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The theory and methods of signal pro-

cessing are becoming increasingly

important in molecular biology. Digi-

tal filtering techniques, transform

domain methods, and Markov models

have played important roles in gene

identification, biological sequence

analysis, and alignment. This paper

contains a brief review of molecular

biology, followed by a review of the

applications of signal processing the-

ory. This includes the problem of gene

finding using digital filtering, and the

use of transform domain methods in

the study of protein binding spots.

The relatively new topic of noncoding

genes, and the associated problem of

identifying ncRNA buried in DNA

sequences are also described. This

includes a discussion of hidden

Markov models and context free

grammars. Several new directions in

genomic signal processing are briefly

outlined in the end.
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1. Introduction

S
ubsequent to the sensational announcement of

the double helix structure for the DNA molecule

more than fifty years ago by Watson and Crick [1],

there has been phenomenal progress in genomics in the

last five decades. With the enormous amount of genom-

ic and proteomic data available to us in the public

domain, it is becoming increasingly important to be able

to process this information in ways that are useful to

humankind. Traditional as well as modern signal pro-

cessing methods have played an important role in these

fields. Genomic signal processing is primarily the pro-

cessing of DNA sequences, RNA sequences, and pro-

teins. A DNA sequence is made from an alphabet of four

elements, namely A, T, C, and G. For example

. . . ATC C C AAGT AT AAG AAGT A . . .

The letters A, T, C, G represent molecules called

nuclotides or bases (to be described soon). Since DNA

contains the genetic information of living organisms, we

see that life is governed by quarternary codes. Another

example of discrete-alphabet sequences in life forms is

the protein. A large number of functions in living organ-

isms are governed by proteins. A protein can be regard-

ed as a sequence of amino acids. There are twenty

distinct amino acids, and so a protein can be regarded as

a sequence defined on an alphabet of size twenty. The

twenty letters used to denote the amino acids are the let-

ters from the English alphabet except B, J, O, U, X, and Z.

For example a part of the protein sequence could be

. . . PPV AC AT DE E D AF GG AY PQ . . .

Notice that some letters representing amino acids are

identical to some letters representing bases. For example

the A in the DNA is a base called adenine, and the A in the

protein is an amino acid called alanine.

If we assign numerical values to the four letters in the

DNA sequence, we can perform a number of signal pro-

cessing operations such as Fourier transformation [26, 3],

digital filtering [27], time-frequency plots such as wavelet

transformations [17], and Markov modelling [4]. Some of

those are quite interesting and in fact have important

practical applications. Similarly, once we assign numeri-

cal values to the twenty amino acids in protein sequences

we can do useful signal processing.
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Figure 1. (a) The DNA double helix, (b) linearized schemat-

ic, and (c) details of the sugar-phosphate backbone. In part

(b) bottom strand is complementary to the top strand in

the sense that A and T are paired and so are C and G. This

is because of a weak bonding called hydrogen bonding

between these pairs of molecules.



Scope and Outline

This magazine article is meant only to be an introduction.

The aim is to present a big picture with appropriate back-

ground information. The field is quite mature, and the

reader with serious interest should pursue some of the

references cited at the end of this article. For convenience

the references are categorized by topic.

Sections 2–5 contain brief but important background

material on DNA and proteins sequences. In Sec. 6 we

explain how Fourier techniques have played a role in

gene identification and protein analysis. Sec. 7 explains

the role of hidden Markov models in molecular biology.

We then discuss in Sec. 8 noncoding genes which have

been increasingly recognized for their important role in

nearly all life forms. A brief overview of issues involved

in computational identification of noncoding genes is

also presented. We conclude the paper with further

remarks on topics of recent interest. Overviews of some

of the important aspects of genomic signal processing

can be found in the introductory magazine-article by

Anastassiou [3] and in a recent journal article [8].

2. Some Fundamentals

Figure 1(a) shows a schematic for the DNA (deoxyribo

nucleic acid) molecule. This is in the form of a double

helix. The discovery of this double helix is one of the

landmarks of molecular biology (for detailed story, see

the box above). Between the two strands of the back-

bone which is outside, there are pairs of bases like the

rungs of a ladder. The backbone is a very regular struc-

ture made from sugar-phosphate. There are four types

of bases (or nucleotides), denoted with the letters A, C,

G, and T (respectively, adenine, cytosine, guanine, and

thymine). For completeness, the internal atomic

details of the molecules A, T, C, and G are shown in Fig-

ure 2. These molecules are made from carbon, nitro-

gen, hydrogen and oxygen atoms. There are about

three billion of these bases in the DNA of a single

human cell (Figure 3).

In Figure 1(b) the double helix is shown straightened

out for simplicity. The genome sequence corresponding

to the top strand of the DNA molecule in this example is

AGACTGAA. Note that the ordering is from the so-called
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T
he notion that there are specific factors (genes) that are passed

on to offspring probably started with the work of Gregor Mendel

around 1856. Nearly half a century later it became clear due to the

work of Walter Sutton (medical student, Columbia University) and T.

H. Morgan (also at Columbia), that these “factors” were located on

chromosomes which were known to contain proteins and DNA mole-

cules. In 1930 the DNA was shown to be a long molecule made of the

nitrogenous bases A, T, C and G.

In those days proteins were considered to be the “genes” that

carried hereditary information. In 1944, the experiments of O. T.

Avery (Rockfeller Inst., NY) showed that DNA, rather than protein,

carried genetic traits. For example when a virus attacks bacteria,

it is the viral DNA and not the protein that enters the bacteria and

changes its behavior. Alfred Hershey and Martha Chase verified

this experimentally (1952, Cold Spring Harbor). It was accepted

that genes were contained in the DNA; nothing was known about

their nature or how they worked.

In 1944, the famous physicist Schrodinger wrote a book entitled

What is Life, which inspired many young scientists. J. D. Watson

(born in Chicago, 1928) was among them. He was fascinated from

childhood by the mystery behind genes. Watson worked on bacte-

riophages or phages (viruses that attack bacteria) to receive his

Ph.D. at the young age of 22 from Indiana University, and later went

to the Cavendish Laboratories (Cambridge, England) for further

work. The following story is based on his own account of the histo-

ry of the double helix [9]. When Maurice Wilkins (King's College,

London) showed the X-ray diffraction pattern of DNA to Watson, he

got interested in finding the structure of the DNA—that would be

the only way to understand genes. Watson worked with Francis

Crick at the Cavendish. Earlier, Wilkins had showed the DN A X-ray

patterns to a theoretician (Alex Stokes) who said that the pattern

must have come from a helix. So Watson and Wilkins were sure it

would be a helix. But they thought it would be a triple helix

because of the estimated thickness and density known to Wilkins.

Around the same time (1951) Linus Pauling at Caltech (an all-

time great chemist) established the α-helix structure of the pro-

tein molecule. Pauling often worked on macromolecule problems

by playing with models which looked like preschool toys (made

from balls, sticks, and glue). The success of this method inspired

Watson to try a model building approach and hopefully prove that

the DNA indeed was a helix. In the meantime, Crick and Bill Cohran

(also at Cavendish) developed a theory for the X-ray diffraction

patterns from helical structures (the Crick-Cohran-Stokes theory

of helical diffraction) and verified that the theory was consistent

with Pauling's α-helix and its X-ray pattern. 

Watson and Crick soon built the triple helix model for DNA.

Wilkins and his colleague Rosalind Franklin from King's College, Lon-

don, visited them and argued that the triple helix was inconsistent

with the water content found in DNA (according to X-ray patterns

obtained by Franklin). This halted all efforts for a while.

STORY OF HOW THE DNA DOUBLE HELIX WAS DISCOVERED



5′ to the 3′ end (left to right). DNA sequences are typi-

cally listed from the 5′ to the 3′ end because they are

scanned in that direction when bases are used by the

cell machinery to signal the production of amino acids.

The reason for directed flow arises from the way the

sugar and phosphate are glued together (Figure 1(c)). In

the double stranded DNA, the base A always pairs with

T, and C pairs with G. Thus the bottom strand TCT-

GACTT is the complement of the top strand. This is

called the Watson-Crick base-pairing; it occurs through

a weak bond called the hydrogen bond [2] but because

there are several million base pairs, the two strands are

held together strongly. Typically in any given region of

the DNA molecule, at most one of the two strands is

active in gene expression (Sec. 3).

Single-celled organisms like bacteria do not have a

nucleus and the DNA just resides in the cell. Such cells are

called procaryotes; higher organisms (worms, insects,

plants, mammals, . . . ) have cells with nucleus and are

called eucaryotes. These have the DNA residing in the

nucleus. An exception is the red blood cell which has no

nucleus. Cells also have a small quantity of DNA in the

mitochondria; we shall not discuss this here.

