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Abstract

Data science allows the extraction of practical insights from large-scale data. Here, we contextualize it as an

umbrella term, encompassing several disparate subdomains. We focus on how genomics fits as a specific

application subdomain, in terms of well-known 3 V data and 4 M process frameworks (volume-velocity-variety and

measurement-mining-modeling-manipulation, respectively). We further analyze the technical and cultural “exports”

and “imports” between genomics and other data-science subdomains (e.g., astronomy). Finally, we discuss how

data value, privacy, and ownership are pressing issues for data science applications, in general, and are especially

relevant to genomics, due to the persistent nature of DNA.

Introduction
Data science as a formal discipline is currently popular

because of its tremendous commercial utility. Large

companies have used several well-established computa-

tional and statistical techniques to mine high volumes of

commercial and social data [1]. The broad interest

across many applications stirred the birth of data science

as a field that acts as an umbrella, uniting a number of

disparate disciplines using a common set of computa-

tional approaches and techniques [2]. In some cases,

these techniques were created, developed, or established

in other data-driven fields (e.g., astronomy and earth

science). In fact, some of these disciplines significantly

predate the formal foundation of data science and have

contributed to several techniques to cope with know-

ledge extraction from large amounts of data.

Many scholars have probed the origins of data science.

For example, in 1960 Tukey described a new discipline

called data analysis, which some consider being a

forerunner of data science. He defined data analysis as

the interplay between statistics, computer science, and

mathematics [3]. Jim Gray also introduced the concept

of data-intensive science in his book The Fourth

Paradigm [4], and discussed how the developments in

computer science would shape and transform segments

of science to a data-driven exercise. More practically, the

maturation of modern data science from an amorphous

discipline can be tracked to the expansion of the tech-

nology industry and its adoption of several concepts at

the confluence of statistics and algorithmic computer

science, such as machine learning [5]. Somewhat less

explored is the fact that several applied disciplines have

contributed to a collection of techniques and cultural

practices that today comprise data science.

Contextualizing natural science within the data science

umbrella

Long before the development of formal data science,

and even computer science or statistics, traditional fields

of natural sciences established an extensive culture

around data management and analytics. For instance,

physics has a long history of contributions of several

concepts that are now at the foundation of data science.

In particular, physicists such as Laplace, Gauss, Poisson,

and Dirichlet have led the way for the development of

hypothesis testing, least squares fits, and Gaussian,

Poisson, and Dirichlet distributions [6].

More recently, physics also has contributed new data

techniques and data infrastructure. For example, Ulam

originally invented the Monte Carlo sampling method

while he was working on the hydrogen bomb [7] and
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Berners-Lee, from the CERN (European Organization

for Nuclear Research), developed the World Wide Web

[8] to enable distributed collaboration in particle physics.

While most disciplines are now experiencing issues with

rapid data growth [9, 10], we find it interesting that

physics had issues with data management long before

most disciplines. As early as the 1970s, for example,

Jashcek introduced the term “information explosion” to

describe the rapid data growth in astrophysics [11].

Fundamental contributions to data management and

analytics have not been exclusive to physics. The

biological sciences, perhaps most prominently genetics,

also have significantly influenced data science. For

instance, many of the founders of modern statistics,

including Galton, Pearson, and Fisher, pioneered principal

component analysis, linear regression, and linear discrim-

inant analysis while they were also preoccupied with

analyzing large amounts of biological data [6]. More

recently, methods such as logistic regression [12], cluster-

ing [13], decision trees [14], and neural networks [15]

were either conceptualized or developed by researchers

focused on biological questions. Even Shannon, a central

figure in information theory, completed a short PhD in

population genetics [16].

