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Biological and biomedical research is in the
midst of a significant transition that is being
driven by two primary factors: the massive
increase in the amount of DNA sequence
information and the development of

technologies to exploit its use. Consequently, we find
ourselves at a time when new types of experiments are
possible, and observations, analyses and discoveries are
being made on an unprecedented scale. Over the past few
years, more than 30 organisms have had their genomes
completely sequenced, with another 100 or so in progress
(see www.tigr.org or genomes@ncbi.nlm.nih.gov for 
a list). At least partial sequence has been obtained for 
tens of thousands of mouse, rat and human genes, and 
the sequence of two entire human chromosomes
(chromosomes 21 and 22) has been determined1,2. Within
the year, a large proportion of the human genome will be
deciphered, in both public and private efforts, and the
complete sequence of the mouse and other animal and
plant genomes will undoubtedly follow close behind.
Unfortunately, the billions of bases of DNA sequence do
not tell us what all the genes do, how cells work, how cells
form organisms, what goes wrong in disease, how we age
or how to develop a drug. This is where functional
genomics comes into play. The purpose of genomics is to
understand biology, not simply to identify the component
parts, and the experimental and computational methods
take advantage of as much sequence information as
possible. In this sense, functional genomics is less a specific
project or programme than it is a mindset and general
approach to problems. The goal is not simply to provide a
catalogue of all the genes and information about their
functions, but to understand how the components work
together to comprise functioning cells and organisms.

To take full advantage of the large and rapidly increasing
body of sequence information, new technologies are
required. Among the most powerful and versatile tools for
genomics are high-density arrays of oligonucleotides or com-
plementary DNAs. Nucleic acid arrays work by hybridization
of labelled RNA or DNA in solution to DNA molecules
attached at specific locations on a surface. The hybridization
of a sample to an array is, in effect, a highly parallel search by
each molecule for a matching partner on an ‘affinity matrix’,

with the eventual pairings of molecules on the surface 
determined by the rules of molecular recognition. Arrays of
nucleic acids have been used for biological experiments for
many years3–8. Traditionally, the arrays consisted of fragments
of DNA, often with unknown sequence, spotted on a porous
membrane (usually nylon). The arrayed DNA fragments
often came from cDNA, genomic DNA or plasmid libraries,
and the hybridized material was often labelled with a radioac-
tive group. Recently, the use of glass as a substrate and fluores-
cence for detection, together with the development of new
technologies for synthesizing or depositing nucleic acids on
glass slides at very high densities, have allowed the miniatur-
ization of nucleic acid arrays with concomitant increases in
experimental efficiency and information content9–14 (Fig. 1). 

While making arrays with more than several hundred
elements was until recently a significant technical 
achievement, arrays with more than 250,000 different
oligonucleotide probes or 10,000 different cDNAs per
square centimetre can now be produced in significant 
numbers15,16. Although it is possible to synthesize or deposit
DNA fragments of unknown sequence, the most common
implementation is to design arrays based on specific
sequence information, a process sometimes referred to as
‘downloading the genome onto a chip’ (Fig. 1). There are
several variations on this basic technical theme: the
hybridization reaction may be driven (for example, by an
electric field)17,18; other detection methods19 besides fluores-
cence can be used; and the surface may be made of materials
other than glass such as plastic, silicon, gold, a gel or 
membrane, or may even be comprised of beads at the ends of
fibre-optic bundles20–22. Nonetheless, the key elements of
parallel hybridization to localized, surface-bound nucleic
acid probes and subsequent counting of bound molecules
are ubiquitous, and high-density arrays of nucleic acids on
glass (often called DNA microarrays, oligonucleotide
arrays, GeneChip arrays, or simply ‘chips’) and their 
biological uses will be the focus of this review. 

Global gene expression experiments
One of the most important applications for arrays so far  is the
monitoring of gene expression (mRNA abundance). The col-
lection of genes that are expressed or transcribed from
genomic DNA, sometimes referred to as the expression 
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Figure 1 Principal types of arrays used in gene expression monitoring. Nucleic acid
arrays are generally produced in one of two ways: by robotic deposition of nucleic acids
(PCR products, plasmids or oligonucleotides) onto a glass slide25 or in situ synthesis
(using photolithography15) of oligonucleotides. Shown are pseudocolour images of 
a, an oligonucleotide array and b, a cDNA array after hybridization of labelled samples
and fluorescence detection. In both cases the images have been coloured to indicate
the relative number of yeast transcripts present under two different growth conditions
(red, high in condition 1, low in condition 2; green, high in condition 2, low in condition
1; yellow, high under both conditions; black, low under both conditions). In the case of
photolithographically synthesized arrays, ~107 copies of each selected oligonucleotide
(usually 20 to 25 nucleotides in length) are synthesized base by base in hundreds of
thousands of different 24 mm 2 24 mm areas on a 1.28 cm 2 1.28 cm glass
surface. For robotic deposition, approximately one nanogram of material is deposited
at intervals of 100–300 mm. Typically for oligonucleotide arrays, multiple probes per
gene are placed on the array (20 pairs in the example shown here), while in the case of
robotic deposition, a single, longer (up to 1,000 bp) double-stranded DNA probe is
used for each gene or EST. In both cases, probes are usually designed from sequence
located nearer to the 3′ end of the gene (near the poly-A tail in eukaryotic mRNA), and
different probes can be used for different exons. After hybridization of labelled samples
(typically overnight), the arrays are scanned and the quantitative fluorescence image
along with the known identity of the probes is used to assess the ‘presence’ or
‘absence’ (more precisely, the detectability above thresholds based on background and
noise levels) of a particular molecule (such as a transcript), and its relative abundance
in one or more samples. Because the sequence of the oligonucleotide or cDNA at each
physical location (or address) is generally known or can be determined, and because

