
Genomics and Susceptibility Profiles of
Extensively Drug-Resistant Pseudomonas
aeruginosa Isolates from Spain

Ester del Barrio-Tofiño,a Carla López-Causapé,a Gabriel Cabot,a Alba Rivera,b

Natividad Benito,b Concepción Segura,c María Milagro Montero,c Luisa Sorlí,c

Fe Tubau,d Silvia Gómez-Zorrilla,d Nuria Tormo,e Raquel Durá-Navarro,e

Esther Viedma,f Elena Resino-Foz,f Marta Fernández-Martínez,g

Claudia González-Rico,g Izaskun Alejo-Cancho,h Jose Antonio Martínez,h

Cristina Labayru-Echverria,i Carlos Dueñas,i Ignacio Ayestarán,a Laura Zamorano,a

Luis Martinez-Martinez,j,k Juan Pablo Horcajada,c Antonio Olivera

Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son

Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spaina; Department of Microbiology

and Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spainb; Laboratory de Referència de

Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial

Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spainc;

Department of Microbiology and Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spaind;

Department of Microbiology and Infectious Diseases, Consorcio Hospital General Universitario de Valencia,

Valencia, Spaine; Department of Microbiology and Infectious Diseases, Hospital Universitario 12 de Octubre,

Madrid, Spainf; Department of Microbiology and Infectious Diseases, Hospital Universitario Marqués de

Valdecilla, Instituto de Investigacion Valdecilla (IDIVAL), Santander, Spaing; Department of Microbiology and

Infectious Diseases, Hospital Universitari Clínic, Barcelona, Spainh; Department of Microbiology and Infectious

Diseases, Hospital Universitario de Burgos, Burgos, Spaini; Unit of Microbiology, Hospital Universitario Reina

Sofía, Departament of Microbiology, University of Córdoba, Córdoba, Spainj; Instituto Maimónides de

Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spaink

ABSTRACT This study assessed the molecular epidemiology, resistance mechanisms,

and susceptibility profiles of a collection of 150 extensively drug-resistant (XDR) Pseu-

domonas aeruginosa clinical isolates obtained from a 2015 Spanish multicenter study,

with a particular focus on resistome analysis in relation to ceftolozane-tazobactam sus-

ceptibility. Broth microdilution MICs revealed that nearly all (�95%) of the isolates were

nonsusceptible to piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, imipenem,

meropenem, and ciprofloxacin. Most of them were also resistant to tobramycin (77%),

whereas nonsusceptibility rates were lower for ceftolozane-tazobactam (31%), amikacin

(7%), and colistin (2%). Pulsed-field gel electrophoresis–multilocus sequence typing

(PFGE-MLST) analysis revealed that nearly all of the isolates belonged to previously de-

scribed high-risk clones. Sequence type 175 (ST175) was detected in all 9 participating

hospitals and accounted for 68% (n � 101) of the XDR isolates, distantly followed by

ST244 (n � 16), ST253 (n � 12), ST235 (n � 8), and ST111 (n � 2), which were detected

only in 1 to 2 hospitals. Through phenotypic and molecular methods, the presence of

horizontally acquired carbapenemases was detected in 21% of the isolates, mostly VIM

(17%) and GES enzymes (4%). At least two representative isolates from each clone and

hospital (n � 44) were fully sequenced on an Illumina MiSeq. Classical mutational mech-

anisms, such as those leading to the overexpression of the �-lactamase AmpC or efflux

pumps, OprD inactivation, and/or quinolone resistance-determining regions (QRDR) mu-

tations, were confirmed in most isolates and correlated well with the resistance pheno-

types in the absence of horizontally acquired determinants. Ceftolozane-tazobactam re-

sistance was not detected in carbapenemase-negative isolates, in agreement with

sequencing data showing the absence of ampC mutations. The unique set of mutations

responsible for the XDR phenotype of ST175 clone documented 7 years earlier were

found to be conserved, denoting the long-term persistence of this specific XDR lineage
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in Spanish hospitals. Finally, other potentially relevant mutations were evidenced, includ-

ing those in penicillin-binding protein 3 (PBP3), which is involved in �-lactam (including

ceftolozane-tazobactam) resistance, and FusA1, which is linked to aminoglycoside resis-

tance.