Genomics and data science

More recent biological disciplines such as macromol-

ecular structure and genomics have inherited many of

these data analytics features from genetics and other

natural sciences. Genomics, for example, emerged in

the 1980s at the confluence of genetics, statistics, and

large-scale datasets [17]. The tremendous advance-

ments in nucleic acid sequencing allowed the discip-

line to swiftly assume one of the most prominent

positions in terms of raw data scale across all the

sciences [18]. This pre-eminent role of genomics also

inspired the emergence of many “-omics” terms inside

and outside academia [19, 20]. Although today gen-

omics is pre-eminent in terms of data scale, this may

change over time due to technological developments

in other areas, such as cryo-electron microscopy [21]

and personal wearable devices [22]. Moreover, it is

important to realize that many other existing data-

rich areas in the biological sciences are also rapidly

expanding, including image processing (including neu-

roimaging), macromolecular structure, health records

analysis, proteomics, and the inter-relation of these

large data sets, in turn, is giving rise to a new sub-

field termed biomedical data science (Fig. 1a).

Here, we explore how genomics has been, and probably

will continue to be, a pre-eminent data science subdisci-

pline in terms of data growth and availability. We first

explore how genomics data can be framed in terms of the

3Vs (data volume, velocity, and variety) to contextualize

the discipline in the “big-data world”. We also explore

how genomics processes can be framed in terms of the

4Ms (measurement, mining, modeling, and manipulat-

ing) to discuss how physical and biological modeling

can be leveraged to generate better predictive models.

Genomics researchers have been exchanging ideas with

those from other data science subfields; we review some

of these “imports” and “exports” in a third section.

Finally, we explore issues related to data availability in

relation to data ownership and privacy. Altogether, this

perspective discusses the past, present, and future of

genomics as a subfield of data science.

Genomics versus other data science applications

in terms of the V framework
One way of categorizing the data in data science

disciplines is in terms of its volume, velocity, and

variety. Within data science, this is broadly referred

to as the V framework [23]. Over the years, the V

framework has been expanded from its original 3Vs

[24] (volume, velocity, and variety) to the most recent

versions with four and five Vs (3 V + value and

veracity; Fig. 1c) [25]. In general, the distinct V

frameworks use certain data-related parameters to

recognize issues and bottlenecks that might require a

new set of tools and techniques to cope with unstruc-

tured and high-volume data. Here, we explore how

we can use the original 3 V framework to evaluate the

current state of data in genomics in relation to other

applications in data sciences.

Volume

One of the key aspects of genomics as a data science is

the sheer amount of data being generated by sequencers.

As shown in Fig. 2, we tried to put this data volume into

context by comparing genomics datasets with other

data-intensive disciplines. Figure 2a shows that the total

volume of data in genomics is considerably smaller than

the data generated by earth science [26], but orders of

magnitude larger than the social sciences. The data

growth trend in genomics, however, is greater than in

other disciplines. In fact, some researchers have sug-

gested that if the genomics data generation growth trend

remains constant, genomics will soon generate more

data than applications such as social media, earth

sciences, and astronomy [27].

Many strategies have been used to address the in-

crease in data volume in genomics. For example,

researchers are now tending to discard primary data

(e.g., FASTQ) and prioritizing the storage of second-

ary data such as compressed mapped reads (BAMs),

variant calls (VCFs), or even only quantifications such

as gene expression [28].
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In Fig. 2b, we compare genomics to other data-

driven disciplines in the biological sciences. This

analysis clearly shows that the large amount of early

biological data was not in genomics, but rather in

macromolecular structure. Only in 2001, for example,

did the number of datasets in genomics finally sur-

pass protein-structure data. More recently, new trends

have emerged with the rapidly increasing amount of

electron microscopy data, due to the advent of cryo-

electron microscopy, and of mass-spectrometry-based

proteomics data. Perhaps these trends will shift the

balance of biomedical data science in the future.

Velocity

There are two widely accepted interpretations of data

velocity: (i) the speed of data generation (Fig. 2) and

(ii) the speed at which data are processed and made

available [29].