The RNA (ribo nucleic acid) molecule is closely related

to the DNA. It is also made of four bases but instead of

thymine, a molecule called uracil is used (denoted as U).

The sugar in the sugar-phosphate backbone is also slightly

different but we do not require the details here. The impor-

tant fact is that U pairs with A by hydrogen bonding just

like T pairs with A. RNA molecules are short (and typically

short-lived) single-stranded molecules which are used by

the cell as temporary copies of portions of DNA (Sec. 3).

3. Genes and DNA

A DNA sequence can be separated into two types of

regions: genes and intergenic spaces. Genes contain the

information for generation of proteins. Each gene is

responsible for the production of a different protein as

shown schematically in Figure 4. Even though all the cells

in an organism have identical genes, only a selected sub-

set is active in any particular family of cells. For example

the set of genes that are active in blood cells are different
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At this time Watson learned that Erwin Chargaff (Columbia

University) had shown earlier that the concentration of the bases

A and T were the same in DNA samples. So were those of C and

G. Crick was slowly learning that A and T might stick by hydro-

gen bonding at their flat surface and so might C and G. There

were papers by Gulland and Jordan showing that there were lots

of hydrogen bondings even at low DNA concentrations. By com-

bining this with Chargaff's observation Crick realized that the

DNA molecule might have the bases paired up this way.

Pauling also got interested in finding the DNA structure, and

he too came up with a triple helix model! Watson quickly found

flaws in the chemistry of the structure: it would make the DNA

neutral rather than weakly acidic (as it had earlier been shown

to be). Watson shared this message with Wilkins and Franklin

during a visit. Wilkins also showed Watson the most recent X-ray

pictures of DNA taken by Franklin and her student Gosling. These

were great pictures of the B-form DNA taken with some metic-

ulous effort, and it immediately became obvious to Watson that

the molecule ought to have a helical structure. (They were

studying two forms of DNA, the crystalline (A form) and

paracrystalline (B form).) Later he could even deduce that it

implied 3.4 nm periodicity (Fig. 1).

Then Watson and Crick decided to build again models for

the DNA helix. This time they tried the double helix model first,

the joke being that all biological objects came in pairs [9].

From the 1951 work of Alexander Todd (Cambridge, England)

they knew that the backbone of the DNA molecule was very

regular (today known to be the sugar-phosphate backbone).

Watson and Crick first tried a model where like-bases stuck

together ( A with A, T with T, and so on) by hydrogen bond-

ing. This wrong path was chosen because they were using a

wrong chemical configuration for the bases called the enol

form. The American crystallographer Jerry Donohue at

Cavendish convinced them to use the so-called keto form in the

models. When attempting this, Watson made the most crucial

discovery that the base A in one strand had to pair with T in

the other. Similarly C and G would have to pair. Such pairs are

held together by hydrogen bonding, and furthermore have sim-

ilar shape. The resulting double helix was verified to be correct

stereochemically, in addition to being consistent with X-ray

diffraction patterns. It was also consistent with Chargaff's ear-

lier observation that some bases have identical concentrations

in DNA. The resulting model was readily accepted by Wilkins,

Franklin, and Pauling. “A structure as pretty as that just had to

be right!”

Watson and Crick had won the race. Their paper announcing

the double helix appeared in the journal Nature on April 25, 1953—

a one-page paper reporting one of the greatest discoveries of sci-

ence! In 1962 when Watson was 34, he shared the Nobel prize for

Physiology or Medicine with Crick and Wilkins.



from those that are active in nerve cells, which explains

why these cells look so different! See Figure 5.

Figure 6 shows some of the steps involved in the pro-

duction of a protein from a gene. Notice that a gene has

two types of subregions called the exons and introns

(procaryotes like bacteria do not have introns).2 The

gene is first copied into a single stranded chain called

the messenger RNA or mRNA molecule. The introns are

then removed from the mRNA by a process called splic-

ing. The spliced mRNA is then used by a large molecule

called the ribosome to produced the appropriate pro-

tein. The translation from mRNA to protein is aided by

adaptor molecules called the transfer RNA or tRNA mol-

ecules. In some sense the tRNA molecules store the

genetic code as we shall see in  Sec. 4. Ribosomes are
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Figure 2. Internal atomic details of the bases adenine and thymine (a), guanine and cytosine (b). These molecules are made

from carbon, hydrogen, oxygen and nitrogen (hence called nitrogenous bases). Note that A and G have two rings and are called

purines. The molecules C and T have one ring and are called pyramidines.

2 The existence of introns came to the attention of the scientific commu-

nity only in 1977 [2].



often referred to as the protein factories of the cell.

There are many ribosomes in a cell working in parallel

like molecular machines.

Many details are omitted in Figure 6 for brevity. For exam-

ple the mRNA is in reality the complement of the gene, that

is, Cs are replaced with Gs, and As with Ts (rather Us). Thus,

if the gene is ATTAGC then the mRNA is UAAUCG. There is a

second level of complementing

which cancels this when the mRNA

attaches to tRNA molecules at the

so-called anticodon sites.

The observation that each gene

is responsible for the creation of a

protein (through mRNA) is often

expressed as

gene in DN A → RN A → protein

and is referred to as the central

dogma of molecular biology. We will

see in Sec. 8. that the dogma has

been challenged in recent years.

4. The Genetic Code

How does the cell know what pro-

tein to make from a particular gene?

This information is contained in a

code which is common to all life.

Recall that the gene gets duplicated

into the mRNA molecule which is

then spliced so that it contains only

the exons of the gene. Imagine that

this spliced mRNA is divided into

groups of three adjacent bases. Each

triplet is called a codon. Evidently

there are 64 possible codons. Thus

the mRNA is nothing but a sequence

of codons. Each codon instructs the

cell machinery to synthesize an

amino acid. The codon sequence therefore uniquely identi-

fies an amino acid sequence which defines a protein. This

mapping is called the genetic code and is shown3 in Figure
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Writing Out the Human
DNA Sequence in a
Single Cell …

Earth

Sun

ACTTAAGGCCAAAGATCAGG ...

Physical Size of DNA in all Cells
in a Human. Many Trips to the Sun ... 

CD-R

Figure 3. A feeling for sizes . . . The DNA in the nucleus of a single human cell is

about 3 billion bases long (and is organized into 46 chromosomes). For typical bac-

teria the DNA is about 4 million bases long. If the DNA in a human cell is stretched

out like a piece of string, it stretches out to 2 yards! If we put together all DNA in

all the (5 trillion) cells in an average human, the length is sufficient to cover the dis-

tance from earth to the Sun (93 million miles), about 50 times. If we were to write

down each base using normal letter size, the DNA in a single human cell would fill

about 2000 novels. If the three billion bases in a human genome are stored digital-

ly using two bits to code each base location (of four possible bases), the total is 6

billion bits or equivalently 750 Mega bytes (roughly the capacity of a standard CD).

A typical cell nucleus which is one hundredth of a millimeter across can store as

much information as does a CD!

1 3

Intergenic Space

Protein 1 Protein 3Protein 2

DNA
Sequence

Genes

2

Figure 4. Genes are parts of the DNA sequence, and are

responsible for the production of proteins. According to clas-

sical view (central dogma of biology) each gene produces a

specific protein. See text.

Brain Cell Red Blood Cells

Figure 5. Brain cells and red blood cells. Cells look very 

different from each other because of the different sets of

genes expressed in them. See www-biology.ucsd.edu/

news/article_112901.html and www.cellsalive.com/gallery.

htm for real micrographs.

3 We have used T instead of U because the original gene has T. In fact, we

will use U and T rather interchangeably; the context will make the dis-

tinction clear.



7. Since there are 64 possible codons but only 20 amino

acids, the mapping from codons to amino acids is many-to-

one (Figure 8). The story of how the genetic code was

cracked is summarized in the box on page 14.

When a gene is expressed, each codon in the mRNA

produces an amino acid according to the genetic code,

and the amino acids are bonded together into a chain.

Figure 9 shows an example of how mRNA is converted to

protein using the genetic code.

When all the codons in the mRNA

are exhausted we get a long chain

of amino acids (typically a few

hundred long). This is the protein

corresponding to the original

gene. Notice that there is a start

codon ATG which signifies the

beginning of the protein-coding

part of the gene. If a start codon

occurs inside a gene again, it pro-

duces the amino acid methionine.