KEYWORDS Pseudomonas aeruginosa, whole-genome sequencing, extensively drug

resistant, high-risk clones

The increasing prevalence of nosocomial infections produced by multidrug-resistant

(MDR), and particularly, extensively drug-resistant (XDR) Pseudomonas aeruginosa

strains severely compromises the selection of appropriate treatments and is therefore

associated with significant morbidity and mortality (1–3). This growing threat results

from the extraordinary capacity of this pathogen for developing resistance to nearly all

available antibiotics by the selection of mutations in chromosomal genes and from the

increasing prevalence of transferable resistance determinants, particularly those encod-

ing class B carbapenemases (metallo-�-lactamases [MBLs]) or extended-spectrum

�-lactamases (ESBLs), frequently cotransferred with genes encoding aminoglycoside-

modifying enzymes (4, 5). The emergence of MDR/XDR global clones disseminated in

several hospitals worldwide, the high-risk clones, adds further concern (6, 7). Beyond

classical molecular epidemiology and phenotypically targeted resistance mechanism

assessment, recent whole-genome sequencing (WGS) studies are providing relevant

information for building up the complex resistome of MDR/XDR high-risk clones (8–13).

On the other hand, the recent introduction of novel �-lactam–�-lactamase inhibitor

combinations, such as ceftolozane-tazobactam, which are stable against AmpC hydro-

lysis, partially alleviates the urgent clinical need for new agents to combat infections by

MDR/XDR P. aeruginosa (14–18). However, the emergence of resistance to these

antibiotics is of particular concern and should therefore be closely monitored (17, 19).

Thus, the objective of this work was to determine the molecular epidemiology,

resistance mechanisms, and susceptibility profiles of a large collection of recent XDR P.

aeruginosa clinical isolates obtained from a multicenter study in Spain, with a particular

focus on WGS resistome analysis in relation to ceftolozane-tazobactam susceptibility.

RESULTS AND DISCUSSION

Clonal epidemiology of XDR P. aeruginosa from Spain. Through SpeI–pulsed-

field gel electrophoresis (SpeI-PFGE), 14 unique restriction patterns were documented

(not shown). One representative isolate from each pattern and hospital was further

genotyped by multilocus sequence typing (MLST), and the results are presented in Fig.

1. As shown, most of the XDR P. aeruginosa isolates studied belonged to well-

established P. aeruginosa high-risk clones (7). Among them, sequence type 175 (ST175)

was detected in all 9 participating hospitals and was found to be by far the most

frequent sequence type, accounting for 68% (n � 101) of the studied collection of XDR

P. aeruginosa isolates (Fig. 1A and B), with a frequency ranging from 58% to 100% for

each hospital. ST175 was distantly followed by ST244 (n � 16), ST253 (n � 12), ST235

(n � 8), and ST111 (n � 2) (Fig. 1A); indeed, these well-established high-risk clones were

not only less common but also less disseminated, each being detected in just 1 to 2 of

the participating hospitals (Fig. 1B). With the single exception of ST313 detected in 2

isolates from the same hospital, all the other STs (7%) were detected just in single

isolates, including ST179, ST274, ST395, ST455, ST2221, and 4 STs not previously

described (ST2533, ST2534, ST2535, and ST2536). Interestingly, one of the isolates,

related to ST244, could not be typed due to an indel mutation in mutL, resulting in a

mutator phenotype, as confirmed through the determination of the rifampin resistance

spontaneous mutation rates (20). This phenomenon has been previously described in

the cystic fibrosis (CF) setting (20–24), in which mismatch repair system-deficient

mutators (mutS and mutL) are positively selected (25).

Overall, the obtained results correlated well with those from previous molecular

epidemiological surveys performed in Spain, as well as in other countries worldwide,
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indicating that MDR/XDR profiles are usually conferred by a very limited number of

genotypes recognized as high-risk clones (26–34). It is particularly noteworthy that

ST175 was already the predominant XDR clone in Spain in 2008, according to the

results of a multicenter study on bloodstream infections, indicating the long-term

persistence of this clone in Spanish hospitals. In contrast, the prevalences of ST235 and

ST111, the high-risk clones showing a wider geographical distribution worldwide, are

found to be relatively low in Spain.

Antimicrobial susceptibility profiles and �-lactam resistance mechanisms. Broth

microdilution panels were performed for the whole XDR P. aeruginosa collection. As

shown in Table 1, nearly all of the isolates (�95%) were determined to be nonsuscep-

tible to ticarcillin, piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, imipenem,

meropenem, and ciprofloxacin, applying both CLSI and EUCAST clinical breakpoints.

FIG 1 (A) Prevalence of MLST genotypes in the studied collection. (B) Distribution of high-risk clones in
participating hospitals. (C) �-Lactam resistance mechanisms detected. AmpC1 � OprD�, AmpC hyper-
production plus OprD deficiency.

