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Pharmacogenomics is the study of the role of inherited and ac-
quired genetic variation in drug response.1 Clinically relevant pharmacoge-
netic examples, mainly involving drug metabolism, have been known for 

decades, but recently, the field of pharmacogenetics has evolved into “pharmacoge-
nomics,” involving a shift from a focus on individual candidate genes to genome-
wide association studies. Such studies are based on a rapid scan of markers across 
the genome of persons affected by a particular disorder or drug-response pheno-
type and persons who are not affected, with tests for association that compare ge-
netic variation in a case–control setting.2 An example is provided in this issue of the 
Journal: McCormack and colleagues, testing for genomewide association, identified 
an HLA allele that is associated with hypersensitivity reactions to the anticonvulsant 
and mood-stabilizing drug carbamazepine in persons of European descent.3 Phar-
macogenomics facilitates the identification of biomarkers that can help physicians 
optimize drug selection, dose, and treatment duration and avert adverse drug reac-
tions. In addition, pharmacogenomics can provide new insights into mechanisms 
of drug action and as a result can contribute to the development of new therapeutic 
agents.

In 2003, two reviews of pharmacogenetics were published the Journal.4,5 Since 
then, both genomic science and its application to drug response have undergone 
major advances.6 Here we review some of those advances, with an emphasis on 
discovery through genomewide association studies. We describe examples that 
highlight principles of pharmacogenomics that are relevant to a wide variety of drugs. 
The Food and Drug Administration (FDA) has altered drug labels and issued warn-
ings about pharmacogenomic variation affecting drug response, raising the issue 
of the level of evidence required to show clinical utility7 and the respective roles of 
regulatory agencies such as the FDA and of academic and professional societies 
in the evaluation of pharmacogenetic analyses for the clinic.

C a r diova scul a r Drugs

Many drugs have proven efficacy in the treatment and prevention of cardiovascular 
disease. Not uncommonly, these drugs have narrow therapeutic indexes that are 
influenced by genetic variation — a hallmark of drugs for which pharmacoge-
nomic approaches are likely to provide substantial clinical benefit. The anticoagu-
lant agents warfarin and clopidogrel are high on the list of widely prescribed car-
diovascular drugs with narrow therapeutic indexes. The pharmacogenomic features 
of these drugs illustrate the rapid evolution of our understanding of the role of in-
heritance in the variation in drug efficacy and the risk of adverse drug reactions. In 
the case of both agents, the application of classic candidate-gene pharmacogenetics 
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has identified important genomic markers of 
variation in efficacy and adverse reactions, ob-
servations that were subsequently confirmed in 
genomewide association studies. The FDA acted 
quickly on these data by relabeling warfarin and 
adding a warning box on the labeling for clopi-
dogrel. Data supporting the clinical utility of 
routine use of pharmacogenetic testing for both 
these drugs are evolving.8-10

Warfarin is the most widely prescribed oral 
anticoagulant in North America and much of Eu-
rope.11 Despite the availability of the international 
normalized ratio (INR), a laboratory test that is 
universally used to measure the anticoagulant ef-
fect of warfarin, serious adverse responses, includ-
ing hemorrhage and undesired coagulation, con-
tinue to complicate therapy, making warfarin one 
of the drugs most often responsible for emergency 
room visits.12,13 Chemically, warfarin is a racemic 
mixture (i.e., one that is composed of two enantio-
morphic isomers). S-warfarin is three to five times 
as potent as R-warfarin as an anticoagulant, has 
a shorter half-life, and is metabolized predomi-
nantly by a cytochrome P-450 enzyme, CYP2C9.11 
Two common CYP2C9 allozymes (see Glossary) 
have only a fraction of the level of enzyme activ-
ity of the wild-type allozyme CYP2C9*1: 12% for 
CYP2C9*2 and 5% for CYP2C9*3.11,14 More than 
a decade ago, it was reported that patients who 
required a low final dose of warfarin on the basis 
of INR values often carried one or two of these 
two common CYP2C9 variant alleles and were at 
increased risk for hemorrhage during warfarin 
therapy, presumably because they metabolized the 
drug more slowly.14 Those observations were con-
firmed, but it quickly became clear that the pres-
ence of CYP2C9 polymorphisms did not explain 
most of the variation in the final warfarin dose.