We explored the growth of data generation in the

previous section in relation to genomics. The sequencing

of a human genome could soon take less than 24 h,

down from 2 to 8 weeks by currently popular technolo-

gies and 13 years of uninterrupted sequencing work by

the Human Genome Project (HGP) [30]. Other tech-

nologies, such as diagnostic imaging and microarrays,

have also experienced remarkable drops in cost and

complexity and, therefore, resulting data are much

quicker to generate.

The second definition of data velocity speaks to the

speed at which data are processed. A remarkable

example is the speed of fraud detection during a credit

card transaction or some types of high-frequency trading

a

b c

Fig. 1 A holistic view of biomedical data science. a Biomedical data science emerged at the confluence of large-scale datasets connecting genomics,

metabolomics, wearable devices, proteomics, health records, and imaging to statistics and computer science. b The 4M processes framework. c The 5

V data framework
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in finance [31]. In contrast, genomics data and data pro-

cessing have been traditionally static, relying on fixed

snapshots of genomes or transcriptomes. However, new

fields leveraging rapid sequencing technologies, such as

rapid diagnosis, epidemiology, and microbiome research,

are beginning to use nucleic acid sequences for fast,

dynamic tracking of diseases [32] and pathogens [33].

For these and other near-future technologies, we envi-

sion that fast, real-time processing might be necessary.

The description of the volume and velocity of gen-

omics data has great implications for what types of

computations are possible. For instance, when looking

at the increase of genomics and other types of data

relative to network traffic and bandwidth, one must

decide whether to store, compute, or transfer datasets.

This decision-making process can also be informed by

the 3 V framework. In Fig. 2, we show that the comput-

ing power deployed for research and development

(using the top 500 supercomputers as a proxy) is grow-

ing at a slower pace than genomic data growth. Add-

itionally, while the global web traffic throughput has

no foreseeable bottlenecks (Fig. 2a) [34], for re-

searchers the costs of transferring such large-scale

datasets might hinder data sharing and processing of

large-scale genomics projects. Cloud computing is one

way of addressing this bottleneck. Large consortia

already tend to process and store most of their data-

sets on the cloud [35–37]. We believe genomics

should consider the viability of public repositories

that leverage cloud computing more broadly. At the

current rate, the field will soon reach a critical point

at which cloud solutions might be indispensable for

large-scale analysis.

Variety

Genomics data have a two-sided aspect. On one side is

the monolithic sequencing data, ordered lists of nucleo-

tides. In human genomics, traditionally these are mapped

to the genome and are used to generate coverage or vari-

ation data. The monolithic nature of sequencing output,

however, hides a much more varied set of assays that are

used to measure many aspects of genomes. In Fig. 3 we

illustrate this issue by showing the growth in the diversity

of sequencing assays over time and displaying a few exam-

ples. We also display how different sequencing methods

are connected to different omes [19]. The other side of

genomics data is the complex phenotypic data with which

the nucleotides are being correlated. Phenotypic data can

consist of such diverse entities as simple and unstructured

text descriptions from electronic health records, quantita-

tive measurements from laboratories, sensors, and elec-

tronic trackers, and imaging data. The varied nature of the

phenotypic data is more complicated; as the scale and

diversity of sequencing data grow larger, more attention is

being paid to the importance of standardizing and scaling

the phenotypic data in a complementary fashion. For

example, mobile devices can be used to harness large-

scale consistent digital phenotypes [38].

