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Abstract

While large-scale efforts have rapidly advanced the understanding and practical impact of human

genomic variation, the latter is largely unexplored in the human microbiome. We therefore

developed a framework for metagenomic variation analysis and applied it to 252 fecal

metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned

to 101 reference species, we detected 10.3 million single nucleotide polymorphisms (SNPs),

107,991 short indels, and 1,051 structural variants. The average ratio of non-synonymous to

synonymous polymorphism rates of 0.11 was more variable between gut microbial species than

across human hosts. Subjects sampled at varying time intervals exhibited individuality and

temporal stability of SNP variation patterns, despite considerable composition changes of their gut

microbiota. This implies that individual-specific strains are not easily replaced and that an

individual might have a unique metagenomic genotype, which may be exploitable for personalized

diet or drug intake.

Introduction

With the increasing availability of individual human genomes, various theoretical and

practical aspects of genomic variation can be deduced for individuals and the human

population as a whole1,2. Like sequenced human genomes, the number of human gut

metagenomes (currently mostly derived from Illumina shotgun sequencing of stool samples)

is increasing exponentially. Given the importance of the gut microbiota in human health3,4

and a growing number of studies reporting associations between gut microbiota and

diseases5-8, an understanding of genomic variation in gut microbial populations will likely

trigger applications towards human well-being and disease.
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For example, in the common gut commensal Escherichia coli, just three point mutations in

two genes can confer clinically relevant antibiotic resistance5, and natural variation in a

single gene can lead to pathogenic adaptation8. Even within pathogenic species in the gut,

closely related coexisting strains can exhibit different pathogenic potentials due to minor

genomic variation7. These examples illustrate how genomic variation within gut microbes

could confer phenotypes that require personalized care or treatment of the host.

Studies based on 16S ribosomal RNA gene surveys or whole metagenome shotgun

sequencing characterized taxonomic and functional compositions of healthy individuals’ and

patients’ gut microbiota at the genus or species level6,9-12. Variation in taxonomic

abundance as well as functions encoded by these gut microbiota have been described

between individuals6,11 and used to stratify individuals according to their gut community

compositions into enterotypes13. However, genomic variation within species, which leads to

their phenotypic diversity and adaptations to different environments, has only been studied

in a few taxa, such as Citrobacter spp7.

An early landmark study on a small dataset described metagenomic variation in an acidic

biofilm microbiome of low complexity14. The population structure for one species in that

habitat was studied and positive selection was observed in some genes15. Another recent

study resolved multiple clinical isolates of methicillin-resistant Staphylococcus aureus and

delineated its epidemiology and microevolution based on genomic variation16. With the

availability of hundreds of deeply sequenced human gut metagenomes9,11,17, sufficient data

are becoming available for quantitative analyses of the genetic structure of complex

microbial communities, allowing the study of many species at the same time.

Here, we analyzed 1.56 terabases of sequence data from 252 stool samples from 207

individuals (Supplementary Table 1; Supplementary Notes) obtained from the MetaHIT

project (71 Danish, 39 Spanish; all sampled once11), the NIH Human Microbiome Project

(94 US-American; 51 individuals sampled once, 41 sampled twice, and two sampled three

times9), and Washington University (three US-American samples; all sampled once12). Our

goals were to (i) develop a framework for genomic variation analysis using metagenomic

shotgun data, (ii) gather basic knowledge on the genomic variation landscape in gut

metagenomes, and (iii) gain insights into the individuality, temporal stability, and

biogeography of metagenomic variation.

Results

Framework for metagenomic variation analysis

We used 1,497 prokaryotic genomes to generate a set of reference genomes (Supplementary

Table 2) for the analysis of genomic variation in gut microbial species in 252 samples (on

average 6.2 ± 4.1 Gbp were analyzed). Pairwise comparisons of 40 universal marker

genes18,19 identified in these genomes were performed to create a set of 929 clusters based

on a 95% DNA identity threshold recommended for identifying species20. The genome

recruiting the highest number of reads in a cluster was selected as reference for that species

(see Methods and Supplementary Information).