Pharmacogenetic studies of warfarin changed 
dramatically in 2004 when the target for warfarin-
based anticoagulants, vitamin K epoxide reductase 
complex subunit 1 (VKORC1), was identified,15,16 
and single-nucleotide polymorphisms (SNPs) in 
VKORC1 were shown to be associated with the dose 
of warfarin required to achieve a target INR val-
ue.17 In 2009, a genomewide association study 
looked for associations between several hundred 
thousand SNPs and warfarin dose in about 1000 
Swedish patients who were taking warfarin. The 
results showed two major signals in and around 
CYP2C9 and VKORC1 (Fig. 1A).18 When the authors 
removed the effects of those signals through 

multiple regression adjustment, they observed an 
additional signal, implicating another cytochrome 
P450 gene (CYP4F2) (Fig. 1B). CYP4F2 was subse-
quently shown to catalyze vitamin K oxidation.19 
The variant CYP4F2 allozyme shows decreased 
ability to catalyze the reaction, and as a result 
persons who carry the relevant genetic variant in 
CYP4F2 might require an increase in the warfarin 
dose (Fig. 1C). CYP2C9, VKORC1, and CYP4F2 have 
also been implicated in a genomewide association 
study of the administration of acenocoumarol, 
an anticoagulant related to warfarin.20

Taken together, CYP2C9 and VKORC1 genotypes 
explain about 30 to 40% of the total variation in 
the final warfarin dose.21 These observations raise 
the possibility that testing patients for variations 
in CYP2C9 and VKORC1 might provide information 
that could enhance clinical algorithms currently 
used to guide the administration of warfarin. To 
examine the potential clinical utility of testing 
for CYP2C9 and VKORC1 genotypes, in addition to 
INR monitoring and routine use of clinical algo-
rithms, the International Warfarin Pharmacoge-
netics Consortium recently investigated the anti-
coagulant response to warfarin, as well as CYP2C9 
and VKORC1 genotype data, for about 4000 per-
sons of various ancestral origins. The investigators 
compared therapeutic outcomes with the applica-
tion of standard clinical algorithms that included 
age, sex, and INR values and outcomes with the 
use of an algorithm that included CYP2C9 and 
VKORC1 genotype information and concluded that 
the addition of genotype information enhanced 
outcomes, especially for patients who required 
unusually high or low warfarin doses.22 CYP4F2 
was not included in this algorithm but has been 
included in several algorithms developed more 
recently.23,24 Consistent with this conclusion are 
the results of a study comparing nearly 900 pa-

Glossary

Allozyme: Alternate versions of an enzyme determined by genetic variants 
(alleles) present at a genetic locus. 

Gene cluster: Two or more genes in close physical proximity in the genome 
that encode similar gene products.

Genomewide association study: An approach used in genetics research to 
look for associations between large numbers (typically hundreds of thou-
sands) of specific genetic variations (most commonly single-nucleotide 
polymorphisms) and particular diseases.

Single-nucleotide polymorphism: A single-nucleotide variation in a genetic 
sequence; a common form of variation in the human genome.
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tients for whom genetic information on CYP2C9 
and VKORC1 was made available to prescribing 
physicians with a matched historical control group 
of patients who were started on warfarin therapy 
without genetic information.25 Six months after 
the initiation of warfarin therapy, hospitalizations 
for hemorrhage were 28% less common in the 
group of patients for whom genetic information 
on CYP2C9 and VKORC1 had been supplied to 
prescribing physicians than in the control group 
(Fig. 2).

The FDA revised the label on warfarin in Feb-
ruary 2010, providing genotype-specific ranges of 
doses and suggesting that genotypes be taken into 
consideration when the drug is prescribed. The 
wide availability of CYP2C9 and VKORC1 genotyp-
ing and the release of both Web-based and per-
sonal decision-support tools have facilitated the 
clinical use of this information. Nevertheless, the 
clinical adoption of genotype-guided administra-
tion of warfarin has been slow, even though the 
evidence supporting such adoption is similar to 
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Figure 1. Warfarin Pharmacogenomics.