TABLE 1 Antibiotic susceptibility rates, MIC50, and MIC90 for the 150 XDR P. aeruginosa
isolates studied

Antibiotica
MIC50
(mg/liter)

MIC90
(mg/liter)

CLSI guidelinesb
EUCAST

guidelinesb

% S % R % S % R

TIC 256 �512 0.0 94.0 0.0 100.0
PIP/TZ 128 256 1.3 80.0 1.3 98.7
CAZ 32 �64 2.0 80.7 2.0 98.0
FEP 32 �64 3.3 60.0 3.3 96.7
TOL/TZ 4 �64 68.7 20.7 68.7 31.3
ATM 16 64 16.7 41.3 0.0 41.3
IMI 32 �64 0.0 100.0 0.0 98.7
MER 16 �64 0.0 99.3 0.0 86.0
CIP �16 �16 1.3 97.3 1.3 98.7
TOB 32 �32 22.7 74.7 22.7 77.3
AMI 4 16 92.7 4.0 86.0 7.3
COL 2 2 97.3 2.7 97.3 2.7

aTIC, ticarcillin; PIP/TZ, piperacillin-tazobactam; CAZ, ceftazidime; FEP, cefepime; TOL/TZ,
ceftolozane-tazobactam; ATM, aztreonam; IMI, imipenem; MER, meropenem; CIP, ciprofloxacin; TOB,
tobramycin; AMI, amikacin; COL, colistin.

bS, susceptible; R, resistant.
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Moreover, most of the isolates were also nonsusceptible to tobramycin. On the con-

trary, the highest susceptibility rates were recorded for colistin, amikacin, and the

recently introduced antipseudomonal �-lactam–�-lactamase inhibitor combination

ceftolozane-tazobactam. Nearly all isolates (97.2%) were susceptible to colistin accord-

ing to both CLSI and EUCAST breakpoints. However, slight discrepancies in the sus-

ceptibility rates for amikacin (92.7% versus 86%) were documented when applying CLSI

or EUCAST clinical breakpoints, respectively (Table 1). Likewise, while the susceptibility

percentages of ceftolozane-tazobactam were identical according to CLSI and EUCAST

(68.7%), slight differences were documented for resistance rates (20.7% versus 31.3%,

respectively).

Through the use of phenotypic (cloxacillin inhibition test) and molecular methods

(PCR), AmpC hyperproduction plus OprD deficiency (79%) was found to be the main

cause of antipseudomonal penicillin, cephalosporin, and carbapenem resistance,

whereas the presence of horizontally acquired carbapenemases was detected in 21% of

the isolates, mostly including VIM MBLs and GES class A carbapenemases (Fig. 1C).

Interestingly, isolates harboring horizontally acquired carbapenemases accounted

for nearly all the ceftolozane-tazobactam resistance documented and belonged to the

previously described high-risk clones ST111, ST175, ST235, and ST253 (Data Set S1 in

the supplemental material).

The distribution of ceftolozane-tazobactam MICs for the studied collection is

shown in Fig. 2. A bimodal distribution was clearly identified, with the second wave,

including MICs above 16 �g/ml, accounting for all carbapenemase-producing

strains. However, it should be noted that an important proportion of isolates

showed MICs of 4 (32%) and 8 (11%) �g/ml. The clinical susceptibility breakpoint for

this combination has been set at �4 �g/ml by both CLSI and EUCAST. Additionally,

only CLSI has defined an intermediate category (MIC � 8 �g/ml). Therefore, the

frequent ceftolozane-tazobactam peribreakpoint MICs of XDR isolates argue for the

need for clinical studies evaluating optimal dosing and/or the use of combined

therapy.

Deciphering the resistome of XDR P. aeruginosa from Spain. To define the

resistome of XDR P. aeruginosa strains from Spain, at least two (when available)

representative isolates from each different clone and hospital were fully sequenced

(n � 44). The detected horizontally acquired resistance determinants and sequence

variations in a set of 164 chromosomal genes related with P. aeruginosa mutational

resistance are shown in Data Set S1. Figure 3 summarizes the main resistance

mechanisms detected, including the horizontally acquired �-lactamases and amino-

glycoside-modifying enzymes, as well as a summary of the most relevant mutations

FIG 2 Distribution of ceftolozane-tazobactam (TOL/TZ) MICs for the studied collection of XDR P.

aeruginosa isolates.

del Barrio-Tofiño et al. Antimicrobial Agents and Chemotherapy

November 2017 Volume 61 Issue 11 e01589-17 aac.asm.org 4

http://aac.asm.org


likely contributing to the resistance profiles after integrating single-nucleotide poly-

morphism (SNP) refining, as described in Materials and Methods.

