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Abstract: Open source and open data have been driving
forces in bioinformatics in the past. However, privacy
concerns may soon change the landscape, limiting future
access to important data sets, including personal geno-
mics data. Here we survey this situation in some detail,
describing, in particular, how the large scale of the data
from personal genomic sequencing makes it especially
hard to share data, exacerbating the privacy problem. We
also go over various aspects of genomic privacy: first,
there is basic identifiability of subjects having their
genome sequenced. However, even for individuals who
have consented to be identified, there is the prospect of
very detailed future characterization of their genotype,
which, unanticipated at the time of their consent, may be
more personal and invasive than the release of their
medical records. We go over various computational
strategies for dealing with the issue of genomic privacy.
One can ‘‘slice’’ and reformat datasets to allow them to be
partially shared while securing the most private variants.
This is particularly applicable to functional genomics
information, which can be largely processed without
variant information. For handling the most private data
there are a number of legal and technological approach-
es—for example, modifying the informed consent proce-
dure to acknowledge that privacy cannot be guaranteed,
and/or employing a secure cloud computing environ-
ment. Cloud computing in particular may allow access to
the data in a more controlled fashion than the current
practice of downloading and computing on large
datasets. Furthermore, it may be particularly advanta-
geous for small labs, given that the burden of many
privacy issues falls disproportionately on them in com-
parison to large corporations and genome centers. Finally,
we discuss how education of future genetics researchers
will be important, with curriculums emphasizing privacy
and data security. However, teaching personal genomics
with identifiable subjects in the university setting will, in
turn, create additional privacy issues and social conun-
drums.

This is an ‘‘Editors’ Outlook’’ article for PLoS

Computational Biology

The Current Situation in Bioinformatics: Tensions
between Open Data and Limited Access

Bioinformatics’ explosive growth over the past decades owes a

lot to the open-source and open-data mentality of its practitioners.

The biological sciences, and particularly computational biology

and bioinformatics, have been driving forces in the development of

data mining tools due, in part, to the availability of huge open data

sets; this enormous amount of freely available data has become

part of the ethos of genomics research. In contrast, in the social

sciences, finance, and legal fields, large-scale data sets on the order

of those found in bioinformatics are hard to find, and data is often

sold rather than freely available.

Open-source software, such as software developed under the

GNU license or operating systems such as Linux, was an original

inspiration. It has allowed for the development of novel tools and

code that can be improved, modified, and tweaked by subsequent

users to precisely fit the current needs of individual researchers.

Open source software was and continues to be used to build,

maintain and mine databases that have greatly facilitated the

development of bioinformatics research. Open data goes hand in

hand with open source, as it is essential for the development and

testing of open software tools. Much open data has been available

to the bioinformatics community from a variety of databases,

including the Protein Data Bank (PDB), a repository for

macromolecular structures [1] (established 1971), and the National

Center for Biotechnology Information (NCBI), which houses

genomic sequences and other biotechnology-related information

(1988) [2].

Open data not only provides the non-experimentalist with the

necessary information to conduct analyses, but it allows for the

replication and validation of previously published results. Further,

sharing data allows for important nomenclature and terminology

standards to be developed and refined, a necessity as data sets

continue to get larger and more complex. The virtue in open data

is so great that it has been become virtually a precondition for
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funding labs for genome sequencing. Moreover, several scientific

journals require the data to be publicly available before accepting

a manuscript for publication.

There has always existed, however, tension between the open-

source/open-data movement, represented by academic bioinfor-

matics, and those who would rather limit access. In some

instances, those in favor of limited access are concerned about

patient privacy—as is often the case in the medical fields.

However, others have attempted to develop databases that were

closed or of limited access to the basic science research public for

commercial business purposes. This dichotomy was most dramat-

ically presented in the initial sequencing of the human genome,

which involved a ‘‘competition’’ between a public consortium,

which favored the open-data approach, and Celera, a private

company trying to develop a propriety database related to human

genomics and claim associated intellectual property (IP) rights [3].

The Future: More Closed Data?