the recognition rules that govern hybridization are well understood, the signal intensity
at each position gives not only a measure of the number of molecules bound, but also
the likely identity of the molecules. Although oligonucleotide probes vary systematically
in their hybridization efficiency, quantitative estimates of the number of transcripts per
cell can be obtained directly by averaging the signal from multiple probes15,26,30. For
technical reasons, the information obtained from spotted cDNA arrays gives the relative
concentration (ratio) of a given transcript in two different samples (derived from
competitive, two-colour hybridizations). Messenger RNAs present at a few copies
(relative abundance of ~1:100,000 or less) to thousands of copies per mammalian cell
can be detected25,26,30, and changes as subtle as a factor of 1.3 to 2 can be reliably
detected if replicate experiments are performed. c, Different methods for preparing
labelled material for measurements of gene expression. The RNA can be labelled
directly, using a psoralen–biotin derivative or by ligation to an RNA molecule carrying
biotin26; labelled nucleotides can be incorporated into cDNA during or after reverse
transcription of polyadenylated RNA; or cDNA can be generated that carries a T7
promoter at its 5′ end. In the last case, the double-stranded cDNA serves as template
for a reverse transcription reaction in which labelled nucleotides are incorporated into
cRNA. Commonly used labels include the fluorophores fluorescein, Cy3 (or Cy5), or
nonfluorescent biotin, which is subsequently labelled by staining with a fluorescent
streptavidin conjugate. d, Two-colour hybridization strategy often used with cDNA
microarrays. cDNA from two different conditions is labelled with two different
fluorescent dyes (usually Cy3 and Cy5), and the two samples are co-hybridized to an
array. After washing, the array is scanned at two different wavelengths to detect the
relative transcript abundance for each condition. cDNA array image courtesy of  J.
DeRisi and P. O. Brown (http://cmgm.stanford.edu/pbrown/yeastchip.html).
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profile or the ‘transcriptome’, is a major determinant of cellular pheno-
type and function. The transcription of genomic DNA to produce
mRNA is the first step in the process of protein synthesis, and 
differences in gene expression are responsible for both morphological
and phenotypic differences as well as indicative of cellular responses to
environmental stimuli and perturbations. Unlike the genome, the
transcriptome is highly dynamic and changes rapidly and dramatically
in response to perturbations or even during normal cellular events
such as DNA replication and cell division23,24. In terms of understand-
ing the function of genes, knowing when, where and to what extent a
gene is expressed is central to understanding the activity and biological
roles of its encoded protein. In addition, changes in the multi-gene 
patterns of expression can provide clues about regulatory mechanisms
and broader cellular functions and biochemical pathways. In the 
context of human health and treatment, the knowledge gained from
these types of measurements can help determine the causes and conse-
quences of disease, how drugs and drug candidates work in cells 
and organisms, and what gene products might have therapeutic uses
themselves or may be appropriate targets for therapeutic intervention. 

Past discussions of arrays have often centred on technical issues and
specific performance characteristics25. Now that nucleic acid arrays have
been constructed for many different organisms14,26–29 and used success-
fully to measure transcript abundance in a host of different experi-
ments, the focus of interest has thankfully shifted. Investigators are now
more concerned with questions concerning experimental design, data
analysis, the use of small amounts of mRNA from limited sources, the
best ways to extract biological meaning from the results, pathway and
cell-circuitry modelling, and medical uses of expression patterns.

Array-based gene expression monitoring
One way to think of measurements with arrays is that they are simply
a more powerful substitute for conventional methods of evaluating

mRNA abundance. For some early experiments, only a relatively
small set of genes, which were thought to be important to a process,
were included on the arrays12,30. However, such experiments did not
capitalize on the arrays’ potential: a key advantage of using arrays,
especially those that contain probes for tens of thousands of different
genes, is that it is not necessary to guess what the important genes or
mechanisms are in advance. Instead of looking only under the
proverbial lamppost, a broader, more complete and less biased view
of the cellular response is obtained (Figs 2, 3).

The breadth of array-based observations almost guarantees that
surprising findings will be made. A recent study measured the 
transcriptional changes that occur as cells progress through the 
normal cell-division cycle in humans for approximately 40,000 genes
(R. J. Cho et al., unpublished results). In addition to the induction of
DNA replication genes and genes involved with cell-cycle control and
chromosome segregation that would be expected at specific stages in
the cell cycle, a large collection of genes involved with smooth muscle
function, apoptosis and intercellular adhesion and cell motility were
found to be upregulated during a specific phase. The expected results
act effectively as internal controls that provide a certain amount of
validation (and comfort), while new information is obtained by a
systematic search of a larger part of ‘gene space’. In addition, because
arrays often contain probes for genes of unknown function (and
often with only partial sequence information), any outcome for these
could be considered, in some sense, both surprising and novel
(although clearly requiring further characterization). 

