant need of building
robust pipelines and methods for analysing ‘omics’ datasets, which would
ensure correct interpretation of the data and identification of truly signif-
icant results that may lead to promising medical discoveries [D’Argenio,
2018; Lightbody et al., 2019].

This chapter focuses on outlining the general pipelines and methods for
analysing transcriptomics and microbiomics datasets that are generated
using HT technologies, such as DNA microarrays or next generation se-
quencing (NGS). The technologies and methods that have been used in the
publications of this thesis have been indicated in the text whenever neces-
sary. It should be noted that the computational methods that have been
employed in the publications were chosen due to their wide-spread use at
the time when the analyses were done and because they were considered
state-of-the-art at the time by the experts in the field.

3.1 High-throughput technologies

3.1.1 DNA Microarrays

Microarrays have been one of the most widely-used HT technologies in the
past few decades for performing simultaneous analysis on thousands of
biomolecules, such as gene transcripts, [Sobek et al., 2006; Zou et al., 2008]
in a single cost-effective experiment. After the development of the first
DNA microarrays in 1990’s [Fodor et al., 1991; Schena et al., 1995; Shalon
et al., 1996; Bumgarner, 2013], the microarray technology made rapid
improvements in its efficiency, sensitivity and specificity, among other
attributes; paving way for the development of other types of microarrays as
well, such as protein, antibody [Miller and Tang, 2009; Sobek et al., 2006],
polysaccharide, lipid, and whole cell [Shiu and Borevitz, 2008] microarrays.
However, this section will focus only on DNA microarrays as they are
the type of microarray platforms that are used in this thesis (Publication
II). Also, they are the most commonly used microarray platforms [Miller
and Tang, 2009; Ventimiglia and Petralia, 2013] and have applications
in multiple ‘omics’ fields of studies, such as transcriptomics, epigenetics,
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genomics, and microbiomics [Bumgarner, 2013]. While DNA microarrays
have been predominantly used for investigating the gene expression pro-
files of cells, tissues [Bednar, 2000; Bumgarner, 2013; Stoughton, 2005]
and microbes [Miller and Tang, 2009]; they have also been applied for
SNP analyses (i.e. genotyping) [Heller, 2002; Bumgarner, 2013] and for
identifying transcription factor binding sites [Bumgarner, 2013], to name
a few of its applications.

Fundamentally, a typical DNA microarray consists of thousands of DNA
sequences (i.e. probes) that are attached to a solid-surface support either
by synthesis or immobilization techniques [Bumgarner, 2013; Miller and
Tang, 2009]. These probes are usually either cDNA sequences or short
oligonucleotides (25-60 bp) that are carefully selected to represent specific
genes or genomic regions; to provide sufficient sensitivity and specificity;
to have high coverage of the transcriptome or genome; and to avoid non-
specific or cross-hybridizations [Liu et al., 2010]. The core aspect of DNA
microarray analysis is the hybridization of a complex mixture of RNA or
DNA fragments (i.e. targets) derived from cells, tissues or microbes, to
their complementary probes on the microarray in order to identify (and/or
quantify) the genes or genomic regions in the sample of interest [Stoughton,
2005; Ventimiglia and Petralia, 2013; Sobek et al., 2006]. There are essen-
tially two approaches for performing the hybridization step: (i) one-color
approach, where targets from a single sample is hybridized on a microar-
ray; (ii) two-color approach, where targets from two samples (e.g. case and
control) are hybridized on the same microarray [Patterson et al., 2006].
However, in this thesis, only the one-color approach will be discussed as
it is the approach employed to collect the data analyzed in Publication
II. Prior to hybridization, for some applications, the amount of target is
first amplified [Stoughton, 2005; Ginsburg and Willard, 2009] to increase
detectability [Ventimiglia and Petralia, 2013]. Subsequently, the target
sequences are fluorescently labeled with one color and hybridized on the
microarray [Miller and Tang, 2009]. After the hybridization step, the mi-
croarray is washed to remove unbound target sequences [Stoughton, 2005;
Bumgarner, 2013]; and the target sequences that successfully hybridize to
a probe are detected using fluorescent scanners [Miller and Tang, 2009;
Stoughton, 2005] and the fluorescence intensity is measured using image
processing software [Stoughton, 2005; Wu and Irizarry, 2004].

It is worth noting that there exists a variety of microarray platforms
that differ from each other in many ways, such as in terms of fabrication
techniques, nature of the probes, solid-surface support used, methods
of labeling the targets for hybridization detection, and target detection
methods. The basic types of DNA microarray platforms include spotted
microarrays, in situ-synthesized microarrays, high-density bead arrays,
and electronic and suspension bead microarrays, among others [Miller
and Tang, 2009]. In ‘in situ-synthesized microarrays’, oligonucleotide
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probes (25-60 bp in length; depending on the manufacturer) are directly
synthesized on the solid-surface support, which is usually quartz wafer,
using photolithography techniques [Miller and Tang, 2009; Ginsburg and
Willard, 2009]. These are extremely high-density microarrays that can be
used to study tens of thousands of genes or genomic areas simultaneously
[Miller and Tang, 2009]. Affymetrix GeneChips are the most widely-
known and popular examples of this microarray that use 25-bp probes
[Ginsburg and Willard, 2009]. Oligonucleotide probes are short and are
generally considered to provide increased flexibility, sensitivity, specificity
and accuracy [Ventimiglia and Petralia, 2013; Miller and Tang, 2009].
They are usually designed to capture regions of genes or the genome that
have the lowest similarity with sequences from other genes or genomic
regions in order to avoid cross-hybridization [Liu et al., 2010; Bumgarner,
2013]. Also, in order to control for random hybridization events, Affymetrix
GeneChips introduced the concept of using probe sets. Here, each probeset
consists of pairs of probes, where one probe is an exact compliment to
the target transcript, called perfect-match (PM) probe, whereas the other
differs from the PM probe by 1-bp in the middle position, called mismatch
(MM) probe [Liu et al., 2010; Ginsburg and Willard, 2009]. Each PM maps
to a different part of the target transcript [Jiang et al., 2008]. Usually,
there are 8 to 16 pairs of these PM and MM probes in each probe set [Liu
et al., 2010], where the MM probes act as a negative control for binding
specificity [Miller and Tang, 2009; Ginsburg and Willard, 2009]. However,
some of the advanced Affymetrix GeneChips, such as Human Genome
U219 Array Strip, consist only of PM probes [Affymetrix, 2010].

While DNA microarray technology is still used in some applications, it
has largely been superseded by next generation sequencing technologies
in at least gene expression studies [Metzker, 2010; Lightbody et al., 2019].

3.1.2 Next generation sequencing

The first sequencing technology (that had limited throughput [Reuter
et al., 2015]), i.e. Sanger sequencing, was introduced in 1977 [Sanger
et al., 1977; Metzker, 2010] and was used for completing the first draft
of the human genome sequence between 1990 and 2001 as a part of the
Human Genome Project (HGP) [Lander et al., 2001] at the cost of about
$2.7 billion [NHGRI, 2020]. Post 2001, tremendous progress was made
in genome sequencing technologies, which brought about the first truly
HT sequencing platform, i.e. next generation sequencing (NGS), in 2005
[Goodwin et al., 2016; Mardis, 2017] with larger throughput than Sanger
sequencing [Lightbody et al., 2019]. Over the past decade or so, vast
improvements have been made in nearly all aspects of the NGS pipeline in
order to deal with the complexities of genomes and to increase performance
as well as decrease the cost and processing time [Lightbody et al., 2019;
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Goodwin et al., 2016]. Indeed, NGS technologies have gained 100-1000
times more capacity in the past years [Goodwin et al., 2016], giving high
sequence coverage per instrument [Lightbody et al., 2019; Mardis, 2017].
They have decreased the cost of sequencing to about $1000 per human
genome [Goodwin et al., 2016; Mardis, 2017; Lightbody et al., 2019], which
will continue to decrease in the future as well [D’Argenio, 2018]. Also,
some NGS platforms, such as the latest ones by Illumina, can process
a human genome in an hour [Lightbody et al., 2019]. Most importantly,
unlike microarray technology, NGS-based approaches provide an unbiased
perspective of complex biological systems without the requirement of any
a priori information on the targets of interest. Unlike DNA microarrays,
NGS-based approaches allow the assessment of both known and unknown
molecules in a sample, thus facilitating the inference of novel biological
insights [Lightbody et al., 2019]. In the past few years, the avalanche of
NGS-based approaches that have been developed to study different aspects
of the biological systems, has substantially impacted practically every
‘omic’ field of study.

Nowadays, many commercial NGS technologies and platforms are avail-
able for studying different ‘omics’ disciplines. Most of their processing
pipelines differ in terms of chemistry and certain details, but they tend to
generally follow a similar paradigm [Reuter et al., 2015], which involves
sample collection, library preparation (includes fragmentation, addition of
adaptor sequences, size selection, amplification), sequencing, base calling,
and data analysis [Lightbody et al., 2019]. Some technologies perform
short-read sequencing (35-700 bp); whereas others focus on long-read
sequencing, which is usually more expensive and has lower throughput
[Goodwin et al., 2016]. A technology or platform is usually chosen depend-
ing on the abilities, strengths and weaknesses, along with the consideration
of sample type and the aim of the research. Currently, Illumina is the
most widely-used sequencing technology [Reuter et al., 2015], especially
for short-read sequencing, in part due to its technological maturity as
well as its broad range of platforms and high-level of compatibility across
platforms [Goodwin et al., 2016].

Illumina has produced a variety of sequencing platforms, where MiSeq
and HiSeq series are the most established platforms that perform short-
read sequencing, and each varies in terms of throughput and processing
times. For instance, MiSeq platforms (used in Publication IV) are fast
sequencers with low run times and are designed for sequencing small
genomes as well as for targeted sequencing; whereas, HiSeq platforms
(used in Publications I, III and IV) are geared towards high-throughput ap-
plications and have varying run times depending on model version [Reuter
et al., 2015]. Generally, Illumina short-read sequencers first generate
clonal DNA template populations, where sample DNA is fragmented and
common adaptors are ligated to either ends. Then, the DNA templates
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are amplified in situ on a solid support using bridge amplification, where
each fragment creates thousands of copies in a cluster and ensures detec-
tion of the signal over background noise. Like this, millions of clusters
are made, each with its own clonal DNA template population [Goodwin
et al., 2016]. Subsequently, the clonal DNA templates of all clusters are
simultaneously subjected to sequencing by synthesis, which is one of the
two broad approaches for sequencing short reads in a massively parallel
fashion [Goodwin et al., 2016; Mardis, 2017]. The sequencers can produce
single-end or paired-end reads, whereby a DNA template is sequenced
at only one end of the template or from both ends, respectively [Mardis,
2017].

3.2 Transcriptomics

Transcriptomics is the study of the transcriptome, which is the complete
set of ribonucleic acid (RNA) transcripts in a single or a population of cells
[Lowe et al., 2017; Casamassimi et al., 2017; Lightbody et al., 2019]. RNA
transcripts are transient molecules that are produced by transcribing (or
copying) the information/instructions encoded in the stretches of DNA (i.e
genes) of a cell. Notably, a large proportion (~75%) of the human genome
can be transcribed [Djebali et al., 2012] to produce several types of RNA
transcripts that are generally classified into two groups: protein-coding
and non-protein-coding RNA (in short, coding and non-coding RNA). Here,
coding RNA, which generally refers to messenger RNA (mRNA), make up
for a very small percentage (<5%) of the total RNA of a cell and serves
as intermediary molecules that are translated to synthesise proteins. On
the other hand, non-coding RNAs (ncRNAs), that include ribosomal RNA
(rRNA), transfer RNA (tRNA), long non-coding RNA (lncRNA), microRNA
(miRNA), and many other ncRNAs, make up for a majority of the total RNA
and are directly involved in performing various structural as well as regu-
latory roles in the cell, such as gene regulation, protein translation, RNA
splicing, among other cellular functions [Lowe et al., 2017; Casamassimi
et al., 2017; Clancy, 2008].

Even though all cells of the human body contain the same genome,
each cell expresses only a fraction of its genes depending on the cell’s
functions, type and developmental stage [Alberts, 2018]. Similar cells
tend to express similar genes. Changes in gene expression of cells may
be driven by varying pathological conditions of the body. By performing
transcriptomics analyses and quantifying the abundances of the derived
RNA transcripts, one can determine the gene expression patterns as well
as gene expression levels of cell(s) under specific circumstances [Wang et al.,
2009]. This is called gene expression profiling and it can give a functional
overview of the cell(s) of interest. In fact, one of the main purposes of
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many transcriptomics studies has been to quantify the (changes in) gene
expression profiles of cells from different disease conditions, tissues, or
time points, in order to identify differentially regulated genes, isoforms
of genes, or enriched pathways that may contribute to the mechanisms
underlying the development or progression of the disease [Casamassimi
et al., 2017; Lowe et al., 2017].

Most studies perform transcriptomics analyses by enriching (or isolating)
a specific type of RNA for targeted studies [Lowe et al., 2017]. Messenger
RNA has been the most frequently studied form of RNA [Lightbody et al.,
2019; Lowe et al., 2017], but lately an increased interest has been seen in
isolating specific ncRNAs for transcriptome level analyses as they have
recently been implicated as important regulators in various disease pro-
cesses [Hasin et al., 2017], such as lncRNAs in cancer [Iyer et al., 2015]
and autoimmune diseases [Xu et al., 2019; Wu et al., 2015].

Both DNA microarrays and NGS, specifically RNA-sequencing (RNA-seq),
technologies have been widely used for performing transcriptomic analyses,
where the former has been largely supplanted by the latter in recent years
due to its technological superiority and capability of analyzing all types
of RNA [Lowe et al., 2017]. In fact, recent technological advances in RNA-
seq protocols have made it possible to perform analyses using much less
starting material, which has enabled the transcriptomic profiling of single
cells (i.e. single cell RNA-seq) in addition to its existing bulk RNA-seq
capabilities [Blumenberg, 2019].

In this thesis, Publication I employs RNA-seq technologies (both bulk
and single cell RNA-seq) for transcriptomic analyses, whereas Publication
II studies DNA microarray datasets, specifically Affymetrix GeneChip
microarrays.

3.2.1 Affymetrix GeneChip data normalization

For transcriptomics analyses using Affymetrix GeneChip, mRNA (or other
RNA of interest) is first isolated from total RNA; processed using a suit-
able library kit to prepare fluorescent-labelled target libraries (outlined in
Section 3.1.1); and hybridized to the probes on the microarray [Quacken-
bush, 2002]. Subsequently, the fluorescent intensities (i.e. hybridization
data) that indicate the abundance of targets for each probe [Wu, 2009;
Lowe et al., 2017], are captured at each probe location using fluorescence
scanners and presented in the form of an image.

Since the aim of transcriptomics analyses is to quantitate/quantify the
gene (or transcript) expression levels in the sample of interest for fur-
ther statistical analyses, the image data is usually converted to probe
level intensity values using one of the many available image processing
software [Quackenbush, 2002; Wu and Irizarry, 2004]. After image process-
ing, these probe level intensity values usually contain noise from various
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sources, including non-specific hybridization events as well as the steps
employed during sample preparation, hybridization, scanning, etc. that
are of no biological interest and can produce misleading results [Wu, 2009;
Quackenbush, 2002; Jiang et al., 2008; Gregory Alvord et al., 2007]. There-
fore, these raw intensity values require appropriate normalization (i.e.
preprocessing) in order to eliminate questionable measurements and re-
move variations from non-biological origins, which in turn would facilitate
meaningful and relevant gene expression comparisons between different
samples [Quackenbush, 2002; Wu and Irizarry, 2004].

Normalization of Affymetrix microarray data involves at least the fol-
lowing three steps [Jiang et al., 2008; Gregory Alvord et al., 2007]: (i)
background correction, where the background noise arising primarily from
non-specific hybridization events is adjusted from the observed intensities
to estimate the accurate intensities at each probe, (ii) normalization, where
systemic errors and biases are removed, and (iii) summarization, where
intensities from multiple probes in a probe set are combined to yield a
single intensity value depicting the expression level of the represented
gene or transcript [Gregory Alvord et al., 2007; Jiang et al., 2008; Wu,
2009].

Several normalization procedures for Affymetrix data have been de-
veloped over the years that perform the above-mentioned steps using
different methods and algorithms, such as robust multi-array average
(RMA) [Irizarry et al., 2003], MAS 5.0 [Affymetrix, 2002], GeneChip RMA
(GCRMA) [Wu and Irizarry, 2004], and model based expression index
(MBEI) [Li and Wong, 2001]. RMA normalization is one of the most
popular approaches for normalizing Affymetrix data and it was used for
normalizing the data in Publication II. It does not use MM probe intensi-
ties and assumes that the PM intensities are additive combinations of the
true signal and background noise, which are modeled as exponentially and
normally distributed, respectively, during background correction [Irizarry
et al., 2003]. Next, it performs quantile normalization and summarizes the
(background corrected, normalized and log2-transformed) probe level inten-
sities by fitting a robust multi-array model using median polish algorithm
[Irizarry et al., 2003].

3.2.2 Bulk RNA-sequencing

RNA-sequencing is a revolutionary NGS technology that has taken tran-
scriptomics studies to unprecedented heights [Wang et al., 2009]. In the
past decade, it has become an increasingly popular tool in transcriptomics
studies as it enables proper and unbiased assessment of complex tran-
scriptomes [Zhao et al., 2016]. RNA-seq has various advantages over its
predecessors, such as DNA microarrys, and circumvents some of their limi-
tations. For instance, RNA-seq experiments are not limited to detecting
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only a known set of transcripts defined by the probes on the microarray
and are in fact the first sequencing-based methods that have the potential
of giving a comprehensive view of the entire transcriptome [Wang et al.,
2009; Zhao et al., 2016; Garber et al., 2011], including the lowly-expressed
genes, small and long ncRNAs, as well as rare and novel transcripts [Wang
et al., 2009; Zhao et al., 2016]. Moreover, RNA-seq has very low background
noise and is extremely accurate in quantifying the expression levels of
genes as well as their isoforms [Wang et al., 2009]. However, the large
amounts of data produced by RNA-seq, can be challenging to analyse and
requires careful considerations [Garber et al., 2011].

Data collection

In the bulk RNA-seq protocol (by Illumina), the RNA of interest (such as
mRNA) is first isolated from ‘bulk’ samples containing thousands or mil-
lions of cells [Zhao et al., 2016]. Subsequently, the captured RNA strands
are fragmented, converted to complementary DNA (cDNA) fragments, size
selected and subjected to the typical Illumina short-read DNA sequencing
protocol as explained in Section 3.1.2 [Wang et al., 2009; Zhao et al., 2016].
In case of mRNA sequencing, 200-500 bp long fragments [Wang et al.,
2009] are usually selected for sequencing short reads (typically ~36-600
bases long [Garber et al., 2011; Amarasinghe et al., 2020]). Depending
on the exact library preparations steps, mRNA libraries may also include
certain long ncRNAs (>200 bp long).

Bulk mRNA RNA-seq data analysis

The large volumes of raw sequencing reads produced by Illumina se-
quencers for each sample are usually stored in FASTQ formatted files,
which also contain the sequencing quality scores for each base [Ji and
Sadreyev, 2018]. In case of paired-end sequencing, the two reads from
either ends of each DNA template are saved in two separate FASTQ files.
Before these raw reads can be analysed to draw any biological conclusions,
they need to undergo a few crucial processing steps. Although there is
no single optimal pipeline that can universally be applied to all RNA-seq
datasets, there are, however, a few essential processing steps that are
typically conducted in most (mRNA) RNA-seq analyses (as depicted in
Figure 3.1) [Conesa et al., 2016]. These steps include: (1) quality control,
(2) alignment of reads to a reference transcriptome and/or genome (or
de novo assembly of the transcripts), (3) quantification of gene (or tran-
script) expression levels, (4) normalization, and (5) differential expression
analyses. Moreover, in order to understand the biological functions of the
differentially expressed genes (DEGs), some pipelines also perform further
downstream analyses that identify the pathways or gene sets the DEGs
may be implicated in.

First, the raw reads in each FASTQ file are subjected to quality control

55



High-throughput ‘omics’ datasets and their analyses

(QC) analysis in order to detect poor-quality reads, adaptor contamination,
and biases in the data that may arise due to problems in library prepara-
tion or sequencing [Conesa et al., 2016; Zhao et al., 2016; Lowe et al., 2017].
Minimizing such defects in the data is vital for downstream analyses as
they may lead to inaccurate results [Zhao et al., 2016]. FastQC [Andrews,
2010] is one of the most popular software for performing QC analyses on
Illumina reads in bulk RNA-seq studies and was used in Publication I. It
performs a series of analyses for evaluating the qualities of reads at each
base position; duplication levels of reads, which may indicate PCR ampli-
fication bias; guanine-cytosine (GC) content; overrepresented sequences,
which may indicate presence of adaptors or contaminants; and distribution
of read lengths; to name a few [Andrews, 2010]. Generally, the quality
scores of bases decrease towards the ends of long reads [Conesa et al., 2016;
Fonseca et al., 2012]. If the QC analysis identifies any issues in the reads
of a FASTQ file, tools such as Cutadapt [Martin, 2011] and Trimmomatic
[Bolger et al., 2014], can be used to remove poor-quality reads, trim low-
quality bases, or trim adaptor sequences. Wrapper tools that integrate
some of the above-mentioned tools to perform QC on sequencing data have
also been developed, such as Trim Galore! [Krueger, 2012] (a wrapper tool
around FastQC and Cutadapt).