�-Lactam resistome. �-Lactam resistance in widespread ST175 was mainly caused

by AmpC hyperproduction plus OprD inactivation, detected in 14 of the 18 isolates

FIG 3 Main antibiotic resistance-related mutations and horizontally acquired resistance determinants of the 44 XDR P. aeruginosa isolates that were fully
sequenced. 1, Hospital code, isolate identification (ID). 2, ST244 mutator variant showing a 6-bp insertion in mutL.
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sequenced. Moreover, in most of the cases, it was due to the previously described

combination of mutations in the AmpC regulator ampR (G154R) and oprD (Q142X),

detected in isolates from 7 of the 9 hospitals (Fig. 3 and Data Set S1) (8, 26). Remarkably,

this combination of mutations was already common among ST175 isolates recovered 7

years earlier, denoting the long-term persistence of this specific XDR lineage in Spanish

hospitals. In contrast, the 4 remaining ST175 isolates not overexpressing AmpC showed

diverse acquired �-lactamases (VIM-2, VIM-20, GES-5, and/or OXA-2) and different

OprD-inactivating mutations, suggesting a parallel independent evolution of �-lactam

resistance in these ST175 lineages. Moreover, these 4 ST175 isolates were the only ones

showing ceftolozane-tazobactam resistance according to the CLSI breakpoint (Fig. 3

and Data Set S1). AmpC overexpression was also common in isolates belonging to

other STs, as demonstrated by phenotypic methods and reverse transcriptase reverse

transcription-PCR (RT-PCR) assays, but mostly due to the presence of missense muta-

tions within ampC regulators ampD (n � 16) and/or dacB (n � 10), with just 2 isolates

harboring a mutated ampR (Fig. 3 and Data Set S1). These results are therefore in

agreement with previous data indicating that ampD and dacB mutations are the most

frequent drivers of AmpC hyperproduction in P. aeruginosa clinical strains (35). Inter-

estingly, mutations leading to ampC overexpression were documented in nearly all

isolates from all clones except ST235, in which the documented �-lactam resistance,

including that against ceftolozane-tazobactam, was exclusively linked with the pres-

ence of an outstanding variety of acquired class I integron-encoded �-lactamases

(VIM-47, GES-1, GES-19, OXA-2, and/or OXA-10) (Fig. 3 and Data Set S1), illustrating the

huge capacity of ST235 for acquiring exogenous resistance determinants (7, 10).

Acquired class A, B, and D �-lactamases were also detected among ST111, ST253, and

ST179 ceftolozane-tazobactam-resistant AmpC-hyperproducing P. aeruginosa isolates

(Fig. 3 and Data Set S1).

Besides ampC overexpression, recent studies have revealed that �-lactam resistance

development, including the novel �-lactam–�-lactamase inhibitor combinations

ceftolozane-tazobactam and ceftazidime-avibactam, may result from mutations leading

to the structural modification of AmpC or other �-lactamases (17, 35–39). Moreover, a

recent work by Berrazeg et al. (40) identified diverse AmpC variants associated with

high-level cephalosporin resistance, including ceftolozane-tazobactam and ceftazidime-

avibactam, found at a low prevalence (around 1%) among clinical P. aeruginosa isolates.

The AmpC sequence variations (Pseudomonas-derived cephalosporinase [PDC] variants)

detected among the studied isolates are shown in Table 2. Intraclonal variation of

AmpC sequences was not detected. Indeed, all isolates belonging to the widespread

ST175, as well as those from ST244, showed the wild-type P. aeruginosa PAO1 AmpC

sequence (PDC-1). Moreover, none of the PDC variants documented have been previ-

ously associated with ceftolozane-tazobactam resistance, and they are most likely

natural polymorphisms not involved in resistance. These findings are thus consistent

with the fact that none of the isolates not producing an acquired �-lactamase showed

a ceftolozane-tazobactam MIC above 8 �g/ml, although the minor effects of some of

these AmpC substitutions should be fully ruled out in future works.

Beyond �-lactamases, there is growing evidence on the role of target (essential

penicillin-binding proteins [PBPs]) modification in P. aeruginosa �-lactam resistance,

particularly when involving mutations in ftsI, encoding PBP3, an essential high-

molecular-weight molecular class B PBP with transpeptidase activity (41). Indeed, data

from CF patients (21, 42) and from in vitro studies (43) have recently demonstrated that

PBP3 is under strong mutational pressure, with specific mutations contributing to

�-lactam resistance development. Four of the isolates showed unique mutations in

PBP3, including two (R504C and F533L) located within the protein domains implicated

in the formation and stabilization of the inactivating complex �-lactam–PBP3 (44).