Genomics and the 4M framework
Two aspects distinguish data science in the natural

sciences from social science context. First, in the

a b

Fig. 2 Data volume growth in genomics versus other disciplines. a Data volume growth in genomics in the context of other domains and data

infrastructure (computing power and network throughput). Continuous lines indicate the amount of data archived in public repositories in genomics

(SRA), astronomy (Earth Data, NASA), and sociology (Harvard dataverse). Data infrastructure such as computing power (TOP500 SuperComputers) and

network throughput (IPTraffic) are also included. Dashed lines indicate projections of future growth in data volume and infrastructure capacity for the

next decade. b Cumulative number of datasets being generated for whole genome sequencing (WGS) and whole exome sequencing (WES) in

comparison with molecular structure datasets such as X-ray and electron microscopy (EM). PDB Protein Data Base, SRA Sequence Read Archive
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natural sciences much of the data are quantitative and

structured; they often derive from sensor readings from

experimental systems and observations under well-

controlled conditions. In contrast, data in the social

sciences are more frequently unstructured and derived

from more subjective observations (e.g., interviews and

surveys). Second, the natural sciences also have under-

lying chemical, physical, and biological models that are

often highly mathematized and predictive.

Consequently, data science mining in the natural

sciences is intimately associated with mathematical mod-

eling. One succinct way of understanding this relation-

ship is the 4M framework, developed by Lauffenburger

[39]. This concept describes the overall process in

systems biology, closely related to genomics, in terms of

(i) Measuring the quantity, (ii) large-scale Mining, which

is what we often think of as data science, (3) Modeling

the mined observations, and finally (4) Manipulating or

testing this model to ensure it is accurate.

The hybrid approach of combining data mining and

biophysical modeling is a reasonable way forward for gen-

omics (Fig. 1b). Integrating physical–chemical mechanisms

into machine learning provides valuable interpretability,

boosts the data-efficiency in learning (e.g., through

training-set augmentation and informative priors) and

allows data extrapolation when observations are expensive

or impossible [40]. On the other hand, data mining is

able to accurately estimate model parameters, replace

some complex parts of the models where theories are

weak, and emulate some physical models for compu-

tational efficiency [41].

Short-term weather forecasting as an exemplar of this

hybrid approach is perhaps what genomics is striving

for. For this discipline, predictions are based on sensor

data from around the globe and then fused with phys-

ical models. Weather forecasting was, in fact, one of

the first applications of large-scale computing in the

1950s [42, 43]. However, it was an abject flop, trying to

predict the weather solely based on physical models.

Predictions were quickly found to only be correct for a

short time, mostly because of the importance of the ini-

tial conditions. That imperfect attempt contributed to

the development of the fields of nonlinear dynamics

and chaos, and to the coining of the term “butterfly

effect” [43]. However, subsequent years dramatically

transformed weather prediction into a great success

story, thanks to integrating physically based models

with large datasets measured by satellites, weather

balloons, and other sensors [43]. Moreover, the public’s

appreciation for the probabilistic aspects of a weather

forecast (i.e., people readily dress appropriately based

on a chance of rain) foreshadows how it might respond

to probabilistic “health forecasts” based on genomics.

Imports and exports
Thus far, we have analyzed how genomics sits with other

data-rich subfields in terms of data (volume, velocity,

and variety) and processes. We argue that another aspect

of genomics as an applied data science subfield is the

frequent exchange of techniques and cultural practices.

Over the years, genomics has imported and exported

several concepts, practices, and techniques from other

applied data science fields. While listing all of the move-

ments is impossible in this piece, we will highlight a few

key examples.

Technical imports

A central aspect of genomics—the process of mapping

reads to the human reference genome—relies on a foun-

dational technique within data science: fast and memory-

efficient string-processing algorithms. Protein pairwise

alignment predates DNA sequence alignment. One of the

first successful implementations of sequence alignment

was based on Smith–Waterman [44] and dynamic pro-

gramming [45, 46]. These methods were highly reliant on

computing power and required substantial memory. With

advances in other string-alignment techniques and the

explosion of sequencing throughput, the field of

genomics saw a surge in the performance of sequence

alignment. As most sequencing technologies produce

short reads, researchers generated several new methods

using index techniques, starting around 2010. Several

methods are now based on the Burrows–Wheeler

transformation (BWA, bowtie) [47, 48], De Bruijn

Fig. 3 Variety of sequencing assays. Number of new sequencing

protocols published per year. Popular protocols are highlighted in

their year of publication and their connection to omes
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graphs (Kallisto, Salmon) [49, 50], and the Maximal

Mappable Prefix (STAR) [51].