A stop codon signifies that the

protein coding part of the gene

has come to an end. There are

three stop codons. The chemical

bond between amino acids is a

covalent peptide bond. Figure 10

shows examples of two amino

acids and the resulting bond.

The translation of the codons

into amino acids is made physi-

cally possible by adaptor mole-

cules called transfer RNA or tRNA

molecules. There are more than

20 kinds of tRNA molecules in the

cell (at least one for each amino

acid). One end of the molecule

matches a specific codon and the

other end attaches to the corre-

sponding amino acid. See Figure

11. The molecule ribosome (Sec.

3) works in conjunction with

tRNA molecules and mRNA to

produce the protein. So it is clear

that the genetic code is essential-

ly stored in the tRNA molecules.

It is a wonder of Nature that all

life forms (from bacteria to mam-

mals) use the same genetic code.

This is no doubt due to the com-

mon origin of all life. Can one

change Nature’s genetic code?

Apparently this is not impossible.

Recall from Figure 7 that the stop

codon TAG produces no amino acid. In 2001 Wang and

Schultz added enough biological machinery in E. coli bac-

teria to enable it to synthesize a new amino acid from

TAG. In 2003 they showed how this amino acid can be

inserted in a E. coli protein made with natural amino

acids. The same idea was successful in yeast. It has been

suggested by some authors that such new proteins could

be the key to destroying cancerous cells quickly. A Scien-
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1 3 5 Reduced  mRNA (Introns Removed by Splicing)
A,C,U,G
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Attaches to tRNA Molecules and
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by Ribosome Molecules in Cell (Translation)
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2 4

DNA
Sequence

Exons

Genes

Introns

2 4

Figure 6. When a gene is ready to be expressed, it is duplicated in the form of a single-

strand molecule called the mRNA (messenger RNA) which then leaves the nucleus. The

introns are spliced out and a shorter mRNA molecule is produced. Thus, unlike the par-

ent gene, the mRNA is a concatenation of the exons only. It is used by ribosomes out-

side the nucleus of the cell to manufacture the appropriate protein coded by the

original gene. Thus protein production involves the transcription of genes into mRNA

and the subsequent translation of the 4-letter language to a 20-letter language.

AAA: K (Lys) GAA: E (Glu) TAA: Stop CAA: Q (Gln)
AAG: K (Lys) GAG: E (Glu) TAG: Stop CAG: Q (Gln)
AAT: N (Asn) GAT: D (Asp) TAT: Y (Tyr) CAT: H (His)
AAC: N (Asn) GAC: D (Asp) TAC: Y (Tyr) CAC: H (His)

AGA: R (Arg) GGA: G (Gly) TGA: Stop CGA: R (Arg)
AGG: R (Arg) GGG: G (Gly) TGG: W (Trp) CGG: R (Arg)
AGT: S (Ser) GGT: G (Gly) TGT: C (Cys) CGT: R (Arg)
AGC: S (Ser) GGC: G (Gly) TGC: C (Cys) CGC: R (Arg)

ATA: I (Ile) GTA: V (Val) TTA: L (Leu) CTA: L (Leu)
ATG: M (Met) GTG: V (Val) TTG: L (Leu) CTG: L (Leu)
ATG = Start
ATT: I (Ile) GTT: V (Val) TTT: F (Phe) CTT: L (Leu)
ATC: I (Ile) GTC: V (Val) TTC: F (Phe) CTC: L (Leu)

ACA: T (Thr) GCA: A (Ala) TCA: S (Ser) CCA: P (Pro)
ACG: T (Thr) GCG: A (Ala) TCG: S (Ser) CCG: P (Pro)
ACT: T (Thr) GCT: A (Ala) TCT: S (ser) CCT: P (Pro)
ACC: T (Thr) GCC: A (Ala) TCC: S (Ser) CCC: P (Pro)

Figure 7. The genetic code. Triples of bases such as AAA denote codons. The single let-

ters such as K denote amino acids. Their three letter names (e.g., Lys) are also shown.

Full names of amino acids can be found in Figure 8.



tific American article which appeared in

May 2004 describes some of these areas of

research [44].

5. Proteins

Because of the innumerable combina-

tions from the alphabet of 20 amino

acids, the number of different proteins in

living organisms is enormous. Proteins

drive most of the biological processes in

living organisms. Enzymes, for example,

are proteins with a special role, namely

the speeding up of biochemical reactions

in living organisms. Fibers in tendons

and ligaments, components of hemoglo-

bin (oxygen carrier in red blood cells),

myosin in muscle cells (motor protein),

ferritin in the liver, rhodopsin in retina

(light detector) and hormones such as

insulin, gastrin, and glucagon, are all pro-

teins. When a protein is left in a watery

medium it automatically folds into a spe-

cific three dimensional structure, which

depends almost entirely on the amino

acid sequence defining the protein (the

pH or acidity of the watery medium is

also important). The 3D shape of a pro-

tein allows it to interact only with very

specific molecules in the cell, and this is

important for the proper functioning of

proteins.4 In fact protein folding is

a major area of research by itself.

For example, given the amino acid

sequence alone, can we predict

the 3D folded shape using physics

and mathematics alone? Figure 12

shows a computer drawing of the

protein hemoglobin which is made

of four smaller proteins [2]. Like

DNA, proteins are macro mole-

cules. The average protein is

about 40,000 times heavier than a

hydrogen atom. We will say more

about the signal processing

aspects in Sec. 6.3.

The discovery of the double

helix also solved another mystery of molecular biology:

it suggested how the huge DNA is replicated accurately

in cell division. Namely, the double strand separates or

unzips into two single strands each of which serves as a

mold to form a new complementary strand. (The unzip-

ping process is also present locally when a gene is

copied into an mRNA (Figure 13)). Each single strand

quickly manufactures the complementary strand from

bases floating around in the cell. This was later verified
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1 A Ala Alanine GCA, GCC, GCG, GCT

2 C Cys Cysteine (has S) TGC, TGT

3 D Asp Aspartic acid GAC, GAT

4 E Glu Glutamic acid GAA, GAG

5 F Phe Phenylalanine1 TTC, TTT

6 G Gly Glycine GGA, GGC, GGG, GGT

7 H His Histidine2 CAC, CAT

8 I Ile Isoleucine3 ATA, ATC, ATT

9 K Lys Lysine4 AAA, AAG

10 L Leu Leucine5 TTA, TTG, CTA, CTC, CTG, T

11 M Met Methionine6 (has S) ATG

12 N Asn Asparagine AAC, AAT

13 P Pro Proline CCA, CCC, CCG, CCT

14 Q Gln Glutamine CAA, CAG

15 R Arg Arginine7 AGA, AGG, CGA, CGC, GG, GT

16 S Ser Serine AGC, AGT, TCA, TCC, TCG, TCT

17 T Thr Threonine8 ACA, ACC, ACG, ACT

18 V Val Valine9 GTA, GTC, GTG, GTT

19 W Trp Tryptophan10 TGG

20 Y Tyr Tyrosine11 TAC, TAT

Figure 8. A list of the twenty amino acids, and codons which generate them

(from Fig. 7). For example the amino acid alanine (A) can be generated by any

one of four possible codons GCA, GCC, GCG, or GCT. The superscipts 1 to 11

indicate the eleven essential amino acids (some references say there are

fewer than eleven). These by definition are the amino acids animals cannot

manufacture—they need to eat them. Milk provides all essential amino acids,

and so does a combination of grains and beans.

4 For example, the enzyme thrombin reacts only with the protein fibrino-

gen (which is a part of the blood clotting process). There are exceptions

too: the digestive enzymes pepsin and chymotrypsin act on almost any

protein they encounter. The Encyclopedia Britannica contains a wealth of

information on this topic.

A I N L Protein

ATG  GAA  GTG  GCA  ATG  ATC  CTG  AAT  TTA  ACG  TAC  TAG Gene

E

5’ End 3’ End

Codon for
Glu (E)

Start
Codon

Stop
Codon

V M L YT

Figure 9. A toy example showing how a sequence of codons gets translated to a pro-

tein, ten amino-acids long. In most cases genes are much longer (thousands of

bases); proteins have several hundred amino acids. Notice that if a base is deleted by

accident somewhere in the middle, then all the codons following that point are

changed, possibly changing all the amino acids that follow. If an entire codon is delet-

ed, it is like deleting an amino acid; nothing else changes.
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by Matt Meselson and Frank Stahl, sometime after 1954,

in an experiment considered to be one of the most beau-

tiful experiments in biology. The accuracy of duplication

is phenomenal because of the self error correcting

mechanism (called mismatch-pair system) implicit in

the cell [2]. The probability of error is about 10−9
. Com-

pare this to a average typist (1 error per typped page) or

the postal system (10 late deliveries out of every. . . ).