Subsequently, the high-quality mRNA reads are computationally mapped
(i.e. aligned) to a reference genome or transcriptome in order to identify
the genes or genomic locations from which they originate [Zhao et al., 2016;
Conesa et al., 2016]. If reads are aligned to a reference transcriptome,
the analysis is easier and less computationally expensive [Fonseca et al.,
2012, 2014], but is limited to the identification of annotated (i.e. known)
transcripts. Whereas, alignment to a reference genome allows the discovery
of unannotated and novel transcripts as well [Conesa et al., 2016; Yang
and Kim, 2015]. In case a reference genome (and transcriptome) for the
organism of study is unavailable, de novo assembly can be performed on
the reads [Conesa et al., 2016; Lowe et al., 2017], where the reads are
first assembled into longer contigs, creating an expressed transcriptome
to which the reads can be mapped back for quantification [Conesa et al.,
2016]. The scope of this section, however, is limited to discussing only the
alignment of reads to a reference.

The accurate alignment of mRNA reads to mammalian, such as human,
reference genomes or transcriptomes is often complicated by specific chal-
lenges. Only a subset of the challenges are discussed here. First, since
eukaryotic genes are generally composed of relatively multiple short cod-
ing regions (average length 235 bp [Kim et al., 2013]), called exons, that
are separated or intervened by non-coding regions (vary from 50 bp to >1
Mbp in length [Kim et al., 2013, 2015]), called introns; and because these
introns are spliced out from the mature RNA transcripts that are used to
construct the short mRNA reads in RNA-seq data; many mRNA reads may

56



High-throughput ‘omics’ datasets and their analyses

span two exons (called exon-exon spanning reads or junction reads) and
need to be appropriately split across potentially long stretches of intronic
regions for accurate alignment [Kim et al., 2013; Zhao et al., 2016; Garber
et al., 2011; Lowe et al., 2017]. Second, due to the short lengths of the
reads (50-100 bp), a read may align uniquely to one location on the genome
or align to multiple locations (i.e. multi-map reads or multi-reads) due to
repetitive regions in the genome [Conesa et al., 2016; Fonseca et al., 2012],
such as paralogous genes [Conesa et al., 2016] and pseudogenes [Kim et al.,
2013]. Third, the reads may contain mismatches, insertions and deletions
usually caused either due to genetic variation or sequencing errors [Zhao,
2014]. Also, with the increasing throughput of sequencing technologies and
increasing read lengths, conducting alignment of all reads at a reasonable
speed using limited computational resources is also a major concern [Lowe
et al., 2017; Kim et al., 2015]. However, the increase in read length along
with paired-end sequencing can reduce multi-mapping of reads [Wang
et al., 2009]. Moreover, since the size of a transcriptome is far smaller than
that of a genome, by aligning the reads to a reference transcriptome the
alignment speed can be substantially increased [Kim et al., 2013]. The
mapping accuracy of junction reads may also increase in this case [Zhao
et al., 2016].

Numerous read aligning algorithms have been proposed over the past
decade that deal with the aforementioned challenges in different ways. The
aligning approaches can largely be divided into two categories: ‘unspliced
read aligners’ and ‘spliced read aligners’ [Garber et al., 2011]. One of
the major differences between the two is that the former does not allow
any large gaps during alignment, whereas the latter allows large gaps for
properly mapping the junction reads [Garber et al., 2011]. Most aligners
accommodate for short gaps and a few mismatches [Zhao et al., 2016].
Unspliced read aligners, such as Bowtie [Langmead et al., 2009], Bowtie2
[Langmead and Salzberg, 2012], and BWA [Li and Durbin, 2009], can be
used for aligning to the reference transcriptome, whereas spliced read
aligners, such as Tophat [Trapnell et al., 2009], Tophat2 [Kim et al., 2013]
(used to align bulk RNA-seq data in Publication I), STAR [Dobin et al.,
2013] (used to align scRNA-seq data in Pulication I), and HISAT [Kim et al.,
2015], can be used to align to the reference genome [Conesa et al., 2016;
Garber et al., 2011]. Some popular spliced read aligners, such as Tophat2
and STAR, make use of the annotations in the reference transcriptome as
well in order to increase their alignment accuracy and speed [Kim et al.,
2013]. Engström et al. [2013] discovered that there are major performance
differences between aligners on various benchmarks and each alignment
tool usually exhibits distinct strengths and weaknesses.

After alignment, a common aim of most RNA-seq data analyses is to
quantify the number of reads that align to a particular gene or transcript
in order to estimate their expression levels [Fonseca et al., 2014; Conesa
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et al., 2016; Lowe et al., 2017]. There are broadly two approaches to
gene quantification: (1) union-exon-based approaches, where a read is
counted towards the expression level of a gene if it aligns to any one
of its exons, and (2) transcript-based approaches, where transcript-level
(i.e. isoform-level) quantification is performed and used for gene-level
quantification by summing over the expression levels all of the gene’s
isoforms [Zhao et al., 2016, 2015]. The simplest and the most commonly
used approach for quantification is the union-exon-based approach [Conesa
et al., 2016; Zhao et al., 2015], which is implemented in tools such as
HTSeq-count [Anders et al., 2015] and featureCounts [Liao et al., 2014].
HTSeq-count is one of the top ranking gene-level quantification tools
[Fonseca et al., 2014] and was used for quantifying genes in the bulk RNA-
seq data from Publication I. It considers a gene as the union of its exons
and assesses the read count of each gene to be equivalent to the number
of reads aligning unambiguously to its exons [Anders et al., 2015]. In
contrast, transcript-level quantification, which is performed by tools such
as Cufflinks [Trapnell et al., 2010], RSEM [Li and Dewey, 2011], Sailfish
[Patro et al., 2014], Kallisto [Bray et al., 2016], and Salmon [Patro et al.,
2017], is more complicated as related transcripts often share their reads
due to common exons [Conesa et al., 2016; Lowe et al., 2017; Garber et al.,
2011; Zhao et al., 2015]. Therefore, for gene-level expression analyses, a
union-exon-based approach is more feasible, whereas for a transcript-level
expression analysis, a transcript-based approach can be adopted.

As the raw read counts quantified for each gene (or transcript) are of-
ten riddled with technical and biological biases, such as those caused by
varying sequencing depth of samples, lengths of genes, and composition
of RNA population in each sample, they are often not directly comparable
between or within samples [Robinson and Oshlack, 2010; Zhao et al., 2016;
Garber et al., 2011]. Therefore, it is crucial to normalize these raw counts
to ensure reliable estimation of gene expression in each sample and to
infer accurate results from any subsequent analyses, such as differen-
tial expression analyses (DEA) [Robinson and Oshlack, 2010; Zhao et al.,
2016]. Several different normalization methods have been proposed over
the years. Some of these methods involve re-scaling raw gene counts by
calculating values such as counts per million mapped reads (CPM), which
corrects only for the varying sequencing depths of samples; and reads per
kilobase per million mapped reads (RPKM) [Mortazavi et al., 2008] (used in
Publication I), which combines between- and within-sample normalization
by correcting for both the sequencing depths of samples as well as gene
lengths. Certain other methods, such as trimmed mean of M-values (TMM)
normalization [Robinson and Oshlack, 2010] (used in Publication I) and
DESeq [Anders and Huber, 2010], estimate scaling factors that do not
directly adjust the raw counts, but are built into the statistical model (as
model offsets, Section 4.4.3) that are used for DEA. TMM and DESeq have
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been demonstrated to outperform other normalization methods [Dillies
et al., 2013]. Both of these methods normalize for the RNA composition
biases, and estimate scaling factors on the assumption that most genes are
not differentially expressed (DE) and the log-fold-changes of the non-DE
genes should be close to 1 [Robinson and Oshlack, 2010; Anders and Huber,
2010; Dillies et al., 2013]. The TMM approach estimates scaling factors
by first removing (i.e. trimming) the most highly expressed (or repressed)
genes and the genes with extreme log-fold changes, and then calculating
the weighted mean of gene-wise log expression ratios (i.e. M values) on the
remainder of the genes using one of the samples as a reference [Robinson
and Oshlack, 2010]. DESeq, on the other hand, defines a pseudoreference
sample, which is built with the geometric mean of gene counts across
all samples, to estimate the scaling factor as the median of the ratios of
observed counts over all genes [Anders and Huber, 2010].

Having performed all the aforementioned pre-processing steps, one of
the fundamental steps in most RNA-seq studies is to understand how gene
expression levels differ across distinct sample groups and to identify differ-
entially expressed genes (DEGs). Statistical models, such as generalized
linear models that approximate the count data to be distributed according
to negative binomial distribution, are often used to reliably identify these
DEGs in RNA-seq studies. Detailed discussion on this can be found in
Section 4.4.3.

As differential expression analyses are usually performed on tens of
thousands of genes at a time, they often result in long lists of differen-
tially expressed genes (DEGs) that are challenging to interpret as such
[Reimand et al., 2019; Khatri et al., 2012]. However, these lists of DEGs
are often composed of genes that belong to the same pathways or gene
sets [Zhao et al., 2016; Yu et al., 2017]. Here, a pathway refers to a group
of genes that work cooperatively to carry out a biological process or func-
tion; and a gene set refers to groups of genes that have common biological
function, regulation or chromosomal location [Reimand et al., 2019; Sub-
ramanian et al., 2005]. Details on the genes involved in each pathway or
gene set are generally stored in various databases [Khatri et al., 2012],
such as Gene Ontology (GO) [Ashburner et al., 2000], Kyoto Encyclopedia
of Genes and Genomes (KEGG) [Kanehisa et al., 2017] and Molecular
Signatures Database (MSigDB) [Liberzon et al., 2011, 2015]. For ease,
the term ‘pathway’ will be used here as an overarching term to indicate
both pathways and gene sets. Therefore, to make the list of DEGs more
interpretable and to gain insights into the biological mechanisms that they
are involved in (i.e. functionally annotate the DEGs), pathway enrichment
analyses are commonly performed on the lists of DEGs [Reimand et al.,
2019; Zhao et al., 2016; Khatri et al., 2012; Yu et al., 2017]. Essentially,
these analyses identify the biological pathways that are enriched in a list
of genes by performing statistical tests that check if the genes of a pathway
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are over-represented in the list of DEGs [Reimand et al., 2019]. Various
methods have been proposed for performing pathway enrichment analyses,
such as Fisher’s exact test (as implemented in online tool, DAVID [Dennis
et al., 2003; Hosack et al., 2003]) and GSEA [Subramanian et al., 2005].
Gene regulatory analyses, such as transcription factor (TF) analyses using
TRANSFAC [Matys et al., 2006] database, can also be performed to identify
the factors involved in regulation of the DEGs at hand.

3.2.3 Single Cell RNA-sequencing

While bulk RNA-sequencing (and even DNA microarray) techniques have
enabled numerous valuable insights into the complex transcriptional pro-
files of different cell types, they are limited to providing gene expression
measurements that are averaged across thousands of cells [Stegle et al.,
2015; Bacher and Kendziorski, 2016; Chen et al., 2019; Poirion et al.,
2016]. Such global view of average gene expression profiles may be suf-
ficient in many contexts, such as comparative transcriptomics, and have
led to various biomarker discoveries in the field of biomedicine. However,
they are insufficient in certain scenarios; for instance, when analyzing
a small number of functionally distinct cells, such as embryonic cells; or
complex tissues that are often composed of different cell types [Stegle
et al., 2015]. Moreover, populations of cells, even those from the same cell
type, can exhibit substantial heterogeneity [Raj and Van Oudenaarden,
2008; Altschuler and Wu, 2010; Wagner et al., 2016], owing to the pres-
ence of rare or novel subpopulations of cells [Kolodziejczyk et al., 2015;
Wagner et al., 2016] as well as those cells transitioning between different
states of biological processes, such as differentiation [Stegle et al., 2015;
Altschuler and Wu, 2010]. Major cell-to-cell heterogeneity stems from the
inherent stochastic nature of cellular gene expression wherein cells, even
from genetically homogeneous populations, undergo the phenomenon of
‘transcriptional bursts’ [Stegle et al., 2015; Liu and Trapnell, 2016; Wagner
et al., 2016; Raj and Van Oudenaarden, 2008]. In other words, the genes
of a cell are not transcribed continuously. Instead, they experience short
bursts of transcription followed by silent intervals, which are regulated by
nonsynchronous cellular processes [Liu and Trapnell, 2016; Kolodziejczyk
et al., 2015; Haque et al., 2017]. Unfortunately, bulk RNA-seq experiments
mask important cellular-level heterogeneity [Poirion et al., 2016; Stegle
et al., 2015; Altschuler and Wu, 2010].

These limitations of bulk RNA-seq are largely overcome by single cell
RNA-sequencing (scRNA-seq) technologies that investigate gene expres-
sion profiles of individuals cells in an unbiased and high-throughput man-
ner [Poirion et al., 2016; Kolodziejczyk et al., 2015]. Ever since the gen-
eration of the first scRNA-seq dataset in 2009 [Kolodziejczyk et al., 2015;
Zhang et al., 2019], single cell technologies have made tremendous experi-
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Figure 3.1. Depiction of the main steps in bulk and single cell RNA-
sequencing (RNA-seq) data analysis pipelines. The red arrows
indicate steps and tools that are common between the two RNA-
seq technologies. The pink arrows indicate the steps specific
to bulk RNA-seq data analysis. The green arrows indicate the
steps specific to single cell RNA-seq data analysis. The red, pink
and green arrows indicate transition from one step in the data
analysis pipeline to another (multiple arrows from a box indicate
multiple directions in which the analysis can transition). Yel-
low arrows are used to indicate the ways in which a step can be
carried out.
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mental and computational developments that have since led to profound
new discoveries in biology [Stegle et al., 2015]. In scRNA-seq data, each
cell provides a snapshot of its transcriptional activity at a particular point
in time, revealing the cell-to-cell heterogeneity that exists within a pop-
ulation of cells. This unprecedented level of information on individual
cells provides us with the opportunity to capitalize upon several biological
insights that were previously intangible. For instance, scRNA-seq data can
be used to identify the cell types present in complex and heterogeneous
cell populations, including rare and novel cell subpopulations; study the
cellular transitions between different states of biological processes (i.e.
temporal trajectories); determine the spatial organization of the cells or
cell types; infer gene regulatory networks; and investigate the stochastic
components of transcription; to name a few [Stegle et al., 2015; Wagner
et al., 2016; Kolodziejczyk et al., 2015; Poirion et al., 2016; Liu and Trapnell,
2016].

Data collection

Most scRNA-seq library preparation protocols follow a similar basic strat-
egy, which begins by capturing individual cells, lysing the cells and iso-
lating the mRNA molecules (most scRNA-seq protocols thus far focus on
isolating (poly-A tailed) mRNA [Liu and Trapnell, 2016]). The subsequent
steps are similar to that of bulk RNA-seq wherein the mRNA molecules
are reverse transcribed to obtain cDNA fragments, the cDNA is amplified
and then sequenced using the NGS technology of choice [Kolodziejczyk
et al., 2015; Stegle et al., 2015; Liu and Trapnell, 2016]. During reverse
transcription, some protocols tag each cell’s transcriptome with unique
oligonucleotide sequences, called barcodes, to preserve the information on
each transcript’s cellular origin [Haque et al., 2017]. Moreover, most proto-
cols at the moment use Illumina platforms for sequencing [Kolodziejczyk
et al., 2015].

One of the most challenging tasks in sequencing mRNA from single
cells is in capturing individual cells with high efficiency [Kolodziejczyk
et al., 2015]. Several approaches have been introduced over the years for
capturing single cells. Most of the earlier methods that include microma-
nipulation, flow-activated cell sorting (FACS), and laser capture microdis-
section (LCM), have been limited to capturing hundreds or thousands of
cells in a single experiment; whereas, recent methods based on microwell
plate-based and droplet-based microfluidics strategies have enabled the
capturing of tens of thousands of cells at a time in emulsion oil droplets
[Kolodziejczyk et al., 2015; Liu and Trapnell, 2016]. Of the three most
widely used droplet-based methods, namely inDrop [Klein et al., 2015],
Drop-seq [Macosko et al., 2015] and 10X Genomics Chromium [Zheng et al.,
2017], the 10X method (used in Publication I) was demonstrated by Zhang
et al. [2019] to have higher sensitivity than the other two and is suitable
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for most applications.

Analytical challenges in scRNA-seq data

Despite the considerable progress that has been made by scRNA-seq tech-
nologies, scRNA-seq data contain very high levels of noise from both tech-
nical and biological sources that pose many analytical and computational
challenges [Poirion et al., 2016; Kolodziejczyk et al., 2015; Bacher and
Kendziorski, 2016; Stegle et al., 2015]. Generally, the variations (or noise)
present in scRNA-seq data are much higher than that of in bulk RNA-seq
data [Bacher and Kendziorski, 2016; Haque et al., 2017; Wagner et al.,
2016]. Therefore, while some bulk RNA-seq analysis tools are directly
applicable in scRNA-seq data analysis, many new computational meth-
ods need to be adopted to accurately characterize the biological insights
presented in this type of data [Stegle et al., 2015].

One of the most prominent sources of biological variation emanates from
the existence of intrinsic cell-to-cell heterogeneity within populations of
cells (as detailed above) [Kolodziejczyk et al., 2015; Bacher and Kendziorski,
2016; Wagner et al., 2016]. Additionally, other biological factors that may
add to the unwanted biological variations in the data include: cell sizes,
where small cells typically contain less RNA and thus appear to be of
inferior quality [Bacher and Kendziorski, 2016; Haque et al., 2017; Wagner
et al., 2016]; varying RNA compositions of individual cells; varying rates
of mRNA degradation; and difficulties in capturing or lysing certain cells
[Wagner et al., 2016]. Biological variations may even influence the extent
of technical variation [Wagner et al., 2016]; a few examples are highlighted
below.

Most of the technical variation stems from the nature of single cell
technologies. Due to the minute amounts of starting biological material
(picograms of mRNA [Zhang et al., 2019]) that are usually available in
a single cell, substantial amount of amplification is needed, which can
result in amplification bias (i.e. false positive detection) [Poirion et al.,
2016; Liu and Trapnell, 2016; Bacher and Kendziorski, 2016]. These
starting quantities of RNA can further vary depending on biological factors,
such as cell size and cell type [Wagner et al., 2016]. Additionally, the
capture efficiency of current scRNA-seq protocols is quite low [Liu and
Trapnell, 2016; Bacher and Kendziorski, 2016; Stegle et al., 2015; Chen
et al., 2019]; only about 10-20% of the transcripts of a cell are present in the
final sequencing libraries [Kolodziejczyk et al., 2015] and even moderately
expressed genes are frequently undetected [Haque et al., 2017; Stegle et al.,
2015]. This along with biological factors, such as the subpopulations of
cells or transient states, when certain genes are not expressed, lead to high
frequency of dropout events (i.e. false negatives; expressed but undetected
transcripts), which in turn results in relatively sparse data [Wagner et al.,
2016; Haque et al., 2017; Vallejos et al., 2017]. Moreover, scRNA-seq
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protocols sometimes fail to dissociate cells and analyze two or more cells
(often referred to as doublets) together. These doublets then manifest
in the data as high-quality cells with relatively more complex libraries
and more transcripts than other cells [Wagner et al., 2016]. Finally, the
technical sources of variations that are common to other NGS data are also
prevalent in scRNA-seq data, such as batch effects and library preparation
protocols.

UMIs and spike-ins

Most studies aim to account for the technical and biological variations
during different steps of the data analysis pipeline, such as quality control,
quantification, normalization and/or data modelling. For instance, to alle-
viate amplification bias and to improve quantification of scRNA-seq reads,
some scRNA-seq protocols (such as 10X Genomics Chromium, inDrop and
Drop-seq [Zhang et al., 2019]) tag each individual mRNA molecule within
a cell with short random sequences (4-20 bp), called unique molecular iden-
tifiers (UMIs), during the reverse transcription step of library preparation
[Kolodziejczyk et al., 2015; Wagner et al., 2016; Stegle et al., 2015; Poirion
et al., 2016]. After amplification, by counting the unique number of UMIs
mapping to each gene, instead of the total number of mapped reads, the
real gene expression levels that are reflected in the cell library can be esti-
mated [Wagner et al., 2016]. Another approach of accounting for some, but
not all, technical variation in the data is to incorporate artificial spike-in
molecules in each cell lysate [Kolodziejczyk et al., 2015; Stegle et al., 2015;
Wagner et al., 2016]. Spike-ins are exogeneous RNA sequences, such as
those from External RNA Control Consortium (ERCC), that are added to
the mRNA content of each cell in known and constant quantities, and are
assumed to be unaffected by the biological covariates [Wagner et al., 2016;
Stegle et al., 2015]. Therefore, they are considered to be good negative con-
trols for normalizing the gene expression measurements of each cell and
also for evaluating the library quality [Wagner et al., 2016; Kolodziejczyk
et al., 2015]. Most droplet-based technologies, however, have been unable
to accommodate spike-ins in their protocols [Bacher and Kendziorski, 2016;
Lun et al., 2016]. Therefore, as 10X Genomics Chromium technology was
used to generate the scRNA-seq data in Publication I, the protocol and
data included UMIs, but not spike-ins. Nevertheless, while there are a lot
of benefits of using UMIs and spike-ins, they have their own challenges
and limitations [Bacher and Kendziorski, 2016; Wagner et al., 2016].