Hidden Markov models (HMMs) are well-known algo-

rithms used for modeling the sequential or time-series

correlations between symbols or events. HMMs have

been widely adopted in fields such as speech recognition

and digital communication [52]. Data scientists also have

long used HMMs to smooth a series of events in a

varied number of datasets, such as the stock market, text

suggestions, and in silico diagnosis [53]. The field of

genomics has applied HMMs to predict chromatin

states, annotate genomes, and study ancestry/population

genetics [54]. Figure 4a displays the adoption of HMMs

in genomics compared with other disciplines. It shows

that the fraction of HMM papers related to genomics

has been growing over time and today it corresponds to

more than a quarter of the scientific publications related

to the topic.

Another major import into genomics has been

network science and, more broadly, graphs. Other sub-

fields have been using networks for many tasks, includ-

ing algorithm development [55], social network

research [56], and modeling transportation systems

[57]. Many subfields of genomics rely heavily on

networks to model different aspects of the genome and

subsequently generate new insights [58]. One of the

first applications of networks within genomics and pro-

teomics was protein–protein interaction networks [59].

These networks are used to describe the interaction be-

tween several protein(s) and protein domains within a

genome to ultimately infer functional pathways [60].

After the development of large-scale transcriptome

quantification and chromatin immunoprecipitation

sequencing (ChIP-Seq), researchers built regulatory

networks to describe co-regulated genes and learn

more about pathways and hub genes [61]. Figure 4b

shows the usage of “scale-free networks” and “networks”

as a whole. While the overall use of networks has contin-

ued to grow in popularity in genomics after their intro-

duction, the specific usage of scale-free has been falling,

reflecting the brief moment of popularity of this concept.

Given the abundance of protein structures and DNA

sequences, there has been an influx of deep-learning

solutions imported from machine learning [62]. Many

neural network architectures can be transferred to bio-

logical research. For example, the convolutional neural

network (CNN) is widely applied in computer vision to

detect objects in a positional invariant fashion. Similarly,

convolution kernels in CNN are able to scan biological

sequences and detect motifs, resembling position weight

matrices (PWMs). Researchers are developing intriguing

implementations of deep-learning networks to integrate

large datasets, for instance, to detect gene homology

[63], annotate and predict regulatory regions in the

genome [64], predict polymer folding [65], predict

protein binding [66], and predict the probability of a

patient developing certain diseases from genetic variants

[67]. While neural networks offer a highly flexible and

powerful tool for data mining and machine learning,

they are usually “black box” models and often very diffi-

cult to interpret.

Cultural imports

The exchanges between genomics and other disciplines

are not limited to methods and techniques, but also in-

clude cultural practices. As a discipline, protein-structure

prediction pioneered concepts such as the Critical Assess-

ment of protein Structure Prediction (CASP) competition

a b c

Fig. 4 Technical exchanges between genomics and other data science subdisciplines. The background area displays the total number of

publications per year for the terms. a Hidden Markov model, b Scale-free network, c latent Dirichlet allocation. Continuous lines indicate the

fraction of papers related to topics in genomics and in other disciplines
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format. CASP is a community-wide effort to evaluate pre-

dictions. Every 2 years since 1994, a committee of re-

searchers has selected a group of proteins for which

hundreds of research groups around the world will (i)

experimentally describe and (ii) predict in silico its struc-

ture. CASP aims to determine the state of the art in mod-

eling protein structure from amino acid sequences [68].