Such accuracy is necessary in gene reproduction

because even small changes in the DNA (mutations,

insertions, deletions) can change the proteins made by

the genes dramatically. For example, sickle cell anemia

is created because of a single error in a gene (see Figure

14). On the other hand there are examples where even

multiple errors do not change the protein (because the

codon to amino acid mapping has redundancy, Figure 8.

So the cell has built-in tolerance for errors; the example

of sickle cell anemia is rather unusual.

6. Filtering and Transform-Domain

Methods in Genomics and Proteomics

The application of Fourier transform techniques has

been found to be very useful both for DNAs and protein

sequences. First it is convenient to introduce indicator

STORY OF HOW NATURE'S GREATEST CODING MYSTERY WAS CRACKED

P
erhaps the earliest proposal that genes did their work by generating proteins came in 1941 from Beadle and Tatum at Stanford. They

worked with mold which grew on bread and argued that X-rays create changes (mutations) in some genes, affecting the generation of

certain proteins (enzymes, to be specific). About ten years later, Linus Pauling and Harvey Itano at Caltech had evidence, based on their

work on hemoglobin proteins, that each protein might have an associated gene. They showed sickle cells were caused by one single change

in the amino acid chain (see Fig. 14). Then the famous physicist George Gamow proposed many possible mappings from DNA to protein, but

nothing worked for a while.

The prediction that there ought to be an intermediate RNA molecule between DNA and protein was made first by Watson even before

the double helix was invented. From this arose the central dogma of biology (Sec. 3) which is often credited to Crick who did much to pop-

ularize it. In a 1955 private communication to the RNA tie club members (a club founded by George Gamow [10]) Crick suggested that there

ought to be an adaptor molecule for every amino acid, later found to be the tRNA. But the way in which it turns DNA into protein was not

clear. In 1959 an enzyme called the RNA polymerase was discovered. It was involved in the production of single stranded RNA from double

stranded DNA. The great moment came when the ribosome was discovered at the Massachusetts General Hospital, Boston. Here Paul

Zamecnik was studying cell-free protein synthesis and could track amino acids radioactively. He found that they were being strung togeth-

er at the sites of small molecules in the cell today known as the ribosomes. Zamecnik then worked with Mahlon Hoagland and showed that

before these amino acids were assembled into a chain at the ribosome they were attached to some small RNA molecules. Watson and Crick

pointed out that these ought to be the adaptors they were looking for, today known as the transfer RNA or tRNA molecules. The messen-

ger RNAs (mRNAs) were verified to be the templates for proteins synthesis only in 1960. Details of the complete story (starting from the

DNA through mRNA to protein) was worked out at Harvard, Caltech, and Cambridge (Watson, Matt Meselson, Francois Jacob, and Sydney

Brenner).

The code that translates portions of DNA into specific sequences of amino acids came up next. Since there are only four choices for

bases in DNA, a single base is not enough to specify one out of 20 amino acids. A sequence of three consecutive bases has 43
= 64 com-

binations, so Sydney Brenner proposed that the transcription from the 4-letter DNA to the 20-letter protein takes place through triplets

of bases (now called codons), each triplet specifying one amino acid. In 1961 Brenner and Crick at the Cambridge Labs then proved this

experimentally, by deleting or inserting base pairs in DNA and seeing the effect on the resulting amino acid sequences. This was the first

experimental proof of the existence of codons. The ability to force artificial mutations (insertion, deletion and alteration of bases) was cru-

cial to these experiments. Also crucial was the fact that protein synthesis could be performed outside the cell in a test tube using a good

supply of ribosomes, amino acids, transfer RNAs and a source of energy. Such a system would manufacture the proteins that correspond

to an mRNA introduced into the test tube.

In 1961 Marshall Nirenberg from the National Institute of Health revealed at a conference in Moscow that the triplet TTT produces the

amino acid phenylalanine (Phe or F). He found this by using the RNA molecule UUUUUU . . . (called poly-U) in a cell-free synthesis of

amino acids. Thus 1/64th of the genetic code had been cracked. Still there remained 63 triplets of bases for which the resulting amino

acids had to be found out. This was completed in 1966 by Gobind Khorana at U. Wisconsin, and the complete genetic code had been

cracked! The results were presented at the 1966 Symposium on genetic code in Cold Spring Harbor. The Nobel prize for this work went

to Khorana, Nirenberg and Holley in 1968.



sequences for bases in DNA. For example the indicator

for base A is a binary sequence of the form xA(n) =

000110111000101010 . . . , where 1 indicates the presence

of an A and 0 indicates its absence. The indicator

sequences for the other bases are defined similarly.

Denote the discrete Fourier transform [64] or DFT of a

length-N block of xA(n) as X A[k], that is,

X A[k] =
∑N−1

n=0 xA(n)e− j2πkn/N , 0 ≤ k ≤ N − 1. The DFTs

XT [k], XC [k], and XG[k] are defined similarly.

6.1 Identifying Protein Coding Genes

It has been noticed that protein-coding regions (exons) in

genes have a period-3 component because of coding biases

in the translation of codons into amino acids. This obser-

vation can be traced back to the 1980 work of Trifonov

and Sussman [35]. The period-3 property is not present

outside exons, and can be exploited to locate exons [3,

26]. Thus if we take N to be a multiple of 3 and plot

S[k]
�
= |X A[k]|2 + |XT [k]|2 + |XC [k]|2 + |XG[k]|2 (1)

then we should see a peak at the sample value k = N/3

(corresponding to 2π/3). Given a long sequence of bases

we can calculate S[N/3] for short windows of the data,

and then slide the window. Thus, we get a picture of how

S[N/3] evolves along the length of the DNA sequence. It

is necessary that the window length N be sufficiently

large (typical window sizes are a few hundreds, e.g., 351,

to a few thousands) so that the periodicity effect domi-

nates the background 1/f spectrum (Sec. 6.2). However,

a long window implies longer computation time, and also

compromises the base-domain resolution in predicting

the exon location.

The sliding window method can be regarded as digital

filtering followed by downsampling (at a rate depending

on the separation between adjacent positions of the win-

dow [67]). The filter has a simple impulse response 

w(n) =

{

ejωon 0 ≤ n ≤ N − 1

0 otherwise.

This is a bandpass filter with passband centered at
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Figure 10. (a) Examples of two amino acids, and (b) bonding of these two amino acids, with consequent release of a water mole-

cule. Like bases, amino acids are also made from carbon, hydrogen, oxygen, and nitrogen. Some of them also have sulfur (as indi-

cated in Figure 8).
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Figure 11. Example of a transfer RNA molecule in yeast. The

bases are numbered from 1 to 76. Only a particular codon can

match perfectly with the anticodon, and can therefore be

associated with the specific amino acid that is able to attach

to the tRNA at the top end. In this manner, the tRNA mole-

cules store the genetic code in the cell.



ω0 = 2π/3 and minimum stopband attenuation of about

13 dB (Figure 15). If we pay careful attention to the

design of the digital filter, we can isolate the period-3

behavior from background information such as 1/f noise

more effectively. We can also use efficient methods to

design and implement the filter, thereby reducing com-

putational complexity.

Based on these observations, a number of methods

have been proposed for designing digital filters suited to

gene prediction application [27], [28]. We show in Figure

16 the exon prediction results for gene F56F11.4 in the C.

elegans chromosome III. This gene has five exons. The

first plot uses the DFT based spectrum using a sliding

window. The five peaks corresponding to the exons can

be seen clearly. The second plot uses a multistage filter

H(z) similar to the IFIR filter advanced by Neuvo et al.

[63]. Notice that the background noise (due to 1/f behav-

ior, Sec. 6.2) has been removed almost completely and

the five exons can be seen clearly. Further design details

can be found in [28] and in a recent tutorial article [8].

Some authors have claimed that the period-3 proper-

ty is due to nonuniform codon usage, also known as

codon bias; even though there are several codons which

code a given amino acid (Figure 8), they are not used

with uniform probability in organisms. For example,

base G dominates at certain codon positions in the cod-

ing regions [31]. We have, in fact, observed experimen-

tally that the use of the plot |XG(k)|2 , which depends on

base G alone, is often quite sufficient for revealing the

period-3 property, and therefore for the prediction of

protein coding regions.