Other gene expression methods
Not surprisingly, there are other ways to measure mRNA abundance,
gene expression and changes in gene expression. For measuring gene
expression at the level of mRNA, northern blots, polymerase chain
reaction after reverse transcription of RNA (RT-PCR), nuclease 

Figure 2 Messenger RNA abundance levels in different 
cells, tissues and organisms. a, Human HIV-infected T
lymphocytes; b, mouse olfactory epithelium; c, rat brain; 
d, S. cerevisiae strain RY136 grown at 25 7C in rich medium.
Levels of gene expression were measured using Affymetrix
oligonucleotide arrays. For human, mouse and rat samples,
hybridization intensities were converted to copies per cell (top
axis) based on the signal from multiple control RNAs added to
the samples at known concentrations. For yeast, the
conversion was based on the signal from the TATA-binding
protein (TBP) mRNA, which has been determined to be
present at ~3.5 copies per cell when yeast cells are grown in
rich medium103. Only those genes scored as ‘present’ are
represented in the histograms. Data from multiple arrays
containing probes for a different subset of genes and ESTs
were combined to generate the plots for human (five arrays),
mouse (five arrays) and rat (three arrays). All yeast ORFs were
represented on a single array. For measurements that cover
such a large number of genes, it is important to maintain high
standards of data quality to keep false-positive results to a
minimum. (For example, when monitoring 10,000 genes,
even a low false-positive rate of 1% results in 100 false calls.)
We find that the source of most false positives (in large part
the result of setting the lowest possible thresholds in the
interest of sensitivity) is random noise, biological variation,  or
the occasional array-specific physical defect, so observations
made consistently in independent replicates yield a 
false-positive rate close to 0.01%, or only 1 in 10,000. In well controlled experiments involving specific biochemical, chemical and genetic perturbations, typically the number of
expression differences is modest, with about 0.1–2% of the monitored genes changing by a factor of 1.8 or more, and only a small fraction of these changing by more than four- to
fivefold56–58,70–72,95,104. For samples derived, for example, from different adult human or mouse tissues, or from normal versus advanced tumour tissue, the number of differences
can be as large as 10–15% of the monitored genes50–53. The larger number of differences poses only minor difficulties for the technology, but analysis of the more complex results
and the larger number of genes involved typically requires more sophisticated computational methods.
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protection, cDNA sequencing, clone hybridization, differential 
display31, subtractive hybridization, cDNA fragment fingerprinting32–35

and serial analysis of gene expression (SAGE)36 have all been put to good
use to measure the expression levels of specific genes, characterize 
global expression profiles or to screen for significant differences in
mRNA abundance. But if messenger RNA is only an intermediate on
the way to production of the functional protein products, why measure
mRNA at all? One reason is simply that protein-based approaches are
generally more difficult, less sensitive and have a lower throughput than
RNA-based ones. But more importantly, mRNA levels are immensely
informative about cell state and the activity of genes, and for most
genes, changes in mRNA abundance are related to changes in protein
abundance. Because of its importance, however, many methods have
been developed for monitoring protein levels either directly or 
indirectly (see review in this issue by Pandey and Mann, pages
837–846). These include western blots, two-dimensional gels, methods
based on protein or peptide chromatographic separation and mass
spectrometric detection37–40, methods that use specific protein-fusion
reporter constructs and colorimetric readouts41–44, and methods based
on characterization of actively translated, polysomal mRNA45–47. 

The importance of the protein-based methods is that they measure
the final expression product rather than an intermediate. In addition,
some of them enable the detection of post-translational protein modifi-
cations (for example, phosphorylation and glycosylation) and protein
complexes, and in some cases, yield information about protein localiza-
tion, none of which are obtained directly by measurements of mRNA.
There is no question that protein- and RNA-based measurements are
complementary, and that protein-based methods are important as they
measure observables that are not readily detected in other ways.

Human disease, gene expression and discovery
Genomics and gene expression experiments are sometimes derided
as ‘fishing expeditions’. Our view is that there is nothing wrong with a

fishing expedition48 if what you are after is ‘fish’, such as new genes
involved in a pathway, potential drug targets or expression markers
that can be used in a predictive or diagnostic fashion. Because the
arrays can be designed and made on the basis of only partial
sequence information, it is possible to include genes in a survey that
are completely uncharacterized. In many ways, the spirit of this
approach is more akin to that of classical genetics in which muta-
tions are made broadly and at random (not only in specific genes),
and screens or selections are set up to discover mutants with an
interesting phenotype, which then leads to further characterization
of specific genes.