Using the same 95% identity threshold, we mapped 7.4 billion metagenomic reads (42% of

the total, 91% thereof uniquely) with an average length of 80 bp to the 929 reference

genomes (Supplementary Tables 1 and 3). To avoid mapping artifacts (for example caused

by high coverage of prophages), we required ≥40% of each reference genome to be covered

by reads (corresponding to the gene content similarity between two strains of E. coli21). The

resulting 101 prevalent species with base pair coverage from 12x to 32,400x (Fig. 1 and

Supplementary Fig. 1) were subjected to genomic variation analysis.
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To enable comparative analyses in multiple metagenomes and to identify low frequency

variants not detected when analyzing them individually, we used multi-sample calling22 to

identify single nucleotide polymorphisms (SNPs), short indels (1 - 50 bp) and structural

variations (SVs, >50 bp) in each genome, although SVs were largely underestimated due to

small insert sizes (Supplementary Information). We only called variants with allele

frequency ≥1% (the conventional definition of polymorphism2) and supported by ≥4 reads.

False positive rates were estimated at 0.71% for SNPs and 1.04% for SVs (Supplementary

Information, Supplementary Tables 4 and 5, Supplementary Fig. 2).

Genomic variation in prevalent gut species

We identified 10.3 million SNPs in 101 genomes (3.1% of the total 329 Mb positions)

across 252 samples from 207 subjects, almost as many as the 14.4 million SNPs recently

identified in 179 human genomes2. Within an individual the rate was lower (on average

1.21%, see Supplementary Table 6), yet SNPs/kb increased with base pair coverage when

samples were pooled (Supplementary Fig. 3). We also identified 107,991 indels and 1,051

SVs in these 101 species (Supplementary Information). Their relative ratios to SNPs (10,485

short indels and 102 SVs per million SNPs) were robust across species and individuals

(Supplementary Fig. 4). Subsequent analyses were restricted to SNPs due to their orders of

magnitude higher count over other variation types.

We annotated the genes of the prevalent genomes using orthologous groups (OGs) from

eggNOG23 (Supplementary Information) and found that the OGs with the highest SNP

density were enriched in functions related to conjugal transfer of antibiotic resistance

(Supplementary Table 7). For example, the OG with the highest average SNP density across

samples was the Clindamycin resistance transfer factor BtgA (NOG119724), required for

conjugative transmission of plasmids. Mutations commonly accrued from the process of

conjugation may account for increased diversity among conjugation-associated functions24.

Additionally, CRISPR-associated proteins, responsible for conferring resistance in bacteria,

were also found among the OGs with high SNP densities (Supplementary Information and

Supplementary Table 7).

The large number of SNPs provided the opportunity to compare, for the first time at such

scale, the evolution of different coexisting species across a large cohort of individuals. To

evaluate selective constraints in these species in their natural habitat, we estimated the ratio

of non-synonymous to synonymous polymorphism rates25,26 (pN/pS) within each species in

every sample (Fig. 1; Supplementary Information). pN/pS characterizes selective constraint

at the level of a population contrary to the more commonly used dN/dS that characterizes it

between individual species26. To validate pN/pS ratios, we estimated genetic variation using

the sample size-independent nucleotide diversity π, and found that π is highly correlated

with SNPs/kb (Fig. 1 and Supplementary Fig. 5). The derived measures of π(N)/π(S) and

π(non-degenerate sites)/π(four-fold degenerate sites), the latter of which is less dependent

on specific properties of mutation spectra such as transition and transversion ratios, were

coherent with pN/pS (Supplementary Fig. 6).