Moreover, these two specific mutations have been documented to be selected in vivo

during the course of chronic respiratory infection in CF patients (21, 42) and upon

meropenem exposure in vitro (39). Thus, in addition to the documented OprD defi-

ciency and AmpC hyperproduction, these PBP3 mutations likely contribute to the
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�-lactam resistance phenotype of these isolates, perhaps explaining the increased

ceftolozane-tazobactam MICs (8 �g/ml) in the absence of any acquired �-lactamase or

AmpC mutation (Data Set S1). Although unique polymorphisms were also detected in

some strains for other PBPs, including high-molecular-weight (PBP1a, PBP1b, and PBP2)

and low-molecular-weight (PBP5 and PBP7) enzymes (Data Set S1), their roles in

�-lactam resistance, if any, still need to be experimentally addressed.

Finally, other relevant contributing factors to �-lactam resistance are the resistance-

nodulation-division (RND) efflux pumps. The analysis of efflux pump gene expression

coupled to the sequencing of their regulatory components revealed frequent muta-

tions leading to overexpression. Particularly frequent were mexZ mutations, leading to

the overexpression of the efflux pump MexXY-OprM (involved in cefepime resistance);

these were detected in most (73%) of the strains analyzed (Fig. 3). Moreover, around

25% of the strains overexpressed the efflux pump MexAB-OprM (affecting all antipseu-

domonal �-lactams except imipenem) due to mexR (nalB), nalC, or nalD mutations (Fig.

3). mexT mutations coupled to MexEF-OprN overexpression and OprD downregulation

(and thus involved in carbapenem resistance) were also detected in a few strains (Fig.

3). Additionally, several sequence variations in unique residues were detected in the

efflux pump components (Data Set S1); however, their contributions to the XDR

resistance profile, if any, still need to be further explored.

Fluoroquinolone resistome. As shown in Fig. 3 and Data Set S1, ciprofloxacin

resistance was linked to the presence of missense mutations in gyrA, gyrB, parC, and/or

parE quinolone resistance-determining regions (QRDRs). Up to 89% of the sequenced

isolates showed missense mutations within gyrA QRDR; specifically, all of them har-

bored the classical GyrA-T83I mutation, and around half of them, including all ST175

isolates, showed an additional GyrA-D87N mutation (8, 12, 45). Furthermore, nearly all

of the isolates showing very high-level ciprofloxacin resistance (MICs � 16 �g/ml) were

additionally mutated in the parC QRDR. While the ParC-S87W mutation was encoun-

tered in all ST175 and ST253 isolates, most of the ST111, ST235, and ST244 isolates

harbored the ParC-S87L mutation (Fig. 3 and Data Set S1). On the other hand, gyrB or

parE QRDR mutations were only occasionally detected. Thus, the combination of GyrA

and ParC QRDR mutations appears to be responsible for the high-level fluoroquinolone

resistance documented in most high-risk clones. As commented above, many of the

TABLE 2 Amino acid variations in the sequences of PDC enzymes from the XDR P. aeruginosa isolates studied

Wild type

or ST

No. of

isolates PDC

Residue at amino acid positiona:

7 21 27 (1) 55 (29) 79 (53) 97 (71) 105 (79) 155 (129) 176 (150) 205 (179) 356 (330) 391 (365)

PAO1 PDC-1b P T G A R A T Q L V V G
ST175 18 PDC-1
ST244 6 PDC-1
ST235 5 PDC-35 D V A L A
ST111 2 PDC-3 A
ST253 2 PDC-34 D T A R L A
ST313 2 PDC-37 S D A L I A
ST455 1 PDC-3 A
ST179 1 PDC-8 A R
ST274 1 PDC-10 A A
ST395 1 PDC-8 A R
ST2221 1 PDC-41c L T K A P Q L I A
ST2533 1 PDC-5 Q A
ST2534 1 PDC-31 A L
ST2535 1 PDC-3 A
ST2536 1 PDC-12 A A L

aNumber of amino acid residues changed in each PCD. Number in parentheses refers to the mature protein of PAO1, after cleavage of the 26 N-terminal amino acid
residues of the signal peptide.