Such broad discovery experiments are probably better described
as ‘question-driven’ rather than hypothesis-driven in the conven-
tional sense. But that is not to diminish their value for understanding
basic biological processes and even for understanding and treating
human disease. For example, by analysing multiple samples obtained
from individuals with and without acute leukaemia or diffuse large
B-cell lymphoma, gene expression (mRNA) markers were discov-
ered that could be used in the classification of these cancers49,50. The
importance of monitoring a large number of genes was well illustrat-
ed in these studies. Golub et al.49 found that reliable predictions could
not be made based on any single gene, but that predictions based on
the expression levels of 50 genes (selected from the more than 6,000
monitored on the arrays) were highly accurate. The results of both of
these studies indicate that measurements with more individuals and
more genes will be needed to identify robust expression markers that
are predictive of clinical outcome. But even with the limited initial
data it was possible to help clarify an unusual case (classic leukaemia
presentation but atypical morphology) and to use this information
to guide the patient’s clinical care. 

It is also possible to take a related approach to help understand
what goes wrong in cancerous, transformed cells and to identify 
the genes responsible for disease. Causative effects and potential

Figure 3 Methods for analysing gene
expression data shown for measurements of
expression in the cell cycle of S. cerevisiae. 
a, Yeast cells were synchronized and cells
were collected every ten minutes throughout
two complete synchronous cycles (18 time
points in total are shown). Expression data
were collected by hybridizing labelled cDNA
samples to high-density oligonucleotide
arrays. Transcript levels were determined for
almost every gene in the genome for every
time point24. A sample of 409 genes (from a
total of 6,000) that showed both a significant
(more than twofold) fluctuation in transcript
levels during the time course and cell cycle-
dependent periodicity were selected for
further analysis. b, Dendrogram indicating
similarity of expression profiles, calculated
using the Pearson correlation function in the
GeneSpring software package (Silicon
Genetics, San Carlos, CA). For display
purposes, the relative expression levels were
plotted in red (high) and blue (low). c, The
genes were divided into five different temporal
expression classes (red, early G1; light blue,
G1; green, late G1; dark blue, S; orange,
G2/M) using K-tuple means clustering (also
using GeneSpring software) and the clusters were named according to their time of peak expression within the cell cycle. d, Line graphs for all genes in the clusters defined in b. 
e, Location of cell cycle-regulated genes within the dendrogram in a that have cis-regulatory sequence elements in the 500 bp upstream of their promoter. Column 1, MCB sites
(ACGCGT); column 2, ECB sites (TTWCCCNNNNAGGAA); column 3, a new sequence (GTAAACAA or TTGTTTAC) was identified that was statistically associated (p = 1.77 2 10–7

for the forward direction, p = 0.003 for the reverse) with the promoter regions of genes whose expression peaked in G2/M phase.
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therapeutic targets can be identified by determining which genes are
upregulated in different tumour types51–55, and specific candidate
genes can be intentionally overexpressed in cell lines or cells treated
with growth factors in order to identify downstream target genes 
and to explore signalling pathways56–58. Tumorigenesis is often
accompanied by changes in chromosomal DNA, such as genetic
rearrangements, amplifications or losses of particular chromosomal
loci, and developmental abnormalities, such as Down’s or Turner’s
syndrome, may arise from aberrations in DNA copy number.
Because genomic DNA can be interrogated in much the same way as
mRNA, comparisons of the copy number of genomic regions or the
genotype of genetic markers can be used to detect chromosomal
regions and genes that are amplified or deleted in cancerous or 
pre-cancerous cells. By using arrays containing probes for a large
number of genes or polymorphic markers, changes in DNA copy
number have been detected in both breast cancer cell lines and in
tumours59–61. The identification of when and where changes in copy
number or chromosomal rearrangements have occurred can be used
in both the classification of cancer types and the identification of
regions that may harbour tumour-suppressor genes.

Whole-genome hypotheses
The use of genomics tools such as arrays does not, of course, preclude
hypothesis-driven research. For fully sequenced organisms, arrays
containing probes for every annotated gene in the genome have been
produced14,26. With these one can ask, for example, whether a 
transcription factor has a global role in transcription (affecting all
genes) or a specific role (affecting only some). Holstege et al.62 used
this type of application in a genome-wide expression analysis in yeast
to functionally dissect the machinery of transcription initiation.
Similarly, genes located near the ends of chromosomes in yeast (as
well as genes at the mating-type locus) are known to be transcription-
ally ‘silent’. Full genome arrays allow the chromosomal landscape of
silencing to be mapped, and make it possible to test whether what is
true for a handful of well-studied genes near the telomeres is true for
all telomeric genes, and whether any centromere-proximal genes are
also transcriptionally silenced63. 

It is important to emphasize that these new, parallel approaches
do not replace conventional methods. Standard methods such as
northern blots, western blots or RT-PCR are simply used in a more
targeted fashion to complement the broader measurements and to
follow-up on the genes, pathways and mechanisms implicated by the
array results. Because the incidence of false-positive results can be
made sufficiently low (see Fig. 2), it is not necessary to independently
confirm every change for the results to be valid and trustworthy, 
especially if conclusions are based on changes in sets of genes rather
than individual genes. More detailed follow-up is recommended if a
gene is being chosen, for example, as a drug target, as a candidate for
population genetics studies, or as the target for the construction of a
knockout mouse.