After research groups submit their predictions, independ-

ent assessors compare the models with the experiments

and rank methods. In the most recent instantiation of

CASP, over 100 groups submitted over 50,000 models for

82 targets. The success of the CASP competition has

inspired more competitions in the biological community,

including genomics. DREAM Challenges, for example,

have played a leading role in organizing and catalyzing

data-driven competitions to evaluate the performance of

predictive models in genomics. Challenge themes have

included “Genome-Scale Network Inference”, “Gene

Expression Prediction”, “Alternative Splicing”, and “in vivo

Transcription Factor Binding Site Prediction” [69].

DREAM Challenges was initiated in 2006, shortly before

the well-known Netflix Challenge and the Kaggle plat-

form, which were instrumental in advancing machine-

learning research [70].

Technical exports

A few methods exported from genomics to other fields

were initially developed to address specific biological

problems. However, these methods were later general-

ized for a broader set of applications. A notable example

of such an export is the latent Dirichlet allocation (LDA)

model. Pritchard et al. [71] initially proposed this un-

supervised generative model to find a group of latent

processes that, in combination, can be used to infer and

predict individuals’ population ancestry based on single

nucleotide variants. Blei, Ng, and Jordan [72] independ-

ently proposed the same model to learn the latent topics

in natural language processing (NLP). Today, LDA and

its countless variants have been widely adapted in, for

example, text mining and political science. In fact, when

we compare genomics with other topics such as text

mining we observe that genomics currently accounts for

a very small percentage of work related to LDA (Fig. 4c).

Genomics has also contributed to new methods of

data visualization. One of the best examples is the Circos

plot [73], which is related to the import above of

network science. Circos was initially conceptualized as a

circular representation of linear genomes. In its concep-

tion, this method displayed chromosomal translocations

or large syntenic regions. As this visualization tool

evolved to display more generic networks, it was also

used to display highly connected datasets. In particular,

the media has used Circos to display and track customer

behavior, political citations, and migration patterns [73].

In genomics, networks and graphs are also being used in

order to represent the human genome. For instance,

researchers are attempting to represent the reference

genome and its variants as a graph [74].

Another prominent idea exported from genomics is

the notion of family classification based on large-scale

datasets. This derives from the biological taxonomies

dating back to Linnaeus, but also impacts the generation

of protein and gene family databases [75, 76]. Other

disciplines, for example, linguistics and neuroimaging,

have also addressed similar issues by constructing

semantic and brain region taxonomies [77, 78]. This

concept has even made its way into pop culture; for

example, Pandora initially described itself as the music

genome project [79]. Another example is the art genome

project [80], which maps characteristics (referred to as

“genes”) that connect artists, artworks, architecture, and

design objects across history.

Cultural exports

Genomics has also tested and exported several cultural

practices that can serve as a model for other data-rich

disciplines [81]. On a fundamental level, these practices

promote data openness and re-use, which are central

issues to data science disciplines.

Most genomics datasets, and most prominently data-

sets derived from sequencing, are frequently openly

accessible to the public. This practice is evidenced by

the fact that most genomics journals require a public

accession identifier for any dataset associated with a

publication. This broad adoption of data openness is

perhaps a reflection of how genomics evolved as a

discipline. Genomics mainly emerged after the conclu-

sion of HGP—a public initiative that, at its core, was

dedicated to release a draft of the human genome that

was not owned or patented by a company. It is also

notable that the public effort was in direct competition

with a private effort by Celera Genomics, which aimed

to privatize and patent sections of the genome. Thus,

during the development of the HGP, researchers elabo-

rated the Bermuda principles, a set of rules that called

for public releases of all data produced by HGP within

24 h of generation [82]. The adoption of the Bermuda

principles had two main benefits for genomics. First, it

facilitated the exchange of data between many of the

dispersed researchers involved in the HGP. Second, per-

haps due to the central role of the HGP, it spurred the

adoption of open-data frameworks more broadly. In fact,

today most large projects in genomics adopt Bermuda-

like standards. For example, the 1000 Genomes [83] and

the ENCODE [35] projects release their datasets openly

before publication to allow other researchers to use their

datasets [84]. Other subfields such as neuroscience (e.g.,
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the human connectome) were also inspired by the open-

ness and setup of the genomics community [81].

