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Abstract

Ecological speciation is the process by which reproductively isolated populations emerge

as a consequence of divergent natural or ecologically-mediated sexual selection. Most

genomic studies of ecological speciation have investigated allopatric populations, making it

difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused

on advanced stages of the speciation process after thousands of generations of divergence.

As a consequence, we still do not know what genomic signatures of the early onset of eco-

logical speciation look like. Here, we examined genomic differentiation among migratory

lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one

stream, and in parapatry in another stream. Importantly, these ecotypes started diverging

less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA

sequencing and identified genomic islands of differentiation using a Hidden Markov Model

approach. Consistent with incipient ecological speciation, we found significant genomic dif-

ferentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentia-

tion resisting gene flow in sympatry, all were also differentiated in parapatry and were thus

likely driven by divergent selection among habitats. These islands clustered in quantitative

trait loci controlling divergent traits among the ecotypes, many of them concentrated in one

region with low to intermediate recombination. Our findings suggest that adaptive genomic

differentiation at many genetic loci can arise and persist in sympatry at the very early stage

of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

Author Summary

Ecological speciation can be defined as the evolution of new, reproductively isolated, spe-

cies driven by natural selection and ecologically-mediated sexual selection. Its genomic sig-

nature has mainly been studied in ecotypes and emerging species that started diverging
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hundreds to thousands of generations ago, while little is known about the very early stages

of species divergence. To fill this knowledge gap, we studied whether and how threespine

stickleback, which have adapted either to lake or to stream environments in less than 150

years, differ across their genomes. We found several segments of the genome to be clearly

divergent between lake and stream ecotypes, even when both forms breed side by side in

the same area. Strikingly, this genomic differentiation was mainly concentrated in one

region with low to intermediate recombination rates and clustered around genes control-

ling ecotype-specific phenotypic traits. Our findings suggest that genomic differentiation

can arise despite gene flow already very early at the onset of speciation, and that its occur-

rence may be facilitated by the genomic organization of genes that control traits involved

in adaptation and reproductive isolation.

Introduction

The question of how and why populations split and diverge into new species is foundational to

the field of evolutionary biology. Our ability to study the genetic basis of these processes has fun-

damentally changed with the next-generation sequencing revolution, which for the first time in

history allows biologists to study genome-wide changes associated with speciation at the levels of

individuals and populations [1]. In particular, speciation driven by divergent natural selection

and by ecologically-mediated sexual selection, termed ‘ecological speciation’ [2], has come into

the focus of speciation genomics. This is because genomic data allows us to make inferences on

the relationship between individual phenotype and genotype, to detect targets of selection and to

infer past and present gene flow among emerging species. The influences of gene flow, selection,

mating, standing genetic variation, the organization of genes in the genome and of geography on

speciation can now be investigated with unprecedented resolution.

Consequently, ecological speciation theory has increasingly explored more complex scenar-

ios incorporating these factors, including predictions about how genome-wide patterns of

divergence reflect these processes [3–7]. Genetic differentiation is expected to be heterogeneous

across the genome, because loci under disruptive ecological selection, conferring extrinsic post-

zygotic reproductive isolation, will be more resistant to gene flow than the rest of the genome,

leading to elevated differentiation around these loci [3]. Other barrier loci conferring intrinsic

post-zygotic or pre-zygotic reproductive isolation can have similar effects. Collectively, these

genomic regions resistant to gene flow have been called ‘genomic islands of differentiation’

[5,8,9]. Such genomic islands are thought to be the points around which reproductive isolation

‘crystallizes’. They are expected to be more effective if they contain several genes involved in

adaptation or reproductive isolation with little recombination between them [10–14], for

example multiple adapted genes captured inside an inversion [15,16] or close to centromeres

[17]. This matters most when speciation happens in the face of considerable gene flow. At the

beginning of such speciation, only few islands of differentiation in the genome are expected to

be under sufficiently strong divergent selection to resist gene flow [3–6]. Unless the regions

under divergent selection also pleiotropically affect mate choice [18,19], gene flow is expected

to relatively freely occur across the rest of the genome at this stage. With increasing reproduc-

tive isolation, either because some of the selected loci will have effects on mating through link-

age or pleiotropy [20], or because selection works on linkage disequilibrium between genomic

islands [21], the number of islands is predicted to increase and the rest of the genome should

start diverging due to background selection, selection unrelated to speciation and due to drift.