Does gene expression indicate function?
As additional, uncharacterized open reading frames (ORFs) are
identified in different organisms by the various genome sequencing
projects, researchers have begun to ask whether the expression pat-
tern for a gene can be used to predict the functional role of its protein
product. An increasingly common approach involves using the gene
expression behaviour observed over multiple experiments to first
cluster genes together into groups (see Fig. 3), either by manual
examination of the data24, or by using statistical methods such as self-
organizing maps64, K-tuple means clustering or hierarchical cluster-
ing23,65,66. The basic assumption underlying this approach is that
genes with similar expression behaviour (for example, increasing
and decreasing together under similar circumstances) are likely to be
related functionally. In this way, genes without previous functional 
assignments can be given tentative assignments or assigned a role in a
biological process based on the known functions of genes in the same

expression cluster (that is, the concept of ‘guilt-by-association’). The
validity of this approach has been demonstrated for many genes in
Saccharomyces cerevisiae, a simple organism for which the entire
genomic sequence and the functional roles of approximately 60% of
the genes are known24,65,67 (Fig. 4). Although not logically rigorous,
the utility of the guilt-by-association approach has been demonstrat-
ed, as genes already known to be related do, in fact, tend to cluster
together based on their experimentally determined expression pat-
terns (Fig. 4). The approach is made more systematic and statistically
sound by calculating the probability that the observed functional 
distribution of differentially expressed genes could have happened by
chance. The application of statistical rigour is essential to avoid 
overly subjective interpretations of the results based on the predispo-
sitions, prior knowledge and interests of the individual researcher. 

A tentative functional assignment may not be much more than a
low-resolution description or general classification. Descriptions of
this type are similar to those that come out of more classical genetic
screens and selections, which have provided the vast majority of
functional annotations to date — they indicate that genes are
involved with a particular cellular phenotype and that they are likely
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Figure 4 The ‘guilt-by-association’ method for assigning gene function. Functional
distribution (using categories from MIPS: http://www.mips.biochem.mpg.de/proj/
yeast/catalogues/funcat/index.html) of yeast genes whose periodic expression
peaked at different times in the yeast cell cycle (outer rings) or was constant
throughout the cell cycle (inner circle)24. A much larger fraction of cell cycle-
modulated genes is important in DNA synthesis, cell growth or cell division. Although
there is a strong correlation between distinct expression profiles and functional
assignments, specific expression behaviour should not be taken as sufficient evidence
for functional assignment: not all genes involved in DNA replication are expressed
periodically in the cell cycle, and some genes that do not need to be cell cycle-
regulated are transcribed in a periodic fashion.
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to be involved with a certain set of other genes and processes. This
allows researchers to focus attention on a smaller subset of genes,
many of which may not have been obvious candidates in the absence
of the global expression observations. This overall approach high-
lights the importance of functional annotation and careful curation
of existing sequence, function and knowledge databases (see below).
Expression results covering thousands or even tens of thousands 
of genes and expressed sequence tags (ESTs) will be only partly 
interpretable given the functional and biological information 
available at the time they are initially generated. Our ability to extract
knowledge from measurements of global gene expression tends to
increase with time as additional information becomes available, and
results can be subjected to further interrogation in the light of new
information, observations, questions and hypotheses. 

Gene expression and the regulation of transcription
When information on the complete genome sequence is available, as
is the case for increasing numbers of small and even larger genomes,
gene expression data can be used to identify new cis-regulatory 
elements (genomic sequence motifs that are over-represented in the
genomic DNA in the vicinity of similarly behaving genes) and 
‘regulons’ (sets of co-regulated genes), the basic units of the underly-
ing cellular circuitry (Fig. 3d). In fact, the correlation between the
presence of specific sequence motifs in promoter regions and gene
expression patterns may be stronger than the correlation between
functional categories and gene expression patterns. In yeast studies,
more than 50% of the genes that are transcribed in a cell cycle-

specific manner and whose transcript abundance peaks in the G1
phase of the cell cycle have an MCB (Mlu cell-cycle box) within 500
base pairs (bp) of their translational start site24,68,69. Similar observa-
tions have been made for yeast genes whose transcription is induced
during sporulation67. In addition, new cis-regulatory elements may
be revealed by examining classes of co-regulated genes (Fig. 3d). With
sufficiently large numbers of experimental observations of expres-
sion behaviour, the boundaries and all functioning sequence variants
of cis-regulatory elements might be predicted without the need for
the more conventional approach using site-directed mutagenesis
(‘promoter bashing’). The expression-based method will be especial-
ly valuable in exotic organisms, such as Plasmodium falciparum, the
causative agent for malaria, for which experimental identification or
verification of transcription factor binding sites is difficult.