Single cell RNA-seq data analysis

Similar to bulk RNA-seq data analysis, scRNA-seq data analysis pipeline
(as depicted in Figure 3.1) begins with performing quality control (QC)
on the raw sequencing reads and subsequently aligning the good-quality
reads from each cell to a reference genome or transcriptome. For carrying
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out both steps, the methods that are developed for bulk RNA-seq data
analysis (as outlined in Section 3.2.2) can be applied to scRNA-seq data
as well [Stegle et al., 2015; Poirion et al., 2016; Kolodziejczyk et al., 2015].
After alignment, gene expression level quantification of the mapped reads
is performed. In case the data is obtained from scRNA-seq protocols that
do not incorporate UMIs, quantification can be performed using the same
methods that are applied in bulk RNA-seq data analysis (see Section 3.2.2).
However, in case UMIs are incorporated in the protocol, gene expression
level quantification is done by counting the total number of unique UMIs
associated with the reads mapping to a gene, called UMI counting (as
done in Publication I) [Stegle et al., 2015; Bacher and Kendziorski, 2016].
Sequencing errors can occur in UMIs that might result in the appearance
of spurious UMIs with low copy numbers [Wagner et al., 2016; Stegle et al.,
2015]. Therefore, in order to avoid over-counting, UMIs with low quality
should be filtered out and those with low copy numbers should be removed
or collapsed with other UMIs to which they have short edit distances using
statistical models [Wagner et al., 2016; Stegle et al., 2015; Zheng et al.,
2017]. For instance, the Cell Ranger Single-Cell Software Suite [Zheng
et al., 2017], which was availed in Publication I for performing QC analyses
and alignment of raw reads, filters out UMIs with <90% base call accuracy
and corrects UMIs that are 1-Hamming-distance away from another UMI
with more reads.

After quantifying the gene expression levels in each cell, it is extremely
important to perform another set of QC analysis in an effort to identify
and discard low quality cells or cells that may contain degraded mRNA
as they can lead to misinterpretation of the data. Here, low quality cells
refer to those cells that are broken or killed in the capturing process,
or those capture sites that are empty or contained multiple cells [Ili-
cic et al., 2016]. There are several metrics that can help identify such
cells. These metrics include examining: the number of reads sequenced
(i.e. sequencing depth) [Bacher and Kendziorski, 2016]; the proportion of
uniquely mapping reads, where low mapping rates may indicate degraded
mRNA, contamination or improper lysing [Stegle et al., 2015; Bacher
and Kendziorski, 2016; Kolodziejczyk et al., 2015]; the number of genes
expressed [Kolodziejczyk et al., 2015]; the fraction of reads mapping to
endogeneous genes [Kolodziejczyk et al., 2015; Bacher and Kendziorski,
2016]; the proportion of reads mapping to mitochondrial genome, where
high levels of mitochondrial RNA (mtRNA) may arise from broken cells
that lose cytoplasmic RNA but retain mtRNA that is enclosed in the mito-
chondria [Ilicic et al., 2016]; and the ratio of the number of reads mapped to
the endogeneous RNA versus those that mapped to the extrinsic spike-ins
(if spike-ins are incorporated), where high mapping to spike-ins would
indicate low amount of RNA in the cell or broken cell [Stegle et al., 2015;
Kolodziejczyk et al., 2015; Bacher and Kendziorski, 2016]. Additionally,
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dimension reduction and ordination of the data may help detect outlier
cells [Stegle et al., 2015]. However, identifying low quality cells requires
setting arbitrary thresholds that differ according to the datasets [Ilicic
et al., 2016; Poirion et al., 2016]. There are a variety of tools for performing
these or a subset of these metrics on scRNA-seq data, such as Seurat
[Satija et al., 2015; Macosko et al., 2015] pipeline, Celloline [Ilicic et al.,
2016], SinQC [Jiang et al., 2016] and SCell [Diaz et al., 2016].

One of the most critical and challenging steps in processing scRNA-seq
data is normalization of the data to adjust for uninteresting technical and
biological noise that may be masking the underlying signal of interest
[Stegle et al., 2015; Vallejos et al., 2017; Vieth et al., 2019]. The choice of
normalization method can substantially impact the results of scRNA-seq
data analyses, such as differential expression analysis [Vieth et al., 2019;
Bacher and Kendziorski, 2016]. Ideally, the data normalization strategies
should capture the biases and variations specific to the type of data at
hand [Vallejos et al., 2017]. The most widely used normalization techniques
for scRNA-seq data have been the global-scaling normalization methods
developed for bulk RNA-seq data, such as library-based normalization,
TMM, and DESeq [Vallejos et al., 2017; Bacher and Kendziorski, 2016].
These methods attempt to remove cell-specific biases by calculating one
scaling factor for all genes in each cell [Vallejos et al., 2017]. However,
normalization methods for bulk RNA-seq data make assumptions that
do not always apply in the context of scRNA-seq data. For instance, they
usually assume the total amount of RNA processed per sample (or cell) to be
approximately same or vary only due to technical noise; and as explained in
Section 3.2.2, methods like TMM and DESeq assume only a small fraction
of genes to be differentially expressed between samples (or cells); which are
not true when diverse cell sizes and types are considered [Stegle et al., 2015;
Vieth et al., 2019]. Also, some bulk RNA-seq normalization methods, such
as DESeq, perform poorly on zero-inflated data such as those generated
by scRNA-seq [Vallejos et al., 2017]. Even though a direct application of
bulk RNA-seq normalization techniques has been found through various
studies to be inappropriate and misinforming in the context of scRNA-seq
data, they have been extensively used in scRNA-seq data analysis [Vallejos
et al., 2017; Lun et al., 2016].

Some scRNA-seq protocols incorporate spike-ins to estimate technical
variation and normalize gene expression levels in each cell (explained ear-
lier). Essentially, spike-ins can be used to estimate the endogeneous mRNA
content (i.e. total number of mRNA molecules) per cell by calculating a
cell-specific scaling factor based on the differences between the observed
and expected expressions of the spike-ins and using that scaling factor for
normalizing the expression values of endogeneous mRNA [Stegle et al.,
2015; Vallejos et al., 2017; Bacher and Kendziorski, 2016]. They can also
be used to improve the estimation of global-scaling factors [Bacher and
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Kendziorski, 2016]. However, spike-ins do not normalize for all sources of
variation, such as the differences in mRNA content between cells [Vallejos
et al., 2017] and stochastic dropout of RNA molecules [Kolodziejczyk et al.,
2015]. Moreover, calibrating the amount of spike-ins added to each cell
according to the endogeneous mRNA content of each cell is a crucial but
non-trivial task, which, if done poorly, can invalidate the use of spike-ins as
control sequences [Kolodziejczyk et al., 2015; Vallejos et al., 2017; Bacher
and Kendziorski, 2016]. Also, as ERCC spike-in sequences are different
from endogeneous mRNA molecules, their counts may be affected by the
technical and biological factors differently [Vallejos et al., 2017; Wagner
et al., 2016].

Several state-of-the-art normalization methods specifically tailored for
scRNA-seq data have been introduced recently; some of which utilize
the spike-in information, whereas others do not. These methods can be
largely divided into two approaches: those that model the variations in
downstream analyses and those that produce normalized gene expression
values that can be used in subsequent analyses [Vallejos et al., 2017].
Methods belonging to the latter category will be discussed here. One of the
most recent methods is SCnorm [Bacher et al., 2017], which addresses the
issues that arise from estimating global scaling factors that assume the
count-depth relationship to be same across all genes of the cell when that is
not the case. They use one quantile regression to group genes according to
the dependence of their expression on sequencing depth and a second quan-
tile regression to estimate group-specific scaling factors. SCnorm does not
require spike-in information, but it can be used to improve its performance
[Bacher et al., 2017]. The deconvolution approach used in scran [Lun
et al., 2016] does not employ spike-in information and performs robustly
in zero-inflated data. This approach partitions cells into pools of compara-
ble library sizes, normalizes across cells in each pool, and then uses the
resulting system of linear equations to estimate cell-specific scaling factors
[Lun et al., 2016]. On the other hand, Seurat pipeline [Satija et al., 2015;
Macosko et al., 2015] implements a simple global-scaling normalization
approach where the unique UMI count per gene (i.e. gene count) is divided
by the total number of unique UMIs in the cell (i.e. library size), and then
multiplied by a scaling factor (10,000 by default). The result, x, is finally
log-transformed by ln(x+1) to account for zero counts [Macosko et al., 2015].
Other normalization methods designed specifically for scRNA-seq data
include Single-Cell Tagged Reverse Transcription (SAMstrt) [Katayama
et al., 2013], Gamma Regression Model (GRM) [Ding et al., 2015] and
Bayesian Analysis of Single-Cell sequencing Data (BASiCS) [Vallejos et al.,
2016], which utilize spike-in information.

A recent comparative analysis of seven scRNA-seq data normalization
methods (that included the ones mentioned here) could not identify any one
method that outperformed all others in every aspect and all datasets [Lytal

67



High-throughput ‘omics’ datasets and their analyses

et al., 2020]. They also concluded that a simple normalization approach,
such as the one implemented in Seurat, does not significantly differ in
terms of performance as compared to the other more intensive methods
[Lytal et al., 2020]. In fact, in Publication I, the Seurat pipeline was used
to perform the second set of QC analyses and normalization.

Finally, the normalized gene expression values of each cell can be used
to perform downstream analyses, such as dimension reduction, clustering,
differential expression analysis, and trajectory analysis, which are covered
in Section 4.6.

3.2.4 Brief comparison between the transcriptomics
technologies

As evident from Sections 3.2.1-3.2.3, DNA microarrays, bulk RNA-seq and
scRNA-seq technologies differ from each other in several aspects and have
their own advantages as well as disadvantages. In this section, some of
the main differences between these transcriptomics technologies will be
highlighted.

One of the most prominent differences between DNA microarrays and
RNA-seq technologies is that DNA microarrays measure the expression
levels of a limited number of genes or transcripts that are chosen a pri-

ori, whereas the RNA-seq technologies provide an unbiased view of the
transcriptome without any a priori knowledge on the targets of interest.
Thus, RNA-seq experiments have the potential to discover novel regions,
which is useful especially while studying complex transcriptomes from
higher eukaryotes [Wilhelm and Landry, 2009; Lightbody et al., 2019].
Also, with sufficient sequencing depth, RNA-seq experiments are capable
of detecting rare or lowly-expressed genes as well [Wilhelm and Landry,
2009]. On the other hand, if a study involves assessing the expression
levels of specific known genes or transcripts, the use of custom-designed
or commercialized DNA microarrays could be an easy and cost-effective
option. However, it should be noted that DNA microarrays have certain
technological shortcomings, such as high background levels due to cross-
hybridization, and varying hybridization properties of the probes. These
limit its ability of accurately measuring expression levels, especially in
case of lowly abundant genes or transcripts [Marioni et al., 2008]. Compar-
atively, RNA-sequencing is considered to have technical superiority over
microarrays [Lightbody et al., 2019; Marioni et al., 2008], but they are also
computationally more demanding (in terms of storage as well as analysis).

In order to resolve abundances of gene isoforms (i.e. alternatively spliced
transcripts of genes), DNA microarrays (such as, custom-designed splice
arrays) or bulk RNA-seq technologies can be employed. Unlike DNA mi-
croarrays, bulk RNA-sequencing has the potential of identifying novel iso-
forms, assuming that the sequencing depth of the cells is sufficiently deep
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[Wang et al., 2009; Wilhelm and Landry, 2009]. In principle, scRNA-seq
data can also be used for quantifying isoform abundances, but it remains
challenging due to higher technical variation in the data as compared to
bulk RNA-seq data [Stegle et al., 2015].

Finally, both DNA microarrays and bulk RNA-seq technologies result in
gene expression profiles that are averaged across a large population of cells.
Conversely, scRNA-seq technologies provide unbiased gene expression
profiles of individual cells. Doing so, they capture cell-to-cell heterogeneity
that population-based transcriptomics methods cannot do [Stegle et al.,
2010; Poirion et al., 2016]. Single cell RNA-seq data enables us to gain
several biological insights that are not possible using population-based
technologies, such as identifying rare or novel cell types in samples [Wagner
et al., 2016]. However, compared to bulk RNA-seq, scRNA-seq technologies
produce higher levels of noise and variation in the data [Mou et al., 2020],
which makes the computational analysis more challenging than that of
bulk RNA-seq data.

3.3 Microbiomics - Microbial community analysis

As discussed in Section 2.3.2, the human gut microbiome plays a very
crucial role in human health and its dysbiosis has been associated to a
plethora of diseases. However, the mechanisms by which the gut micro-
biome affects the pathogenesis of most diseases remain largely elusive.
Therefore, in order to elucidate these mechanisms, a major focus of human
gut microbiome studies has been to identify and characterize the microbes
inhabiting the human gut under specific conditions (or circumstances) as
well as to decipher their involvement in biochemical pathways by which
they may impact host health (i.e. the structural and functional properties
of gut) [Malla et al., 2019]. Such studies have unlocked a wealth of data
and may offer potential biomarkers for early detection and targets for
therapeutic interventions [Cullen et al., 2020; Morgan and Huttenhower,
2012].

Prior to NGS technologies, the traditional culture-based approaches were
largely used for studying microbial community profiles, where microbial
cells were first isolated and grown in laboratory conditions (i.e. cultured).
This method tends to generate a biased view of the microbiota as it gener-
ally provides information on only a small proportion of microbes that are
capable of being cultured; and also because certain microbes grow faster
than others in given culture conditions [Allaband et al., 2019; Morgan and
Huttenhower, 2012; Malla et al., 2019]. However, with the advent of NGS
technologies and the dramatic reduction in their cost, came about the era
of culture-independent approaches that revolutionized microbiome studies
by allowing the taxonomic and functional profiling of entire communities

69



High-throughput ‘omics’ datasets and their analyses

in an efficient and unbiased manner [Morgan and Huttenhower, 2012;
Pereira et al., 2018; Malla et al., 2019]. Here, taxonomic profiling answers
the question ‘who is there?’ and functional profiling answers ‘what are
they doing?’. Essentially, NGS-based approaches directly analyse the DNA
extracted from microbial cells of a sample without culturing them [Mor-
gan and Huttenhower, 2012]. There are currently two main NGS-based
methods for studying microbial communities: marker gene sequencing
(also known as amplicon or targeted sequencing; used in Publication IV)
and whole metagenome shotgun (WMS) sequencing (used in Publications
III and IV) [Pérez-Cobas et al., 2020; Hamady and Knight, 2009]. The
marker gene sequencing approach targets specific genes for sequencing
that can identify the genome that contains it without needing to sequence
the entire genome, i.e. marker genes [Pérez-Cobas et al., 2020; Morgan and
Huttenhower, 2012]. Additionally, the chosen marker genes are required
to be present in almost all bacteria (or other microbes of interest); and
should be highly conserved, such that changes in the sequence would serve
as an evolutionary clock and distance measure [Morgan and Huttenhower,
2012; Bharti and Grimm, 2019; Janda and Abbott, 2007]. The most com-
monly used marker gene for bacterial profiling of microbial samples is 16S
ribosomal RNA (rRNA) [Janda and Abbott, 2007; Bharti and Grimm, 2019;
Morgan and Huttenhower, 2012; Bik, 2016], which is part of the small
subunit of the 70S ribosomes that are found in all prokaryotes (i.e. bacteria
and archaea) [Alberts, 2018]. This approach is generally used to identify
the members of a microbial community [Pérez-Cobas et al., 2020; Bharti
and Grimm, 2019; Bik, 2016]. The WMS sequencing approach, on the
other hand, sequences all the genomic DNA in a sample, and is therefore
also referred to as the metagenomic sequencing1 [Hamady and Knight,
2009; Pérez-Cobas et al., 2020; Morgan and Huttenhower, 2012]. WMS
sequencing is capable of revealing the microbial composition of commu-
nities as well as their genetic content, where the latter can give insights
into the functional potential of the microbes [Pérez-Cobas et al., 2020; Bik,
2016]. Even though 16S rRNA sequencing is relatively cheaper and faster
[Pérez-Cobas et al., 2020], WMS is quickly displacing it due to its increased
accuracy, greater microbial resolution (16S rRNA can assign taxonomy only
till the genus-level, whereas WMS data can confidently provide species-
and strain-level taxonomic classifications) and capability of detecting genes
[Allaband et al., 2019; Brumfield et al., 2020]. However, both methods have
their strengths and weaknesses, and can produce varying results [Knight
et al., 2018].

The material that is most commonly collected for gut microbial commu-

1The term ‘metagenomics’ is often inaccurately used in literature to refer to
the entire body of high-throughput sequencing solutions for studying microbial
communities, including marker gene sequencing [Morgan and Huttenhower, 2012;
Bharti and Grimm, 2019; Hamady and Knight, 2009]
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nity studies (including Publications III and IV) is the stool due to its easy
accessibility [Allaband et al., 2019]. Microbial cells of a target size are
then isolated from the samples for DNA or RNA extraction and lysed using
either mechanical or chemical lysing [Bharti and Grimm, 2019]. After
library preparation (discussed in Sections 3.3.1 and 3.3.2), the extracted
nucleic acid fragments are sequenced. The Illumina sequencing platforms
are the most widely used sequencing platforms in microbiome studies at
present (including Publications III and IV) as they yield higher output per
run and have substantially lower error rates than their predecessor, 454 py-
rosequencing, as well as the newer (3rd generation) sequencing platforms,
such as Pacific Biosicences, Oxford Nanopore MinION, and Ion Torrent
[Bik, 2016; Malla et al., 2019; Pérez-Cobas et al., 2020; Escobar-Zepeda
et al., 2015].

3.3.1 16S rRNA sequencing

Data collection

Bacterial 16S rRNA gene is ~1500 bp in length and consists of highly
conserved regions separated by nine hypervariable regions (V1-V9) that
demonstrate sequence diversity between different bacterial taxa and can
be used to identify microbial profiles [Bharti and Grimm, 2019; Allaband
et al., 2019]. However, each hypervariable region has different degrees
of sequence diversity and no single region is capable of distinguishing
between all bacteria [Chakravorty et al., 2007]. Therefore, the choice of
hypervariable region(s) for sequencing can influence, for instance, taxo-
nomic coverage [Bik, 2016]. The most commonly sequenced regions include
V3-V4, V5-V6 and V4, where V4 is a popular choice in combination with
Illumina sequencing and was used in Publication IV [Bharti and Grimm,
2019].

Briefly, 16S rRNA library is prepared by amplifying the hypervariable
region(s) of choice using barcoded PCR primer pairs that are complemen-
tary to the conserved regions flanking the region(s) of interest [Bharti and
Grimm, 2019; Allaband et al., 2019]. Before sequencing, the sequences are
purified and constructed into DNA libraries [Bharti and Grimm, 2019].
The most common Illumina platform used for 16S rRNA sequencing is
the MiSeq platform (introduced in Section 3.1.2; used in Publication IV)
[Pérez-Cobas et al., 2020; Bharti and Grimm, 2019].

16S rRNA data analysis

Similar to the above-mentioned sequencing datasets, microbial HTS data,
such as 16S rRNA and WMS sequencing data, are first subjected to qual-
ity control (QC) analysis. If the samples have been multiplexed during
sequencing, the QC step would be preceded by a demultiplexing step,
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wherein each sequence is assigned to its sample of origin based on the
barcodes [Calle, 2019; Goodrich et al., 2014]. The QC step is critical in
microbiome data analysis, as the data can contain sequencing artifacts,
such as low-quality reads and contaminating reads from host-genome that
can mislead downstream results [Zhou et al., 2014; Bharti and Grimm,
2019; Pérez-Cobas et al., 2020]. While the 16S rRNA approach is generally
undeterred by host-genome contamination in the sample [Knight et al.,
2018], it is sensitive to sequencing errors, as it can result in an overes-
timation of microbial diversity in a community and/or lead to incorrect
taxonomic annotations [Pérez-Cobas et al., 2020; Bharti and Grimm, 2019;
Escobar-Zepeda et al., 2015]. Generally, several QC tools that are applied
to other NGS data, such as FastQC [Andrews, 2010], trimmomatic [Bolger
et al., 2014], cutadapt [Martin, 2011], etc. can be used to assess the quality
of the data as well as trim or remove adapter sequences, short reads and
low-quality reads, thus reducing sequencing error among other artifacts
[Zhou et al., 2014; Escobar-Zepeda et al., 2015; Pérez-Cobas et al., 2020].
Specific toolkits, such as ea-utils [Aronesty, 2013] (used in Publication IV),
have also been developed for effortlessly performing multiple 16S rRNA
data processing steps, such as barcode demultiplexing, adapter trimming,
etc. in one go. Additionally, PCR errors can introduce chimeras in the 16S
data, which can result in inflated diversity estimations [Goodrich et al.,
2014]. Therefore, chimera filtering can also be performed as part of the
QC step using several tools, such as ChimeraSlayer [Haas et al., 2011],
UCHIME [Edgar et al., 2011], and DECIPHER [Wright et al., 2012].

After QC analysis, paired-end 16S rRNA reads are usually joined by
overlapping to obtain single reads that are longer and of higher-quality
[Aronesty, 2013; Pérez-Cobas et al., 2020]. Several programs have been
developed to perform this task, such as fastq-join (implemented in ea-utils)
[Aronesty, 2013], PEAR [Zhang et al., 2014], and SeqPrep [John, 2011].