The pN/pS ratio of a genome within a sample remained stable at coverages higher than 10x

(Supplementary Fig. 7) – yet another indication of few false SNP calls – and was on average

0.11, but varied considerably for different species (0.04 to 0.58) in accordance with dN/dS

ratios estimated independently in a number of interspecies comparisons between closely

related bacteria and archaea27,28.
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pN/pS across gut species and individuals

Since meaningful comparison of genomic variation requires both breadth (across samples)

and depth (in number of base pairs) of sequencing, we focused on the 66 most dominant

species that attracted >99% of the reads (Fig. 1). Their relatively low pN/pS ratios were

constant across different hosts (Fig. 2a and Supplementary Table 8), which may indicate

similar selective constraints across individuals. Thus, the evolution of gut species is most

likely dominated by long-term purifying selection and drift rather than rapid adaptations to

specific host environments. The wide range of these ratios across species may suggest that

different gut species face different evolutionary constraints.

To investigate how different gut species respond to the pressure from the gut environment,

we compared the pN/pS ratios of individual genes in Roseburia intestinalis and Eubacterium
eligens, which differed considerably in their overall mean pN/pS ratios (0.236 vs. 0.131

from 106 and 147 samples, respectively) despite having comparable average base pair

coverages (Supplementary Information). While 75% of the genes in R. intestinalis had

systematically higher pN/pS ratios compared to their orthologs in E. eligens, few others

showed considerable deviations (Fig. 2c; Supplementary Table 9) suggesting differing

evolutionary constraints for these genes. For example, galK, the gene encoding

galactokinase, an essential enzyme in the Leloir pathway for galactose metabolism in most

organisms29, was among the lowest in terms of pN/pS ratio in R. intestinalis, but among the

highest in E. eligens (0.03 and 0.48, respectively; Fig 2b,c). Although present in E. eligens,
this gene may not exert its main function (see also30), since E. eligens cannot ferment

galactose, nor the galactose-containing disaccharides lactose and melibiose31. On the other

hand, R. intestinalis is known to ferment melibiose32 implying that its galK gene is

functional (Supplementary Information). Thus, the same gene can be under tight negative

selection in one species, but under more relaxed negative selection in another.

Our framework allowed us additionally to obtain information on all genes in each sample

(Supplementary Information). As expected, we found that housekeeping genes had usually

lower pN/pS ratios. For example, the DNA-dependent RNA polymerase beta subunit gene

was consistently among the genes exhibiting the lowest pN/pS ratios across samples and

species (Supplementary Table 10). Less obvious examples included genes related to type IV

secretion systems used to transfer DNA between microbes33 and involved in host

interactions of both pathogenic33 and commensal bacteria34, specifically in anti-

inflammatory responses and immune modulation35. Their low pN/pS ratio suggests that

maintaining genome plasticity and antibiotic resistance through conjugative transposition is

essential in the constantly changing environment of the gut and that the interaction with the

host immune system is under purifying selection (Supplementary Table 10). We also found

a few conserved unknown, but apparently gut microbe-specific proteins, which exhibited

low pN/pS ratios, suggesting that they perform important, yet hitherto unexplored functions

(Supplementary Table 11).

Among the genes or OGs with consistently the highest pN/pS ratios were many transposases

and antimicrobial resistance genes including the gut-specific gene bile salt hydrolase

(BSH)36 (Supplementary Table 10). Conjugated bile acids (CBA) secreted by the hosts

repress microbial growth and up-regulate the host mucosal defense system. BSHs are

involved in the initial reaction in the metabolism of CBAs by gut microbes36. Their high pN/

pS ratio may be indicative for the genomic plasticity necessary to metabolize and survive the

variety of different bile acids present in the gut37.
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Temporal stability of individual SNP patterns

Several studies on adult human gut microbial samples from a few individuals have

suggested that within-individual differences over time are smaller compared to between-

individual differences in microbial species composition and abundance38-40. Within a larger

cohort, individuality of host-associated microbiota has been reported based on 16S rRNA

gene profiling of fingertip-associated communities41, while other studies on a few samples

have investigated the persistence of specific strains over time42,43. However, intra-species

variation at nucleotide resolution at whole genome level and accompanying changes in

species abundances within the human gut over long time periods (>1 year) have not been

studied yet in large cohorts. It is unclear if the concept of resident strains is common to other

prevalent species, if host-specific strains are retained over time, and how fast they evolve

inside the gut environment.