Gene expression profiles as ‘fingerprints’
An often overlooked aspect of measurements of global gene expres-
sion is that the sequence or even the origin of the arrayed probes does
not need to be known to make interesting observations — the 
complex profiles, consisting of thousands of individual observations,
can serve as transcriptional ‘fingerprints’. The fingerprints can be
used for classification purposes or as tests for relatedness, in a similar
manner to the way in which DNA fingerprints are used in paternity
testing. In one example, transcriptional fingerprints have been used
to determine the target of a drug70. The basic idea is that if a drug
interacts with and inactivates a specific cellular protein, the pheno-
type of the drug-treated cell should be very similar to the phenotype
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Figure 5 Generic oligonucleotide tag arrays for parallel phenotyping of mutant yeast strains. a, Many S. cerevisiae strains, each carrying a specific deletion of one of the more than
6,000 ORFs in the yeast genome, have been constructed91 by replacing individual genes with an antibiotic resistance cassette and a unique gene-specific 20-mer ‘barcode’,
represented by an X. b, The barcode for each deletion strain corresponds to a specific location on an array that contains oligonucleotide probes that are complementary to the
barcode sequences. c, Pools of different yeast strains can be assembled and grown under different conditions. After competitive growth, PCR is used to amplify the barcodes from
genomic DNA isolated from the pools; the PCR products are subsequently labelled. d, By comparing the hybridization patterns of two different pools (before and after treatment with
a drug, for example), the fitness of the strains can be assessed quantitatively. In this case, yeast genes required for sporulation or germination are represented in red, whereas yeast
genes that are unnecessary for the process are shown in yellow. These same 20-mer sequences and the accompanying arrays are generic in design, and can be used to read the
results of different types of ‘bar-coded’ reactions, such as those used for genotyping of human polymorphic loci105. Images provided by R. M. Williams and R. W. Davis.
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of a cell in which the gene encoding the protein has been genetically
inactivated, usually through mutation. Thus, by comparing the
expression profile of a drug-treated cell to the profiles of cells in
which single genes have been individually inactivated, specific
mutants can be matched to specific drugs, and therefore, targets to
drugs. In a demonstration of this concept, the gene product of the
his3 gene was identified correctly as the target of 3-aminotriazole70.
Similarly, profiles have been used in the classification of cancers and
the classification schemes did not depend on any specific informa-
tion about the genes involved49,50, although that information can be
used to draw further biological and mechanistic conclusions. Finally,
expression profiles can be used to classify drugs and their mode of
action. For example, the functional similarity and specificity of 
different purine analogues have been determined by comparing the
genome-wide effects on treated yeast, murine and human cells71,72. 

Expression measurements from small amounts of RNA
An important frontier in the development of gene expression 
technology involves reduction of the required amount of starting
material. Most array-based expression measurements are done using
RNA from a million or more cells, and obtaining such a relatively
large sample is not a problem in many types of studies (for example,
litres of yeast cells can be grown easily). However, in some cases, it is
important or even necessary to use fewer cells, as when using a small
organ from a fly or worm, sorted cells that express a rare marker, or
laser-capture microdissected73–75 tumour tissue. Efficient and 
reproducible mRNA amplification methods are required, and there
are two primary approaches that show significant promise. The first
is a PCR-based approach that has been used to make single-cell cDNA
libraries76–78. We have found that the amplification is efficient and
reproducible, but that the relative abundance of the cDNA products
is not well correlated with the original mRNA levels (D. Giang and 
D. J. Lockhart, unpublished results), although normalization 
and referencing strategies can be used (D. de Graaf and E. Lander,
personal communication). 

The second approach avoids PCR altogether and uses multiple
rounds of linear amplification based on cDNA synthesis and a 
template-directed in vitro transcription (IVT) reaction79–81. This
method has been used to characterize mRNA from single live 
neurons81 and even subcellular regions, and more recently to amplify
mRNA from 500 to 1,000 cells from microdissected brain tissues for
hybridization to spotted cDNA arrays82. We have found that the 
multiple-round cDNA/IVT amplification method produces suffi-
cient quantities of labelled material starting with as little as 1–50 ng
total RNA, is highly reproducible (correlation coefficients greater
than 0.97), and introduces much less quantitative bias than 
PCR-based amplification (D. Giang and D. J. Lockhart, unpublished
results). These amplification methods facilitate the possibility of
monitoring large number of genes starting with very limited
amounts of RNA and very few cells. The combination of arrays 
and powerful amplification strategies promises to be especially
important for studies that use human biopsy material from 
inhomogeneous tissue, and in the areas of developmental biology,
immunology and neurobiology.

Genome analysis using arrays
Although nucleic acid arrays are often equated with gene expression
analysis, they may be used to collect much of the data that are
obtained presently by Southern or northern blot hybridization tech-
niques, but in a more highly parallel fashion (Figs 5, 6). Their utility
in polymorphism detection and genotyping is described elsewhere
(see review in this issue by Roses, pages 857–865), but there are many
additional uses for these versatile tools. For example, genomic DNA
samples can be manipulated experimentally to select for particular
regions before hybridization to obtain specific types of information.
In yeast, the location of hundreds of chromosomal origins of replica-
tion can be determined in parallel by enriching for early-replicating

regions using a variation of the Meselsohn–Stahl procedure and then
hybridizing the resulting DNA to full genome arrays (E. A. Winzeler
et al., unpublished results). Similarly, as probes for more intergenic
regions are synthesized on arrays, it becomes possible to identify 
protein-binding sites: fragmented chromatin can be crosslinked to a
protein and then immunoprecipitated with an antibody to that pro-
tein. The DNA fraction of the immunoprecipitate can be labelled and
hybridized to identify the approximate location of the binding site. In
addition, full genome arrays can be used in the analysis of plasmid
libraries in genetic selections such as two-hybrid screens83 or, in 
principal, for any other type of experiment in which the information
is contained in the form of RNA or DNA. Arrays also have 
applications in biophysical chemistry and biochemistry. For 
example, single-stranded DNA arrays were converted enzymatically
into arrays of double-stranded DNA to characterize the interactions
of proteins, and potentially other types of molecules, with double-
stranded DNA84.