Some models predict further that islands would grow in size due to a local ‘spill over’ effect of

strong selection reducing effective gene flow at nearby, weakly selected mutations [5,22].
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PLOS Genetics | DOI:10.1371/journal.pgen.1005887 February 29, 2016 2 / 34



Controversial origins of genomic islands

Several empirical studies have looked for such patterns in divergently adapted ecotypes, incipi-

ent species and incompletely isolated species with varying degrees of reproductive isolation

[23–30]. Most of them have revealed heterogeneous genomic differentiation across genomes

with islands of differentiation among ecotypes or species [8,23,24,26–29,31–36]. While some

studies found mainly many smaller islands of differentiation [24,26,28–30,32,33,35,36], others

found few large islands [8,27], and in some cases islands were associated with genomic regions

of reduced recombination, e.g. inside inversions [8,26,37]. Most authors have interpreted these

patterns as evidence for ongoing differential gene flow among incipient species, concluding

that speciation with gene flow might be common [e.g. 8,24,27,28,34,38]. However, this conclu-

sion has been challenged as some of the observed patterns of genomic differentiation might

equally be explained by speciation without gene flow [39,40]. Indeed, when allopatric popula-

tions have no gene flow, heterogeneous differentiation across the genome is also expected due

to local adaptation, background selection and drift in each population interacting with varia-

tion in recombination and mutation rates [39–41]. Therefore, sympatric species that began to

speciate in allopatry before they established sympatry can also show this pattern.

In order to find genomic signatures of speciation with gene flow, it is therefore crucial to

distinguish between different possible causes of heterogeneous genomic divergence. One way

to address this is to investigate pairs of populations with independent evidence for current

gene flow and where a phase of geographical isolation can be ruled out. This is difficult for eco-

types or species for which divergence started several thousands to millions of generations ago

[42], as in most current speciation genomic studies. Instead, a focus on the very beginning of

the ecological speciation process, when recently emerged ecotypes have diverged for tens to a

few hundreds of generations without geographical isolation, does minimize uncertainty about

past and current gene flow. It has the caveat, though, that it is impossible to know whether the

ecotypes will continue to evolve towards distinct species and ultimately build diversity at mac-

roevolutionary scales [1]. We here study very recently diverged ecotypes of the threespine stick-

leback (Gasterosteus aculeatus complex) that resemble older ecotypes and reproductively

isolated species of this complex that are well-studied elsewhere in the world [43].

Recent ecotype divergence in Lake Constance threespine stickleback

Threespine stickleback are a popular model for ecological speciation research because ecotypes

have repeatedly evolved many times across the Northern hemisphere, by adapting to different

habitats and evolving various degrees of reproductive isolation [43]. While most stickleback

ecotypes and species pairs started diverging soon after the retreat of the Pleistocene glaciers

~12,000 years ago [43] (but see [44,45]), stickleback were introduced into the Lake Constance

region only less than 150 years ago [46]. This date comes from the examination of detailed rec-

ords on the fish of the Lake Constance region, reaching back several hundred years in time

[47–50], and from ichthyologic analyses of the distribution and natural history of stickleback

in that region, which all show that stickleback did not exist in the catchment until late in the

19th century [51,52]. A recent analysis suggested that stickleback had been present in the Lake

Constance region for at least 2,000 to 4,000 years and had colonized Lake Constance from the

upper Danube [53]. This is at odds with historical data that unequivocally document the

absence of stickleback from the middle and upper Danube until the 19th century, when stickle-

back were introduced both into the upper Danube and into the Lake Constance system [46–

52,54]. Mitochondrial phylogeographic analyses further suggest that the Lake Constance stick-

leback population originates from a North Eastern European lineage inhabiting the Southern
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Baltic Sea catchments [46,55]. It is only around the middle of the 20th century that stickleback

have become common in Lake Constance and inflowing rivers [51].

Despite the recent colonization of Lake Constance, distinct lake and stream ecotypes have

already evolved in this system (cf. Fig 1B, [46,56]). Present day ecotypes differ in predator

defense morphology, feeding-related morphology, male nuptial coloration, ecology, growth,

and life history [56–59]. Stream stickleback are resident breeders in little streams around Lake

Constance, they grow to a smaller adult size, reproduce earlier, die younger, and have shorter

spines and smaller bony lateral plates than the lake ecotype [56–59]. Different from all previ-

ously studied lake-stream stickleback pairs, however, the lake stickleback that we study in Lake

Constance are potamodromous, meaning that in spring they migrate into streams to breed in

full sympatry with stream resident stickleback. Adults return to the lake after the breeding sea-

son as well as juveniles, where they spend most of their lives before returning to streams only

as breeding adults. The adults of these potamodromous lake stickleback have a more pelagic

diet than the stream resident fish, differ in feeding-related morphology, including longer gill

rakers and a more torpedo-shaped body typical for pelagic fish, have longer spines, and are

infested by more and a wider diversity of parasites [56–60].