Panels A and B show Manhattan plots of P values (negative log10) for the association between single-nucleotide-
polymorphisms (SNPs) across the genome and the final warfarin dose. The horizontal line indicates a P value of 
1.5×10−7, which is the level of genomewide statistical significance. In Panel A, the results of univariate regression 
analysis highlight SNP signals in or near CYP2C9 and VKORC1. In Panel B, the results of multivariate regression 
analysis with adjustment for the contributions of CYP2C9 and VKORC1 show the CYP4F2 signal on chromosome 19. 
(Data are from Takeuchi et al.18) The label *2 indicates the nonsynonymous SNP rs1799853, *3 indicates the non-
synonymous SNP rs1057910, and the *2*3 composite indicates the SNP rs4917639. M denotes mitochondrial SNPs. 
Panel C shows the sites of action of warfarin in the vitamin K cycle, as well as the roles of CYP2C9, CYP4F2, and 
VKORC1 in this process.
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the evidence supporting currently used clinical 
variables, such as age, drug interactions, and an-
cestral origin. Some observers have expressed a 
need for prospective assessment of the value of 
this genetic information in warfarin therapy, and 
several prospective clinical trials are ongoing.26 
Alternative anticoagulant therapies are also be-
ing developed that might replace warfarin, per-
haps in patients with genotypes associated with 
extreme variation in warfarin response.27

Clopidogrel inhibits adenosine diphosphate 
(ADP)–stimulated platelet activation by binding 
irreversibly to a specific platelet receptor of ADP,  
P2Y12, thus inhibiting platelet aggregation.28,29 
Dual antiplatelet therapy — clopidogrel and as-
pirin — has been shown to decrease the risk of 
subsequent ischemic vascular events.30-32 How-
ever, clopidogrel is a prodrug that requires meta-
bolic activation in a reaction catalyzed by another 
cytochrome P-450 enzyme, CYP2C19. Like CYP2C9, 
CYP2C19 is genetically polymorphic with a com-
mon SNP that results in a truncated protein prod-
uct with little enzymatic activity.33 Several studies 
have shown that genetic variation in CYP2C19 re-
sulting in a paucity of activity is associated with 
decreased clopidogrel metabolic activation, a de-
creased antiplatelet effect, and an increased like
lihood of a cardiovascular event.34,35 These ob-
servations have been confirmed in a genomewide 
association study.34

Early in 2010, the FDA added a boxed warning 
to prescribing information for clopidogrel, stat-
ing that persons with a CYP2C19 variant encod-
ing a form of the enzyme associated with a low 
rate of metabolism might require dose adjust-
ment or the use of a different drug.36 After this 
FDA action, the American Heart Association and 
the American College of Cardiology issued a joint 
endorsement of CYP2C19 genotyping for patients 
at moderate or high risk for cardiovascular events 
who are treated with clopidogrel.37 This genetic 
test is widely available in the United States. How-
ever, enthusiasm for its use has been muted, ow-
ing to a lack of clarity with regard to the optimal 
treatment of patients who carry a CYP2C19 vari-
ant, as shown by data from two large, random-
ized trials in which CYP2C19 genotyping did not 
have a significant effect on the incidence of car-
diovascular events among patients with acute 
coronary syndromes or atrial fibrillation.38,39 On 
the other hand, in a recent meta-analysis of data 
from nine pharmacogenetic studies of clopido-

grel involving 9685 patients who had an acute 
coronary syndrome or were undergoing percuta-
neous coronary intervention, there was a signifi-
cant association between homozygosity or hetero-
zygosity for CYP2C19 reduced-function alleles and 
an increased risk of death from cardiovascular 
causes, myocardial infarction, or stroke.9 At pres-
ent, it is unclear whether genotyping to predict 
the response to clopidogrel is clinically useful. 
Several studies are under way to assess the effect 
of dose adjustment for clopidogrel in patients who 
carry CYP2C19 variant alleles.8

Agen t s Used  
for Infec tious Dise a ses

Genomewide association studies have confirmed 
the identity of genetic variants in previously im-
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Figure 2. Risk of Hospitalization among Patients Who Underwent VKORC1 
and CYP2C9 Genotyping, as Compared with a Historical Control Group, 
6 Months after the Initiation of Warfarin Therapy.

Shown are the rates of hospitalization for any cause (Panel A) and for bleed-
ing or thromboembolism (Panel B). There was a significant benefit for pa-
tients who had undergone genotyping for the presence of VKORC1 and 
CYP2C9 variants that have been significantly associated with the risk of 
over-anticoagulation. Data are from Epstein et al.25
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plicated candidate genes that contribute to clini-
cally important outcomes, including severe idio-
syncratic adverse reactions and variation in drug 
efficacy. In the next set of examples, the results of 
pharmacogenomic studies were unanticipated.