bAmino acid residues of P. aeruginosa reference strain PAO1 (http://v2.pseudomonas.com).
cThis strain has the following additional mutations: D3H, T4A, R5T, F6I, C8N, I12L, L18F, P23S, I25A, D32E (6), S59T (33), L71V (45), G77A (51), Q117R (91), A136G (110),
S150A (124), Q174H (148), L200S (174), Q203R (177), Q213H (187), H215F (189), D217R (191), E220A (194), A222Q (196), L223Q (197), A224G (198), Q225L (199), R235H
(209), G248A (222), V251L (225), T253S (227), D263E (237), D272E (246), R273K (247), S306D (280), T316A (290), P322A (296), R324K (298), I325V (299), E335D (309),
V353L (327), L361V (335), and K396V (370).
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studied isolates overexpressed one or several RND efflux pumps known to be involved

in fluoroquinolone resistance. However, their contribution to the fluoroquinolone

resistance profiles in the presence of multiple QRDR mutations is expected to be

marginal (41). Nevertheless, two isolates showed MexCD-OprJ overexpression due to

nfxB mutations, likely contributing to ciprofloxacin resistance together with the GyrB

(and ParE in one case) mutations detected (Fig. 3 and Data Set S1). Indeed, nfxB

mutation-driven MexCD-OprJ overexpression has been shown to be a frequent mech-

anisms selected upon fluoroquinolone exposure in vitro and in vivo (43, 46, 47).

Aminoglycoside resistome. Up to 27 (61.4%) of the sequenced XDR P. aeruginosa

isolates harbored aminoglycoside-modifying enzymes (Fig. 3 and Data Set S1). The

presence of aminoglycoside-modifying enzymes correlated well with the documented

aminoglycoside resistance profiles. All detected genes [aac(6=)-33, aacA4, aacA29a,

aadA1, aadA13, aadA6, aadB, and aacC1] were contained within class I integrons and

were accompanied by the presence of genes encoding �-lactamases in 12 of the

sequenced isolates (44.4%). As previously described (8), all ST175 isolates harbored an

aadB gene.

Moreover, a high proportion of isolates overexpressed the MexXY efflux pump

(72.7%); accordingly, the major MexXY expression regulator mexZ was very often

mutated (70.5%), including the characteristic G195D mutation in all ST175 isolates (Fig.

3 and Data Set S1). These results point out the underlying strong evolutionary pressure

onto mexZ and the relevance of MexXY overexpression for aminoglycoside resistance

development; these results are in agreement with those of other recently published

works (21, 48, 49).

In addition to these well-known P. aeruginosa contributors to aminoglycoside

resistance, there is recent growing evidence that high-level aminoglycoside resistance

can rise in the absence of aminoglycoside-modifying enzymes as the result of a

stepwise process in which novel genetic determinants are apparently involved (21,

50–52). Among them, fusA1, which codes for elongation factor G, is particularly note-

worthy. Indeed, 4 of the studied isolates from different genetic backgrounds showed

unique mutations in this gene (Data Set S1); their implication in aminoglycoside

resistance profiles is under investigation.

Polymyxins and fosfomycin resistome. In recent years, old antibiotics, such as the

polymyxins, have been increasingly used in the clinical setting to combat infections by

MDR/XDR Gram-negative pathogens (53). Resistance development to this class of

antibiotics has been related with the presence of mutations within P. aeruginosa two

component-regulatory systems (such as PmrAB, PhoPQ, and ParRS) involved in lipo-

polysaccharide (LPS) biosynthesis (54–57). However, individual alterations within the

two-component regulatory systems have been proven to be insufficient for the acqui-

sition of high-level polymyxin resistance (56–60). In agreement with this, although the

presence of unique mutations within these genes was frequent, only 3 of the isolates

were documented to show colistin resistance, according to established clinical break-

points (Data Set S1).

Fosfomycin might also be a useful alternative in combined treatments of XDR P.

aeruginosa infections, provided that high-level resistance is not evidenced (61). Up to

23 (52%) of the sequenced isolates showed MICs below the EUCAST epidemiological

cutoff (ECOFF) (128 �g/ml), whereas the remaining 21 (48%) isolates showed high-level

resistance (�1,024 �g/ml) (Data Set S1). Fosfomycin resistance in P. aeruginosa is

known to be caused mainly by the mutation of glpT, a gene coding for a glycerol-3-

phosphate permease (62). As previously documented (8), fosfomycin resistance among

ST175 isolates correlated well with the presence of a T211P mutation in GlpT. While all

other strains showing fosfomycin resistance showed polymorphisms in GlpT, some of

them were also detected among susceptible isolates (Data Set S1).