Gene expression and cell circuitry
Is it reasonable to consider the cell as a complex analogue circuit, and
to attempt to reverse-engineer the cell circuitry much like an electri-
cal engineer would do by measuring currents and voltages at a variety
of nodes and under a variety of input conditions? In the case of 
the cell, expression levels and expression changes might take the place
of electrical measurements, and could be measured under many
experimental conditions. Is it possible that a genetic or cellular circuit
of reasonable complexity could be adequately decoded or modelled,
and if so, how many and what types of measurements and perturba-
tions (or ‘inputs’) would be required so that the problem was not
hopelessly underdetermined85–89? Reasonably detailed circuit 
diagrams can be drawn and simulations of simple genetic circuits
have been performed for systems of low complexity (for example, the
lytic cycle of phage lambda, and simple control networks in
Escherichia coli bacteria90). But the situation is considerably more
complex in the case of a eukaryotic cell. Using yeast as an example, if
we assume that the expression level for each gene can be one of only
four levels (off, low, medium or high), then if the 6,200 yeast genes
behave independently, there are 6,2004, or ~1.5 2 1015 possible
expression states. Of course, the expression levels of different genes
are not all independent of one another, and there are some states that
are physically unrealistic (for example, all genes ‘off ’ or all genes
‘high’), but the number of possible cellular configurations is very
large. In addition, coupling between circuit components, the effects
of nonlinear feedback, redundancy and even noise and stochastic
events make simulating a circuit of this complexity a rather daunting
task, and not all relationships and cellular events are reflected at the
level of mRNA abundance. 

Least clear may be what types of perturbations or inputs are likely
to be the most informative in terms of defining the relationships
between genes and pathways, and what might be a minimal set of
‘orthogonal perturbations’ (treatments, genetic manipulations or
growth conditions that have minimal overlap in their direct cellular
effects). Certainly it is possible to delete every yeast gene one at a time
(or even several at a time) and measure the expression profile for each
mutant strain under a set of different growth conditions70,91. It is 
also possible to grow yeast on a matrix of thousands of different 
conditions and measure the resulting expression profiles for a range
of mutated strains. It is clear that extensive experiments of this type,
combined with information from other measurements such as 
yeast two-hybrid protein–protein interaction screens92, and 
measurements of protein levels, modification states and cellular
localization will lead to useful groupings of genes in terms of function
and regulation (that is, a genetic, molecular and functional taxono-
my), and to supply some reasonably detailed information about the
relationships between certain genes and pathways. In addition, sets 
of perturbations directed towards specific functions and 
cellular processes will allow higher-resolution and even mechanistic
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information for significant parts of the overall circuitry62,93. However,
given the tremendous complexity of the system, it is unlikely that a
complete and detailed cellular circuit diagram will result for even 
single-celled eukaryotes such as yeast any time in the near future. But
that is not to say that construction of even first-order global models
and semi-quantitative circuit diagrams is not extremely useful. Such
models serve to organize current information, relationships and
hypotheses, and can be tremendously helpful for testing new
hypotheses, interpreting new observations, designing new experi-
ments and predicting the likely effects of particular chemical, genetic
or cellular perturbations. They also serve as a scaffold upon which to
build higher-resolution, more quantitative and complete models.

Can we have too much data?
Contrary to what is sometimes thought, the biggest problem for
making sense of the extensive results from genomics experiments is
not that there is too much data or that there are insufficiently sophis-
ticated algorithms and software tools for querying and visualizing
data on this scale. Larger problems of data management and analysis
have been solved by airlines, financial institutions, global retailers,
high-energy and plasma physicists, the military and global weather
predictors, among others. It is often beneficial to have a large number
of measurements94 and sometimes more data make it possible to
analyse results that might otherwise have been too ‘messy’, and to
detect patterns and relationships that would not have been obvious
or have sufficient statistical significance with smaller data sets. In
many types of studies, it is not possible to control completely all 
variables, and the individual differences between common sample
types may be significant because of experimental difficulties (for
example, tissue inhomogeneity or variations in sample procedures)
or individual genetic variation (for example, different patients or dif-
ferent tumours). But such factors do not preclude the discovery of
some genes that clearly ‘cluster’ or differentiate between the sample
sets. For example, meaningful results can be extracted from the
analysis of human tissue collected at different hospitals, by different
surgeons and at different times. An essential requirement in these

types of studies is that a sufficient number of experiments be 
performed across multiple individuals and multiple tissue or tumour
samples to account for individual variation and possible tissue 
inhomogeneity. Furthermore, confidence in the results is increased
as conclusions are based on sets of genes that show a consistent
response and that are consistently different between two or more sets
of results49,50,52,53,95.