In order to attain a broad distribution of open data-

sets, genomics has also adopted the usage of central,

large-scale public dataset repositories. Unlike several

other applied fields, genomics data are frequently

hosted on free and public platforms. The early adop-

tion of these central dataset resources, such as the

Sequence Read Archive (SRA), European Nucleotide

Archive (ENA), GenBank, and Protein Data Base

(PDB), to host large amounts of all sorts of genetics

data, including microarray and sequencing data, has

allowed researchers to easily query and promote re-

use datasets produced by others [85].

The second effect of these large-scale central dataset re-

positories, such as the National Center for Biotechnology

Information (NCBI) and ENA, is the incentive for early

adoption of a small set of standard data formats. This

uniformity of file formats encouraged standardized and

facilitated access to genomics datasets. Most computa-

tions in genomics data are hosted as FASTA/FASTQ,

BED, BAM, VCF, or bigwig files, which respectively repre-

sent sequences, coordinates, alignments, variants, and

coverage of DNA or amino acid sequences. Furthermore,

as previously discussed, the monolithic nature of genomic

sequences also contributes to the standardization of

pipelines and allows researchers to quickly test, adapt, and

switch to other methods using the same input format [86].

The open-data nature of many large-scale genomics

projects may also have spurred the adoption of open-

source software within genomics. For example, most

genomics journals require public links to source codes

to publish in silico results or computational methods.

To evaluate the adoption of open source in genomics,

we used the growth of GitHub repositories and activity

(commits) over time (Fig. 5). Compared with many fields

of similar scale (e.g., astronomy and ecology) genomics

has a particularly large representation on GitHub and

this is growing rapidly.

Data science issues with which genomics is

grappling

Privacy

In closing, we consider the issues that genomics and,

more broadly, data science face both now and in the

future. One of the major issues related to data science is

privacy. Indeed, the current privacy concerns related to

email, financial transactions, and surveillance cameras

are critically important to the public [87]. The potential

to cross-reference large datasets (e.g., via quasi-identifiers)

can make privacy leaks non-intuitive [70]. Although

genomics-related privacy overlaps with data science-

related privacy, the former has some unique aspects given

that the genome is passed down through generations and

is fundamentally important to the public [88]. Leaking

genomic information might be considered more damaging

than leaking other types of information. Although we may

not know everything about the genome today, we will

know much more in 50 years. At that time, a person

would not be able to take their or their children’s variants

back after they have been released or leaked [88]. Finally,

genomic data are considerably larger in scale than many

other bits of individual information; that is, the genome

carries much more individual data than a credit card or

social security number. Taken together, these issues make

genomic privacy particularly problematic.

However, in order to carry out several types of

genomic calculations, particularly for phenotypic associ-

ations like genome-wide association studies, researchers

can get better power and a stronger signal by using

larger numbers of data points (i.e., genomes). Therefore,

sharing and aggregating large amounts of information

can result in net benefits to the group even if the indi-

vidual’s privacy is slightly compromised. The Global

Alliance for Genomics and Health (GA4GH) has made

strides in developing technical ways to balance the

concerns of individual privacy and social benefits of data

sharing [89]. This group has discussed the notion of

standardized consents associated with different datasets.

The fields of security and privacy are undertaking

projects like homomorphic encryption, where one can

make certain calculations on an encrypted dataset with-

out accessing its underlying contents [90].

Data ownership

Privacy is an aspect of a larger issue of data ownership

and control. Although the individual or patient typically

is thought to own their personal data, a countervailing

trend in biomedical research is the idea that the

researcher who generates a dataset owns it. There is a

longstanding tradition among researchers who have

generated large datasets to progressively analyze their

data over the course of several papers, even a career, to

extract interesting stories and discoveries [91]. There is

also the notion that human data, particularly health data,

have obvious medical and commercial value, and thus

companies and nations often seek ownership and control

over large datasets.