Does the method always work? Tiwari et al. [26] have

observed that some genes do not exhibit period-3 behav-

ior at all in S. cerevisiae. Furthermore, for procaryotes

(cells without a nucleus), and some viral and mitochon-

drial base sequences, such periodicity has even been

observed in noncoding regions [33]. For this and many

other reasons [23], gene identification is a very complex

problem, and the identification of period-3 regions is only

a step towards gene and exon identification. Hidden

Markov models (Sec. 7) have been used quite successful-

ly for this application [24].

6.2 Long Range Correlations or 1/f Behavior

The period-3 behavior described above indicates a

strong short-term correlation in the coding regions.

But there is also a long-range correlation exhibited by

DNA sequences both in the gene regions and interge-

netic regions. One of the earliest papers to point this

out appeared in Nature in 1992 [34]. The study made

was based on a concept called the DNA walk. Latter

studies by other authors examined correlations over
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Figure 12. Pasta dish? No, it is an example of a protein

(Hemoglobin, human). Figure taken from the website

www.biochem.szote.u-szeged.hu/astrojan/protein2.htm, gen-

erated by the program MOLMOL (Koradi et al., 1996). See 

reference [15].
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Figure 13. Unzipping of a DNA sequence to produce an mRNA copy of a selected region. This occurs during gene expression.

Note that the mRNA strand is complementary to the DNA, that is A is replaced with a T (rather U which is similar) and vice versa;

similarly C is replaced with G and vice versa. A similar unzipping separates the two DNA strands completely during cell division.



much longer regions which contained many genes.

Long range correlations have been found both in cod-

ing and noncoding regions [39]. According to Fourier

transform theory, long range correlation implies that

the Fourier transform has 1/f -behavior in low frequen-

cy regions [65].

Another early work on the topic was the 1992 paper by

Richard Voss [37] who was perhaps also the first person

to define indicator sequences for bases, and calculate the

deterministic autocorrelation. For example, letting xA(n)

be the indicator for base A, the autocorrelation is

rA(k) =
∑

n xA(n)xA(n − k), and the Fourier transform

S A(e jω) of this is the power-spectrum for base A. Notice

that S A(ejω) = |X A(ejω)|2. Voss analyzed the human

Cytomegalovirus strain AD169. The genome length was

N = 229, 354. The lowest meaningful frequency5 can be

regarded as 1/N which is slightly smaller than 0.5 ∗ 10−5.

Voss demonstrated that the power spectrum has power-

law or 1/f β behavior for each of the four indicator

sequences (for appropriate β close to unity). Later stud-

ies have indicated that such long range correlation is

valid even further, extending to several millions of bases

[36] (i.e., the 1/f behavior extends to even smaller fre-

quencies). Figure 17 shows the power spectrum S A(e jω)

for base A for the first one-million bases of an entire bac-

terial genome of length about 1.55 million. The organism

is called Aquifex aeolicus, and its genome can be found in
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CTG  ACT  CCT  GAG   GAG  AAG TCT

CTG  ACT  CCT  GTG  GAG  AAG  TCT

leu thr pro glu glu lys ser

leu thr pro val glu lys ser

Normal Gene

Mutant Gene

Figure 14. Cause of sickle-cell anemia. A gene called HBB in

human chromosome 11 creates the protein beta globin in the

hemoglobin of red blood cells. This gene is 1600 base long. A

single mutation (or base-change) in this gene gives rise to

sickle-cell anemia. The figure shows portions of the normal

gene and mutated gene. The codon GAG is changed to GTG,

which means that the amino acid changes from glutamic acid

to valine. This single change in the amino acid chain makes a

crucial corner of the 3D protein molecule hydrophobic (water

hating), and causes hemoglobin molecules to stick together

and create rigid fibres.

ω

2π/ 3

Corresponds
to 13 dB

2π

W(ejω)

Figure 15. Computation of DFT with a sliding window is

equivalent to lowpass digital filtering. The frequency

response magnitude is as shown, and offers about 13 dB

stopband attenuation.
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Figure 16. Left plot: the DFT based spectrum S[N/3] for gene F56F11.4 in the C. elegans chromosome III. Right plot: the multi-

stage narrowband bandpass filter output [28] for the same gene. The multistage filter does a very good job of eliminating the

1/f component in the DNA spectrum, and the exon regions are revealed more clearly.

5 Recall that the sample spacing for indicator sequences is normalized to

be unity, so the highest frequency π corresponds to 0.5.



public websites such as the gene bank [29]. There were

0.5 million samples of S A(e jω) in 0 ≤ ω ≤ π . The plot

shows a slightly smoothed version with a sliding rectan-

gular window of length 33. Notice that this is a log-log

plot and the variations near zero-frequency can be seen

clearly. The 1/f behavior continues till very low frequen-

cies, flattening out only as we get really close to zero fre-

quency. Notice also the thin line representing a sharp

peak near the right edge of the plot. This corresponds to

the peak at 2π/3 due to period-3 property in the coding

regions. More examples can be found in [36]. Li has writ-

ten a comprehensive review paper on this topic [33], and

has also observed [32] that the 1/f behavior in natural

phenomena can be traced to the so-called duplication-

mutation model (see Figure 18).

In addition to the overall 1/f behavior of DNA

sequences, and the period-3 property in protein coding

regions, it has been observed by many authors that DNA

molecules also have components of period 10 to 11 (see

[31] and references therein). In [31] it is argued that this

periodicity can be attributed to an alternation property in

protein molecules. This arises from the fact that the

hydrophilic and hydrophobic regions (water loving and

water hating regions) alternate at a certain rate in the

three-dimensional folded form.

6.3 Fourier Transforms of Protein Sequences

The ability of a protein to interact selectively with other

molecules is of fundamental importance to protein func-

tioning. This ability comes from the very sophisticated

3D shape assumed by a protein depending on its amino

acid sequence (e.g., Figure 12, Sec. 5). There are specific

sites in the 3D structure called hot spots where certain

other molecules can conveniently bind to the protein

(see the cartoon demonstration in Figure 19). A protein

molecule typically has many functions (many hot spots).

Given a collection of proteins, suppose they all have one

function in common. Is there a mathematical way to iden-

tify this commonality simply by analyzing the amino acid

sequence? Yes indeed, based on Fourier techniques [12].

With each one of the twenty amino acids it is possible

to associate a unique nonnegative

number called the average electron-

ion interaction potential (EIIP). The

physical basis for this is explained

in [12] and references therein. The

EIIP values are shown in Figure 20

and plotted in increasing order in

Figure 21. Given a protein, we can

associate with it a numerical

sequence x(n) such that x(n) is

equal to the EIIP value of the nth

amino acid. The argument n can be

regarded as equispaced distance

(≈3.8 Å or 0.38 nm, the spacing

between amino acids).

Let X (ejω) =
∑N−1

n=0 x(n)e− jωn be

the Fourier transform of x(n),

where N is the number of the

amino acids in the protein. Usually

a plot of |X (ejω)| does not reveal

much (e.g., see top plots in Figure

22). Now assume that we have a
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Figure 17. Demonstration of 1/f spectrum. The 1/f behavior

extends to very small frequencies indicating very long range

correlation.

This Has the 1/f Property!

• Start from a Short Binary Seed s(n).

• Concatenate the Result to s(n). 

• Duplicate and Mutate Randomly with
   Small Error Probability p 

...• Keep Repeating This to Get the Long
  Sequence x(n).

Figure 18. When life started on earth the DNA molecules were short (few thousand

bases). As evolution progressed, the molecules went through a lengthening process-

es which involved duplication and mutation. Imagine we have a character string s(n)

of length L. Suppose we duplicate it and then make some random changes of certain

characters (from the same alphabet), and concatenate the result to the original s(n)

to form a sequence that is twice as long. Further repetition of duplication and muta-

tion quickly results in a very long sequence comparable to today's DNA molecules. It

can be shown that repeated application of the duplication-mutation process results

in 1/f behavior in the spectrum [32].



group of proteins. Each protein may have several bio-

logical functions but assume that there are some func-

tions that are common to all these proteins. Define the

magnitude of the product of the Fourier transforms

associated with these proteins as follows:

P(ejω) = |X1(e
jω) X2(e

jω) . . . XM (ejω)|. It has been

observed through extensive experiments that if a group

of proteins has only one common function then the

product spectrum P(ejω) has one significant peak (bot-

tom plot, Figure 22). This corresponds to the statement

that there are common periodic components in the EIIP

sequence in the amino acid domain. The physical basis

for this arises from the so-called resonant recognition

between proteins and their targets [12]. The product

P(ejω) has been referred to as the consensus spectrum

among the group of proteins used in its definition. The

frequency where the peak occurs is called the charac-

teristic frequency for the particular protein group. For

example, the characteristic fre-

quency is 0.0234 for hemoglo-

bins and 0.3203 for glucagons

(frequencies are normalized to

be in the range [0, 0.5] as in

standard DSP practice).6

Assume we have identified

that a certain function of a pro-

tein is associated with the char-

acteristic frequency f1. Is it

possible to identify the amino

acids that are primarily respon-

sible for that function (i.e., iden-

tify the hot spots in the 3D

protein structure which are

responsible for one particular

function)? This is tricky because the value of a Fourier

transform at a given frequency depends on all the

time-domain samples. Transforms which offer a local

basis such as the wavelet transformation and short

time Fourier transformation are more convenient and

have been successfully used for this [17], [18]. A

detailed study of the use of wavelet transforms in pro-

tein structures can be found in the recent paper by

Murray et al. [16]. The impact of the use of signal pro-

cessing tools here could be significant. One advantage

of being able to identify a characteristic frequency

with a particular functionality is that it is then possi-

ble to synthesize artificial amino acid sequences or

peptides (short amino acid sequences). These could

be potentially useful in medicine [17].