Subsequently, to interpret the microbial structure of a community, the
reads are clustered into operational taxonomic units (OTUs)—the lowest
level of phylotypes detectable by 16S rRNA sequencing—based on a prede-
fined sequence similarity threshold. The most commonly used threshold
for sequence similarity within an OTU is >97%, which allows for some
degree of sequence divergence possibly occurring due to sequencing errors
[Morgan and Huttenhower, 2012; Bharti and Grimm, 2019; Knight et al.,
2018; Pérez-Cobas et al., 2020]. Typically, >97% sequence similarity has
been thought to reflect species-level classification [Morgan and Hutten-
hower, 2012; Edgar, 2013]. However, many studies nowadays consider it
to reflect a genus-level classification because many species are identical
along the full length of the 16S rRNA gene [Bik, 2016; Allaband et al.,
2019]. In fact, it is believed that it is not possible to distinguish taxonomic
levels lower than the genus-level using marker gene regions because a
wide range of species and strains distinguish from one another only on a
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Figure 3.2. Depiction of the main steps in 16S rRNA-sequencing data analysis
pipeline. The red arrows indicate transition from one step in the
data analysis pipeline to another (multiple arrows from a box
indicate multiple directions in which the analysis can transition).
Yellow arrows are used to indicate the ways in which a step can
be carried out.

genome-level [Pérez-Cobas et al., 2020; Allaband et al., 2019].
OTU clustering techniques can be divided into largely three categories:

closed-reference clustering, de novo clustering, and open-reference clus-
tering. In closed-reference clustering, the reads are clustered against
reference sequences from database(s) and those reads that do not match
any reference sequence at the defined similarity threshold are discarded
[Kopylova et al., 2016; Rideout et al., 2014]. Some databases that store
annotated 16S rRNA sequences include GreenGenes [DeSantis et al., 2006],
Ribosomal Database Project (RDP) [Wang et al., 2007], and SILVA [Quast
et al., 2012]. In de novo clustering, the reads are aligned against one
another and similar reads (similarity higher than a given threshold) are
clustered into the same OTU [Kopylova et al., 2016; Rideout et al., 2014].
Finally, in open-reference clustering, the previous two approaches are
combined, such that the reads are first clustered using closed-reference
clustering and any reads that fail to match the reference are clustered de

novo instead of being discarded [Kopylova et al., 2016; Rideout et al., 2014].
Several methods belonging to each category have been proposed over the
years. Mothur [Schloss et al., 2009] is one of the most widely used tools
that implements three agglomerative hierarchical clustering techniques
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(i.e. de novo clustering), namely nearest neighbour, furthest neighbour and
unweighted-pair group method using average linkages (UPGMA) [Schloss
and Handelsman, 2005]. Another popular clustering method is UCLUST
[Edgar, 2010], which employs USEARCH to assess sequence similarities
[Edgar, 2010] and implements a centroid-based greedy algorithm for as-
signing sequences to clusters [Rideout et al., 2014; Navas-Molina et al.,
2013]. Both mothur and UCLUST are also implemented in QIIME [Ca-
poraso et al., 2010], which is an open-source bioinformatics software that
integrates commonly used tools designed for 16S rRNA-based microbial
community analysis [Navas-Molina et al., 2013]. In fact, the implemen-
tations of UCLUST in QIIME can be used to perform all three types of
clustering discussed above [Edgar, 2017]. The author of UCLUST also
developed the UPARSE pipeline (used in Publication IV), which includes
several quality control steps in addition to de novo OTU clustering using
a novel greedy algorithm, where it performs chimera filtering and OTU
clustering simultaneously, thus improving its accuracy [Edgar, 2013].

After (or during) clustering, a consensus sequence per OTU is determined
to represent all the sequences assigned to it [Calle, 2019]. These consensus
sequences are then usually used to retrieve taxonomic annotations for
each OTU from the reference databases [Escobar-Zepeda et al., 2015; Calle,
2019; Knight et al., 2018; Pérez-Cobas et al., 2020]. Some OTUs may
remain unannotated or annotated only to a higher taxonomic level as the
databases are usually incomplete and imperfect [Pérez-Cobas et al., 2020;
Calle, 2019; Knight et al., 2018].

A few methods, such as PICRUSt [Langille et al., 2013] and Tax4Fun
[Aßhauer et al., 2015], have been developed to understand the biologi-
cal functions of the microbial community inferred from 16S rRNA data.
However, 16S rRNA data is usually considered insufficient for functional
analysis as it does not represent the genomic diversity of the microbial
community very well [Brumfield et al., 2020].

Finally, before any computational or statistical analyses (as discussed in
Chapter 4) can be performed on the OTU abundance data, normalization
steps (as explained in Section 3.3.3) need to be applied. The main steps in
the data analysis pipeline for 16S rRNA sequencing data is also depicted
in Figure 3.2.

3.3.2 Whole metagenome shotgun sequencing - Metagenomics

Data collection

After extracting the genomic DNA from microbial cells, they are frag-
mented, prepared for sequencing and then sequenced. Amplification is
generally not required here, but can be included [Morgan and Huttenhower,
2012]. The most common Illumina platform used for WMS sequencing is
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the HiSeq platform (introduced in Section 3.1.2) [Escobar-Zepeda et al.,
2015].

Data Analysis

As discussed in Section 3.3.1, WMS sequencing data analysis begins with
QC analysis. In addition to the usual read quality issues with NGS data,
such as low-quality reads and presence of adapter, WMS data commonly
includes contaminating sequences from the host-genome or other sources
[Bharti and Grimm, 2019; Zhou et al., 2014]. Therefore, in addition to
performing the basic trimming and filtering of reads, contaminating reads
are also identified by aligning the reads to the host genome (and/or a set
of sequences) using unspliced aligners, such as Bowtie, Bowtie2 or BWA,
and subsequently removed [Bharti and Grimm, 2019]. One of the easiest
ways to perform QC analysis on WMS sequencing data is to use a wrapper
tool, such as KneadData [Huttenhower, 2020] (used in Publication III),
that performs all the QC steps one-by-one. KneadData integrates, for
instance, FastQC, Trimmomatic, and Bowtie2, in order to perform quality
assessment, quality trimming/filtering, and host sequence decontamina-
tion, respectively [Huttenhower, 2020; Pereira et al., 2018].

After pre-processing, the WMS reads can be used for taxonomic and
functional profiling of microbial communities using largely two differ-
ent types of approaches, namely assembly-free (i.e. reference-based) and
assembly-based approaches [Pérez-Cobas et al., 2020; Knight et al., 2018;
Escobar-Zepeda et al., 2015; Morgan and Huttenhower, 2012]. In assembly-
free approaches, the short sequencing reads are directly compared against
reference genomes and gene catalogues (from genome databases, such as
RefSeq [O’Leary et al., 2016] and IMG system [Markowitz et al., 2012], and
protein family databases, such as UniRef [Suzek et al., 2015] and Pfam
[El-Gebali et al., 2019]) to determine the taxonomic composition and the
functional potential of a given microbial community. Whereas, in assembly-
based approaches, the short reads are assembled into longer sequences,
called contigs, before they are used for taxonomic and functional profiling.

Several assembly-free methods for taxonomic profiling have been pro-
posed over the year, including MetaPhlAn [Segata et al., 2012], MetaPhlAn2
[Truong et al., 2015], Kraken [Wood and Salzberg, 2014], and MEGAN
[Huson et al., 2016]. In MetaPhlAn and MetaPhlAn2 (used in Publication
III), reads are aligned (using Bowtie2 [Langmead and Salzberg, 2012])
to a reduced catalog of marker genes that are computationally selected
from publicly available reference genomes to explicitly identify specific
microbial clades (i.e. a group of organisms that are phylogenetically linked)
at species or higher taxonomic levels [Segata et al., 2012]. These markers
are chosen to be highly conserved within the clade and not present in other
clades.

For functional profiling, the reads can be aligned against reference
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Figure 3.3. Depiction of the main steps in whole metagenome shotgun (WMS)
sequencing data analysis pipeline. The red arrows indicate tran-
sition from one step in the data analysis pipeline to another
(multiple arrows from a box indicate multiple directions in which
the analysis can transition). Yellow arrows are used to indicate
the ways in which a step can be carried out.

databases of protein sequences or KEGG using fast aligners, such as
DIAMOND [Buchfink et al., 2015] and PALADIN [Westbrook et al., 2017].
More advanced assembly-free functional profiling tools, such as HUMAnN
[Abubucker et al., 2012] and HUMAnN2 [Franzosa et al., 2018] (used in
Publication III), have also been developed that allow the inference of the
functional and metabolic potential in a microbial community.

Assembly-free methods can provide accurate profiling of microbial com-
munities as well as scale efficiently to large and complex datasets without
substantially increasing the computational costs [Knight et al., 2018]. How-
ever, they are limited by the availability of reference genomes in databases;
single species needs to be isolated and cultured for genome assessment,
but some species are impossible to cultivate and culture. Also, the ref-
erence databases may represent species of public health interest more
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extensively than commensal bacteria [Plaza Oñate et al., 2019]. Therefore,
assembly-based methods have been developed for analysing metagenomic
data, which are not restricted to identifying and quantifying just the known
genomes in the community, but also novel or non-referenced genomes. An
avalanche of tools have been proposed to carry out one or more steps in the
assembly-based analysis pipeline of WMS data. Here, the key steps of the
pipeline along with a few widely-used methods for conducting each step
will be presented.

Assembly-based methods begin with the reconstruction of contigs from
short reads in either a guided manner using previously sequenced closely-
related organisms (i.e. ‘comparative’ assembly) or a de novo manner [Pérez-
Cobas et al., 2020; Morgan and Huttenhower, 2012]. Of the two, de novo

methods, specifically those employing De Bruijn graph strategy, are most
widely used for metagenomic data [Pérez-Cobas et al., 2020; Bharti and
Grimm, 2019]. Some of these methods include MEGAHIT [Li et al., 2015]
(used in Publication III), SOAP-denovo2 [Luo et al., 2012], and metaS-
PAdes [Nurk et al., 2017]. Regardless of the overwhelming number of
methods developed for genome assembly, it remains a complicated and
challenging task, especially in the context of metagenomes [Pérez-Cobas
et al., 2020]. Moreover, the choice of the assembly method is consequential
in downstream analysis [Bharti and Grimm, 2019], but no such method
exists as of now that is optimal for all datasets and research questions
[Pérez-Cobas et al., 2020].

Subsequent to assembly, the contigs can be binned (i.e. classified) into dis-
crete clusters, wherein each cluster (i.e. bin) represents a (partial) genome
belonging to a biological taxon [Wu et al., 2016; Pérez-Cobas et al., 2020].
Therefore, by mapping the WMS reads back to the bins, the taxonomic
composition of a sample can be determined [Pérez-Cobas et al., 2020]. Both
supervised (using the reference genomes) and unsupervised methods have
been proposed for contig binning, but the latter methods have become
more popular as they do not rely on reference genomes [Pérez-Cobas et al.,
2020; Escobar-Zepeda et al., 2015; Bharti and Grimm, 2019]. Unsuper-
vised binning can be done using nucleotide composition-based methods,
abundance-based methods or hybrid methods that combine composition-
and abundance-based approaches [Pérez-Cobas et al., 2020]. Hybrid meth-
ods, including CONCOCT [Alneberg et al., 2014], MaxBin 2.0 [Wu et al.,
2016] and several others, tend to perform better than the other two types
of methods [Pérez-Cobas et al., 2020]. Additionally, the assembled contigs
can also be used for gene prediction, i.e. open reading frame (ORF) predic-
tion, [Escobar-Zepeda et al., 2015; Pérez-Cobas et al., 2020], using methods
such as Prodigal [Hyatt et al., 2010] (used in Publication III) and Glimmer
[Kelley et al., 2012], among many others. In addition to functional profiling
of communities using these predicted genes, they can also be used for
taxonomic profiling. One of the ways in which taxonomic profiling using
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predicted genes can be done is by first removing redundant gene sequences
using tools, such as CD-HIT (used in Publication III), and creating a non-
redundant gene catalogue. Next, the WMS reads can be mapped to the
gene catalogue and metagenomic species pangenomes (MSPs)—core and
accessory genes of each species—can be constructed using a tool called
MSPminer [Plaza Oñate et al., 2019] (used in Publication III), which bins
co-abundant gene across metagenomic samples [Plaza Oñate et al., 2019].
Genome reference databases can then be used to annotate each MSP at
different taxonomic levels using tools such as eggNOG-mapper [Huerta-
Cepas et al., 2017] (used in Publication III). MSPs without matching taxa
in the reference databases can be phylogenetically annotated, using tools
such as PhyloPhlAn [Segata et al., 2013] (used in Publication III).

Finally, to determine the functional potential of a microbial community,
the predicted gene sequences or their translated gene products can be
assigned molecular and biological functions [Morgan and Huttenhower,
2012; Escobar-Zepeda et al., 2015] using tools such as BLAST [Ye et al.,
2006]. The genes and gene products can also be annotated with more
informative functional categories, such as GO terms, KEGG terms and
MetaCyc pathways; and orthologous families, such as COGs and KOs
[Morgan and Huttenhower, 2012].

Furthermore, the functional capacity of human microbiomes can also be
determined by the strain-level variants within microbial species [Nayfach
and Pollard, 2016; Truong et al., 2017]. Specific strains of many species
can have a pathogenic potential and can be associated to the phenotype
of the health condition [Truong et al., 2017]. Strain-level differences in
microbes can occur in the form of single nucleotide polymorphisms (SNPs)
as well as addition/deletion of genomic elements, such as genes, plasmids
or operons. With the refined resolution provided by WMS sequencing
data, it is possible to characterize microbial communities at the strain-
level by identifying genomic variations, such as SNPs (using methods like
StrainPhlAn [Truong et al., 2017], for instance) and accessory genes (as
is done by MSPminer [Plaza Oñate et al., 2019]). The latter method was
used in Publication III.

Lastly, similar to the 16S rRNA data, the taxonomic and functional-level
abundance data obtained from the above-mentioned processing pipelines
have to be normalized before any computational or statistical analyses can
be performed on them. Some of the normalization methods are discussed
in Section 3.3.3. The main steps in the data analysis pipeline for WMS
sequencing data is also depicted in Figure 3.3.

3.3.3 Normalization of abundance data

In order to perform meaningful comparisons between samples or other
downstream analyses, the taxonomic- and functional-level raw abundance
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data (originating from 16S rRNA or WMS sequencing data [Weiss et al.,
2017; Pereira et al., 2018]) need to be normalized. Some of the most
simple and commonly used normalization methods for microbiome data
include total sum scaling (TSS) (used in Publications III and IV), where
individual raw counts are divided by the total number of counts per sample,
resulting in relative abundances that sum to 1; and rarefaction, where the
same number of reads are subsampled from each sample to ensure equal
number of total counts in all samples [Pérez-Cobas et al., 2020; Gloor et al.,
2017; Calle, 2019; Pereira et al., 2018]. TMM and DESeq normalization
methods from RNA-seq data analyses can also be applied to microbiome
data [Knight et al., 2018], but they are considered less suitable for highly
asymmetrical and sparse datasets like those of microbiome data [Gloor
et al., 2017], and their assumptions are likely to be inappropriate for highly
diverse microbial communities [Weiss et al., 2017]. Many normalization
methods have been proposed over the years for microbiome data, including
cumulative sum scaling (CSS) [Paulson et al., 2013]. Several comparative
studies have been conducted to identify the best-fitting normalization
methods for microbiome data [Paulson et al., 2013; Pereira et al., 2018;
Weiss et al., 2017], but the results tend to vary from one study to another.
In fact, Paulson et al. [2013] claimed that CSS outperformed TSS, DESeq
and TMM, but Costea et al. [2014] later refuted this and showed that the
improved results were mere artifacts of preferential post-processing steps.

To account for the compositional nature of microbiome data, Aitchison
proposed transforming the raw count data into compositional data using
log-ratio transformation techniques, such as additive, centered and iso-
metric log-ratio transformations (i.e. alr, clr, and ilr) [Gloor et al., 2017;
Calle, 2019]. Essentially, TSS-normalized relative abundance data is also
considered compositional data, but the data is in the Simplex space where
Euclidean metrics are not valid [Gloor et al., 2017; Calle, 2019]. However,
the log-ratio transformed data are in the Euclidean space. In fact, TMM
and DESeq are similar to log-ratio transformations [Gloor et al., 2017].
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4. Statistical and Computational
Analyses

As established in Chapter 3, high-throughput ‘omics’ data analysis starts
with a collection of raw and noisy data that often mandates ‘cleaning’ (i.e.
quality checking) and has to undergo several data processing steps. This
essentially transforms the raw information into a more meaningful and
analysable format, such as a molecular-level characterization or quantifi-
cation. Subsequently, various statistical and computational techniques
can be employed to analyse the processed data and thereby address the
research questions pertaining to the study. For instance, computational
techniques, such as dimension reduction, clustering, visualization and
microbial diversity estimations, can be performed to gain insights into the
underlying structure of the data and to extract specific patterns that may
exist. Statistical modelling provides a powerful mathematical framework
for explaining the data in terms of underlying covariates (i.e. explanatory
variables) that may be associated with the variation in the data. These
models can also be used to account for confounding factors while testing the
association of more interesting covariates. Statistical modelling tools, such
as linear models and Gaussian processes, are often used for performing
differential expression and differential abundance analyses in transcrip-
tomics and microbiomics studies, respectively. Moreover, computational
analyses can be performed prior to statistical modelling in order to gain
perspective on the covariates that should be included in the model.

This chapter will cover some of the most prominent computational and
statistical analyses that can be performed on the transcriptomics and
microbiomics datasets.

4.1 Microbiome Diversity Analysis

One of the most widely studied attributes of a microbial community is its
diversity, as it can be an important indicator of a symbiotic or dysbiotic
microbiome (as mentioned in Section 2.3.2). Two types of measures are
commonly used to describe the microbial diversity: alpha and beta diversity.
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Alpha diversity quantifies the variety of taxa within a microbial community
or sample, whereas beta diversity measures the (dis)similarity between
two communities or samples. Several estimators have been proposed to
quantify the alpha and beta diversities of microbial communities derived
from either 16S rRNA or WMS sequencing data.

4.1.1 Measuring alpha diversity

The alpha diversity of a community can be estimated by measuring its
richness (i.e. the number of distinct microbial species/OTUs in the com-
munity) or its evenness (i.e. the homogeneity in the abundances of the
species/OTUs).

Richness of a microbial community can be estimated, for instance, by
merely counting the number of observed species/OTUs in the community
or by computing the Chao1 index [Chao, 1984] (used in Publication IV),
Schao1, according to Equation 4.1, which adjusts for the lowly abundant or
rare species in the community that are likely to remain undetected due
to sequencing depth limitations. This is performed by taking into account
the frequencies of species that are observed exactly once and twice in the
community (one or two reads with specific sequence), i.e. singletons and
doubletons, respectively.

Schao1 = Sobs +
f 2
1

2 f2
, (4.1)

where Schao1 refers to the number of species/OTUs observed in the com-
munity, f1 refers to the number of singleton species, and f2 refers to the
number of doubleton species.

Since communities that are dominated by a few species are generally
considered less diverse than those with several species with similar abun-
dances, alpha diversity estimators that measure the evenness within com-
munities are also widely used. One of the most commonly used measures
for evenness is the Shannon index [Shannon, 1948] (used in Publications
III and IV), H, which increases with the richness of the sample and gives
more weight to lowly abundant species:

H =−
k
∑

i=1

pi ln(pi) (4.2)

where pi is the relative abundance of taxon i in the sample, such that
∑k

i=1 pi = 1; and k is the total number of taxa in the sample.

4.1.2 Measuring beta diversity

One of the most widely used measures for estimating beta diversities
between samples is Bray-Curtis dissimilarity [Bray and Curtis, 1957]
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(used in Publications III and IV):

BCi j =
∑k

t=1

∣

∣xti − xt j

∣

∣

∑k
t=1

∣

∣xti + xt j

∣

∣

, (4.3)

where xti and xt j are the relative abundances (for instance, TSS-normalized
data) or counts of taxon t in samples i and j, respectively; and k is the
total number of taxa observed in the samples altogether. Due to the propor-
tional nature and highly skewed distributions of the relative abundances,
Euclidean distances would not be suitable to estimate beta diversities
between microbial communities (Section 3.3.3).

4.2 Dimension reduction and visualization

An informative analysis that is often performed on high-dimensional
datasets is dimensionality reduction (or ordination), where the data is
projected from a high-dimensional space onto a lower dimensional (D)
space, such as 2- or 3-D space, while preserving as much of the significant
trends, structure and information of the original data as possible in the
low-dimensional space. This essentially enables us to visualize the high-
dimensional data in a 2- or 3-D space, which in turn allows us to obtain a
compact global view of the data and visually identify possible structures,
trends or outliers in the data.

Principal component analysis (PCA) [Hotelling, 1933] (performed in Pub-
lication I) is one of the most widely-used dimensionality reduction methods
that identifies a set of orthogonal variables (i.e. basis vectors), called prin-
cipal components (PCs), as a linear combination of the original set of
variables (such as, genes) by maximizing the amount of variance preserved
from the original dataset in the lower dimension projection. Fundamen-
tally, PCA performs eigen decomposition on the covariance matrix of the
original set of variables. The resulting eigenvectors correspond to the PCs,
whereas the respective eigenvalues inform about the variance in the data
explained by each PC. Here, the first PC corresponds to the eigenvector
with the largest eigenvalue and subsequent PCs correspond to eigenvectors
in the order of decreasing eigenvalues [Alpaydin, 2010].