Bioinformatics today is at a crossroads, and the pendulum is

definitely swinging in favor of more limited access to data. This

shift is happening for a number of reasons: First, the sheer size of

the data makes readily transferring it and sharing it more difficult

than it has been in the past. Secondly, the nature of the data is

becoming more personally revealing, and is therefore considered

more private and protectable. As we will describe, this more

limited access to data is of particular concern to small labs and

individual researchers.

With next-generation sequencers bringing down the cost of

analysis faster than Moore’s law (http://genome.gov/sequencing

costs/), data sets are becoming so large and unwieldy that it is

often difficult to download and locally analyze relevant data; in the

not-so-distant past, bioinformatics data were freely uploaded and

downloaded using off-the-shelf, and/or lab-based web servers.

In addition to physical practical constraints on sharing,

researchers may encounter an increased amount of IP protections

and restrictions on data. These protections are experiencing a

renewed emphasis as a result of efforts to commodify genomic

information. IP protection is non-trivial and scientific data can be

controlled, depending on the particular jurisdiction, under

numerous different IP regimes, often simultaneously [4]. Although

the legal issues surrounding this control are in flux and constantly

evolving, and there remain broad discrepancies as to how

bioinformatics will be legally protected around the world, the

use of these protected datasets can still have significant legal

repercussions, even for public research institutions.

Privacy in Personal Genomics: Scale,
Identification, and Characterization

In addition to the various IP protections, the handling of private

and sensitive information that can now be collected with new

sequencing technology necessitates additional levels of protection

for data, further limiting its access. And, as genome sequencing

reveals more about an individual, the distinction will be harder to

make between medical records and human genome sequences.

In general, when collecting data from human subjects, it is

important that each subject be fully informed of the experimental

protocols and the data collected from those experiments, before

giving their consent. Human subject protocols should be designed

to minimize the potential of harm to the subject, while maximizing

the potential benefits. For example, post-data collection: (i)

protections must be in place to prevent unauthorized access to

human subject data; (ii) access must be restricted to those

individuals with a legitimate research interest in the data, who

also must understand how to properly handle the data to keep it

out of the wrong hands; and (iii) data must also be properly

disposed of when no longer needed. For digital data, the

information technology (IT) administrators of the systems on

which this data is stored have a responsibility to maintain strong

IT security policies, and keep the systems fully patched, with up-

to-date antivirus definitions, for example.

The above text is fairly generic, and many of the issues have

already been broached with the development of electronic patient

records that collect, store, and share medical data typically across

health care operators. A comprehensive set of rules and

regulations have already been promulgated to ensure that sensitive

information is accessed only by authorized people, and with the

final goal to improve the quality of care [5].

However, the nature of the current data sets being churned out

requires a different approach.

First, there is the scale of the data. It is much more difficult to

deal with terabytes of encrypted data in the framework of large

calculations than it is to deal with a small amount of encrypted text

in a medical record meant to be read by humans. To do proper in-

depth processing of next-generation sequencing data, conventional

encryption becomes rather cumbersome and difficult.

Second, the identification of DNA sequence variants can readily

act as a source of identifiable information. In particular, a

minimum number of 75 independent SNPs, if not fewer, will

uniquely identify a person, albeit without being able to phenotype

that individual with the limited SNP data [6]. However, the degree

to which DNA data is identifiable is not always obvious.

Therefore, until recently, given the onerous requirements for

explicit consent for each individual’s data set [7], approaches were

developed to facilitate research on these data sets via de-

identification of patient information [8]. The data treated this

way has been made publicly available in the past and has further

facilitated discoveries in medical research.

It has recently been shown, however, that it is even possible to

re-identify genotyped individuals or even individuals in pooled

mixtures of DNA [9]. Once re-identified, this gives rise to the

potential for the revelation of significantly personal information,

regarding the formerly anonymous source. This prompted the

United States National Institute of Health (NIH), the Broad

Institute in the US, and the Wellcome Trust in the United

Kingdom to further restrict the access to the data from genome-

wide association studies.