Hepatotoxicity is the most common reason for 
the termination of clinical trials investigating the 
efficacy of new drugs, accounting for approxi-
mately 33% of such terminations, and is a major 
reason for postmarketing drug withdrawal.40 
Floxacillin, an antibiotic used in Europe and Aus-
tralia to treat staphylococcal infections, has been 
associated with an unusual form of cholestatic 
hepatitis, with an estimated incidence of approxi-
mately 8.5 cases per 100,000 patients.41-44 A mul-
ticenter genomewide association study, reported 
in 2009, analyzed the genotypes of 51 persons 
with floxacillin-induced hepatic injury and 282 
matched controls.45 A SNP in the major histo-
compatibility complex and closely linked with 
HLA-B*5701 showed very strong association with 
hepatic injury. The association between the pres-
ence of HLA-B*5701 and hypersensitivity reactions 
to abacavir, a nucleoside analogue used to treat 
human immunodeficiency virus type 1 infection, 
had already been reported,46-48 which resulted in 
the FDA modification of the abacavir label to 
include a recommendation that patients undergo 
genotyping for HLA-B*5701 before the initiation 
of therapy.49 Rare but severe adverse events rep-
resent a major reason why drugs are withdrawn 
after FDA approval. Although it was possible to 
attempt a replication of the association between 
the variant in HLA-B*5701 and floxacillin-induced 
hepatitis,45 it is often difficult to gather enough 
cases of rare adverse drug reactions to apply ge-
nomewide techniques.

This situation presents a challenge for regula-
tors. To date, the FDA has generally chosen to 
include pharmacogenetic information relevant to 
rare severe adverse events on drug labels — even 
when the association between the variant and 
drug response has not been replicated — so as 
to warn prescribers of potential risk.50 This ap-
proach places a burden on clinicians to use their 
own judgment regarding the need for pharmaco-
genetic testing before prescribing a drug. In con-
trast with unreplicated tests for association are 
prospective trials of genotyping to avoid adverse 
pharmacogenetic effects. One such study is re-
ported in this issue of the Journal,51 in which in-
vestigators observed no instances of the Stevens–
Johnson syndrome or toxic epidermal necrolysis in 

a sample of nearly 5000 Taiwanese candidates for 
carbamazepine therapy, among whom carbam-
azepine had been withheld from carriers of the 
HLA-B*1502 allele, which has been reported to be 
associated with the Stevens–Johnson syndrome 
in Han Chinese.52

Another pharmacogenomic example involving 
agents used to treat infectious diseases concerns 
the treatment of chronic infection with hepatitis 
C virus (HCV), which develops in approximately 
80% of patients who are infected with the virus 
and is a major cause of liver failure.53,54 Success-
ful treatment of chronic HCV infection involves 
a sustained virologic response, which is defined 
by an undetectable level of HCV RNA in plasma. 
Unfortunately, only 40 to 50% of patients who are 
infected with HCV genotype 1 have a sustained 
virologic response when receiving the current 
standard of care for the treatment of chronic HCV 
infection — injections of pegylated interferon 
alfa together with oral ribavirin for 48 weeks.53,54

The ability to identify patients with a differ-
ential response to pegylated interferon alfa is 
important in the current era of new anti-HCV 
drugs because pegylated interferon alfa remains 
the backbone of therapy, to which many of these 
new agents are added. Recently, in three inde-
pendent genomewide association studies55-57 in-
volving patients with chronic HCV infection who 
were treated with pegylated interferon alfa and 
ribavirin, there was an association between a 
variant in IL28B, the gene encoding interleukin-
28B, and the drug response. In one of these 
studies, peripheral-blood mononuclear cells from 
patients carrying the variant allele that was as-
sociated with a poor response had comparatively 
low levels of IL28B expression.56 IL28B encodes a 
protein that is thought to be involved in suppress-
ing the replication of a number of viruses, in-
cluding HCV.55-58 This example shows how phar-
macogenomic genomewide association studies not 
only have identified biomarkers of response to 
pegylated interferon alfa but also have provided 
insights that might be used to determine therapeu-
tic approaches to this chronic infection and to se-
lect a drug target for therapeutic development.