Whether one of these ecotypes or a population of generalists was initially introduced to the

Lake Constance system is unknown. Historically, stickleback were first recorded in isolated

stream habitats [48,51]. From there they could have colonized the lake and adapted to this

novel habitat before they entered other effluent streams and underwent renewed bouts of adap-

tation, now again to stream habitats. Ancestral stream stickleback may also have colonized

other streams by long distance dispersal through the lake, before they adapted to and colonized

the lake environment. Alternatively, as the stickleback populations from Lake Constance and

the Eastern effluent streams are closely related to stickleback from catchments South of the Bal-

tic Sea, where freshwater stickleback resemble typical marine stickleback in body armor

[61,62], these fish may have been preadapted to living in large lakes with many gape-limited

Fig 1. Sampling sites in the Lake Constance area and lake and stream ecotypes of threespine
stickleback. (A)Map of Lake Constance. In stream 1, both ecotypes breed in sympatry and thus opportunity
for gene flow among ecotypes is geographically unconstrained, while in stream 2, ecotypes breed in distant
parapatry or effective allopatry, and geographical opportunity for gene flow is therefore strongly restricted. We
sampled stickleback early in the breeding season, during the migration of the lake ecotype into streams,
before site S1 in stream 1 was reached by lake stickleback, but when both migrant lake and resident stream
stickleback were present at intermediate sites S1a and S1b along stream 1. (B) Pictures show representative
males of both lake (L) and stream (S) ecotypes in full breeding colors, and alizarin-red stained to highlight
skeletal features.

doi:10.1371/journal.pgen.1005887.g001
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predators and might have adapted to stream habitats only subsequently. Finally, given the pres-

ence of other distinct lineages of stickleback in Switzerland and Germany immediately West of

Lake Constance [46], it is possible that different sections of the Lake Constance catchment

have been colonized independently by different stickleback lineages as is suggested by some

phenotypic and genetic data. For instance, mtDNA haplotypes from the distinct Rhine and

Rhone lineages of stickleback are abundant in inlet streams of the Northern, Western and

South-Western shores of Lake Constance, alongside Baltic haplotypes [56]. Admixture with

these Western European populations, which were isolated from Eastern lineages for several ten

thousand years in ancient freshwater refugia [63,64] is also suggested by the presence of many

fish with reduced body armor in the more Western effluents of Lake Constance [53,56]. In con-

trast, lake and stream stickleback populations from the South-Eastern effluents of Lake Con-

stance (Fig 1A) that we studied here, have the Baltic mitochondrial haplotype, are

predominately fully plated (S7B Fig, [46,59]), are very closely related in microsatellite and

AFLP markers [46,55] and show little if any genomic introgression from Rhine and Rhone

stickleback populations [55]. Yet they have evolved phenotypically distinctly different lake and

stream ecotypes [58,59,65].

Here we study genomic differentiation among these young lake and stream ecotypes in two

streams, each containing breeding populations of both resident stream and potamodromous

lake ecotypes (Fig 1A). In one long stream, the breeding sites of the ecotypes are separated by

many kilometers of less suitable habitat, which likely exceeds within-generation migration abil-

ities of lake stickleback [cf. 56,66], such that this ecotype pair can be considered to breed in

effective allopatry or, more conservatively, in distant parapatry. Parapatry or allopatry is typical

of all lake and stream stickleback ecotypes studied to date [43,66–69], including previous work

on Lake Constance [46,56,59], and also of many marine and freshwater ecotypes [43]. In the

other, shorter stream, migratory lake stickleback breed alongside resident stream stickleback in

full sympatry (Fig 1A) at the same time of the year (S1 Fig) and lake fish outnumber stream

fish in large parts of the stream, providing ample opportunity for interbreeding, and thus

potentially allowing high levels of gene flow between ecotypes. We took advantage of the

migratory behavior of the lake ecotype and we sampled stickleback at different sites along this

stream early in the breeding season, just after the spawning run of the lake ecotype had started

and before the most upstream site was reached by lake stickleback. We were thus able to collect

both ecotypes separately at the opposite ends of the stream gradient, and also at the same sites

in the middle sections of the stream (Fig 1A).