However, since PCA functions in the Euclidean space, it is not suitable
for data in non-Euclidean space, such as microbiome relative abundance
data. In such cases, methods that can obtain a low-dimensional Euclidean
representation of data points from non-Euclidean space by measuring
their relationships using any distance or (dis)similarity metric are often
preferred. One such method is the principal coordinate analysis (PCoA),
also known as classical multidimensional scaling (MDS) [Torgerson, 1952]
(performed in Publication III), which tries to preserve as much of the
original relationships (i.e. distances or (dis)similarities) between the data
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points from the high-dimensional space as possible in the low-dimensional
projections. In the case of microbiome data, any beta diversity measure,
including Bray-Curtis dissimilarity measure (as done in Publication III),
can be used to compute the dissimilarities between samples for performing
PCoA ordination [Legendre et al., 1998].

Another method that has become widely popular for visualizing high-
dimensional datasets on 2- or 3-D space is t-distributed stochastic neigh-
bour embedding (t-SNE) [Maaten and Hinton, 2008] (availed in Publication
I). Briefly, this state-of-the-art method aims to preserve as much of the
high-dimensional structure of the data as possible in the low-dimensional
representation. It does so by minimizing the Kullback-Leibler (KL) diver-
gence [Kullback and Leibler, 1951] between the probability distributions of
the pairwise similarities between the data points in the high-dimensional
space, P, and low-dimensional space, Q:

KL(P||Q)=
∑

i

∑

j

pi j log
pi j

qi j

, (4.4)

where pi j and qi j are similarity measures between data points i and j in
the high- and low-dimensional spaces, respectively, defined by Gaussian
and Student-t distributions. As KL divergence is a way of comparing two
probability distributions, minimizing Equation 4.4 would ensure that the
pairwise similarities between data points in the original data is preserved
in its low-dimensional representation. Moreover, t-SNE visualization can
be applied to data in the Euclidean space [Maaten and Hinton, 2008] and
has been extended to visualize non-Euclidean (dis)similarity data as well
[Van der Maaten and Hinton, 2012].

4.3 Clustering

Clustering is a popular machine learning technique that aims to classify
features (or elements) of a data1 into groups (or clusters) based on their
similarities in an unsupervised manner. Cluster analysis often provides
valuable insights into the structure of the data as well as reveal meaningful
patterns that may exist in the data. For instance, clustering can be used to
identify co-regulated genes in transcriptomics analyses; and in single cell
RNA-seq analyses, clustering techniques are often used to form clusters of
single cells, such that the cells belonging to each cluster share similar gene
expression profiles and are thus likely to represent a specific cell type.

Numerous clustering algorithms have been proposed over the past decades,
where a few methods are used more regularly than others, including k-
means clustering, hierarchical agglomerative clustering, and density-based
clustering. In this thesis, particularly in Publication I, k-means and hi-

1Referred to as data points while explaining the algorithms
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erarchical clustering were performed on bulk RNA-seq data to identify
co-regulating genes; whereas density-based clustering was performed on
scRNA-seq data to cluster the single cells. k-means is one of the simplest
and most well-known clustering techniques that iteratively partitions the
data points into a predefined number of clusters, k, by minimizing the
distance between the data points and the nearest cluster centers [Alpaydin,
2010]. Here, k needs to be decided beforehand, which can be done based on
prior knowledge of the data or by using techniques, such as silhouette scor-
ing. A silhouette score evaluates how similar a data point is to the members
of its own cluster as compared to those of other clusters [De Amorim and
Hennig, 2015]. However, k-means cannot detect non-spherical clusters
[Rodriguez and Laio, 2014].

Hierarchical agglomerative clustering, on the other hand, does not re-
quire the number of clusters to be specified beforehand and can be inferred
after completing the clustering process. The method starts by treating
each data point as a single cluster and then successively merges (or ag-
glomerates) pairs of clusters with the smallest distance until a stopping
criterion is met or all clusters are merged into a single cluster containing
all the data points. The hierarchy of clustering is often represented as a
dendogram (i.e. tree) [Alpaydin, 2010].

Another widely-used clustering method is the density-based clustering,
which can easily identify non-spherical (or arbitrarily-shaped) clusters.
The notion behind such clustering is that the regions in the data space
that contain the clusters have high density of data points, whereas regions
that contain noise/outliers or no clusters have low density of data points.
Density-based spatial clustering of applications with noise (DBSCAN)
[Ester et al., 1996] is one of the most popular density-based clustering
methods. It identifies clusters such that each data point, p, in a cluster
has either a minimum number of data points, MinPts, in its neighborhood
(i.e. in a given distance, ϵ, of p) or is in the neighborhood of such high-
density data point(s); and the data points that do not meet this criteria are
considered as noise. Simply put, in DBSCAN, data points that are densely
packed and contain many neighbors are clustered together, whereas those
that are alone with far away or insufficient number of neighbours are
classified as noise [Ester et al., 1996]. Recently, Rodriguez and Laio [2014]
proposed a new density-peak clustering (DPC) method that performs the
clustering process by first identifying the density peaks (or cluster centers)
of clusters and subsequently assigning data points to the nearest density
peaks. Briefly, two quantities are computed for each data point i: local
density, ρ i and minimum distance, δi, to the nearest data point with higher
local density. The density peaks are then identified as the data points
with relatively high ρ and δ values; and outliers are the data points with
relatively low ρ, but high δ values. Subsequently, the remaining data
points are assigned to the nearest density peaks [Rodriguez and Laio,
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2014]. Both DBSCAN and DPC intuitively define the number of clusters in
the data without prior input [Ester et al., 1996; Rodriguez and Laio, 2014].

4.4 Linear modelling

Linear models are some of the most powerful and prevalent statistical mod-
elling tools that are employed in ‘omics’ studies, including transcriptomics
and microbiomics. They can be used to efficiently describe or summarize
the observed data (such as gene expression and microbial abundance data)
as a linear combination of a set of explanatory variables (such as disease
status, treatment information) that may explain some of the variation
in the observed data. In statistics, the observed data are referred to as
response or dependent variable(s), whereas the explanatory variables are
referred to as predictors or independent variables. Essentially, linear mod-
els can capture the relationship or association between the response vari-
able(s) and the predictors while accounting for any uninteresting sources
of variation from confounding factors (such as subject ID). In fact, linear
models are typically used for statistically inferring the significance of the
association between the predictors and the response variable(s). This infer-
ence can be made upon estimating the relevant parameters (i.e. fitting the
linear model to the data) and subsequently performing hypothesis testing
on the parameters of interest, such as regression coefficients.

There are several types of linear models, some of which will be covered
in this section.

4.4.1 Linear regression models

The most basic type of linear models that are used to understand data
are simple and multiple linear regression models [Milton and Arnold,
2003; Rencher and Schaalje, 2008], hereon collectively referred to as linear
regression models. These models express the value of the response variable,
yi, in sample i, as a function of p predictors, xi1, xi2, ..., xip:

yi =β0 +β1xi1 +β2xi2 + ...+βpxip +ϵi , i = 1, ...,n (4.5)

Here, β0 and β j ( j = 1, ..., p) that denote the intercept and the regression
coefficients (or slopes) of xi j, respectively, are estimated by fitting the
linear model to data. The ϵi is the error term (or residual) that follows a
Gaussian distribution, N (0,σ2) [Milton and Arnold, 2003]. In this model,
the predictors can also be referred to as fixed-effects, which indicate that
they have a predictable and constant influence across all samples in the
data.

After estimating the regression coefficients, hypothesis testing can be
performed to infer the significance of the corresponding fixed-effects in
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terms of their association to the response variable. The hypothesis testing
can be performed either individually or simultaneously on the regres-
sion coefficients of the fixed-effects. For instance, t-tests can be used to
assess the significance of individual coefficients, whereas F-tests can be
used for testing a combination of coefficients [Pinheiro and Bates, 2006;
Allen, 1997]. Notably, when assessing the significance of a single fixed-
effect, the F-test statistic is equivalent to the t-test statistic [Galecki and
Burzykowski, 2013]. In the t-test, the null hypothesis states that the
regression coefficient is equal to zero, and the t-statistic can be computed
as such:

t-statistic=
βestimated −βnull

se(βestimated)
, (4.6)

where βestimated is the coefficient estimate of the fixed-effect of interest,
βnull is the null hypothesis (i.e. equal to zero), and se(βestimated) is the
estimated standard error of the coefficient estimate [Allen, 1997; Galecki
and Burzykowski, 2013]. Finally, a p-value can be determined using the
t-distribution with the respective degrees of freedom [Allen, 1997; Galecki
and Burzykowski, 2013].

Linear regression models, such as the ones implemented in a tool called
Multivariate Association with Linear Models (MaAsLin) [Morgan et al.,
2012] and the lm() function of the stats R package [R Core Team, 2019], are
commonly used to model microbial community data. Both of these methods
use t-tests to assess the significance of the regression coefficients [R Core
Team, 2019; Pinheiro et al., 2018]. Since the distribution of microbial data
is highly skewed, the relative abundances are often transformed before
linear modelling to make the data more suitable for linear model with
Gaussian error residual and homoscedastic noise. MaAsLin, which is a
tool developed specifically for microbial data analysis, implements an arc-
sine square root transformation of the data, arcsin

p
yi, that stabilizes the

variance (i.e. ensures homoscedasticity); but generally logarithmic trans-
formation, log(yi) can also be applied. In Publication III, the microbiome
data was log10-transformed and analysed using the lm() function [R Core
Team, 2019] in R, whereas in Publication IV, data transformation and
linear modelling were performed using MaAsLin.

Alternatively, data from non-normal observation model can be modelled
directly using methods such as generalized linear models (discussed further
in Section 4.4.3) and they are likely to be more robust for modelling non-
normally distributed data.

4.4.2 Linear mixed-effects models

One of the main assumptions that is made by a linear regression model
(Equation 4.5) is that the observations, yi, are independent of each other
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[Rencher and Schaalje, 2008]. Violation of the independence assumptions
may lead to spurious and/or misleading results. Typically, when a single
observation is collected per individual or group, the response data is consid-
ered to be independent and uncorrelated. However, when multiple samples
are collected from an individual or a group, the repeated observations
cannot be regarded as independent and are typically correlated [Rencher
and Schaalje, 2008; Agresti, 2015].

Therefore, to model such non-independent response data, linear mixed-
effects (LME) model can be employed. In an LME model, two types of
predictors are used to model the data: fixed-effects (introduced in Section
4.4.1) and random-effects [Agresti, 2015]. As opposed to fixed-effects,
random-effects are predictors that have an unpredictable, idiosyncratic
or ‘random’ influence on the data. A general form of linear mixed-effects
model can be represented as:

yi =Xiβ+Ziγi +ϵi , i = 1, ...,m (4.7)

where, for individual or group i, yi is a vector of ni observations, Xi is
the design matrix for the fixed-effects; β is a vector corresponding to the
regression coefficients of the fixed-effects; Zi is the design matrix of the
random-effects; γi is a vector corresponding to the regression coefficients
of the random-effects that has a Gaussian prior, N (0,D); and ϵi is a vector
of error terms (or residuals) corresponding to each observation in i and
follows a Gaussian distribution, N (0,Σi).

In longitudinal data, when multiple samples are collected from an indi-
vidual over a period of time, a random effect predictor can be used to model
within-individual correlations. For instance, the random effect predictor
can model random intercepts, such that the samples from each individual
will have their own intercept. An LME model with a random intercept
predictor can be presented as:

yi j = xT
i jβ+γi +ϵi j , j = 1, ...,ni (4.8)

where, yi j is the jth observation from individual i; xi j is a vector of predic-
tors for observation j corresponding to the fixed-effects; γi is the random
intercept of individual i; and ϵi j is the error term (or residual) that follows
a Gaussian distribution, N (0,σ2).

MaAsLin [Morgan et al., 2012] can also fit linear mixed-effects model (as
implemented in the MASS R package [Venables and Ripley, 2002]) to each
microbial taxon at a time and was employed in Publication IV to analyze
longitudinal data. It tests the significance of each fixed-effect individually
by performing linear regression t-tests (as explained in Section 4.4.1 and
depicted in Equation 4.6) on the regression coefficients [Pinheiro and Bates,
2006].
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4.4.3 Generalized linear models

While linear models discussed in Sections 4.4.1 and 4.4.2 are powerful
statistical modelling tools, they make certain assumptions about the struc-
ture of the data that may not be applicable to all datasets. In particular,
these linear models assume a linear relationship between the mean of the
response variable and the predictors, and assume that the variation of the
response variable (i.e. error distribution) is homoscedastic and follows a
normal distribution [Agresti, 2015]. Therefore, they are not appropriate
for modelling datasets with non-linear and/or non-normal structure. One
way of addressing this issue is to suitably transform the response variable
such that it complies with the linear model assumptions, as mentioned
in Section 4.4.1. However, for most data, it can be challenging to find an
appropriate transformation [Agresti, 2015; Gelman et al., 2004]. Therefore,
it may be more robust and plausible to conform the linear model to the
characteristics of the data instead, as is done by generalized linear models
(GLMs) [Nelder and Wedderburn, 1972].

GLMs are an extension of the linear models that can be applied to re-
sponse variables that are non-linearly related to the predictors and/or are
non-normally distributed [Gelman et al., 2004; Agresti, 2015; Crosbie and
Hinch, 1985]. They consist of three components, namely a random compo-
nent that specifies the probability distribution of the response variable; a
linear predictor that specifies the linear combination of the explanatory
variables; and a link function, g(·), that specifies how the mean of the
response variable is related to the linear predictor,

g(µ)=Xβ ⇐⇒ µ= g−1(Xβ) (4.9)

where X is a matrix that contains the predictors (column-wise) and β is
the vector of regression coefficients.

GLMs are widely-used in the statistical analysis of RNA-seq data, espe-
cially in differential expression analyses of genes (or transcripts) between
different experimental conditions, as they can accommodate the count-
based nature of RNA-seq data and thus give higher statistical power than
approximate normal models [McCarthy et al., 2012]. Even though Poisson
distribution models were initially introduced for modelling RNA-seq count
data [Marioni et al., 2008; Garber et al., 2011], they were soon found to
be unsuitable for such data since they can account only for the technical
variations and not the biological variations across samples [Anders et al.,
2013; Garber et al., 2011; Conesa et al., 2016]. Instead, a generalization
of the Poisson distribution, called negative binomial (NB) distribution (i.e.
gamma-Poisson), became a widely-adopted and befitting approximation
for modelling RNA-seq data [McCarthy et al., 2012; Anders et al., 2013;
Agresti, 2015; Conesa et al., 2016], as it has an additional parameter for
estimating overdispersion (i.e. greater variation) in the data that gener-
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ally exists due to the biological variation between samples [Agresti, 2015;
Robinson et al., 2010]. Basically, an NB model makes an assumption that
an observation, ygi (i.e. the read count of gene g in sample i), has a mean
µgi and a variance that is a function of µgi and a dispersion parameter, φg:

var(ygi)=µgi +φgµ
2
gi (4.10)

Several methods have been developed for performing differential expres-
sion analyses (DEA) on RNA-seq count data [Hardcastle and Kelly, 2010;
Zhou et al., 2011; Tarazona et al., 2011; Love et al., 2014], including edgeR
[Robinson et al., 2010] and DESeq [Anders and Huber, 2010]. Comparative
studies have found large differences between different DEA algorithms and
have been unable to determine a single method that performs optimally
in all datasets under all circumstances [Zhao et al., 2016; Soneson and
Delorenzi, 2013]. However, edgeR [Robinson et al., 2010] is among the top
performers [Anders et al., 2013; Soneson and Delorenzi, 2013] and is one of
the most widely used tools for DEA of RNA-seq data [Anders et al., 2013].

edgeR is a powerful and flexible framework that implements an NB
model using GLMs. It is suitable for modeling count data even from
complex experimental designs, such as paired samples. Essentially, it fits
a log-linear model for each gene [McCarthy et al., 2012]:

logµgi = xT
i βg + log Ni , (4.11)

where xT
i is a vector of predictors and βg are regression coefficients of

the predictors for gene g, that are estimated using maximum likelihood
estimation (MLE). Here, Ni is either the original library size (i.e. the total
number of reads mapped in sample i) or the effective library size (i.e. the
original library size multiplied/divided by the square root of the estimated
TMM scaling factor [Robinson and Oshlack, 2010]). The Ni parameter is
an offset that is built into the model to account for the library size and
thus normalize the data (Section 3.2.2) [McCarthy et al., 2012].

edgeR estimates the dispersion, φg, of each gene g individually by max-
imizing the Cox-Reid adjusted profile likelihood (APL) of the gene [Mc-
Carthy et al., 2012; Cox and Reid, 1987]. However, due to small sample
sizes in most biological studies, McCarthy et al. [2012] (the authors of
edgeR) advise against using these gene-wise estimates of dispersion for
modelling. They state that unless the data contains a large number of
samples, a reliable estimation of the dispersion requires some sort of shar-
ing of information between the genes. EdgeR provides three options for
dispersion calculations that shares information across genes in some way:
1) common dispersion, which maximizes a shared profile likelihood func-
tion, 2) trended dispersion, where dispersion-per-gene is modeled as a
smooth function of the average read count of each gene, and 3) gene-wise
dispersions, where a weighted shared likelihood component is added to the
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individual genewise dispersions for maximizing [McCarthy et al., 2012].
Finally, with reliable estimates of all the parameters, edgeR performs

gene-wise likelihood ratio tests (LRT) to assess the significance of the
regression coefficient(s) of interest, where the null hypothesis is that the
coefficient is equal to zero [McCarthy et al., 2012].

Lastly, the predictors in GLMs are usually fixed effects, but GLMs can
be extended to include random effects in the linear predictor (as shown in
Section 4.4.2). This extension of the generalized linear model is known as
the generalized linear mixed model (GLMM) [Agresti, 2015; Schall, 1991],
which can be useful in modelling, for example, longitudinal non-linear or
non-normal data.

4.4.4 Non-parametric multivariate analysis of variance

As microbial composition can be influenced by a variety of external vari-
ables, such as age, disease group, treatment type, geographical loca-
tion, etc., a prominent aspect of microbial community analysis is to ex-
plore whether the compositional differences between samples could be
attributable to these variables. Such explorations can be performed using
univariate models, such as linear models, that can identify individual taxa
(or functional categories, such as genes or pathways), whose relative abun-
dances are associated with the external variables; or using multivariate
models that can identify specific external variables that may be associated
with the whole community-level compositional variations.

Traditional multivariate models, such as multivariate analysis of vari-
ance (MANOVA) and other ANOVA-based methods, assume the data to
be normally distributed. However, owing to the highly skewed abundance
distributions of taxa in microbial datasets, such traditional multivari-
ate models would not be suitable for analysing them. Instead, several
non-parametric methods have been developed for such microbial commu-
nity analyses [Mantel, 1967; Clarke, 1993; Anderson, 2001]. The non-
parametric multivariate analysis of variance (PERMANOVA) method pro-
posed by Anderson [2001] (implemented in the adonis() function of the
vegan R package [Oksanen et al., 2019]) is one of the most popular and
suitable methods for performing multivariate microbial association analy-
ses with both categorical and continuous external variables. Thus, it was
availed in Publications III and IV for performing multivariate association
analyses.

Briefly, PERMANOVA tests the microbial compositional variations be-
tween different groups by comparing the within-groups variability with the
between-groups variability of samples (i.e. data points) using any distance
or dissimilarity measure, including Bray-Curtis dissimilarity measure
(Section 4.1.2), and a pseudo F-statistic. Traditionally, ANOVA-based
methods compare within-groups and between-groups variability by calcu-
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lating sum of squared Euclidean distances between the data points and
their group mean (i.e. centroid of the data points). However, the centroid
of data points in the Simplex space (such as microbiome data) does not
usually correspond to the mean of the data points and can be problematic
to determine [Anderson, 2001]. Therefore, Anderson [2001] circumvents
this problem by identifying that the sum of squared distances from the
data points to their centroid was equal to the sum of squared inter-point
distances (or dissimilarities) divided by the number of data points. Thus,
PERMANOVA computes the total sum of squares (SST), within-group SS
(SSW ) and between-groups SS (SSB) as such:

SST =
1
N

N−1
∑

i=1

N
∑

j=i+1

d2
i j ,

SSW =
g
∑

k=1

Wk , where Wk =
1

nk

N−1
∑

i=1

N
∑

j=i+1

d2
i jϵ

[k]
i j , and

SSB =SST −SSW

(4.12)

where N is the total number of data points; g is the total number of groups;
nk is the number of data points in the kth group; di j is the distance or
dissimilarity between data points i and j; and ϵ[k]

i j is 1 if data points i

and j are in group k, and 0 otherwise [Anderson, 2014, 2001]. The null
hypothesis is then tested using the following pseudo F-statistic:

F =
SSB/(k−1)

SSW /(N −k)
(4.13)

Finally, a permutation-based p-value is computed to assess the statistical
significance of the pseudo F-statistic.

4.5 Gaussian Processes

With the decreasing costs of high-throughput ‘omics’ technologies (Section
3.1), longitudinal (i.e. time-series) studies have become commonplace in
biomedical research. For instance, longitudinal gene expression data are
routinely analysed to understand the transcriptional dynamics involved
in various diseases. Traditionally, parametric models, such as LMM and
GLMM (Sections 4.4.2 and 4.4.3), that ‘absorb’ the training data into a
finite set of parameters while training the model and make predictions
on unobserved input data independent of the training data [Rasmussen,
2003; Roberts et al., 2013], have been used for modelling longitudinal data
[Rasmussen, 2003]. Recently, non-parametric models, such as Gaussian
processes (GPs), have become a popular choice for modelling longitudinal
datasets (such as in Publication II), as they make less assumptions about
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the underlying structure of the data and are generally more flexible than
parametric models [Alpaydin, 2010; Cheng et al., 2019]. Contrary to
parametric models, non-parametric models do not assume that the training
data can be defined in terms of a finite set of parameters and they take
into account the training data while making predictions [Roberts et al.,
2013; Alpaydin, 2010].