A n tineopl a s tic Drugs

The field of cancer pharmacogenomics is compli-
cated by the fact that two genomes are involved: 
the germline genome of the patient and the so-
matic genome of the tumor. Obviously, the tumor 
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genome plays a critical role in the variation in 
response to antineoplastic therapy. Prominent ex-
amples include HER2 overexpression or amplifi-
cation in patients with breast cancer and the re-
sponse of these tumors to trastuzumab59,60 and 
increased sensitivity to the epidermal growth fac-
tor receptor (EGFR) antagonist gefitinib among 
patients with non–small-cell lung cancer who 
have activating mutations in the gene encoding 
EGFR.61,62 A recent example involves melanoma 
and a mutation in BRAF encoding a serine–threo-
nine protein kinase. Since a specific inhibitor, 
PLX4032, targets the mutant activated kinase, there 
is a pharmacogenetic effect in that PLX4032 pro-
longs survival in patients carrying the mutation. 
This clinical finding was based on the discovery of 
a BRAF mutation through the sequencing of a 
large number of kinase genes in tumors.63,64 On 
the other hand, germline SNPs in the gene encod-
ing the enzyme thiopurine S-methyltransferase 
(TPMT) can result in increased sensitivity to mer-
captopurine as a result of decreased metabo-
lism,1,4,5 whereas the number of TA dinucleotide 
repeats in the promoter of UGT1A1 in germline 
DNA can increase the toxic effects of irinotecan, 
also as a result of decreased metabolism.1,65 There 
are now many examples of pharmacogenetic tests 
paired with anticancer drugs that are considered 
part of routine oncologic care (Table 1). The fact 
that clinically relevant pharmacogenomic varia-
tion in both the tumor genome and the patient’s 
germline genome can influence the response to 
antineoplastic therapy is illustrated in Figure 3, 
with gefitinib and irinotecan as examples.

A rom ata se Inhibi t or s

Genetic polymorphisms in a patient’s germline 
genome can also play an important role in varia-
tion in the response to cancer therapy. Endocrine 
therapy of breast cancer 66,67 offers a striking ex-
ample of how a genomewide association study 
has lead to the identification of a mechanism 
that would seem to be responsible for a serious 
drug-induced adverse reaction that limits thera-
peutic options for some patients.

The tumors of approximately 70% of post-
menopausal women with breast cancer express the 
estrogen receptor. The blockade of this receptor 
with tamoxifen or the blockade of estrogen syn-
thesis through the inhibition of aromatase (which 
catalyzes estrogen synthesis) halves the recur-

rence rate.66-68 However, the administration of an 
aromatase inhibitor can also result in severe mus-
culoskeletal pain that leads women (10 to 20% in 
some studies) to terminate therapy.67 In a genome-
wide association study that used DNA samples 
from a large clinical trial of aromatase inhibitors 
to treat women with breast cancer (called MA.27) 
(ClinicalTrials.gov number, NCT00968214), there 
was an association between musculoskeletal pain 
and variants in the gene cluster encoding T-cell 
leukemia–lymphoma (TCL) proteins. The marker 
showing the strongest (although not significant) 
association created a new estrogen-response ele-
ment close to TCL1A.69 Functional studies showed 
that the markers that were associated with sus-
ceptibility to musculoskeletal pain were also as-

Table 1. Anticancer Drugs Approved by the Food and 
Drug Administration (FDA) with Labeling Regarding 
Pharmacogenomic Biomarkers.*

Type of Biomarker and Associated Drug

Biomarker with pharmacokinetic effect
TPMT

Mercaptopurine
Thioguanine

UGT1A1
Irinotecan
Nilotinib

Biomarker with pharmacodynamic effect
EGFR

Cetuximab
Erlotinib
Gefitinib
Panitumumab

KRAS
Cetuximab
Panitumumab

ABL
Imatinib
Dasatinib
Nilotinib

C-Kit (KIT)
Imatinib

HER2/neu (ERBB2)
Lapatinib
Trastuzumab

Estrogen receptor
Tamoxifen

*	Data are from the FDA’s pharmacogenetics Web site 
(www.fda.gov/Drugs/ScienceResearch/ResearchAreas/
Pharmacogenetics/ucm083378.htm). The biomarkers 
have been separated into pharmacokinetic effect (drug 
metabolism) and pharmacodynamic effect (drug target). 
Biomarkers for cytogenetic alterations have been excluded.
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sociated with increased TCL1A expression after es-
trogen exposure. TCL1A regulates the expression 
of interleukin-17 receptor A, an experimental 
target for the treatment of patients with rheuma-
toid arthritis.70 These observations, if confirmed, 
may provide new insight into the relationship 
between estrogens and joint pain.