Frequent parapatry, rare sympatry

Previous population genomic studies of parapatric stickleback ecotypes have shown the pres-

ence of parallel genome-wide differentiation between marine and many independently derived

freshwater ecotypes from around the Northern hemisphere [24–26,45]. In contrast, almost no

genomic parallelism has been found in previous studies that compared parapatric, non-migra-

tory lake and stream ecotypes from different river systems [32,36,70]. A recent natural experi-

ment demonstrated that repeated marine-freshwater differentiation can emerge after only a

few decades of adaptation in allopatry [45]. However, whether genomic divergence can emerge

in sympatry (or close parapatry) on such a short timescale or be maintained in sympatry after

just a few decades of divergence is unknown. The only known sympatric stickleback ecotypes,

seven cases of largely reproductively isolated limnetic and benthic lake stickleback species from

lakes in British Columbia [43,71], have diverged for a much longer time, several thousand

years [25,72], and now show parallel genomic differentiation in sympatry that likely originated

from double colonization of these lakes from the same marine source populations [25].

Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback
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A case of sympatrically breeding lake and stream stickleback ecotypes has not been studied

before and should thus, in comparison with a ‘standard’ parapatric contrast that we also inves-

tigated, provide insight into the effects of strong versus weak gene flow on the population geno-

mics of ecotype divergence. We identify several regions in the genome that carry divergence

islands which are robust to gene flow, suggesting that our sympatrically breeding ecotypes are

indeed incipient species and not phenotypically plastic life history morphs. We ask if predic-

tions from ecological speciation with gene flow models hold when we compare lake-stream

ecotype pairs in different geographical settings. For instance, to the extent that speciation is

constrained by gene flow, we expect lower average genomic differentiation, a smaller number

of islands of differentiation and less heterogeneity in genomic differentiation in the sympatric

than in the parapatric contrast. Furthermore, we predict that parallel divergent selection across

multiple habitat transitions (i.e. between the lake and these two streams), acting on similar ini-

tial standing genetic variation present in the colonizing lineage, should lead to an overlap

between the genomic islands of differentiation in both streams. Independent of what pheno-

type was ancestral and in what direction colonization of habitats happened (i.e. a transition

first from a stream to a lake population followed by transition back from the lake to other

streams, or multiple transitions from a lake population to different stream populations), such

parallel genomic islands should reveal genomic regions under habitat-driven divergent selec-

tion. Our findings shed light on the interactions of divergent selection, gene flow, standing

genetic variation and genomic organization at the earliest stage of ecological speciation.

Results

Genomic variation and differentiation

We sequenced restriction-site associated DNA (RAD) tags of 91 threespine stickleback col-

lected at six sites along the two streams flowing into Lake Constance and at their inlets into the

lake (Fig 1A, Table 1). After filtering for high-quality genotypes (see Materials and Methods),

we obtained a genotype dataset of 3,183,890 bp nuclear DNA sequence containing 34,756 bi-

allelic SNPs, including 15,092 SNPs with minor allele frequency greater than 1% at an average

sequencing depth per individual ranging between 43 and 148x. We noticed increased mean FIS
estimates in populations L1, S1 and S2 (Fig 2B), suggesting an excess of homozygotes in these

populations. This could be due to real inbreeding, but it is more likely caused by the presence

of PCR duplicates (see Material and Methods) leading to an excess of apparently homozygous

genotypes, a well-known feature of single-end RAD tag sequencing [73,74] mimicking inbreed-

ing, and thus effectively reducing the number of sampled chromosomes [75]. We accounted

for this excess of homozygotes by allowing for inbreeding in the estimation of F-statistics, and

by explicitly incorporating FIS estimates in the detection of outlier loci (see Material and Meth-

ods). Furthermore, instead of using genotypes, we used one randomly picked allele per individ-

ual and site for Bayesian clustering, PCA and nucleotide diversity analyses. Subsets of the

Table 1. Sampling site information.

Site Habitat Name Catchment Coordinates N / E Year N

L1 lake inlet Altenrhein Seegraben 47°29008@ / 9°32037@ 2009/12 20

S1a Stream Seegraben airport Seegraben 47°29002@ / 9°33029@ 2009/12 10

S1b Stream Seegraben Pfaffenbrüggli Seegraben 47°28055@ / 9°33050@ 2012 10

S1 Stream Seegraben Buriet Seegraben 47°28043@ / 9°33030@ 2012 21

L2 lake inlet Marina Rheinhof Rheintaler Binnenkanal 47°29055@ / 9°33025@ 2013 10

S2 Stream Oberriet Rheintaler Binnenkanal 47°19038@ / 9°34024@ 2007/09 20

doi:10.1371/journal.pgen.1005887.t001
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genotype datasets outlined above thus included a 3,183,890 site allele dataset with one allele per

individual and site as well as a SNP allele dataset containing 24,784 SNPs with minor allele fre-

quency above 1%.