A Gaussian process (GP) is a powerful non-parametric modelling tool
that can be used for both regression and classification tasks. It is a flexible
class of models that can capture the true underlying signal of the data
and give a reliable estimate of the model uncertainty [Rasmussen and
Williams, 2006]. This section will focus on discussing Gaussian process
regression that has become a popular method for modelling of longitudinal
data, such as gene expression data, in a non-linear manner.

The main objective of a regression task is to fit a function to the training
data observed at specific input variables and thus enable prediction of data
at any input variable. In case of longitudinal data, the input variables
could be the time points as well as other covariates. Given a set of training
data, there are generally infinitely many functions that can fit the data. A
Gaussian process, which is defined as a collection of any finite number of
random variables2 that have a joint Gaussian distribution (i.e. multivariate
Gaussian distribution) [Rasmussen, 2003], offers a probabilistic solution
to the problem by assigning a probability to each of the possible functions
that can fit the data. Thus, a GP can be seen as defining a probability
distribution over functions, where the mean of the distribution represents
the most probable characterization of the data. For input variables {ti, t j} ∈
T, where T= (t1, t2, . . . , tN ), a GP can be fully specified by its mean function,
µ(t), and covariance function, k(ti, t j), as:

f (t)∼GP(µ(t), k(ti, t j)) (4.14)

Here, the covariance function, also called the kernel of GP, generates a
symmetric and positive semi-definite covariance matrix that describes the
similarity between all pairwise combinations of the random variables and
also controls the shape of the fitted function. A wide variety of kernels are
available for inferring GPs [Roberts et al., 2013; Cheng et al., 2019]. Among
these, the squared exponential function is one of the most widely-used
kernels [Rasmussen, 2003; Roberts et al., 2013] and is defined as:

k(ti, t j)=σ2
se exp

(

−
(ti − t j)2

2ℓ2
se

)

(4.15)

where σ2
se is the signal variance of the covariance function that determines

distance of the function from the mean, and ℓse is the length-scale parame-
ter that controls the smoothness. This kernel assigns high correlation to

2Here, random variables refer to the training data and/or the test data
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the input variables that are close to each other.
A GP regression has a Gaussian prior, f (T) ∼ N (0,KT,T), where f (T) =

( f (t1), f (t2), . . . , f (tN ))T, the mean is set to zero for convenience, and KT,T is
the covariance matrix that contain k(ti, t j) elements [Rasmussen, 2003;
Roberts et al., 2013]. Moreover, given a set of training data (such as
gene expression measurements) consisting of N noisy observations, X =
(xt1 , xt2 , . . . , xtN

)T ∈RN , that are measured at input variables (such as time
points), T, each observation, xt, can be modelled as

xt = f (t)+ϵt , (4.16)

where ϵt ∼N (0,σ2
ϵ ) is an additive Gaussian noise term; and f (t) is the true

underlying model with a Gaussian process prior. Therefore, the likelihood
can be represented as X∼N ( f (T),σ2

ϵI).
Given the GP prior and the training data, function values, f∗, can be

evaluated at new input variables, T∗. In this context, the function values,
f∗ = f (T∗), are referred to as the test data. In GP, the model that generates
the training and test data is assumed to be a joint Gaussian distribution,
which can be written as:

(

X

f∗

)

=N

(

0,

(

KT,T +σ2
ϵI KT,T∗

KT∗,T KT∗,T∗

))

(4.17)

where KT,T∗ = KT∗,T
T. Therefore, the distribution of the test data is mod-

eled by conditioning the joint distribution on the training data and deriving
the conditional distribution, f∗|X. It essentially forces the functions to go
close to each training point. This conditional distribution is known as the
predictive posterior distribution of the GP regression model and is formally
derived as:

f∗|X∼N (µ∗,Σ∗), (4.18)

where

µ∗ = KT∗,T (KT,T +σ2
ϵI)−1 X

Σ∗ = KT∗,T∗ − KT∗,T (KT,T +σ2
ϵI)−1 KT,T∗

(4.19)

Finally, though GPs are considered non-parametric models, they usually
include hyperparameters from the covariance function, such as {σ2

se, ℓse}

(Equation 4.15), and parameter(s) from the likelihood, such as σ2
ϵ (Equation

4.16), which need to be estimated. One way is to obtain type II maximum
likelihood (ML-II) estimates (i.e. point estimates) by maximizing the ana-
lytically tractable marginal likelihood that marginalizes over the function
values f:

p(X|T,θ)=
∫

p(X|f,T,θ)p(f|T,θ)df , (4.20)
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where p(X|f,T,θ) is the likelihood and p(f|T,θ) is the GP prior stated earlier,
and θ = {σ2

se, ℓse, σ2
ϵ }. Alternatively, instead of finding point estimates for

θ, one can also characterize the posterior distribution of θ, p(θ|X), which
requires defining the priors for θ also. By characterizing the posterior of
θ, the posterior predictive distribution can be computed by marginalizing
over θ:

p(f∗|X)=
∫

p(f∗|X,θ)p(θ|X)dθ , (4.21)

However, the integral in Equation 4.21 does not have a closed-form solution
and estimating the posterior distribution of θ is challenging. Therefore,
the posterior and predictive distributions in Equation 4.21 need to be
approximated using methods such as central composite design (CCD) [Rue
et al., 2009; Vanhatalo et al., 2010], or Markov chain Monte Carlo (MCMC)
methods can be used to sample from the posterior distribution Timonen
et al. [2021]. CCD estimates the posterior distribution of θ and performs
numerical integration approximation.

4.6 Cell type identification and trajectory inference of single-cells

Single-cell RNA-sequencing (scRNA-seq) data (discussed in Section 3.2.3)
consists of high-throughput gene expression profiles from thousands of
individual cells that are commonly used to identify the cell types present
in a sample and to understand the dynamic cellular states associated with
biological processes, such as differentiation [Stegle et al., 2015; Wagner
et al., 2016; Bacher and Kendziorski, 2016].

Traditionally, cells have been classified into specific cell types based on
their morphology, physiology, and marker gene expression [Wagner et al.,
2016]. However, at present, the concept of a ‘cell type’ is poorly defined
(at least in humans) [Kolodziejczyk et al., 2015], as the current catalog of
human cell types include those types that can be further sub-categorized
by functional differences as well as unique gene expression profiles, such
as muscle cells [Trapnell, 2015]. Moreover, many cell types, especially
rare and novel cell types, may have insufficient (if any) number of reliable
marker genes that can be used for cell-typing [Wagner et al., 2016; Trapnell,
2015]. In this scenario, scRNA-seq data provides a crucial advantage,
as it can be used to identify cell types in an unbiased and systematic
manner, without relying on an incomplete catalogue of marker genes
[Wagner et al., 2016; Kolodziejczyk et al., 2015]. Typically, unsupervised
clustering (Section 4.3) and/or dimensionality reduction methods (Section
4.2) are applied on the scRNA-seq gene expression data to group the cells
by transcriptomic similarity [Wagner et al., 2016; Kolodziejczyk et al.,
2015; Liu and Trapnell, 2016; Poirion et al., 2016]. Several methods,
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including Seurat [Macosko et al., 2015] (Section 4.6.1), perform linear
or non-linear dimensionality reduction on the data prior to clustering
in order to avoid the challenge of clustering in high-dimensional spaces.
On the other hand, some methods either refrain from or perform solely
dimensionality reduction to identify the cell types [Wagner et al., 2016;
Kolodziejczyk et al., 2015]. Moreover, either all of the expressed genes or
a subset of the genes, such as highly variable genes (HVGs), are used for
dimension reduction and/or clustering [Stegle et al., 2015; Kolodziejczyk
et al., 2015; Bacher and Kendziorski, 2016]. Finally, after grouping the
cells, one main objective is to characterize the clusters of cells (i.e. cell
types) by, for instance, identifying marker genes that best discriminate the
different clusters [Stegle et al., 2015; Kolodziejczyk et al., 2015; Poirion
et al., 2016]. One of the most commonly used ways to do this is to perform
differential expression analysis (DEA) between pairs of clusters [Stegle
et al., 2015; Poirion et al., 2016]. While, the approaches for bulk RNA-seq
DEA, such as edgeR [Robinson et al., 2010] (Section 4.4.3), can be employed
here [Bacher and Kendziorski, 2016; Stegle et al., 2015], scRNA-seq data
is generally more noisy and contains many zeros. Therefore, methods that
account for the bimodality in the data have been developed for scRNA-seq
DEA, such as zero-inflated models (i.e. mixture-model-based approaches)
[Bacher and Kendziorski, 2016; Poirion et al., 2016; Finak et al., 2015;
Kharchenko et al., 2014].

Another important aim of scRNA-seq studies is to study the dynamic
transitions that cells undergo as a response to biological processes, such
as cell differentiation. Due to the unsynchronized nature of single-cells, a
population of cells studied at any given timepoint is likely to contain cells
at different stages of the biological process [Wagner et al., 2016; Bacher and
Kendziorski, 2016]. Therefore, most single-cell datasets provide a snapshot
of the entire biological process under study [Trapnell et al., 2014; Wagner
et al., 2016]. Also, since each biological process is typically reflected in
the cell’s molecular (i.e. RNA or protein) profile, scRNA-seq data can be
used to position or order the cells along a (pseudo)temporal trajectory of
the corresponding biological process [Wagner et al., 2016]. More than 70
single-cell trajectory inference tools have been proposed over the years
[Saelens et al., 2019], including Monocle [Trapnell et al., 2014], Monocle
2 [Qiu et al., 2017], Wanderlust [Bendall et al., 2014], Wishbone [Setty
et al., 2016], and SCUBA [Marco et al., 2014]. Most of these tools vary
substantially in terms of their algorithms [Saelens et al., 2019].

Monocle was the first method that introduced the strategy of compu-
tationally inferring the trajectories of single-cells from scRNA-seq data,
and ordering the single-cell expression profiles in ‘pseudotime’ [Trapnell
et al., 2014]. Here, ‘pseudotime’ is an abstract unit of the progress of an
individual cell along the trajectory of a biological process; it is simply the
shortest distance between a cell and the start of the trajectory [Trapnell
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et al., 2014].
This section will also briefly discuss the Seurat pipeline (version 2) and

Monocle 2 as they have been employed for scRNA-seq data analysis in
Publication I (discussed in Chapter 5).

4.6.1 Seurat (version 2) Pipeline

Seurat [Macosko et al., 2015] is an R package that has been developed
for performing several single cell data analysis steps, including quality
control (QC), normalization, dimension reduction, clustering and marker
gene identification. As an input, Seurat takes a count matrix, for instance,
the UMI count matrix generated by the Cell Ranger Single-Cell Software
Suite pipeline that has undergone the first tier of QC (as explained in
Section 3.2.3), read alignment and gene level quantification [Zheng et al.,
2017]. Subsequently, Seurat performs the second tier of QC analysis, where
specific QC metrics are used to identify and discard the cells that are empty,
duplets/multiplets, of low-quality, and/or contain degraded mRNA. These
QC metrics include the total number of genes expressed in a cell (i.e. gene
count), total number of unique UMIs detected in a cell (i.e. UMI count),
and the proportion of reads mapping to mitochondrial genome. The filtered
data is then normalized using a simple global-scaling normalization (as
explained in Section 3.2.3) and variations from uninteresting sources, such
as the percentage of mitochondrial genes expressed per cell and the UMI
count per cell, are also regressed out.

Prior to performing dimension reduction, Seurat identifies a set of genes
that are highly variable across all cells (HVGs) in order to capture the het-
erogeneity of the single cell data. The HVGs are determined by computing
the average expression and dispersion for each gene, placing the genes
into bins based on their average expressions, and computing a z-score for
the dispersion values of all genes within each bin. Genes with an average
expression and z-normalized dispersion value above certain threshold are
then identified as the HVGs. Then, PCA (Section 4.2) is performed on
the HVGs and DBSCAN clustering (Section 4.3) is performed on the top
PCs. Finally, to determine the cell type represented by each cluster of
cells, the defining marker genes are identified using differential expression
analysis (as implemented in McDavid et al. [2013]), and by comparing
cells of a single cluster to the cells of all other clusters combined. A gene
is considered a marker of a cluster if it is expressed in at least a certain
proportion of the cells of the cluster and with a minimum log fold change.

Additionally, Seurat visualizes the single-cell data by performing t-SNE
(Section 4.2) on the top PCs that were used for clustering.
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4.6.2 Monocle 2

Monocle 2 (implemented in an R package) [Qiu et al., 2017] includes algo-
rithms for reconstructing the cellular trajectories that take place during
dynamic biological processes, such as cell differentiation, among other al-
gorithms. In this thesis (specifically in Publication I), Monocle 2 was used
for only the trajectory inference of single-cells. An advantage of Monocle 2
is that it does not require any a priori knowledge, for instance, about the
marker genes that characterize the biological processes or the number of
branch points in the trajectory.

The single-cell trajectory analysis using Monocle 2 has three main steps.
The first step involves feature selection, where a set of genes that capture
the variation between the cells are chosen for understanding the shape of
the trajectory. This step can be performed in a completely unsupervised
manner or using a set of known genes that define the biological process
that Monocle augments with related genes (i.e. ‘semi-supervised’). The
unsupervised method, called ‘dpFeature’ in Monocle, starts by performing
PCA on the genes that are expressed in a minimum percentage of cells.
Then it applies t-SNE dimension reduction on the top PCs and performs
density-peak clustering (Section 4.3) to identify the clusters on the 2-
dimensional t-SNE space. Finally, a differential expression analysis is
performed to identify the genes that differ between the clusters and the
top 1000 significant genes are selected for trajectory reconstruction.

In the second step, Monocle 2 uses a machine learning technique, called
reverse graph embedding (RGE), to simultaneously perform dimensionality
reduction on the high-dimensional data and learn a principal graph (or
tree) on the population of cells that describes how cells transition from
one state to another (i.e. trajectory). Monocle 2 uses DDRTree [Mao et al.,
2015], which is a scalable implementation of the RGE framework. Finally,
in the third step, the cells are ordered along the trajectory by performing
manifold learning on the tree from step 2.
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5. Publication I: IL32 gene expression -
a novel signature for early detection
of β-cell autoimmunity

As discussed in Sections 2.4.1 and 2.4.2, predicting the progression of an
autoimmune disease, such as T1D, remains elusive. Despite the ability
of conferring genetic susceptibility to T1D using HLA genes, when (or
whether) the onset of autoimmunity (i.e. appearance of autoantibodies or
seroconversion) or clinical diagnosis of T1D happens is unpredictable as of
now. The only predictive biomarkers that exist in T1D are autoantibodies,
which are usually identified only after self-tolerance is already broken.
Therefore, new biomarkers are needed that can predict seroconversion or
indicate progressive β-cell destruction, providing a window of opportunity
for therapeutic interventions aimed at preventing the disease progression.
On that premise, the aim of this study was to analyse the gene expression
profiles of specific immune cells collected from T1D susceptible children
during the first three years of life in order to: 1) identify early gene
expression markers that may help predict the onset of autoimmunity
and/or reflect upon progression of the disease, and 2) determine the specific
cell types that may be expressing the gene expression markers. This
chapter will present some of the main findings of this study.

5.1 Study Design

Participants for this study were selected from the DIABIMMUNE project’s
birth cohort [Peet et al., 2012]. Briefly, the DIABIMMUNE project is an in-
ternational collaboration that was initiated to test the hygiene hypothesis
(explained in Section 2.3.2) in the development of T1D. They have collected
longitudinal blood and stool samples as well as extensive metadata from
hundreds of T1D susceptible individuals from Finland, Estonia and Kare-
lian Republic of Russia (i.e. Russian Karelia). These three countries (or
regions) represent a unique ‘living laboratory’ for such testing as there
exists one of the steepest welfare gradients worldwide between Finland
and Russian Karelia, (where Estonia represents a country in rapid transi-
tion); and the incidence rate of T1D is much higher in Finland than the
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other two countries (discussed in Section 2.4.2) despite the fact that the
populations share similar genetics. In the birth cohort, the participants
were sampled from birth till 3 years of age.

From this cohort, seven cases and seven healthy ‘matched’ controls were
selected to be part of this study (totalling fourteen participants; except one
case who had two control individuals due to insufficient number of samples).
All the case individuals had developed T1D-associated autoantibodies (i.e.
seroconverted, details in 2.4.2) before turning 2 years of age; and a non-
seroconverted (i.e. healthy) individual from the cohort was paired with
each case sample as a matched control based on the same date and place
of birth, gender and HLA-conferred genetic risk category. Blood samples
from each individual were collected (as part of the DIABIMMUNE project)
at 3, 6, 12, 18, 24 and 36 months of age.

First, the peripheral blood mononuclear cells (PBMCs) from all the blood
samples of all individuals were fractionated (i.e. separating cells) into
CD4-enriched (CD4+), CD8-enriched (CD8+), and CD4- and CD8-depleted
(CD4-CD8-) cells. Fractionation enables identification of cell type-specific
gene expression profiles, which may be masked when analysing PBMCs
due to the varying compositions of different cell types in the blood. More-
over, as established in Sections 2.2.3 - 2.3, CD4+ and CD8+ cells play a
crucial role in mediating the adaptive immune response and in facilitating
autoimmunity. Therefore, studying their gene expression profiles may
provide novel insights into the cellular mechanisms that may lead to T1D
pathogenesis. Altogether, 306 samples were included in this study.

Subsequently, bulk RNA-sequencing (using Illumina HiSeq 2500 instru-
ment and general pipelines explained in Sections 3.1.2 and 3.2.2) was
performed on the mRNA extracted from the cells of each fraction of each
sample, including the PBMC fractions. Additionally, single-cell RNA-
sequencing (using 10X Genomics Chromium method, introduced in 3.2.3)
was performed on eight out of 78 PBMC samples (four case samples and
their four closest control samples) that had high (or low) expressions of the
interleukin 32 (IL32) or insulin (INS) genes.

5.2 Bulk RNA-seq results

The raw sequencing reads from bulk RNA-seq were processed according
to the steps mentioned in Section 3.2.2 using: FastQC for quality check-
ing, Tophat2 for alignment, and HTSeq-count for quantification of gene
expression levels. Subsequently, the genes were divided into coding and
non-coding categories, and the genes from each category were filtered
based on selected RPKM value thresholds (>3 and >0.5 for coding and
non-coding genes, respectively) to remove lowly expressed genes. TMM
normalization and DE analysis (DEA) were conducted separately on the
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Figure 5.1. a) Number of DEGs identified between cases and matched con-
trols over all time points in each fraction as well as the overlaps
between fractions. b) Concerted gene expression profiles (pre-
sented as log2 RPKM values) of IL32, AMICA1 and BTN3A2 in
CD4+ samples.

raw read counts of the filtered coding and non-coding genes. Finally, differ-
entially expressed genes (DEGs) were identified using a set of post-filtering
criteria, including false discovery rate (FDR) and median log2 fold change
(FC) thresholds. Details of each step can be found in the Supplementary
Data of Publication I.

In one of the main analyses of this study, all case samples (over all time-
points) were compared to their age-matched control samples using GLMs
(with trended dispersions) as implemented in edgeR (Section 4.4.3), in
order to identify genes that are DE between cases and controls regardless
of the sampling ages. This analysis identified 51, 69, 143, and 85 (coding
and non-coding) genes to be DE in CD4+, CD8+, CD4-CD8- and PBMC
fractions, respectively (Figure 5.1a). While most of the DEGs were unique
to specific fractions, six genes were found to be differentially upregulated
in the case samples of all four fractions. Three of the genes were pseu-
dogenes with unknown functions, whereas the other three genes, namely
IL32, BTN3A2 and AMICA1, have previously been associated with autoim-
mune diseases (ADs); BTN3A2 has been associated with T1D. IL32 is a
gene that encodes a proinflammatory cytokine (Section 2.2.2) and whose
overexpression has been observed in ADs, such as rheumatoid arthritis
(RA) and inflammatory bowel disease (IBD). However, it has not been
associated with T1D until now. In fact, these three genes (along with a few
other DEGs that are highlighted in red in Figure 2B of Publication I) were
found to be co-regulated in most of the fractions upon clustering using the
k-means method with silhouette scoring for determining the value of k

(Section 4.3) as well as an Euclidean distance-based co-clustering selection
criteria (Figure 5.1b, details of cluster analysis can be found in Supplemen-
tary Data of Publication I). Additionally, transcription factor binding site
(TFBS) analysis using TRANSFAC database identified the TFBS of Ikaros
(IKZF1), a T1D-associated TF, to be enriched on the promoters of IL32 and
its co-regulated genes in CD4+ and PBMC fractions.
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IL32 was also found to be differentially upregulated in the case samples
collected in the 12 months window before seroconversion, suggesting its
increased expression to be a critical immunological signature in infants
progressing towards β-cell autoimmunity. This upregulation was identi-
fied in all four fractions using differential expression analysis and was
validated using qRT-PCR (in PBMC fraction).

In order to identify the specific cell sub-populations from which IL32

gene expression signature originated, scRNA-seq analysis was conducted.

5.3 Single-cell RNA-seq results

The eight scRNA-seq samples were pre-processed individually using the
Cell Ranger Single-Cell Software Suite. Specifically, this tool was used
to perform QC analysis of the raw sequencing reads, alignment of the
reads to human reference genome using STAR, barcode pre-processing and
UMI counting (as explained in Section 3.2.3). To identify rare cell types,
the cells from the eight samples were pooled together using Cell Ranger’s
multi-library aggregation algorithm where the samples were normalized
using subsampling normalization, retaining ~31,000 confidently mapped
reads per cell that mapped to a median of 801 genes per cell. Altogether,
expression of ~33,000 genes from ~20,000 cells was obtained after pooling.