To explore these questions, we used 88 gut metagenomes from 43 healthy US-American

subjects (a subset of our cohort) from whom at least two samples were obtained at different

time-points with no antibiotics treatment in between (Supplementary Table 12). To measure

how similar the subpopulations (strains) of the dominant species were between two samples,

we estimated the fixation indices (FST) between the populations (Supplementary

Information). Since this measure depends on allele frequencies, which cannot be determined

accurately at low base-pair coverage, we also estimated the fraction of alleles shared

between the samples out of all polymorphic sites (only 49 genomes that accrued 40%

genome coverage in at least two samples were used and genomes with >10x base pair

coverage were downsampled to 10x; Supplementary Information and Supplementary Fig. 3).

Since the fraction of shared SNPs depends on the number of variable sites, we developed a

heuristic allele sharing similarity score that takes into account both (Supplementary

Information).

When we compared all 252 samples, FST was significantly lower and allele sharing

significantly stronger between different samples from the same individuals than between

samples from different individuals (Mann-Whitney: P<0.001 for both; see Figs. 3a and 3b

and Supplementary Information). The same trend was observed, albeit much weaker, based

on species compositions (Fig. 3c), in line with previous observations from microbial

composition-based results38-40. Intra-individual variation being smaller than inter-individual

variation does, however, not require that samples from the same individual are more similar

to each other than to any other sample in the tested cohort. Our results showed for both

measures of variation similarity that all but one of the 88 multi-time-point samples had the

highest similarity to another sample from the same individual, which was not true when

comparing species abundance over time (Fig. 3c and Supplementary Information). This

implies that species abundance in gut microbiota cannot serve as a fingerprint of an

individual whereas variation patterns might.

We also tested if differences in FST and allele sharing decreased over time, which may

suggest a divergence of the strains or a horizontal transmission of strains from the

environment, but the individual-specific variation patterns remained stable over all the time

intervals monitored (Fig. 3). Although this stability should be verified for longer periods as

well as when antibiotic treatment or other gut microbiota-challenging events have taken

place, our observation suggests that healthy human individuals retain specific strains (see

also Supplementary Table 12 and 13) for at least one year.

In contrast to the strong evidence for individuality and temporal stability of SNP patterns,

we did not observe a significant geographic separation between European and US samples

(Supplementary Fig. 8; Supplementary Table 14). This implies that long-term horizontal

transmission of at least some dominant gut microbial strains cause geographic mixing over

Schloissnig et al. Page 5

Nature. Author manuscript; available in PMC 2013 July 03.

$
w

aterm
ark

-tex
t

$
w

aterm
ark

-tex
t

$
w

aterm
ark

-tex
t



time. The strongest continental separation, based on FST, was seen in Bacteriodes coprocola
(Fig. 4), which was also the only genome with sufficient amounts of data that showed

continental separation based on the allele sharing score (Supplementary Fig. 8;

Supplementary Tables 14 and 15).

Discussion

We have established a framework for gut microbial genomic variation analysis using

metagenomic data and identified in a single analysis, involving 252 stool samples from 207

human individuals, almost as many SNPs in the human gut microbiome as the 1000

Genomes Project recorded in 179 human individuals over several years2. The stable pN/pS

ratios of gut microbial species across individuals suggest that host conditions (such as diet,

genetic differences, and immune tolerance) have a minor influence on the evolution of

species compared to constraints common to the human population (such as gut physiology,

anaerobic conditions, and pH). In the 66 dominant species, the analysis of more than

229,000 genes comprising about 8,000 OGs pinpointed consistently fast or slow evolving

genes across individuals (Supplementary Table 10). However, further studies are needed in

order to interpret different selection types at the gene level.