Concluding remarks. Our results, in agreement with those obtained in other

countries, indicate that P. aeruginosa XDR profiles are conferred by a very limited

number of genotypes recognized as high-risk clones. However, while ST111 and
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especially ST235 are the predominant high-risk clones worldwide (7), ST175 is by far the

most frequent one in Spain. Beyond epidemiological implications, the differential

distribution of high-risk clones among XDR isolates significantly impacts the prevalence

of the involved resistance mechanisms, since ST111 and ST235 are strongly linked to

the production of acquired �-lactamases. Indeed, chromosomal mutation was found to

be the main cause of �-lactam and carbapenem resistance among XDR P. aeruginosa

strains from Spain (79%), whereas the presence of horizontally acquired carbapen-

emases was detected in only 21% of the isolates, contrasting with the data from

countries showing a high prevalence of ST111 or ST235, in which the vast majority of

XDR isolates are carbapenemase producers (10, 13, 63).

P. aeruginosa XDR isolates from Spain were generally nonsusceptible to all antipseu-

domonal agents except colistin, amikacin, and ceftolozane-tazobactam, which found to

be susceptible in 2/3 of the isolates. Moreover, ceftolozane-tazobactam resistance (MIC,

�8 �g/ml) correlated smoothly with the presence of horizontally acquired

�-lactamases, in agreement with previous evidence (64). Thus, the prevalence of such

enzymes is a good marker of the prevalence of ceftolozane-tazobactam resistance and

the other way around.

The assessment of WGS resistomes allowed us to perform a deeper analysis of

genotype-phenotype correlations. However, the complex repertoire of P. aeruginosa

mutation-driven resistance mechanisms and the difficulty of differentiating relevant

mutations from natural polymorphisms or random drift mutations determine this to be

an exigent task. To minimize this limitation, the full list of mutations in the 164 genes

studied was refined to include only those more likely to be involved in the resistance

phenotypes, including the input from resistance gene expression. The presence of

classical mutational mechanisms, such as those leading to overexpression of the

�-lactamase AmpC or efflux pumps, the inactivation of the carbapenem porin OprD,

and/or QRDR mutations, was confirmed in most isolates and correlated well with

the resistance phenotypes in the absence of horizontally acquired determinants.

Ceftolozane-tazobactam resistance (MIC, �8 �g/ml) in the absence of horizontally

acquired �-lactamases was not detected, consistently with ampC sequencing data, not

evidencing previously described resistance mutations. However, given the increasing

use of this novel combination, the potential emergence and fixation of such AmpC

variants should be closely monitored (17).

Regarding clone-specific mutations, the previously documented unique set of mu-

tations responsible for the XDR phenotype of the widespread ST175 clone (8) were

found to be conserved 7 years later, denoting the long-term persistence of this specific

XDR lineage in Spanish hospitals. Our results also provided evidence for the existence

and important role of less expected resistance mutations, such as those in PBP3,

involved in �-lactam (including ceftolozane-tazobactam) resistance, and FusA1, in-

volved in aminoglycoside resistance.

MATERIALS AND METHODS

XDR P. aeruginosa collection and susceptibility testing. The P. aeruginosa collection studied
included 150 XDR clinical isolates, each recovered in 2015 from a different infected patient (bacteremia,
pneumonia, urinary tract, intra-abdominal, or skin and soft tissue infections) from 9 hospitals located in
6 different Spanish regions in the context of a multicenter clinical study (EudraCT 2013-005583-25, PI
JP Horcajada). The MICs of ticarcillin, piperacillin-tazobactam, ceftazidime, cefepime, ceftolozane-
tazobactam, aztreonam, imipenem, meropenem, ciprofloxacin, tobramycin, amikacin, and colistin were
determined by broth microdilution according to EUCAST guidelines (http://www.eucast.org/clinical
_breakpoints/). EUCAST version 7.1 and CLSI 2017 (65) clinical breakpoints were used for interpretation.
According to the established recommendations, the XDR profile was defined as nonsusceptibility to at
least one agent in all but 1 or 2 antibiotic classes (66). P. aeruginosa reference strain PAO1 was used as
a control.

Molecular typing. Clonal relatedness among isolates was first evaluated by pulsed-field gel elec-
trophoresis (PFGE). For this purpose, bacterial DNA embedded in agarose plugs, prepared as described
previously (67), was digested with the restriction enzyme SpeI. DNA separation was then performed in
a contour-clamped homogeneous-electric-field DRIII apparatus (Bio-Rad, La Jolla, CA) under the following
conditions: 6 V/cm2 for 26 h, with pulse times of 5 to 40 s. Finally, the obtained DNA macrorestriction
patterns were interpreted according to the criteria established by Tenover et al. (68). Representative
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isolates from each unique macrorestriction pattern and hospital were further analyzed by multilocus
sequence typing (MLST) using available protocols and databases (http://pubmlst.org/paeruginosa/).