The risk of identification comes from multiple possible different

sources. In general, while data sets in genomics research can be

anonymized they often need not be, depending on the wishes of

the patients. Thus, on a simple level, some patients will opt to

provide their DNA without any preconditions. In other instances,

patients will consent to have their DNA analyzed but will insist on

not being identified. And, in between these extremes, subjects will

provide DNA without restriction provided that it be used only for

a particular direction of research, but may limit the usage of the

DNA for say, research into a disease with an attached stigma.

Further, there are many instances where one might gain access

to DNA to cross reference with a publicly available data set. These

include, but are not limited to: (i) surreptitiously obtaining DNA

from a discarded personal item; (ii) other public or private DNA

databases such as those kept by law enforcement; (iii) biological

samples from medical procedures; (iv) DNA samples from close

relatives; or, (v) one’s own DNA in determining a biological

parent.

Third, it is important to distinguish between the issues of

identification and of characterization. Even if subjects consent to
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revealing their identity, they may not have consented to detailed

characterization. That is, a consenting subject might not realize

how much information is being given away by genome

sequencing. Those who subscribe to the notion of genomic

exceptionalism, i.e., that genetic data is somehow categorically

different than other forms of medical information, in particular,

note that genomic data is much more informative than standard

medical records as it can provide risk-related data pertaining to

medical and non-medical conditions across family trees, including

risks of future illness, undiagnosed psychiatric conditions, and even

physical traits. And while we cannot currently fully interpret it, we

will soon be able to, and once this information is published it

cannot be taken back. Furthermore, the fact that children carry

half the genetic information of their parents implies that a decision

to reveal one’s genetic information today has repercussions for

generations to come.

How Difficult Is It to Deal with Private Data Sets?

Under the current open-data regime, bioinformatics investiga-

tors can directly access the data hosted by repositories such as

Gene Expression Omnibus (GEO) [10], ArrayExpress [11],

GenBank [12], or use free web tools such as Ensembl [13] or

the UCSC GenomeBrowser [14]. Effort from the final user

viewpoint is limited to transfer time and the size of the data set.

The burden on big research centers as well as small labs is

equivalent and nearly non-existent.

Current human genomics data—in particular, readouts from

next-generation sequencing—contains a lot of information that

can, in principle, both identify and characterize an individual.

Hence, in this context, these data need to be properly managed,

and accessing them requires proper controls. To illustrate the

impact of closed data in a traditionally open world, we describe

aspects of the interaction with the database of Genotypes and

Phenotypes (dbGaP) [15] and the International Cancer Genome

Consortium (ICGC) [16]. Both provide excellent examples on how

to properly handle private information for research studies.

However, access to the private part of the databases is far from

‘‘click-and-download’’, which many researchers are used to.

Access often requires institutional review board (IRB) authoriza-

tion. For example, ICGC requires IRB authorization prior to the

submission of the application to access and download the data.

Typically, this entails a description of the requested data, the

management of the data on the user’s site (e.g., for digital data,

security levels of stored data, and the list of authorized people

accessing them), and the type of analysis. This process can take

several weeks or a few months depending on the institution.

Moreover, if the researcher wants to perform additional analyses

that were not foreseen at the time of the first IRB authorization,

due for example to advances in computational algorithms, or to

the availability of new data sets allowing for integrated analysis, a

second authorization may be required. Although these restricted

controls satisfy the need for privacy protection of the data, the

administrative burden may limit their accessibility to only those

who really take the effort to access them. When possible,

researchers may prefer to use freely available genomics data. An

example of such freely available data is that provided by the

Personal Genome Project (PGP). For example, since fall 2008,

more than 34,000 investigators have viewed the genomic data of

the first PGP individual, i.e., a rate of ,1,000 per month per data

set (PGP-1, personal communication). This is in contrast to the

ICGC, for example, where only seven projects (as of October

2011) have been approved for access to the controlled data since

December 2010 (http://www.icgc.org/daco/approved-projects/),

i.e., ,0.00023 per month per data set, and another seven are

being currently revised (J. Jennings, personal communication).

Although it is expected that more projects will be approved by

ICGC in the future, this difference with open data is striking.