The availability of time-point data revealed that individual-specific variation patterns were

remarkably stable over time (Fig. 3a,b), which was much less the case for similarities in

species abundance – for almost 60% of the samples, a sample from a different individual

was the most similar (Fig. 3c). Thus, the metagenomic variation patterns observed here

support the hypothesis that a healthy individual retains specific strains for extended periods

of time. This suggests that each individual has a metagenomic variation profile that could be

unique even in very large cohorts. It should be noted that the maximal sampling period was

only one year, and 43 individuals might not be sufficient to trace horizontal transmissions of

strains. The likelihood of the latter is supported by the apparent absence of clear continental

stratification (despite different sampling and sequencing protocols of the European and the

US samples), although for one out of eight species analysed, Bacteroides coprocola, we

provide preliminary evidence (Fig. 4; Supplementary Figure 8). Geographical stratification

has been described for Helicobacter pylori44,45, and weak, but detectable signals have also

been observed in some bacterial pathogens46,47. Thus, we expect more gut microbial

stratification patterns to emerge when larger datasets under standardized sampling and

sequencing protocols become available, although it remains to be tested which factors (such

as geographic separation, diseases, host-genetic and life-style/diet factors) shape the

distribution of gut microbial strains and segregating SNPs within the population. The

absence of clear geographic stratification implies that stable differences in variation patterns

of gut species are not explained by large-scale structures of local microbial populations.

They may rather be a result of genetic drift due to population bottlenecks that could occur

not only during the colonization of the infant gut but also by processes causing community

shifts during adult life stages, followed by a rapid population growth accompanied by

purifying selection. This model suggests that the source of genetic variation in human gut

microbial populations is less likely to be new mutations within the host than the variation in

the initial colonizing populations or transmissions from the environment. This would imply

that most allelic variants analyzed in this study segregate at time scales greatly exceeding

human generation time.

The introduction of large-scale variation analysis in metagenomic data of complex

communities and the discovery of individual metagenomic variation profiles open up several

applications. It is now possible to screen in silico for many pathogenic or antibiotics

resistance variants in the population. Once a sample has been analyzed, the data can also be

used in the future given the temporal stability of SNP profiles. As it took years to identify
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marker genes and variations for diseases or phenotypes in the human genome, the variation

landscape uncovered here can only be seen as the beginning to find molecular biomarkers

including particular variants that reveal useful information for human health and well-being.

Methods Summary

Mapping to non-redundant genomes

A reference genome set representing 929 species was derived from a total of 1,511

published prokaryotic genomes, based on a median sequence identity of 95% in 40

universal, single copy marker genes18,19. Metagenomic reads from 252 samples were

aligned to these 929 genomes using the same 95% sequence identity cutoff.

Coverage

For each genome, we calculated the sample-specific base pair coverage and the number of

bases of the genome covered by at least one read. For a genome to be considered we

required a cumulative depth of coverage of ≥10x across all samples. In order to remove

species that are not present in our cohort, yet attract reads due to highly conserved regions,

we required at least 40% breadth of the genome coverage (the criterion for the species to be

considered present) from at least one sample.

Variation detection

We performed SNP calling on the pooled samples and only considered bases with a quality

score ≥15. We required SNPs to be supported by ≥4 reads and to occur with a frequency of

≥1%. Structural variations were detected using Pindel48. False positive rates in SNP and

structural variation detection were estimated using nonsense and frameshift mutations in 40

essential single copy marker genes.

π and FST

We estimated nucleotide diversity (π) and fixation indices (FST) based on allele frequencies.

pN/pS ratio

SNPs occurring in coding regions were classified as synonymous or non-synonymous.

Genes from the non-redundant genomes were annotated using eggNOG orthologous groups

allowing calculation of pN/pS ratios at the level of genomes, OGs and genes.