Characterization of resistance mechanisms. AmpC hyperproduction, OprD deficiency, and the
presence of horizontally acquired �-lactamases were first explored through previously established
phenotypic and molecular (PCR) methods (26, 69). The levels of expression, in comparison with the P.

aeruginosa reference strain PAO1, of the genes encoding the chromosomal �-lactamase AmpC (ampC)
and four P. aeruginosa efflux pump components (mexB [MexAB-OprM], mexD [MexCD-OprJ], mexF

[MexEF-OprN], and mexY [MexXY-OprM]), were determined in selected isolates by real-time reverse
transcription-PCR (RT-PCR) with an Eco real-time PCR system (Illumina), according to previously described
protocols (70). Additionally, when needed, the nucleotide sequences of genes involved in antibiotic
resistance were confirmed through PCR amplification, followed by Sanger sequencing, using previously
described protocols (71).

Library preparation and WGS. Genomic DNA for selected representative isolates was obtained by
using a commercially available extraction kit (High Pure PCR template preparation kit; Roche Diagnos-
tics). Indexed paired-end libraries were prepared with the Nextera XT DNA library preparation kit
(Illumina, Inc., USA) and then sequenced on an Illumina MiSeq benchtop sequencer with the MiSeq
reagent kit version 2 (Illumina, Inc.), resulting in 250-bp paired-end reads.

Variant calling. Previously defined and validated protocols were used with slight modifications (48,
72). Briefly, paired-ended reads were aligned to the P. aeruginosa PAO1 reference genome (GenBank
accession no. NC_002516.2) with Bowtie 2 version 2.2.4 (http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml) (73); eventually, pileup and raw files were obtained by using SAMtools version 0.1.16
(https://sourceforge.net/projects/samtools/files/samtools/) (74) and PicardTools version 1.140 (https://
github.com/broadinstitute/picard). The Genome Analysis Toolkit (GATK) version 3.4-46 (https://www
.broadinstitute.org/gatk/) was used for realignment around indels (75). Median PAO1 coverage ranged
from 77 to 97%. SNPs were extracted from the raw files if they met the following criteria: a quality score
(Phred-scaled probability of the samples reads being homozygous reference) of at least 50, a root-mean-
square (RMS) mapping quality of at least 25, and a coverage depth of at least 3 reads, excluding all
ambiguous variants. Microindels were extracted from the total pileup files applying the following criteria:
a quality score of at least 500, an RMS mapping quality of at least 25, and support of at least one-fifth
of the covering reads. Finally, all positions in which most isolates belonging to a defined clone showed
some variation were manually and individually checked without applying any filtering in all other isolates
of the same clone.

De novo assembly. Sequence reads from each isolate were de novo assembled using Velvet version
1.2.10 (https://www.ebi.ac.uk/~zerbino/velvet/) (76), with a k-mer length of 31 and the following param-
eters: scaffolding � no, ins_length � 500, cov_cutoff � 3, and min_contig_lgth � 500.

Profiling of antibiotic resistance genes. SNPs and indels for each isolate were annotated by using
SnpEff software version 4.2 (http://snpeff.sourceforge.net/index.html) (77), with default options. A pre-
viously described (8, 21) set of 164 chromosomal genes known to be related to chromosomal antibiotic
resistance in P. aeruginosa were analyzed (Data Set S1). Indels and premature stop codons were
considered to result in the inactivation of the corresponding product. In order to refine the potential
contributions of the documented SNPs to the phenotypes, several points were considered: (i) SNPs
commonly distributed among wild-type strains, such as P. aeruginosa PA14, were considered natural
polymorphisms, (ii) SNPs previously demonstrated to cause a phenotype were considered as such, (iii)
SNPs in resistance gene regulators which correlated with resistance gene expression data (i.e., AmpC
�-lactamase or efflux pumps) were also considered to be involved in the corresponding phenotypes, and
(iv) all other SNPs were considered of uncertain effect. In addition, to identify possible horizontally
acquired antimicrobial resistance genes, we used the online tool ResFinder version 2.1 (https://cge.cbs
.dtu.dk//services/ResFinder/) (78).

Accession number(s). Sequence files have been deposited in the European Nucleotide Archive
under study number PRJEB21341 and accession numbers ERS1792085 to ERS1792128.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC

.01589-17.

SUPPLEMENTAL FILE 1, XLSX file, 0.9 MB.
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