Subsequently, Seurat (version 2) pipeline was used to perform further QC
filtering steps (retaining ~18k cells expressing ~20k genes for downstream
analyses), normalization, clustering and cluster-specific marker gene iden-
tification, as explained in Section 4.6.1 (details about parameter choices
can be found in Supplementary Data of Publication I). Clustering of the
cells identified thirteen clusters, where two clusters—both representing
cells from naive T cells with no perceivable biological differences—were
later merged into a single cluster, reducing the number of clusters to
twelve. As shown in Figure 5.2a, these clusters represented various sub-
populations of immune cells, including sub-populations of CD4+ and CD8+
T cells, NK cells (Section 2.1), B cells (Section 2.2.5), monocytes/dendritic
cells (DCs) (Section 2.2.4), naive and developing T cells. Cells from the con-
trol samples dominated the naive T cell cluster; whereas monocytes/DCs
cluster was dominated by cells from case samples (Supplementary Figure
S10B in Publication I). Congruent with the bulk RNA-seq results, the
IL32 gene was found to be overexpressed in the cells from case samples
(Supplementary Figure S11 in Publication I). As seen in Figure 5.2b, IL32

was highly expressed by T cells, specifically activated (and proliferating)
GZMA+ CD8+ T cells, as well as NK cells. This result is in concordance
with previous observations of IL32 expression in immune cells [Steinke
and Borish, 2006].

After clustering, the QC filtered cells from the Seurat analysis were
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Figure 5.2. a) t-SNE visualization of the single cell clusters (~18k cells from
eight samples) identified using the Seurat pipeline, where the
colours correspond to specific sub-populations of immune cells
determined using cluster-specific markers. b) and d) IL32 expres-
sion levels of each cell. c) Pseudotemporal ordering of CD8+ T
cells and precursor cells (naive and RGCC+ T cells), where the
colours correspond to specific cluster classifications from Seurat
results.

ordered in pseudotime using Monocle 2 (pipeline explained in Section 4.6.2;
details about parameter or specific method choices can be found in Sup-
plementary Data of Publication I). Specifically, separate pseudotemporal
trajectory analyses were performed on the cells from CD4+ and CD8+ T
cell sub-populations (Figure 3D and 3G in Publication I), where naive and
RGCC+ T cell clusters (denoted ‘precursor cells’ in Figure 5.2c) were also
included in each analysis to represent the less activated or differentiated
immune cells. This analysis revealed the CD8+ T cells expressing the high-
est levels of IL32 to be in the more advanced stages of the differentiation
process (Figures 5.2c and 5.2d).

Details on the parameters chosen for each step of the Seurat and Monocle
2 analyses can be found in the Supplementary Data of Publication I.
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6. Publication II: A personalised
approach for identifying
disease-relevant pathways

With the decreasing costs of high-throughput technologies (as discussed
in Section 3.1), numerous time-course gene expression datasets are being
routinely generated for studying the molecular mechanisms underlying the
pathogenesis of various complex diseases. However, hardly any methods
have been developed that can appropriately model longitudinal data as
well as account for the heterogeneity that entails most complex diseases.
Therefore, the aim of this publication is to introduce a new method that
can robustly model time-course gene expression data from heterogeneous
diseases in a personalised manner and identify disease-relevant pathways
that can aid in predicting critical events in the disease progression and
perhaps even in identifying biomarkers.

6.1 The personalised approach

This section provides a broad overview of the personalised approach, as
illustrated in Figure 6.1. The full description can be found in the ‘Methods’
of Publication II.

6.1.1 Step 1: Identifying DEGs in a personalised manner using
Gaussian processes

One of the most prominent goals of gene expression studies (i.e. tran-
scriptomics studies) is to identify differentially expressed genes (DEGs)
between a case (e.g. disease) and a control (e.g. healthy) group. Several
methods have been developed for modelling time-course data for identify-
ing DEGs. Some of these methods account for the dynamic nature of the
data, whereas others disregard it (as elucidated in the ‘Introduction’ of
Publication II). Recently, Gaussian processes (GPs) (discussed in Section
4.5) have gained popularity for modelling time-course data due to their
capabilities of capturing the true underlying signal and embedded noise
in a non-linear manner [Rasmussen and Williams, 2006]. They have been
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Figure 6.1. A schematic outline of the personalised approach for identifying
DEGs and significant pathways

applied for identifying DEGs across the whole time-course [Äijö et al., 2012;
Cheng et al., 2019] as well as between specific time-windows containing few
or no observations [Stegle et al., 2010; Heinonen et al., 2015; Yang et al.,
2016]. However, most of these methods model all samples in a group (such
as cases and controls) together to detect genes that exhibit differential
expression across all or most case individuals in the study population (re-
ferred to as ‘the combined method’ in Publication II). This is an unrealistic
proposition in the case of heterogeneous diseases, where different genes
with similar functionalities may be perturbed across different case individ-
uals. Therefore, by assuming a study design, where each case individual is
matched with a control individual, the personalised approach presented in
Publication II identifies DEGs for each case-control pair separately (i.e. in
a personalised manner) in a direction-agnostic manner using a robust and
efficient method involving Gaussian processes to model the time-course
data. This method can be used to detect DEGs over the whole time-course
as well as in specific time-windows, as explained below and in Figure 1a of
Publication II.

Time-course analysis

For identifying the features (e.g. probe-sets or genes) that are differentially
expressed (DE) in each case as compared to its matched control across
the whole time-course, the personalised approach models the expression
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data from each feature individually. Essentially, two models are fit per
feature, namely the joint and separate models. In the joint model, a single
Gaussian process (GP) regression (Section 4.5), is fit to all the time-course
data points of a particular feature from the case-control pair; whereas
in the separate model, two GP regressions are fit to the data points from
the cases and controls separately. Subsequent to model fitting, a model
selection step is conducted to quantify the fit of each model and thus assess
whether the case and control expressions come from the same process (i.e.
feature is not DE, null hypothesis) or different processes (i.e. feature is
DE, alternative hypothesis). The model selection step for the time-course
analysis is done by calculating the log ratio of the marginal likelihoods of
the joint and separate models, which corresponds to a Bayes factor score
(BF-score) [Kass and Raftery, 1995]

BF−score= log
p(xA|MA)p(xB|MB)

p(xS|MS)
, (6.1)

where xA and xB correspond to the time-course data points from cases and
controls, respectively; xS is the pooled data points from xA and xB; MA and
MB are the models fit to xA and xB separately in the separate model; and
MS is the joint model fit to xS. In this study, if a feature had a BF-score >
4, it was considered to be differentially expressed in the case.

Time-window analysis

As mentioned earlier, the personalised approach can also be used to identify
DE features within specific time-windows of any chosen size. Similar to
the time-course analysis explained above, the time-window analysis also
begins with fitting a joint and separate model for each feature from each
case-control pair. Subsequently, predictions at specific intervals in the
time-window are made from the predictive posterior distributions of the
fit GP regressions. In order to compare the predictions from the separate

and joint models, the predictions from each model are assumed to follow
multivariate Gaussian distributions (one for each model). Then the two
distributions are compared using the Kullback-Leibler (KL) divergence
(similar to Equation 4.4):

KL(P||Q)=
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx, (6.2)

where p(x) and q(x) are the corresponding distributions. Specifically, a
continuous KL-score is computed using the symmetric KL divergence:

1
2

KL(P||Q)+
1
2

KL(Q||P). (6.3)

In this study, a feature with KL-score > 250 in a specific time-window was
considered to be differentially expressed in that window.
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6.1.2 Step 2: Summarising DEG lists on a pathway-level

Since gene-level results in similar studies of the heterogeneous diseases
show alarmingly little overlap and are often inconsistent [Menche et al.,
2017; Segal et al., 2004; Drier et al., 2013; Jin et al., 2014; Subramanian
et al., 2005; Chen et al., 2013], several methods have been developed to
summarize the gene-level results on a pathway-level [Subramanian et al.,
2005; Segal et al., 2004; Drier et al., 2013; Lee et al., 2008; Vaske et al., 2010;
Chen et al., 2008]. Therefore, in the personalised approach, the DEG lists
obtained from Step 1 (Section 6.1.1) are summarized on a pathway-level
using a permutation-based empirical hypothesis testing that is customized
for personalised DE analysis. The definition of a pathway given in Section
3.2.2 applies here.

Specifically, an overall enrichment score was defined for each pathway
from the MSigDb [Subramanian et al., 2005] by first computing a scaled
pathway overlap statistic, f i, j, for each pathway i, and each case-control
pair j as

f i, j =
overlapi, j

diff. exp. genes j

+α, (6.4)

where overlapi, j denotes the number of DEGs from the jth case-control pair
that overlaps with the genes in the ith pathway; diff. exp. genes j refers to
the total number of genes detected as DE in the jth case-control pair; and
α is a small constant (10−6 by default). Then, the enrichment score for
each pathway i was defined as the geometric mean of the scaled pathway
overlaps (Equation (6.4)) across all case-control pairs (Equation (15) in
Publication II). Finally, the statistically enriched pathways were identified
by performing a permutation test and empirically computing the p-values
for each pathway.

6.2 Data

The personalised approach developed in this study was applied to three
type 1 diabetes (T1D) time-course gene expression microarray datasets
(microarrays introduced in Section 3.1.1). Two of these datasets (Datasets

1 and 2) were published by Kallionpää et al. [2014] (generated using
Affymetrix U219 arrays), whereas the third dataset (Dataset 3) was pub-
lished by Ferreira et al. [2014] (generated using Affymetrix Human Gene
1.1 ST arrays). Datasets 1 and 2 comprised of six and 15 case-control
pairs, respectively, where each case individual was matched with a healthy
(but T1D susceptible) control individual based on date and place of birth,
gender and HLA risk class. As Dataset 1 was sampled before and after se-
roconversion of the case, it was used to identify disrupted pathways during
the early progression of T1D (time-course (TC) analysis) as well as in the

108



Publication II: A personalised approach for identifying disease-relevant pathways

6 months window prior to seroconversion (window before seroconversion
(WSC) analysis). The sampling of individuals in Dataset 2 started after
seroconversion and continued till T1D diagnosis of the case, so it was used
to understand pathway-level disruptions in the 6 months window prior to
clinical diagnosis of T1D (window before T1D diagnosis (WT1D) analysis).
Meanwhile, Dataset 3 comprised of 9 case-control pairs1 that were sampled
before and after seroconversion of the case. TC analysis was performed on
Dataset 3 to assess the generalisability of the results obtained using the
personalised approach.

All raw microarray samples from the three datasets were pre-processed
using RMA normalization technique (discussed in Section 3.2.1) prior to
any analysis. More details on the data can be found in the ‘Data’ section
and Supplementary Notes of Publication II.

6.3 Results

For comparative purposes, TC, WSC and WT1D analyses using Datasets 1

and 2 were performed using the personalised approach (briefly explained
in Section 6.1) and the combined method (introduced in Section 6.1.1).
Additionally, the pathway-level results from the personalised and combined
methods were also compared with the equivalent results from Kallionpää
et al. [2014] to establish the biological and disease-specific relevance of the
achieved results.

In general, the personalised approach was able to identify several im-
munological and disease-relevant pathways in the time-course as well as
window-analyses than its non-personalised counterparts (the combined
method and the rank-product method used by Kallionpää et al. [2014]),
thus revealing more insight into the intrinsic mechanisms involved in the
progression of disease.

At gene-level, the personalised approach generally identified many more
DEGs per case-control pair than the combined method. On an average,
only 14% of the DEGs overlapped between different case-control pairs,
demonstrating the heterogeneity among case-control pairs. A closer study
of the ‘T1D pathway’ revealed that only a subset of the pathway’s genes are
found DE in each case-control pair and this subset varied between pairs
unpredictably (Figure 4 of Publication II). However, when the genes of the
T1D pathway were divided into sub-processes, it was observed that usually
at least one gene per sub-process was detected as DE in each pair. Other
pathways might also follow a similar phenomenon of regulation.

1Pairing was performed as part of this study based on time of birth, gender and
sampling ages
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Figure 6.2. A Venn diagram summarizing the most disease-relevant path-
ways identified by the personalised approach that are specific
to certain analyses or overlapping between analyses. Blue text:
found enriched by personalised and both non-personalised ap-
proaches; green text: found enriched by personalised approach
and Kallionpää et al. [2014]; and red text: found enriched only by
the personalised approach

6.3.1 Enriched pathways

The most disease- and immunologically-relevant pathways identified by the
personalised approach in the three analyses are summarized in Figure 6.2,
where the colour of the text indicates whether the pathway was also found
to be enriched in at least one of the analyses using the non-personalised
method(s).

Due to the conceptual stringency by which the combined method iden-
tifies DEGs, it detected far fewer number of enriched pathways than the
other methods as seen in Table 1 of Publication II. In fact, a majority of
the disease-relevant pathways that were identified as enriched by the per-
sonalised approach, were not identified by the combined method in any of
its analyses, including the basic pathways related to immune response and
‘T1D pathway’. Among the most disease-relevant pathways, it identified
only a few pathways involved in the initiation of an immune response, i.e.
those related to MHC class I and II molecules and its functions 2.2.1, in its
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TC analysis.
Comparatively, Kallionpää et al. [2014] identified many of the significant

pathways identified by the personalised approach. However, they detected
mostly the overarching pathways as enriched, whereas the personalised
approach identified more specialised pathways as well. For instance, while
both of these methods identify the ‘cytokine mediated signalling’ pathway
as enriched in at least one of the analyses, the personalised approach also
identified pathways related specific interleukins. Moreover, Kallionpää
et al. [2014] detected significance of certain pathways in different analyses
as compared to the personalised approach. A comprehensive comparison of
the results from the personalised approach and Kallionpää et al. [2014] can
be found in the ‘Results’ of Publication II; and the relevance of the pathway-
level results (in terms of immunology and T1D pathogenesis) obtained from
all three analyses using the personalised approach is discussed in detail in
‘Discussion’ of the Publication II.

Briefly, the personalised approach identified the significance of the ‘T1D
pathway’ in all three analyses along with several crucial pathways in-
volving many of the key players of an active immune response, such as
cytokines (Section 2.2.2), dendritic cells (DCs) (Section 2.2.4), and B cells
(Section 2.2.5), to name a few. Among the influential cytokine pathways
that were found to be enriched in the case individuals were the pathways
related to signalling of: IFN-γ, which is produced by self-reactive CD4+
and CD8+ T cells and plays a vital role in driving the pathogenesis of
T1D; IFN-α, which is a known initiator of T1D pathogenesis; and IL-2,
which is secreted by CD4+ T cells to co-stimulate a variety of immune
cells, including CD8+ T cells (explained in Section 2.2.4). Additionally,
the PD-1 signalling pathway, which is known to promote self-tolerance
(Section 2.2.3) and has been proposed as a target for a novel therapy for
preventing autoimmunity, was found to be disrupted in the early stages
of the disease. The Fas signalling pathway, which is one of the pathways
by which CD8+ T cells kill target cells, was found to be uniquely enriched
before seroconversion, indicating that β-cell destruction may be observed
much before clinical onset of T1D. In fact, even the immunoglobulin (i.e.
antibody) production pathway is found to be enriched in cases before they
present autoantibodies. Many more interesting and disease-relevant path-
ways revealed to be disrupted by the personalised approach at different
stages of disease progression can be found in Publication II.

6.4 Generalizability of the results & Robustness of the method

The generalizability of the pathway-level results obtained using the per-
sonalised approach was assessed using the Spearman’s rank correlation
tests on the FDR values of the pathways from the TC analyses of two inde-
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pendent T1D datasets, namely Datasets 1 and 3. The correlation tests were
performed using all the pathways as well as a subset of 32 disease-relevant
pathways. Both tests revealed the results from the two TC analyses to be
highly correlated, thus demonstrating the generalizability of the pathway-
level results using the personalised approach. Further details can be found
in the ‘Methods’ section of Publication II.

To demonstrate the robustness of the personalised approach in terms of
efficiently modelling time-course data and estimating unobserved values,
a leave-one-out cross-validation analysis was performed. Furthermore, to
demonstrate the robustness of the approach to noise in the data, additional
noise was added to Dataset 1 and the results were compared to the original
results using correlation tests. These analyses confirmed the robustness
of the personalised approach. A detailed account of these analyses can be
found in the Supplementary Methods of Publication II.

112



7. Publication III: Differences in the gut
microbial architectures of IgG4-RD
and SSc patients compared to
healthy controls

As introduced in Section 2.4.3, immunoglobulin G4-related disease (IgG4-
RD) and systemic sclerosis (SSc) are two rare fibroinflammatory systemic
autoimmune diseases with no established etiology or pathogenesis. Both
diseases have been associated with genetic variations in the HLA genes
and are characterized by similar immunological characteristics, such as
the presence of an unusual subset of cytotoxic CD4+ T cells (CD4+ CTLs).
These characteristics of the diseases together with the suggestion by recent
studies that they may be driven by environmentally-sourced antigens,
such as microbial antigens, indicate that these diseases may stem from
the dysfunctional immune recognition of microbial signal. Analogous to
other autoimmune diseases, the disease-triggering or -sustaining microbial
signals could emerge from a dysbiotic gut microbiome (as explained in
Section 2.3.2). Therefore, the aim of this study was to characterize the
compositions and functional capabilities of the gut microbiomes of IgG4-
RD and SSc patients along with healthy individuals in order to identify
potential sources of microbial signals that might be contributing to the
etiology of the diseases.

7.1 Study design and data processing

Stool samples were collected (one sample per individual) from 58 IgG4-
RD and 90 SSc patients as well as 165 healthy (i.e. control) individuals.
The SSc cohort included patients from all four major subgroups of the
diseases outlined in 2.4.3, and the IgG4-RD cohort included samples from
patients in remission (i.e. inactive disease) as well as with active disease.
Moreover, approximately half of the individuals from both disease cohorts
were being treated with immunosuppressive agents, such as rituximab
(RTX) and prednisone, or another form of treatment. Some individuals
were receiving a combination of treatments. Therefore, to investigate
the effects of individual as well as a combination of drugs on the gut
microbiome, the medication metadata (later referred to as ‘treatment
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information’) was classified into six treatment categories: no treatment,
RTX, prednisone, other medication, RTX with prednisone, and prednisone
with other medication. Additional metadata, such as age and gender,
were also available for each individual in the study. More cohort-specific
metadata can be found in Table 1 of Publication III.

All stool samples were subjected to whole metagenome shotgun (WMS)
sequencing using Illumina HiSeq 2500 instrument and demultiplexed
using the Picard suite [Picard-toolkit, 2019]. The raw reads were then
processed according to the steps explained in Section 3.3.2. For QC analysis,
a wrapper tool around FastQC and Cutadapt, called Trim Galore! [Krueger,
2012], was used for adapter trimming; and KneadData [Huttenhower,
2020] was used for quality trimming and removing contaminating reads
from the human DNA. Subsequently, the reads were taxonomically profiled
using both assembly-free and assembly-based methods. Since the latter
method detected more taxa, known and unknown, in all cohorts (i.e. higher
alpha diversities), it was used for all taxonomic analyses in the study.
Meanwhile, the assembly-free profiling, which was done using MetaPhlAn2,
was used for the functional analysis using HUMAnN2.

For assembly-based profiling, MEGAHIT was used for contig reconstruc-
tion, Prodigal for gene prediction, CD-HIT for creating a non-redundant
gene catalogue, BWA for mapping the reads to the gene catalogue, and
MSPminer for binning the genes into metagenomic species pangenomes
(MSPs) (Section 3.3.2). The abundance of each MSP in a sample was de-
termined as the median TPM (transcript-per-million) of top 30 core genes
per MSP. Finally, the MSPs were annotated using eggNOG-mapper and
PhloPhlAn.

7.2 Microbiome community analyses and results

The taxonomic classification of the WMS reads using assembly-based ap-
proaches identified 504 metagenomic species pangenomes (MSPs). Several
comparative analyses were performed to identify diversity- and taxonomic
abundance-level differences between samples from different cohorts, treat-
ment groups, gender, age, IgG4-RD disease status (i.e. active or inactive
disease), and/or SSc subgroups.

Alpha and beta diversities of samples were quantified based on the rela-
tive abundances at MSP levels (i.e. species-level) using Shannon indices
(Section 4.1.1) and Bray-Curtis dissimilarity measures (Section 4.1.2), re-
spectively. The Shannon diversity indices were compared between disease
and control cohorts using linear regression modelling with age, gender,
cohort information, and treatment information as fixed-effect covariates
(i.e. predictors) (Section 4.4.1). This analysis revealed decreased alpha
diversities in IgG4-RD patients as compared to the controls (FDR = 0.06),
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which is one of the hallmarks of a dysbiotic gut microbiome (Section 2.3.2).
In the SSc cohort, decreased alpha diversities were associated only with
those patients, who were being treated with prednisone in combination
with other drugs (FDR = 0.004, Table S2 in Publication III).

Multivariate association analysis using PERMANOVA (Section 4.4.4)
with Bray-Curtis dissimilarity measures was performed in order to identify
covariates (age, gender, cohort information and treatment information)
that may be correlated with the differences in the gut microbial com-
positions of samples as a whole. Here, the cohort classification of the
samples (IgG4-RD, SSc and healthy control) was identified to have the
strongest association with the variations in the gut microbiomes of pa-
tients (FDR < 0.05, Table S3 of Publication III), indicating that there
are compositional-level differences in the gut microbiomes of healthy and
diseased individuals. These differences were also revealed by principle
coordinate analysis (PCoA, Section 4.2), which is visualized in Figure 1b of
Publication III.