Pairwise sample comparisons

Similarity in strain populations between two samples was estimated using (i) a similarity

score based on shared SNPs and (ii) FST.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genomic variation statistics for 101 gut microbial species prevalent in 252 samples
from 207 individuals
Genomic variation statistics were calculated for 101 prevalent gut microbial species,

operationally defined as having ≥10x cumulative (over all samples) base pair coverage with

at least one sample exhibiting a genome coverage of ≥40%. The 66 dominant species

(indicated by *), which account for 99% of the mapped reads, were used for analyses that

required high base pair coverage. Species names are given without strain specifications

unless this would result in duplicate entries. The blue point cloud plots show the coverages

(≥1x) in all samples, with the blue dot above indicating the cumulative coverage and the red

dot the maximum coverage across all samples. Gray shaded areas indicate the level of base

pair coverage at which abundance effects have only minor effects on SNPs/kb and pN/pS

ratios of the pooled samples (Supplementary Information). SNP counts appear to saturate at

approximately 500x, with minor increases at higher coverages likely due to the sampling of

rare variants at low rates. In individual samples pN/pS is largely stable from a coverage of

10x onward (Supplementary Fig. 7), corresponding to approximately 200x cumulative

coverage in our sample set. Nucleotide diversity π follows SNPs/kb closely, as does the

derived measure of π(N)/π(S) with respect to pN/pS.
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Figure 2. pN/pS ratios of 66 dominant species reveal more variation between species than
between individuals
a) A heatmap of pN/pS ratios for the 66 dominant species (rows) and 207 individuals

(columns; only the first time-point per individual) is shown and summarized by species

(boxplots on the right). Rows and columns are ordered by their mean pN/pS ratios, which

vary considerably between species, but have a tighter bandwidth across samples. Two

genomes that are exceptions to this trend (indicated by *) might indicate higher strain

diversity. The panel above the heatmap indicates the continent of residence for each

individual. A significant difference was found in the mean pN/pS ratios between the two

continents, although this is likely an effect of lower sequencing depths of European samples

(Supplementary Table 8) that leads to missing data points in some samples (see for example

top right corner). b) The distributions of average pN/pS ratios of individual genes from

Roseburia intestinalis and Eubacterium eligens (both highlighted in (a)) illustrate that, while

base pair coverages are similar, the pN/pS ratio of R. intestinalis is higher in general. The
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relative pN/pS ratios of orthologous groups in the two species are shown in the inset, the

average log2 ratio indicated by the solid line and the random expectation by the dashed line.

Outliers can be revealed this way, like the galactokinase gene (galK) whose pN/pS is among

the lowest in R. intestinalis and the highest in E. eligens. c) Illustration of low and high pN/

pS ratios in galK genes from R. intestinalis (top panel) and E. eligens (bottom panel). The

cumulative read coverage is shown in grey with synonymous (green) and non-synonymous

(brown) changes marked at the nucleotide positions they occur.
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Figure 3. Individuality and temporal stability of genomic variation patterns
Samples from 43 individuals that were sampled at different time intervals (red dots) were

compared with the most similar sample from a different individual (blue dots) in terms of (a)

population similarity that takes allele frequencies into account, (b) allele sharing similarity

score that takes SNP counts and the ratio of shared SNPs into account (Supplementary

Information) and (c) species abundance similarity measured using the Jensen-Shannon

Distance13 (JSD). Most similar sample is the one with the lowest FST value in (a), the

highest allele sharing similarity score in (b) and the lowest JSD in (c). The three similarity

measures are plotted against the number of days between the sampling time-points. The

mean across all intra-individual, best inter-individual, and all inter-individual similarities are

shown as red, blue, and green dashed lines. For both population similarity and allele sharing

similarity between samples from the same individual, all but one sample (resulting in two

outliers due to comparisons with two other time-points, see Supplementary Table 12) shared

the highest similarity with another sample of the same individual providing strong evidence

for individuality of SNP sharing patterns. No decline of similarity over time could be

observed.
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Figure 4. Inter-continental comparison of gut microbial species
Between continent FST values for eight genomes with ≥10 samples representing each

continent are shown. Bacteroides coprocola was the species with the highest FST value,

implying a separation between the B. coprocola populations in Europe and North America

(see also Supplemental Material; all data available in Supplementary Table 14).
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