Furthermore, not only does accessing and downloading the data

entail a considerable effort for end users, but also making genomic

data available to the research community can be quite

cumbersome, requiring substantial paperwork. The whole process

is disproportionally onerous for small labs, which may not have the

proper experience or resources for the submission of one or two

data sets.

The administrative efforts to access private genetic data exact a

real cost and create a drag on research efforts creating friction in

the depositing, accessing, and analyzing of data. With many

academics risk averse and cost conscious the time and effort often

necessary to access this data will cut down on potential research

efforts.

Computational Approaches to Dealing with
Private Data

Given how difficult it is to handle large amounts of private data,

one can imagine a number of computational approaches to ease

the burden. First, one can try to ‘‘slice’’ out some of the relevant

variants in a big data set, i.e., selectively releasing SNPs and other

genomic variants, such as small indels and larger structural

variations, that are proximal to a known locus of interest (e.g.,

related to a disease). Alternatively, more extensive filtering of

genomic variants may involve other genomic properties (such as

heterozygosity and allele frequency) and its immediate sequence

context (such as proximity of a recombination hotspot and the

local sequence conservation level). Furthermore, one may consider

to only release the summary statistics from genomic property

calculations over sliding windows across the genome, such as the

average allele frequency and number of variants. A final idea

involves building ‘‘synthetic’’ personal genomes from a pool of

individual genomes in a group. To be more specific, one may

permute the variants or variant blocks between individual

genomes, such that the representative variations of the entire

group are readily seen, but not those of any particular individual.

While the exact manipulation of the variation annotation file could

be done in a reversible and uniquely determined way, using a key

private to the researcher, persons without the key would not have

adequate information to recover the data.

However, one should keep in mind that although this reduces

the public exposure of the sequences, none of these data

manipulation methods fully de-identifies the test subjects. These

methods should rather be viewed as options to mask part of a

personal genome, preventing some aspect of detailed character-

ization. Nonetheless, even at this point, it is not sensible to

completely rule out the possibility of the sequencing data being

deciphered. Using sufficiently sophisticated statistical models given

the prevalence of linkage disequilibrium (LD) in the human

genome, the sequencing data from a personal genome may be

decoded eventually from haplotypes in the human population to a

high accuracy by persons with specialized knowledge of population

genetics. A particularly famous example of this is the determina-

tion of Jim Watson’s apoE genotype. He explicitly did not want

this revealed in his personal genome sequencing because of its

implications related to mental disease. However, researchers

showed that the initial amount of sequence masked was not

sufficient to hide the key variant if one took into account LD [17].

Second, one can try to anonymize functional genomics data;

increasingly, the readout of many functional genomics experi-
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ments is in the form of sequencing. Privacy concerns relate to

functional genomics data differently from genome-sequencing

data. Specifically, when the low-level sequencing data is released,

one can essentially recover the genomic variations in a similar

fashion as in genome-wide sequencing. Nonetheless, these

genomic variations are only limited to the corresponding

functionally annotated regions (,5% of the human genome).

Hence, naively, one may get the impression that genomic privacy

protection is less critical for functional genomics data. However, all

experiments on humans essentially give rise to variant information;

effectively, an RNA-Seq experiment is almost equivalent to exome

sequencing.

However, unlike genome sequence, the variants are not always

the key information revealed by an experiment.

In particular, if only the high-level data—such as the ChIP-seq

peak intervals and RNA-seq gene expression levels, are submitted,

the DNA-level genomic variations (i.e., SNPs) are, to a large

extent, masked. Therefore, the concerns for genomic privacy are

minimal. For example, RNA-seq expression values are almost

equivalent to expression microarray data, which have not posed

any privacy issues. Indeed, microarray data have been publicly

available for some time via repositories such as GEO [10] or

ArrayExpress [11]. Given this, in some cases, it is possible to

reduce the impact of sequencing information via simple data

manipulation. For example, RNA-Seq experiments measure the

transcriptome of a population of cells [18]. Typically, the main

goal of these investigations is the identification of differentially

expressed genes, isoforms, or exons between different conditions.