Additionally, univariate association analyses using linear fixed effects
modelling were performed to identify specific taxonomic groups (phyla
and MSPs) that were differentially abundant in different cohorts, SSc
subgroups, and patients with active and inactive IgG4-RD disease. These
analyses are henceforth referred to as differential abundance analysis
(DAA). Here, the metadata available for each sample (explained in Section
7.1) was added as fixed effect covariates to each linear model (depending on
its relevance in the analysis). The phylum-level relative abundances were
obtained by summing up the relative abundances of the MSPs belonging
to the respective phylum. Also, the taxa (i.e. taxonomic groups) that were
present in only a few samples were excluded from these analyses due to
loss in statistical power (detailed explanation in ‘Methods’ of Publication
III). Below, some of the most interesting results from the main analyses
are presented. More detailed discussion of the results can be found in
Publication III.

At the phylum-level, the DAA identified alterations in the abundances of
Firmicutes and Bacteroidetes in one or both of the disease cohorts, which
are common phenomenon seen in several other diseases [Liang et al., 2018;
Opazo et al., 2018]. Specifically, a consistent depletion of Bacteroidetes was
seen in both IgG4-RD and SSc cohorts (FDR < 0.001), with an overabun-
dance of Firmicutes in SSc (FDR = 0.06) and Actinobacteria in IgG4-RD
(FDR = 0.15), relative to the healthy controls (Figure 2b in Publication III).

At the species-level, 38 known MSPs were found to be concordantly over-
abundant or depleted in both diseases as compared to the controls with
FDR < 0.05. Additionally, 67 known MSPs and 36 MSPs with unknown
species-level annotation were found to be differentially abundant (FDR
< 0.05) in either of the two diseases compared to the controls (full list in
Table S4 of Publication III). From Figure 7.1, where the beta coefficients
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Figure 7.1. The top 30 differentially abundant species in IgG4-RD and/or SSc
patients when compared to healthy controls. Here, FDR < 0.05 is
indicated with ‘*’ on the horizontal bars and the colors of the bars
reflect the phylum classification of the species.

of the top 30 differentially abundant MSPs (FDR < 0.05) are plotted, and
Figure S3 from Publication III, it can be seen that the MSPs that were
differentially abundant in either of the diseases, were generally observed
to follow a consistent trend of overabundance or depletion in the other
disease as well. This indicates that similar gut microbiome differences
exist in both diseases. Additionally, a species-level DAA analysis between
the two disease cohorts found no MSPs (known or unknown) to be differen-
tially abundant, which reinforces the notion that these two fibrosis-prone
diseases share a common microbiome signature and architecture.

Overall, several opportunistic and pathogenic species from the Clostrid-

ium genus were observed to be significantly overabundant in the two
diseases; all significant MSPs from the Bacteroidetes phylum were de-
pleted in one or both of the diseases (Figure 2d in Publication III); multiple
commensals typically found in the oral microbiome, such as Streptococcus,
were overabundant in the disease cohorts (a phenomenon also seen in
other autoimmune diseases, such as RA and IBD); and butyrate-producing
species, such as Faecalibaterium prausnitzii, that promote good colonic
health by inhibiting pro-inflammatory cytokines and up-regulating anti-
inflammatory cytokines, were depleted in both diseases.

Additionally, Eggertherlla lenta (E. lenta), which is a species from the
Actinobacteria phylum and one of the top differentially abundant species,
was found to be significantly overabundant in both diseases. E. lenta is also
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Figure 7.2. The top 20 differentially enriched pathways in both disease co-
horts as compared to healthy controls with FDR < 0.05.

found to be overabundant in the gut microbiomes of patients with other
ADs, such as MS and RA. In fact, a specific strain of E. lenta that contains
the cardiac glycoside reductase (cgr) operon was found to be enriched in
the disease cohorts using accessory gene content analysis (details of the
analysis can be found in ‘Methods’ of Publication III). In literature, E.

lenta with the cgr locus (i.e. cgr+ E. lenta strains) are known to have the
potential to drive the activation of Th17 cells and modulate production of
pro-inflammatory cytokines that may lead to the breakdown of immune
homeostasis, whereas cgr- E. lenta strains do not.

Differences in the functional potential of the gut microbiomes of IgG4-RD
and SSc patients were also assessed in comparison to healthy controls by
performing linear fixed effects modelling on the relative abundances of
various functional categories, such as pathways, enzymes, genes and GO
categories, obtained using HUMAnN2. Several pathways were differen-
tially enriched in the disease cohorts with FDR < 0.05 (top 20 illustrated in
Figure 7.2), including the classical mevalonate pathway that leads to the
synthesis of specific metabolites that play an important role in signalling
the immune system and possibly altering immune responses in IgG4-RD
and SSc patients. A full list can be found in Table S7 of Publication III.
Additionally, assembled genes that were annotated with KEGG Orthology
(KO) genes using eggNOG-mapper, were also analysed for enrichment in
the disease cohorts. One of the striking results included the overabun-
dance of a group of 12 genes belonging to the ethanolamine utilization
compartment, in both IgG4-RD and SSc patients (Figure 4b in Publication
III). Ethanolamine is a chemical compound that is prevalent in the gut,
especially during inflammation, and can be metabolized only by specific
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microbes, which give them a growth advantage with limited competition
for nutrition sources. A few ethanolamine metabolizers were found to be
overabundant in this study also.
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8. Publication IV: Influence of extrinsic
and intrinsic factors on the early gut
microbial development of T1D
susceptible infants

As discussed in Section 2.3.2, the maturation of the human gut microbiome
towards an adult composition takes place during the first 2-3 years (or
~1000 days) of life. The microbial exposures and colonization during these
early years of life also play a crucial role in the development of the immune
system and have long-term health implications. Aberrations in the early
gut microbiome colonization have also been linked to several childhood
diseases, including T1D. Recently, an increasing number of studies have
linked the influence of the host microbiome on human health to be the
consequence of the presence or absence of certain individual strains of
specific microbes. Therefore, the main objective of this study was to explore
the strain diversity in the gut microbiomes of T1D susceptible infants
during the first three years of their lives. Additionally, the early gut
microbial compositions are highly unstable and vulnerable to alterations
by several environmental and host-related factors, such as diet, mode of
delivery, breastfeeding patterns, antibiotic usage, etc. Therefore, another
aim of this study was to investigate the impact of numerous intrinsic and
extrinsic factors in the shaping of early gut microbial compositions of T1D
susceptible infants. This chapter will focus on presenting results from the
latter objective of this study.

8.1 Study design

This study was conducted using longitudinally collected stool samples from
nearly 300 T1D susceptible infants that belong to the DIABIMMUNE
project’s birth cohort (introduced in Section 5.1). In the DIABIMMUNE
project, monthly stool samples were collected from these infants for the
first three years of their lives. The microbiome data, such as 16S rRNA and
whole metagenome shotgun (WMS) sequencing, for these samples were
generated and published as part of multiple different studies in the past
(labeled as ‘study cohort’ in Table 8.1) [Kostic et al., 2015; Vatanen et al.,
2016; Yassour et al., 2018]. In all the studies, the 16S rRNA dataset was
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Table 8.1. A list of some of the additional information (i.e. metadata) that
was collected in the DIABIMMUNE project about each of the study
participants and their mothers (arranged in separate columns) and
were investigated in this study. Here, ‘generic variables’ refer to
the information that was available for all participants, whereas
the complex variables refer to those that contained missing values
and often required pre-processing.

INFANT	INFORMATION
MATERNAL	&	PREGNANCY	

INFORMATION

birth	weight age	at	delivery

HLA	risk	class gestational	age	in	days

gender gestational	diabetes

mode	of	delivery

country	of	residence

study	cohort	

antibiotic	treatments illnesses	during	pregnancy

daycare	attendance height

breastfeeding	status	(exclusive,	

non-exclusive	or	none)

weight	at	the	beginning	and	end	

of	pregnancy

urban	or	rural	dwelling	of	the	

family	at	infant's	birth

antibiotic	treatments	during	

pregnancy

elder	siblings

height	and	weight

disease	status

GENERIC	

VARIABLES

COMPLEX	

VARIABLES

generated by sequencing the V4 hypervariable region of the 16S rRNA
gene [Gevers et al., 2014]; and sequencing was performed on Illumina
MiSeq and Illumina HiSeq 2500 platforms.

In this publication, the 16S rRNA sequencing data was used to inves-
tigate the development of the early gut microbiome in association with
the several extrinsic and intrinsic factors (i.e. external variables) that
may influence it; whereas, the WMS data was used to characterize the
strain-specific variations in the early gut microbiome of T1D susceptible
infants.

In addition to blood and stool samples, the DIABIMMUNE project has
also collected a comprehensive amount of metadata (i.e. information) re-
lated to each of the study participants (or infants) as well as their mothers
and events during the pregnancy. Table 8.1 lists some of the infant and
maternal information that has been collected (in the form of question-
naires) during the participants’ study visits at 3, 6, 12, 18, 24 and 36
months of age. For the statistical association analyses conducted in this
study, the metadata variables and corresponding covariates were divided
into two categories: generic and complex variables (as shown in Table
8.1). Information from the ‘generic variables’ were available for all the
study participants (i.e. no missing data), whereas the ’complex variables’
contained missing values and often required pre-processing (discussed in
Section 8.2).
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8.2 Pre-processing of the data and metadata for statistical
association analyses

Prior to any statistical analyses, the raw paired-end 16S rRNA sequencing
reads were processed using ea-utils for demultiplexing the data, and UP-
ARSE for performing quality control as well as OTU clustering (methods
introduced in Section 3.3.1). Subsequently, a filtering step was performed
on the obtained OTU table, where the samples that contained too few
OTUs and/or the OTUs that were present in too few samples, were re-
moved. Finally, a total of 3,204 samples from 289 individuals and 920
OTUs remained for further analyses.

A majority of the metadata variables also required pre-processing. Most
of the pre-processing involved transforming or summarizing the raw in-
formation into a format (or multiple formats) that could be meaningfully
incorporated into the statistical models. This applied to at least all the
‘complex variables’ in Table 8.1. Sometimes, there were multiple ways of
transforming or summarizing the raw information of a variable, which
resulted in multiple modelling covariates that were statistically tested
one by one. For instance, two modelling covariates were derived from the
infant antibiotic treatment information; five covariates were computed
from the height and weight of the infants; mother’s illnesses during preg-
nancy were classified into two groups: serious illnesses and any illness,
thus establishing two covariates; and so on. Full list of covariates can be
found in the Supplementary Tables 2-4 of Publication IV. Moreover, as
the information was gathered using questionnaires over a span of 3 years,
some answers varied over time in a contradictory manner. For instance, for
some participants, the information about the ‘family’s dwelling at infant’s
birth’ varied from urban to rural (or vice versa) over the years. Therefore,
such situations had to either be filtered from the data or fixed using the
best judgement.

8.3 Associations between the early gut microbial development and
metadata variables

In this study, both multivariate and univariate statistical association
analyses were performed to understand the development of the early gut
microbial communities relative to the various intrinsic and extrinsic factors
that may influence it. Specifically, permutational multivariate analysis of
variance (PERMANOVA, explained in Section 4.4.4) was used to identify
the metadata variables associated with the compositional-level variations
in the gut microbiomes of infants at 2, 6 and 18 months of age; whereas
linear mixed-effects (LME) modelling, as implemented in MaAsLin (Sec-
tion 4.4.2), was used to identify associations between individual bacterial
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genera and the metadata variables in a cross-sectional (at 2, 6, and 18
months of age) as well as longitudinal manner. Associations of gut micro-
bial diversities (Chao1 richness and Shannon diversity index) with the
metadata variables were also investigated in a longitudinal manner.

In each cross-sectional analysis, the associations between the generic
variables and the gut microbial communities were determined by mod-
elling all the related covariates together in a single analysis. However,
associations of the covariates related to the complex variables were de-
termined by modelling them one at a time with the covariates of all the
generic variables. Similar modelling idea was adopted in the longitudinal
analyses using LME modelling, with the exception that the breastfeeding
information was also considered as a generic variable. In the LME statisti-
cal analyses, the generic variables, complex variables and ‘age at sample
collection’ were used as fixed effects, and the subject IDs were included in
the models as random effects.

Overall, the statistical association analyses performed in this study
uncovered several interesting environmental and host-related factors to be
associated with infant gut microbial development in the DIABIMMUNE
cohort. For instance, the cross-sectional PERMANOVA analysis found
factors such as mode of delivery, maternal antibiotic treatments during
pregnancy, breastfeeding status and country of residence to be significantly
associated (FDR < 0.05) with the gut microbial composition variations at 2
months of age. The country of residence was linked to the differences in
microbial compositions at 6 and 18 months of age as well.

Consistent with current knowledge on gut microbiome colonization and
development, the microbiome diversity association analyses in this study
found the alpha diversities of infants to significantly increase with age and
decrease when given antibiotic treatments. Alpha diversities were also
associated with breastfeeding status, country of residence, and maternal
illnesses (especially serious illnesses) during pregnancy. Moreover, infants
from rural households were observed to harbor richer microbiomes than
those from urban households throughout the first 3 years of life. The gut
microbial diversity was also positively correlated (FDR ≤ 0.10) with linear
growth of an infant (i.e. the average increase in height per year and height
at 3 years of age), indicating that taller and faster growing infants had
more diverse gut microbiomes in the early years of life. The taxonomic
level association analysis identified that an infant’s average increase in
height and weight during the first three years as well as the height and
weight of infants at 3 years of age were positively correlated to the relative
abundance of genus Dialister.

More results and discussion on the association analyses can be found in
the Supplementary Tables 2-4 and Supplementary Note 1 of Publication
IV.
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9. Concluding Remarks

To conclude, the aim of this thesis was to perform computational and statis-
tical analyses on HT ‘omics’ datasets in order to improve our understanding
about the etiology and pathogenesis of autoimmune diseases, specifically
T1D, IgG4-RD and SSc. Overall, the objectives of the studies in this thesis
were to identify predictive signatures, such as gene expression markers
and pathways, which can help predict the onset of autoimmunity (i.e. loss of
self-tolerance) and/or understand the molecular changes that occur during
disease progression; as well as to determine etiological signatures, such as
presence of microbes, microbial genes or other environmental factors, that
could be influencing the pathogenesis of the disease and/or contributing to
its etiology.

The aim of Publication I was to identify early gene expression markers
from PBMCs,CD4-enriched, CD8-enriched, and CD4- and CD8-depleted
fractions of immune cells that are predictive of the onset of autoimmunity
and/or capable of characterizing T1D disease progression. Indeed, this
study revealed several T1D-associated genes that have not been reported
before, including IL32 that has previously been associated with other ADs,
but not T1D. IL32 is a gene that encodes a proinflammatory cytokine that
is expressed by many immune and epithelial cells. It was found to be
differentially expressed in the case individuals across the time-course as
well as in the window before seroconversion, in all four fractions of immune
cells. This indicates that IL32 could be one of the important immunological
signatures that is involved in development of β-cell autoimmunity as well
as in the progression of the disease. The connection between IL32 and
autoimmunity was further strengthened by the fact that it was identified
to be co-regulated in all four cell fractions with two genes that have been
previously linked with autoimmunity; one of which has been associated
with T1D. Moreover, several cytokines have already been implicated in
the pathogenesis of T1D and are considered to have the potential to be
immunotherapeutic targets for T1D [Lu et al., 2020]. Given that cytokines
are important signalling molecules in immunity (Section 2.2.2), identify-
ing cytokine genes to be differentially expressed in T1D case individuals
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indicates that immune cell signaling undergoes dynamic changes during
the development of the disease. Additionally, since the second aim of the
study was to identify the specific immune cell types that likely express
IL32, it was shown that the high levels of IL32 in case individuals were
mostly expressed by T cells, especially highly differentiated CD8+ T cells,
and NK cells. However, it should be noted here that the results presented
in this publication largely apply to infants with prediabetes and may not
apply to adolescents and adults. Also, the results of this study need to be
validated on a larger cohort of prediabetic children.

In Publication II, the goal was to develop a method (called personalized
approach) that first models longitudinal gene expression data in a per-
sonalised manner in order to identify DEGs, and then summarizes the
DEGs on a pathway-level in order to identify disease-associated pathways.
Essentially, several statistical methods can be used to model the longi-
tudinal data, but in this method, Gaussian processes (GPs; Section 4.5)
were used. This is because GPs can capture the real underlying structure
of longitudinal data along with embedded noise in a non-linear manner
and without imposing strong modelling assumptions. Also, they can ro-
bustly estimate unobserved data (demonstrated in the robustness analysis
of this publication), which is an advantageous feature when modelling
small sample sizes. The personalised approach assumes an experimental
design, where each case individual is matched with a control individual.
DEGs are then identified for each case-control pair individually using GPs.
Finally, the list of DEGs from each pair is combined on a pathway-level
using a permutation-based empirical hypothesis testing. Summarizing the
results on a pathway-level often overcomes the gene-level variability and
inconsistencies that exist in complex heterogeneous diseases, such as T1D.
The generalizability of the pathway-level results across datasets has also
been shown in this publication by comparing the results obtained from
analysing two independent T1D datasets using the personalised approach.
This method can be used to identify pathways that are perturbed in case
individuals across the course of disease progression or within specific
time-windows. By comparing the results from the personalised approach
to those of non-personalised approaches, it was demonstrated that the
personalised approach was capable of providing more insights into the pro-
gression of heterogeneous diseases. It identified several critical pathways
involving many of the key immunological players in the time-window as
well as time-course analyses that were missed by the other methods.

The aim of publication III was to study the gut microbial compostions
of IgG4-RD and SSc patients and identify potential sources of microbial
signals that may be contributing to the etiology of the diseases. Firstly,
this study showed that IgG4-RD patients and SSc patients that were be-
ing treated by prednisone in combination with other drugs, had lower
alpha diversities and this is a hallmark of a dysbiotic gut. Additionally,

124



Concluding Remarks

compositional-level differences were seen between diseased and healthy in-
dividuals. Specifically, Firmicutes and Bacteroidetes were either depleted
or overabundant in at least on one of the disease cohorts. Alteration in the
abundances of Firmicutes to Bacteroidetes is a common phenomenon seen
in many other diseases [Liang et al., 2018; Opazo et al., 2018]. Overall,
many pathogenic and opportunistic species were found to be significantly
overabundant in the diseased patients, whereas several commensal bacte-
ria that promote good colonic health were found to be significantly depleted.
Among the most significantly overabundance species in both diseases was
Eggerthella lenta (E.lenta), which is also found to be overabundant in other
autoimmune diseases. Interestingly, a specific strain of this species that
contains a cluster of genes with the potential of activating and modulating
certain components of the immune system was found to be enriched in the
two disease cohorts. This study also uncovered several disease-relevant
functional-level differences in the gut microbiomes of the patients as com-
pared to the healthy controls. For instance, a pathway that is known to play
a crucial role in signalling the immune system and possibly influencing the
immune responses, was found to be enriched in disease cohorts. Several
functional signatures also link the microbiomes of IgG4-RD and SSc pa-
tients to inflammation. Overall, the results of this study indicate that the
gut microbiome composition likely plays a significant role in the etiology
and pathogenesis of IgG4-RD and SSc. The results of this study war-
rant further studies into the identification of specific microbiome-derived
antigens or other molecules that can drive the autoimmune pathogenesis.

One of the objectives of Publication IV was to identify the environmen-
tal and host-related factors that may be influencing the development of
the early gut microbiome in T1D susceptible infants and in the process
contributing the development and education of the infant immune system.
This study identified the association of several interesting maternal- and
infant-related factors with the development of the gut microbiome in in-
fants predisposed to T1D. Some factors, such as age, country of birth, mode
of delivery, breastfeeding and use of antibiotics, that have previously been
linked to the early gut microbial composition in T1D [Vatanen et al., 2016;
Yassour et al., 2016], were also found in this study. Additionally, this study
also linked several new factors to the early gut microbial development in
the context of T1D, including maternal antibiotic treatments and maternal
illnesses during pregnancy; household location at the time of infant’s birth
(i.e. urban or rural dwelling); average increase in height and weight per
year; as well as height and weight at 3 years of age. Overall, the results
support the hygiene hypothesis and suggest that increased microbial expo-
sure during childhood may encourage the development of a rich and diverse
early gut microbiome. Additionally, the results also indicate that maternal
health and antibiotic usage during pregnancy as well as antibiotic usage
by the infant in the early years of life, could influence the early coloniza-
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tion of the infant gut. Interestingly, taller and faster growing children
harbor a diverse gut microbiome; and the rate at which a child grows in
both height and weight during the first 3 years of life can influence the
presence of specific bacteria. It should be noted that malnutrition and
stunted growth during infancy has been linked to immature or different
gut microbial development during childhood [Subramanian et al., 2014;
Dinh et al., 2016].

Altogether, the results in this thesis have advanced our knowledge about
the environmental and host-related factors that may be contributing to
the etiology of specific autoimmune diseases as well as about the mark-
ers and pathways that may be involved in the disease pathogenesis. Of
course, there is a lot that is still unknown about the development of au-
toimmune diseases, including T1D, IgG4-RD and SSc. However, with more
interdisciplinary studies similar to the ones in this thesis, the biomedical
community will soon be able to unravel the underlying mechanisms that
drive autoimmune diseases and establish the treatments for preventing or
curing them. With the help of well-designed studies, HT ‘omics’ datasets,
and robust statistical and computational tools, we can definitely cross this
finish line.
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