This example illustrates several challenges and 
opportunities associated with pharmacogenomic 
studies and their application to clinical practice. 
First, associations that are uncovered by genome-
wide association studies require replication if there 
are appropriate sample sets. However, MA.27 is a 
large clinical trial of aromatase inhibitors, span-
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Both the tumor genome (e.g., in the case of gefitinib therapy) and the patient’s germline genome (e.g., in the case 
of irinotecan therapy) can contribute to pharmacogenomic variation in response to antineoplastic drugs. The tumor 
genome plays a critical role in the response to gefitinib (Panel A), since the sensitivity of non–small-cell lung cancer 
to this drug is enhanced by activating mutations in the kinase domain of the gene encoding epidermal growth factor 
receptor (EGFR).58,59 Tumor EGFR encoding activating mutations within the kinase domain results in enhanced tu-
mor sensitivity to gefitinib. The rate of toxic effects associated with irinotecan (diarrhea and myelosuppression) is 
increased in patients with seven TA dinucleotide repeats rather than the more common six repeats in the promoter 
region of UGT1A1 encoding a UDP-glucuronosyltransferase in germline DNA, resulting in lower enzyme activity and 
a decreased rate of drug metabolism (Panel B).1,62
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ning 8 years at a cost of more than $35 million. 
Therefore, identifying a large and appropriate 
sample to test for replication will be difficult. In 
cases in which replication samples are not avail-
able or are difficult to obtain, pharmacogenomic 
studies may benefit from the use of functional 
validation to help verify the results of genomewide 
studies. For example, the biologic plausibility that 
is provided by the functional data (i.e., the asso-
ciation between phenotype-associated markers 
and TCL1A expression) increases confidence that 
the genetic association is driven by biology rather 
than chance. A final consideration is the clinical 
context. Because aromatase inhibitors have only 
a slight benefit over tamoxifen in the treatment of 
breast cancer, and tamoxifen is much less ex-
pensive than aromatase inhibitors, a clear thera-
peutic alternative is available for patients at in-
creased risk for musculoskeletal pain. Therefore, 
a genetic test with sufficient predictive power to 
identify such patients might be clinically useful.

Clinic a l Tr a nsl ation

The use of genotyping to inform clinical decisions 
about drug use is not widely practiced. The slow 
pace of the clinical application of pharmacoge-
nomics has many causes. Obviously, the most im-
portant issue is the need to establish clinical util-
ity in order to support the value of genotyping. In 
the absence of such evidence, payers will be un-
likely to provide reimbursement for routine use of 
pharmacogenetic testing, and tests will remain 
inaccessible to the majority of patients. There 
seems to be little consensus on the level or nature 
of data required to establish clinical utility.7

No matter what level of evidence is required 
for each situation, it will be necessary to develop 
simple clinical algorithms to aid physicians in 
their interpretation and use of genetic data. This 
goal may be best achieved through the develop-
ment of point-of-care tools embedded in elec-
tronic medical record systems. Even with such 
tools, physicians and other health care providers 
need to be aware of this area of biomedical sci-
ence in order to apply the information clinically. 
A major effort will be required to educate all 
members of the health care team about clinical 
genomics.

In recent years, the FDA has aggressively pur-
sued drug-label modification when excess risk can 
be convincingly linked to a genetic marker. Several 
of the examples have been described here; many 
more are listed in the FDA’s Table of Pharma-
cogenomic Biomarkers in Drug Labels (www 
.fda.gov/Drugs/ScienceResearch/ResearchAreas/
Pharmacogenetics/ucm083378.htm). Warnings that 
the FDA has issued about the prescription of 
clopidogrel and abacavir without testing of the 
relevant genotype are examples of the agency’s 
increasingly activist stance.

Conclusions

There has been a good deal of comment in the 
scientific literature71-74 and the popular press75 
about the slow pace of the application of genom-
ics to clinical medicine. We hope that we have 
provided some reassurance that advances result-
ing from the application of genomic science to 
drug therapy may be helpful in drug selection and 
administration and reduce the odds of adverse 
drug reactions. Challenges that are associated 
with the replication of study findings and the 
development of proof of the clinical significance 
of implicated variants underscore the importance 
of functional experiments to test for biologic 
plausibility and to extend our understanding of 
drug mechanisms. Finally, a blend of scientific, 
regulatory, and psychological factors must be ad-
dressed if pharmacogenomic tests are to become 
a routine part of clinical practice. The FDA-man-
dated incorporation of pharmacogenomic infor-
mation in drug labeling will remain an impor-
tant step in the acceptance of pharmacogenomics 
in clinical practice. Perhaps equally important 
will be the willingness of physicians to reexam-
ine suboptimal pharmacologic management pro-
grams.
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