7. Role of Hidden Markov Models

Markov models are very useful to represent families of

sequences with certain specific properties. To explain the

idea consider Figure 23(a) which shows a part of a DNA

sequence. The base A appears a few times, and it can be

followed by an A, C, T, or a G. Given a long DNA sequence

we can count the number of times the base A is followed

by, say, a G. From this we can estimate the probability that

an A is followed by a G. If this probability is 0.3 for exam-

ple, we indicate it as shown in Figure 23(b). The figure also

shows examples of probabilities for A to transition to

other bases, including itself. The first row of the matrix in

Figure 23(c) shows the four probabilities more compactly

(notice that their sum is unity). Similarly the probabilities

that the base C would transition into the four bases can be

estimated, and is shown in the second row of the matrix.

This 4 × 4 matrix is called a state transition matrix, and is

denoted as ���. Figure 23(b) is called a Markov model. The

four states in this model are A, C, T, and G. Given a
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Some Other
Molecule

Protein

Figure 19. Toy cartoon, showing how the surfaces of certain

protein molecules fit like puzzle pieces when they interact.

1 A Ala Alanine 0.0373

2 C Cys Cysteine 0.0829

3 D Asp Aspartic acid 0.1263

4 E Glu Glutamic acid 0.0058

5 F Phe Phenylalanine 0.0946

6 G Gly Glycine 0.0050

7 H His Histidine 0.0242

8 I Ile Isoleucine 0.0000

9 K Lys Lysine 0.0371

10 L Leu Leucine 0.0000

11 M Met Methionine 0.0823

12 N Asn Asparagine 0.0036

13 P Pro Proline 0.0198

14 Q Gln Glutamine 0.0761

15 R Arg Arginine 0.0959

16 S Ser Serine 0.0829

17 T Thr Threonine 0.0941

18 V Val Valine 0.0057

19 W Trp Tryptophan 0.0548

20 Y Tyr Tyrosine 0.0516

Figure 20. Electron-ion interaction potentials (EIIP) value for the twenty amino acids

[12].

6 Hemoglobins are oxygen carriers in the red blood cells. Glucagons are

protein hormones generated in the pancreas, and affect glucose level in

blood.



sequence or a set of sequences of “similar kind” (e.g., a

long list of exons from several genes) the parameters of

the model (the transition probabilities) can readily be

estimated. The process of identifying the model para-

metes is called training the model. In all discussions it is

implicitly assumed that the probabilities of transitions are

fixed and do not depend on past transitions.

Suppose we are given a Markov model (i.e., ��� given).

Given an arbitrary state sequence x = [x(1),

x(2), . . . , x(L)] we can calculate the probability that x has

been generated by our model. This is given by the product

P(x) = P(x(1)) × P(x(1) → x(2)) × P(x(2) → x(3))

× . . . × P(x(L − 1) → x(L))

where P(x(k) → x(m)) is the transition probability for

going from x(k) to x(m), and can be found from the matrix

���. The usefulness of such computation is as follows:

given a number of Markov models (���1 for introns, ���2 for

exons, and so forth) and given a sequence x, we can cal-

culate the probabilities that this sequence is generated

by any of these models. The model which gives the high-

est probability is most likely the model which generated

the sequence.

A hidden Markov model (HMM) is obtained by a slight

modification of the Markov model. Thus consider the

state diagram shown in Figure 24(a) which shows three

states numbered 1, 2, and 3. The

probabilities of transitions from

the states are also indicated, result-

ing in the state transition matrix ���

shown in Figure 24(b). When the

system is in a particular state, it

can output one of four possible

symbols, namely A, T, C, or G, and

there is a probability associated

with each of these. This is demon-

strated in Figure 24(c), and sum-

marized more compactly in the

so-called output matrix ��� shown

in Figure 24(d). To give an example

of how HMMs might be useful, we

can imagine that state 1 corresponds

to exons, state 2 to introns, and state

3 to intergenic spaces. In each of

these states, the probabilities of tran-

sitions between bases could be dif-

ferent.

In order to apply the hidden

Markov model theory successfully

there are three problems that

need to be solved in practice [6]. These are listed below

along with names of standard algorithms which have

been developed for these.

1 Given an HMM (i.e., given the matrices ��� and ���)

and an output sequence y(1), y(2), . . . , compute the

state sequence x(k) which most likely generated it.

This is solved by the famous Viterbi's algorithm.

2 Given the HMM and an output sequence

y(1), y(2), . . . , compute the probability that the

HMM generates this. The forward-backward algo-

rithm solves this.

3 The third problem is training: how should one

design the model parameters ��� and ��� such that

they are optimal for an application, e.g., to repre-

sent exons? The most popular algorithm for this

is the expectation maximization algorithm com-

monly known as the EM algorithm or the Baum-

Welch algorithm.

Further details on these algorithm can be found in [6].

The theory of HMMs has been applied successfully to

gene identification, to identification of special regions of

DNA such as CpG islands, and to DNA sequence align-

ment. There are many good references which explain the

use of HMMs in molecular biology. A good start would be

to look at [24], [25], [7], and [4], and then proceed to ref-

erences therein. As for basics, there are excellent tutori-

als and books which explain the theory of Hidden Markov
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models. The paper by Rabiner in the Proceedings of the

IEEE [6] has been widely cited in the molecular biology lit-

erature. The books by Rabiner and Juang [66] and by

Jelinek [61] give wonderful exposure to the theory and its

applications in speech recognition.

8. Non Coding Genes and ncRNA

The most common meaning associated with genes dur-

ing the four decades following the discovery of the dou-

ble helix was that genes are those parts of the DNA

sequence that code for proteins (Sec. 3). But it has

become increasingly clear in the last ten years that

there are portions of DNA which are transcripted to RNA

sequences that do not get translated to proteins. These

are called noncoding RNA or ncRNA, and the portions of

DNA which generate them are called noncoding genes.

Many of these are located in the intergenic space (space

between protein coding genes). Indeed ncRNAs have

been known for many years, the transfer RNA (tRNA)

and ribosomal RNA (rRNA) being classic text-book

examples [2]. However, the recognition that there are

many different ncRNAs and that noncoding genes play a

hereditary role is more recent. The fact that noncoding

genes have such tremendous importance has been

regarded as a challenge to the central dogma of molecu-

lar biology which suggests that genes by definition code

for proteins (Sec. 3). So the intergenic space cannot by

any means be regarded as “junk DNA” as it used to be

once. An excellent place to start reading about noncod-

ing genes is the Scientific American article by Gibbs

[42]. Papers by Eddy such as the Nature genetics review

article [40] are informative as well as insightful.
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Figure 22. Magnitude squares of the Fourier transforms of the EIIP sequences for the proteins FGF basic bovine (a) and FGF

acidic bovine (b). The product, which represents the square of the consensus spectrum, is plotted in (c) [12].



Perhaps the discovery of the importance of noncod-

ing genes can be traced back to the case of a C. elegans

baby that wouldn’t grow up.7 In an observation made by

Ambrose et al. (Dartmouth Medical School, Hanover, N.

H) there was a C. elegans baby in the laboratory which

grew in size but never came out of the first larva stage

(see analogy of a human baby, Figure 25). The scientists

were able to trace this to a defective gene. In the healthy

worm the function of this gene was to produce a tiny

RNA molecule, only 22 bases long. The role of this RNA

molecule was to regulate other protein coding genes

responsible for normal growth into adult. So this RNA did

not get translated into a protein; it was an ncRNA, and

functioned all by itself. In the defective C. elegans baby,

this particular ncRNA gene in the DNA was mutated, and

the ncRNA was not functioning properly, thereby affect-

ing growth functions. This was the first ncRNA recog-

nized (besides tRNA and so forth), and ncRNAs were

taken seriously only after this observation. See the short

but fascinating account given by John Travis in [49].