This type of analysis can be carried out without including explicit

sequence variants, thus greatly reducing the potential identifiable

information, although there will still be some identification issues.

Theoretically, the pattern of expression levels measured by a

sequencing experiment may still lead to the identification of the

individual. However, this possibility is also shared by gene

expression and exon microarrays that have been freely shared in

the past via public repositories. RSEQtools proposes Mapped

Read Format (MRF) as a practical realization of this. MRF is a

compact data format that can separate the alignment and genomic

‘‘signal’’ information from the actual sequences [19]. This

separation has the advantage to effectively allow a fine-tuned

access control to the data, by making the alignment data publicly

available, whereas the sequences may be kept under restricted

access. It also has the advantage of providing compact data sets,

especially now with increasing sequence read lengths that can be

publicly shared.

Another approach may become a popular archival format for

reducing the size of next-generation sequencing data is reference-

based compression and the associated CRAM format [20]. This

format stores the position of a read on a reference and then the

variations in the read relative to the reference. If the read cannot

be mapped to the reference, one makes up a rough assembly on

the fly and then maps the read to this. This format can be readily

adapted to anonymize information in a similar fashion to MRF.

One simply just stores the first bit of information, the position that

the read maps onto the reference, and leaves off the remainder of

the information (the variants on the read relative to the reference

which constitutes sensitive information).

The approach taken by MRF for RNA-seq can be easily

adopted by other functional genomics experiments, such as ChIP-

seq. Here, the locations of the peaks typically constitute sufficient

data summaries for the downstream analysis. Again, separating the

sequences from the alignment has the advantage to create a two-

tier environment, one public and one private, that can satisfy both

the privacy requirements as well as the sharing of the data to the

research community.

Approaches to Future Data Management: No
Confidentiality, Banking Models, and Private
Clouds

Many of the complexities of dealing with private and large-scale

information disproportionally burden small laboratories. They do

not have the staff to secure the computers, encrypt the data, and

deal with all the forms and approvals necessary that large genome

centers in big companies have. Then how can they profitably

engage in medical research using large-scale private data?

One extreme approach would be to have no privacy at all in

genomic data for medical research. That is, we would not make

any pretense in trying to protect genomic information and only

seek volunteers who would consent to have their information be

publicly available. This is an ethically honest but extreme

approach to consent [21].

It has been adopted by the PGP [22]. The PGP has been so far

very successful with the number of the early individuals in the

project garnering a considerable amount of publicity and having

their sequences viewed quite a bit. However, it’s not clear that this

approach would scale to potentially millions of people who will be

having their genome sequenced. It is essentially asking the

sequenced individual to be a test pilot for scientific research,

risking their privacy to advance the frontier.

Another approach could be to learn from the legal and banking

sectors wherein privacy and confidentiality are protected while the

practitioners nevertheless manipulate and analyze large databases

of highly confidential personal and financial data. Furthermore,

private information is exchanged between many organizations

ranging from large companies to small law firms. In those cases,

incentives to keep clients, as well as governmental regulations with

stiff penalties and civil and criminal repercussions, help to prevent

breaches of customer privacy.

An aspect of the legal and financial model is accreditation and

licensure, which requires practitioners to show proficiency in their

craft and in the legal and social concerns. Licensing also creates

liability, creating real world repercussions, i.e., penalties and/or

forfeiture of the license and their ability to access the data, in the

event of a breach of responsibilities. Licensure could follow the

example of the legal profession, where local and national

organizations bear the responsibility of licensing, and wherein

national organizations can accept the credentials of those licensed

elsewhere.

However, there are some key differences between the legal and

financial approach and that required by academia. There is no

incentive to publish and share information in the private world of

banking as there is in academia. Furthermore, most of the

individuals involved with private information are not student

trainees, but rather informed professionals.