Making sense of genomic results
Although the difficulties of sample collection, data collection and
experimental design should not be underestimated, one of the most
challenging aspects of gene expression analysis is making sense of the
vast quantities of data and extracting conclusions and hypotheses that
are biologically meaningful. From experiments on global gene expres-
sion, we may obtain data for thousands of genes, often forcing us to
consider processes, functions and mechanisms about which we know
very little. Thus, there is a need for more sophisticated systems of
knowledge representation (or ‘knowledge bases’) that organize the
data, facts, observations, relationships and even hypotheses that form
the basis of our current scientific understanding. This information
needs to be more than just stored; it needs to be available in a 
way that helps scientists understand and interpret the often 
complex observations that are becoming increasingly easy to make.
Unfortunately, the fact is that the scientific literature has been 
somewhat haphazardly built, without the benefit of a controlled or
restricted vocabulary and a well defined semantic and grammar. To
take full advantage of the abilities of the new technologies and the
rapidly increasing amount of sequence information it is absolutely
essential to incorporate the facts, ideas, connections, observations 
and so forth, which exist in the scientific literature and in the 
minds of scientists, into a form that is systematic, organized, 
linked, visualized and searchable. This clearly requires a great 
deal of dedicated, systematic human effort, but progress has 
been made. Databases such as the Saccharomyces Genome 
Database (SGD: genome-www.stanford.edu/Saccharomyces), the
Munich Information Center for Protein Sequences (MIPS:
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Figure 6 Comparative genome hybridization
using arrays26,106,107. a, Two arrays containing
probes to yeast (the complete genome
sequence of S. cerevisiae strain S288c and
some S. cerevisiae DNA not present in S288c)
were hybridized with fragmented, labelled
genomic DNA from two different yeast strains
commonly used in genetic studies (W303 and
SK1). Red indicates the location of probes that
hybridize efficiently only to DNA from the
W303 strain, green indicates probes that
hybridize only to SK1 DNA, and yellow
indicates probes that hybridize equally to the
DNA from both strains. b, Enlargement of the
boxed region in a. c, Region of the array
containing probes to relatively unique protein-
coding regions of the genome. d, Probes to
non-unique regions of the genome
(transposable elements, telomeric sequences,
transfer RNAs and ribosomal RNAs). Genome
regions that are present, absent, or found at
higher or lower copy numbers in the two
strains are readily detected. The large amount
of allelic variation between the strains can be
used in mapping studies108. Related
approaches can be used in typing microbial
isolates29,109 or to identify genetic
abnormalities in  tumours.
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www.mips.biochem.mpg.de), WormBase (www.wormbase.org), the
Kyoto Encyclopedia of Genes and Genomes (KEGG:
www.genome.ad.jp/kegg), the Encyclopedia of E. coli Genes and
Metabolism (EcoCyc: http://ecocyc.panbio.com/ecocyc) and FlyBase
(flybase.bio.Indiana.edu/) incorporate sequence, genetics, gene
expression, homology, regulation, function and phenotype informa-
tion in an organized and useable form96–102. But a step beyond databases
of this type are ones in which concepts as well as facts are more fully
integrated and related, allowing connections to be made between 
initially disparate observations and information, and across 
organisms. It is conceivable that the next step will evolve to the level of a
biological ‘expert system’, not unlike the expert system (‘Big Blue’) that
IBM scientists and engineers built to play chess (successfully) against
the world’s best chess player. Despite the potential for advancement 
on this front, it seems unlikely that computational tools will ever
replace the trained human brain when it comes to making biological
sense of new results. However, the appropriate tools are needed to bring
information and relationships to scientist’s fingertips so that the 
most insightful questions can be asked and the most meaningful 
interpretations made.

Conclusion
For these array-based methods to become truly revolutionary, they
must become an integral part of the daily activities of the typical 
molecular biology laboratory. Despite their impressive and rapidly
growing résumé, these technologies are still in their infancy, with
plenty of room for technical improvements, further development,
and more widespread acceptance and accessibility. We expect that the
pattern of development and use of arrays and other parallel genomic
methodologies will be similar to that seen for computers and other
high-tech electronic devices, which started out as exotic and expen-
sive tools in the hands of the few developers and early adopters, and
then moved quickly to become easier to use, more available, less
expensive and more powerful, both individually and because of their
ubiquity. In fact, nucleic acid array-based methods that previously
seemed exotic, and too expensive, are becoming routine as indicated
by the huge increase in the number of publications that incorporate
data obtained in this way. Despite the relative youth of these
approaches, the achievement of technical goals that would have
seemed like science fiction only a few years ago is now clearly in view.
For example, we expect that measuring the expression level of essen-
tially every gene (including variant splice forms) on an array or two
starting with RNA from a small number of cells, or even a single cell,
will soon be possible owing to advances in single-cell handling and
RNA amplification methods, the output of large-scale sequencing
efforts and achievable advances in array technology. In the future,
arrays of peptides, proteins, small molecules, mRNAs, clones, tissues,
cells and even multicellular organisms such as the nematode worm
Caenorhabditis elegans may also become common. The combined
use of all of these highly parallel methods, along with sequence 
information, computational tools, integrated knowledge databases,
and the traditional approaches of biology, biochemistry, chemistry,
physics, mathematics and genetics, increases the hopes of 
understanding the function and regulation of all genes and proteins,
deciphering the underlying workings of the cell, determining the
mechanisms of disease, and discovering ways to intervene with or
prevent aberrant cellular processes in order to improve human health
and well-being. ■■
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