Many more ncRNAs have been found in several organ-

isms in the last ten years and their functions identified

[40], [48]. It has been conjectured [42] that about fifty

percent of the genes in mice generate ncRNAs rather than

proteins! C. elegans has more than 200 genes generating

micro ncRNAs (tiny ncRNAs about 22 bases long). And

the E. coli bacterium has several hundred noncoding

genes and about 4200 protein coding genes [40]. Today it

is recognized that heriditary information is carried by

protein coding genes, noncoding genes and a third layer

of information storage called the epigenetic layer [43].

Noncoding genes have created a great deal of excite-

ment in medicine. Other related research not discussed

here include the role of double strand RNAs and anti-

sense RNAs in gene silencing. These are called siRNAs

(small interfering RNAs) and can be inserted into cells to

prevent the expression of hazardous genes. A good start-

ing point for the interested reader is the series of Scien-

tific American articles [43]–[45]. 

The discovery of noncoding genes apparently solves a

long-held puzzle in biology. It has been known that the num-

ber of protein coding genes never scales in proportion to the

size of the organism [42]. For example, worms have only

twice as many protein-coding genes as bacteria. Humans

have only thrice as much (about 35,000). And the rice plant

has more genes than humans! But if the number of noncod-

ing genes is counted, it seems that the total number of genes

does scale well with the complexity of organisms [42].

8.1 Identifying Noncoding Genes

In Sec. 6.1 we explained that there are many ways to iden-

tify protein coding genes in DNA sequences. These genes

have a period-3 component due to codon bias which is

usually quite strong. For more precise identification one

can use hidden Markov models as explained in [24]. Com-

putational identification of noncoding genes is much

more difficult. These genes could be very small (some-

times no longer than 22 bases), do not exhibit the period-

3 property, and do not have start and stop codons.

Conclusions could often be wrong; there are case histo-

ries where certain genes, originally thought to be ncRNA

genes, were later found to encode tiny proteins [40].
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Figure 23. Explaining the basic principle of the Markov

model. (a) A sequence of bases, (b) the state diagram show-

ing the transitions from A, and (c) an example of the state

transition matrix.

State Transition Matrix Σ

        1       2      3

1     0.3    0.7   0.0

2     0.0    0.4   0.6

3     0.9    0.0   0.1

(b)

A: 0.5
C: 0.3
T: 0.1
G: 0.1

State 2

A: 0.3
C: 0.1
T: 0.4
G: 0.2

State 1

A: 0.1
C: 0.3
T: 0.4
G: 0.2

State 3

(c)

Output Matrix Π

        A      C     T       G

1     0.3    0.1   0.4    0.2 

2     0.5    0.3   0.1    0.1

3     0.1    0.3   0.4    0.2

(d)

(a)

0.7

0.3

0.6

0.4

0.9

0.1

1

3

2

Figure 24. Basic principle of the hidden Markov model

(HMM). (a) State diagram, (b) state transition matrix, (c) state

to output probabilities, and (d) output matrix.

7 C. Elegans is a worm or nematode used extensively in biological studies.

It grows into an adult with exactly 959 cells.



It has been noticed that noncoding genes and ncRNAs

function by virtue of their secondary structure which we

explain next. Consider Figure 26 which shows an ncRNA

in E. coli bacteria. Notice that even though it is a single

stranded molecule (like most RNAs are), there are long

stretches of bases in one part which are complementary

to stretches in other parts (recall here that A pairs up

with U and C with G). This complementarity forces the

RNA to fold into shapes which are not only beautiful, but

in fact are crucial to their biological functioning. Many of

the RNAs can act as enzymes primarily by virtue of this

folded shape. RNA enzymes are called ribozymes, so

they are not confused with normal enzymes which are

proteins. Some computational biologists have suggested

that noncoding genes in the DNA sequences can be iden-

tified simply by looking for subsequences which have

secondary structure [47].

We will return to this later but briefly mention another

approach called comparative genomics which has been

reasonably successful. The idea behind comparative

genomics is that if two or more species have a common

stretch of DNA, then it is probably doing something impor-

tant. Otherwise nature would not have conserved it for

millions of years. So these stretches would have to be

either protein coding genes or noncoding genes. If they do

not pass standard tests for protein coding genes they are

likely to be noncoding genes. In this way it is possible to

accumulate a list of potential noncoding genes in a given

species and then check them by other biological means.

Comparative study of DNA sequences is not as simple as

it appears to be on first sight because the sequences being

compared come from various

species, and “identical regions” can

still differ due to mutations, inser-

tions, and deletions of bases

through millions of years of evolu-

tion. For example consider the four

sequences to the right: 
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Figure 25. Left: the C. elegans worm, magnified many times. Right: if a human baby grew in size but not in features, that would

be analogous to the C. elegans story which lead to the discovery of the importance of ncRNA genes. See text.
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Figure 26. The picture shows a dsrA RNA in E. coli. Notice

the secondary structure created by base pairing in blue

shaded areas. Functionality of ncRNAs depends mostly on

their secondary structure.

× × × AATAGCGA × × × × × × × × × × × AATAC × × × AAATACCG

× × × × × × × AATAGCGA × × × × × AATAC × × × × × AAATACCG

× × × × × × × AAGAGCGA × × × × × AATAC × × × × × AAAGTCCG

× × × × × × × AAAGCGA × × × × × AATAC × × × × × AAATAAACCG



where × denotes that the base could be any one of the

four. Inspection reveals that there are many common

patterns here. However, a direct comparison base by

base would lead a computer to conclude that these are

not identical sequences at all. There are patterns which

are common but with slight mutations; there are

unequal gaps between similar patterns; and the “identi-

cal parts” often do not even have identical lengths!

The task of comparing such sequences is nontrivial

science. It comes under the topic of sequence align-

ment. Computational biologists have developed many

methods for this and, in fact, assign scores to the degree

of similarity between sequences. Markov models have

been used for this application. Many wonderful details

can be found in the book by Durbin et al. [4]. In a study

by the National Human Genome Research Institute

(NHGRI) the human genome has been compared with

many others such as cow's, dog's, pig's, and rat's. It has

been found that there were over 150 common regions in

the intergenic space! Many potential ncRNA sequences

have been listed in this way and later confirmed by

other means. The method of comparative genomics to

identify ncRNAs does not work perfectly yet, but has

been quite useful.

8.2 Identifying Secondary Structure

A few words on the identification of secondary struc-

tures directly without comparative genomics. Consider

Figure 27(a) which shows a DNA sequence with two

short subsequences AATC and GATT buried in it. These

subsequences are separated by many bases. If we

reverse the first subsequence we get CTAA which is

complementary to the second sequence. So the subse-

quences can be regarded as two halves of a palindrome

(i.e., a symmetric sequence like xyzpqpzyx).8 The

sequence can therefore fold as shown in Figure 27(b)

and remain stable in that configuration because of the

A—T and C —G bondings. If an ncRNA is generated from

such a DNA segment it would therefore fold as shown. In

practice, the matching subsequences do not match

exactly, they may be separated by an arbitrary number

of bases, and furthermore there may be more than one

matching pair. The secondary structure can therefore be

quite complicated. All of these features can be clearly

seen in the example of ncRNA shown in Figure 26.

The biological functioning of the ncRNA depends pri-

marily on the way it folds, that is, on the secondary struc-

ture rather than the exact sequence of base pairs. For

example the two sequences shown below would fold the

same way.

× × × AATC × × × × × × × × × × × G ATT × ××

× × × AGT A × × × × × × × × × × × T AC T × ××

Computational identification of ncRNA genes is therefore

closely related to the identification of buried patterns such

as palindromes in a long arbitrary sequence (a few thou-

sand or million bases). This is quite a challenging problem.

One of the theoretical bottlenecks is that hidden Markov

models which worked so well for identification of protein

coding genes do not work anymore as explained next.

8.3 Grammars

In the language of computer science, a grammar is a set of

rules which can be repeatedly applied to obtain

sequences of letters from an alphabet. The set of all

sequences that can be generated by a grammar is called

the language generated by that grammar. In the early

1950s, Noam Chomsky (a phenomenal computational lin-

guist from MIT) classified grammars into four types called

regular grammars, context free grammars, context sensi-

tive grammars, and unrestricted grammars. The relation

between these grammars is depicted in Figure 28.