A third potential solution might be a government-supported

cloud computer repository. There are a number of clear

advantages to cloud computing [23]. It can provide a centralized

and relatively homogeneous interface for genomic researchers. It

can provide the computational power and memory to allow for the

manipulation of these large data sets off-site—something that

smaller labs or individual researchers may not otherwise have

access to. Further, by having the data centralized by a government

or large entity, economies of scale allow the necessary security and

precautions to protect private and/or proprietary data to be

universally employed. Whereas many labs without the financial or

technological wherewithal may have previously just posted their
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results on a local server, the cloud potentially may be able to

provide universal protection to data at a standard heretofore

affordable only to large labs.

Instead of risking privacy every time a researcher downloads a

data set, analytical programs to access and analyze the data can be

uploaded to the cloud where the programs can not only analyze

the data, but can also be shared and improved upon by others.

Most importantly, what happens in the cloud, while nevertheless

staying in the cloud, cannot be hidden—all access to the data and

the nature of the access can be logged and reviewed to prevent

abuse of the data and breaches of privacy. Researchers will be

unable to just take data off the servers, and the massive size of most

files mean that data cannot simply be copied by hand; rather, the

cloud infrastructure will necessitate that a recordable event occurs

wherein a researcher downloads or possibly even views a file onto

their own system.

This logging system is necessary not only because of the

extremely unlikely event of malicious actions by researchers, but

more importantly, to prevent students, who may be unaware of the

greater repercussions of their actions, from accidentally and

innocuously breaching privacy and security, i.e., a naive but errant

Perl script that inadvertently sends private data onto the Internet.

Summary and Direction: Educating Researchers
about the New Reality

Clearly, with the advent of large amounts of personal genomic

data, bioinformatics is in for a change. It is inevitable that much of

this data will not be open in the way we have grown accustomed to in

the past. This is going to necessitate new approaches to anonymizing

data sets and providing secure computational environments. It will

also require us to educate a new generation of researchers to think

more carefully about personal genomics and privacy.

In an effort to inculcate young researchers regarding the

ramifications of genomic sciences, numerous universities have

recently implemented programs to provide some students—in the

extreme, the entire incoming freshman class—access to personal

genomic technologies. These efforts, however, raise pedagogical

and social concerns.

The underlying goal of each of these programs seems to be to

introduce and to acclimate young adults to what is likely to be a

common, prevalent, and relevant technology in the future.

However, these programs are also a double-edged sword. The

Facebook/Twitter generation, in particular, has an evolving

concept of personal privacy that may not be compatible with

how society currently perceives the nature of the information

provided to them by personal genomics.

Further, one of the most effective ways in these programs to

educate young people about genomics is to have them study their

own, their relatives’, and even their peers’ genomes. This is, of

course, what the students can most easily relate to. However, it is

also the type of information that has one of the greatest degrees of

privacy implications: there are concerns for the student’s own

privacy—in the extreme, students, desensitized to privacy

concerns, may post their genetic results publicly—and there are

additional concerns for the student’s extended families that share

much of their genetic information, and may or may not consent to

having their genetic predispositions aired publicly.

There are further real concerns that students, provided with

powerful genetic information (e.g., Alzheimer’s predispositions)

may fail to adequately protect it. Curious students are likely to seek

and search out this most intriguing data, instead of the more

pedestrian data regarding eye color or propensity to develop wet

earwax. Unfortunately, the most interesting data will always be the

data that requires the most protections.

Further, not withstanding privacy concerns, restrictions on

access to this powerfully pedagogical data may limit the usefulness

of the educational exercise or invite curious students to circumvent

what may be in many cases purposeful limitations on access.

Open access to research data, once a given in genomic research,

is becoming rarer, and privacy concerns regarding current and

future genomics research data present a further non-trivial

obstacle to data sharing; finding an optimal balance between

access for researchers and protection for patients’ privacy remains

elusive. Here, we have provided a survey of the current situation,

noting in particular how the large-scale data from next-generation

sequencing makes it especially hard to share data, exacerbating

privacy and open-data problems. We presented various compu-

tational strategies for dealing with the issue of genomic privacy,

and note how cloud computing potentially may allow access to the

data in a more controlled fashion than the current practice of

downloading and computing on large data sets, perhaps helping to

reverse the trend against open data.
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