From the data miner’s perspective, all information

should be free and open, since such a practice would

lead to the easy aggregation of a large amount of infor-

mation, the best statistical power, and optimally mined

results. Intuitively, aggregating larger datasets will, most

frequently, give progressively better genotypes being

associated to phenotypes.

Furthermore, even in an ideal scenario in which indi-

viduals consent to free access and the resulting dataset is

completely open and freely shared by users, we imagine
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complications will arise from collection and sharing

biases such as particular cohort ethnicity, diseases, and

phenotypes being more open to share their genetic data.

Socioeconomic status, education, and access to health-

care can all possibly cause skew in datasets, which would

further bias mining efforts such as machine learning

algorithms and knowledge extraction. For example,

ImageNet, a heavily used dataset in image classification,

has nearly half of the images coming from the USA.

Similarly, about 80% of genome-wide association study

catalog participants are of European descent, a group

which only makes up 16% of the world population [92].

For this reason, completely open data sharing will

probably not be reasonable for the best future genomic

association studies. One possible technical solution for

sharing genomics data might be the creation of a

massive private enclave. This is very different from the

World Wide Web, which is fundamentally a public

entity. A massive private enclave would be licensed only

to certified biomedical researchers to enable data sharing

and provide a way to centralize the storage and compu-

tation of large datasets for maximum efficiency. We be-

lieve this is the most practical viewpoint going forward.

On the other hand, the positive externality of data

sharing behaviors will become more significant as

genomic science develops and becomes more powerful

in aggregating and analyzing data. We believe that, in

the future, introducing data property rights, Pigouvian

subsidies, and regulation may be necessary to encourage

a fair and efficient data trading and use environment.

Furthermore, we imagine a future where people will

grapple with complex data science issues such as sharing

limited forms of data within certain contexts and pricing

of data accordingly.

Lastly, data ownership is also associated with extract-

ing profit and credit from the data. Companies and the

public are realizing that the value of data does not only

come from generating it per se, but also from analyzing

the data in meaningful and innovative new ways. We

need to recognize the appropriate approaches to not

only recognize the generation of the data but also to

value the analysis of large amounts of data and appropri-

ately reward analysts as well as data generators.

Conclusion
In this piece, we have described how genomics fits into

the emergence of modern data science. We have charac-

terized data science as an umbrella term that is increas-

ingly connecting disparate application subdisciplines.

We argue that several applied subdisciplines consider-

ably predate formal data science and, in fact, were doing

large-scale data analysis before it was “cool”. We explore

how genomics is perhaps the most prominent biological

science discipline to connect to data science. We investi-

gate how genomics fits in with many of the other areas

of data science, in terms of its data volume, velocity, and

Fig. 5 Open source adoption in genomics and other data science subdisciplines. The number of GitHub commits (upper panel) and new GitHub

repositories (lower panel) per year for a variety of subfields. Subfield repositories were selected by GitHub topics such as genomics, astronomy,

geography, molecular dynamics (Mol. Dynamics), quantum chemistry (Quantum Chem.), and ecology
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variety. Furthermore, we discuss how genomics may be

able to leverage modeling (both physical and biological)

to enhance predictive power, similar in a sense to what

has been achieved in weather forecasting. Finally, we

discuss how many data science ideas have been both

imported to and exported from genomics. In particular,

we explore how the HGP might have inspired many

cultural practices that led to large-scale adoption of

open-data standards.

We conclude by exploring some of the more urgent

issues related to data, and how they are impacting data

in genomics and other disciplines. Several of these issues

do not relate to data analytics per se but are associated

with the flow of data. In particular, we discuss how

individual privacy concerns, more specifically data

ownership, are central issues in many data-rich fields,

and especially in genomics. We think grappling with

several of these issues of data ownership and privacy will

be central to scaling genomics to an even greater size in

the future.
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