Regular grammars have the most restricted produc-

tion rules and therefore generate a restricted class of lan-

guages. Context free grammars allow a wider class of

production rules and generate a broader class of lan-

guages. For example suppose the “language” is the set of

all palindromes. Then there is no regular grammar to gen-

erate these, but there does exist a context free grammar.9

We now give a very brief overview of grammars. Good

references to this topic include [60] and [62]. A regular

grammar allows production rules of the form W → aW

and W → a, where W is a nonterminal symbol (i.e., we

can make further substitutions for it) and a is a terminal

symbol. An alphabet is specified from which the termi-

nals are taken. Consider the example of a regular gram-

mar with the following three production rules, where

A, C , and T are the terminals:

W → AW, W → TW W → C W,

W → A, W → T, and W → C .

Here is an example of a string generated by this grammar

by application of the rules in arbitrary order:

W → AW → AAW → AAC W → AAC TW → AAC TT

The language generated by this grammar is the string of

all DNA sequences with the base G missing.
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8 Not exactly a palindrome because of the complement operation, but we

shall refrain from inventing a new word for that.

9 True, we can find a regular grammar which generates palindromes

among other possible sequences. But we cannot find a regular grammar

which generates only palindromes.



A context free grammar allows production rules of the

form W → α where W is a nonterminal and α is a string of

terminals and nonterminals. A grammar defined by the

following production rules is an example. Here A, C , G,

and T are the terminals. 

W → AWA, W → CWC,

W → TWT W → GWG and W → ǫ

where ǫ represents the null string (i.e., nothing). Here is

an example of a string generated by this grammar: 

W → AW A → ATWT A → ATC WC T A → ATC C T A

In the last step W has been replaced with the null ter-

minal character. Notice that the resulting string is a

palindrome. The preceding grammar generates the

palindrome language.

If the production rules in a grammar are used with a

certain probability attached to each rule, it is called a

stochastic grammar. There is a result in the theory of

computations which says that stochastic regular gram-

mars are identical to hidden Markov models. That is, if a

class of strings can be generated by a stochastic regular

grammar then there exists an HMM which generates this

class, and vice versa. Since regular grammars cannot

generate palindrome languages we cannot therefore

build HMMs that represent noncoding genes. We cannot

therefore use HMM theory to identify noncodig genes

buried in long DNA sequences. Stochastic context free

grammars, abbreviated as SCFGs, have been used for

this purpose and a great deal of detail can be found in

[4] and references therein. Figure 29 summarizes some

of these discussions.

Recall from Sec. 7 that in order

to apply the HMM theory suc-

cessfully there are three prob-

lems that need to be solved, and

there exist standard algorithms

for this, namely Viterbi's algo-

rithm, forward-backward algo-

rithm, and the EM algorithm. For

the case of context free grammars

there are similar algorithms but

they have much higher complexi-

ty [4]. The importance of fast pro-

cedures for these arises because

of the fact that DNA sequences

are very long even for “small”

organisms. Computational biolo-

gists are therefore interested in

developing faster algorithms for
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Figure 27. (a) Example of a palindrome-like pattern buried in

DNA, and (b) the natural way for this sequence to fold.
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Figure 29. Application of grammars in computational biology. Regular grammars (sto-

chastic hidden Markov models) are useful for identifying protein coding genes whereas

stochastic context free grammars (SCFGs) are necessary to identify noncoding genes.



the above problems. Recently, Yoon and Vaidyanathan

have introduced a class of hidden Markov models called

context sensitive HMMs [50] which appear to be promis-

ing for this application while at the same time offering sig-

nificantly lower complexity.

Finally, even context sensitive languages have had some

applications in this context. An example of a language that

can be recognized by such grammars but not by context

free grammars is the so-called copy language [4] which can

sometimes be useful in describing secondary structures.

9. Other Areas

In the past few sections a number of interesting areas

were discussed but many were also left out for want of

space. One of these is DNA computation. The enormous

capabilities of the cell (base-pairing, gene-protein feed-

back) can be used to perform miraculously difficult com-

putational tasks. A starting point for the reader would be

the article by Adleman in 1998 in the Scientific American

[59]. Another area we did not discuss is DNA sequencing.

Many signal processing aspects are involved here, and a

flavor can be obtained by reading [14] and [22]. An infor-

mal discussion of some other areas is given here with

appropriate pointers to literature.

9.1 DNA Microarrays

An entire issue of Nature Genetics was dedicated to the

topic of DNA microarrays in 1999. The reader should see

[53] and other articles therein for an excellent introduc-

tion. A good overview also appeared in the IEEE Spectrum

a few years ago [57], so we will be brief. DNA microarrays

are typically grown on a piece of glass or silicon substrate

chemically primed so that the molecules A, C , T and G

stick to specific sites. It is possible to raise towers of base

sequences about 100 bases long, using photolithography

as shown in Figure 30. In this way an entire gene can be

“grown” on a few towers. Several genes can therefore be

captured onto a single DNA microarray chip.

These chips can be used to observe the expression

levels of different genes in the cell as explained in Figure

31. The real advantage here is that we can measure the

levels of several genes simultaneously, and as a function

of time (e.g., cell cycle) and so forth. This gives an enor-

mous advantage to biologists who wish to study the

dependency of gene expressions on various factors. An

example is the 1999 experiment at MIT [57] where

Affymetrix chips containing 6800 human genes were

used to analyze the expression of genes in cancer cells

from two types of blood cancer (acute myeloid leukemia

and lymphoblastic leukemia). Standard pathology exam-

ination failed to distinguish the two types but the arrays

showed a set of 50 genes that have different activity lev-

els in the two cancers. Many examples can be found in

the papers published in Nature genetics, Jan. 1999, and

papers such as [51]. DNA microarrays have serious

application in drug design [55], antiterrorism [54], and

many other related areas.

The Affymetrix series started with a modest 1000

genes on chip in 1998. Today, nearly all of the protein cod-

ing genes in humans (about 35,000) have gone into a sin-

gle chip (Affymetrix Inc. and Agilent Technologies

announced this in 2003). There are some interesting sig-

nal processing issues involved in the interpretation of

data recorded on a DNA array. Some examples can be

found in [58] and [51]. 

9.2 The Gene-Protein

Feedback Loop

We know that genes guide the generation of proteins. But

proteins to a large extent also control which genes are

expressed and to what extent. In short, proteins can

switch genes on and off. The gene-protein feedback loop

is what make different cells look

and function differently. Cell func-

tion depends on a gene-protein

network interconnected in a high-

ly complex manner.

The first hint that proteins in

cells might be influencing gene

expression came from Francois

Jacob and Jacques Monad in

Paris, around 1960. The E. coli

bacteria uses lactose sugar and

breaks it into simpler sugars

(galactose and glucose) using

the enzyme beta galactosidase.

When lactose is absent in the

bacterial medium the E. coli cell

does not produce this enzyme.
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Otherwise it does! Jacob and

Monad suggested that this switch-

ing ability is due to the presence of

a repressor molecule. In the late

60s Walter Gilbert and Benno

Müller-Hill (from Harvard) found

the molecule. The repressors were

proteins and this was the first

proof that there is a closed loop

(feedback) system. In recent years,

the closed loop relation has been

described with some success

using linear first order coupled dif-

ferential equations called Langevin

equations [19], and this has been

found to be useful in systematic

analysis of uncertainties (or

“noise”) in gene circuits. A fasci-

nating account of information pro-

cessing in genetic circuits can be

found in the May 2004 IEEE paper

by Simpson et al. [20].

9.3 Relation to RNA World

If proteins are generated by genes

and genes are in turn controlled by

proteins, then which came first?

This is similar to asking whether

the chicken or egg came first. The

fact that ncRNA molecules can perform many of the

functions of proteins (Sec. 8) answers this question to

some extent. There is a theory called the RNA-world the-

ory which suggests that the earliest form of life on earth

was based entirely on RNA molecules. Some of these

RNA molecules carry genetic information (like genes in

DNA), whereas some act as catalysts.10 The article by

Orgel in the Scientific American [46] traces the origin of

this theory and gives an account of some laboratory

experiments which demonstrate the feasibility of the

RNA-world theory.

10. Concluding Remarks

In this article we have attempted to share the excite-

ment of molecular biology from the point of view of the

scientist with a signal processing and circuits back-

ground. We conclude with the sentiment that genomics,

and more generally molecular biology have taken a very

interesting turn for all of us. For those who did not like

high-school biology because of the wet smelly labs,

there is good news. Molecular biology today involves

signal processing, computer science, mathematics, and

informatics, all coming together beautifully!
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