The first and second axes of a principal component analysis (PCA, Fig 2A) separate the

migratory lake and stream resident populations. The parapatric stream site S2 separates from

the geographically nearest lake site along PC1 (ANOVA, F1,89 = 581.5, p< 0.001), whereas

PC2 separates individuals of the other, shorter stream from the sympatrically breeding migra-

tory lake fish (Fig 2A). In particular fish from the most upstream site S1 in this shorter stream

were most distinct on PC2 (ANOVA, F1,89 = 106.9, p< 0.001) from the fish caught further

downstream and those caught in the lake inlet (Fig 2A). These patterns translated into signifi-

cant mean pairwise FST between the most upstream site in the sympatric stream S1 and the

downstream stream sites as well as the lake inlet site L1, and also between the parapatric stream

site S2 and its corresponding lake site L2 (Fig 2B). Stickleback from both upstream stream sites

were also significantly differentiated from each other, while there was no significant differentia-

tion either between the two lake sites or between these lake sites and the downstream sites in

the sympatric stream (S1a and S1b, Fig 2B), suggesting that the migratory lake stickleback form

a single population. The genetic resemblance of most S1a and S1b individuals to lake stickle-

back (Fig 2A) is in line with field observations: individuals collected at S1a and S1b were phe-

notypically mostly lake ecotypes caught during their upstream breeding migration, whereas

resident stream ecotypes were relatively rare at these sites and were most common at site S1.

Assignment of individuals by a Bayesian clustering algorithm implemented in STRUCTURE

supported this presence of predominantly lake ecotypes but also revealed some stream ecotypes

at sites S1b and S1a (S2 and S3 Figs). This analysis also showed that some intermediate individ-

uals occur at L1, S1a, S1b and S1, indicative of ongoing gene flow.

Distribution of genetic differentiation across the genome

In the stream where breeding is sympatric (L1 vs. S1), we found a large region on chromosome

VII and three smaller regions on chromosomes X and XI that show elevated differentiation

Fig 2. Genomic variation within and average differentiation between sampling sites. (A) Principal
component analysis: PC1 separates site S2 individuals from the rest, while PC2 separates S1 individuals
from the rest. Fill colors indicate the habitat in which individuals were caught, four stream habitat sites
(orange) and two lake shore sites (black). PC analysis is based on the 24,784 SNP allele dataset with minor
allele frequency >1%. (B) F-statistics: between sampling sites pairwise weighted average FST and FIT-
statistics are shown below and above the diagonal respectively, FIS for each sampling site on the diagonal.
Stars indicate values significantly different from zero (permutation test, >16,000 permutations, p<0.001). F-
statistics are based on the 34,756 SNP genotype dataset.

doi:10.1371/journal.pgen.1005887.g002
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between lake and stream ecotypes, while there was very little differentiation across the rest of

the genome (mean pairwise FST in 2 Mb windows close to zero, Fig 3C). In contrast, our com-

parison of parapatric ecotypes (L2 vs. S2) revealed more genomic regions with elevated pair-

wise FST (Fig 3D), including the large region of elevated differentiation on chromosome VII

that appeared in the sympatric lake-stream pair too, but was neither present in lake-lake nor

stream-stream comparisons (Fig 3A and 3B). We measured heterogeneity in genome-wide dif-

ferentiation by computing the coefficient of variation (CV) for pairwise FST in non-overlapping

2 Mb windows across the genome (see Materials and Methods). As expected, we found lower

heterogeneity in genome-wide differentiation between lake and stream stickleback where

breeding is sympatric (median CVS1vsL1 = 3.38) than where they breed in distant parapatry

(median CVS2vsL2 = 4.03). A heterogeneous pattern of genome-wide differentiation was also

found when the two most upstream stream sites were compared against each other (Fig 3B),

whereas almost no genome-wide differentiation was seen between the two lake sites (Fig 3A).

We defined ‘genomic islands of differentiation’ as genomic regions with an accumulation of

unusually strongly differentiated SNPs (outlier loci; [76]) showing high differentiation mea-

sured over all populations grouped hierarchically (‘hierarchical FST’, see Materials and Meth-

ods). We identified 1,251 SNPs (3.6%) as outliers in our dataset at the 5% alpha level and 242

SNPs (0.7%) at the 1% alpha level, close to what would be expected by chance. Importantly,

however, these outliers were not randomly distributed across the genome and instead more

clustered than expected even after accounting for variation in recombination rate (Ripley’s K

function using genetic distances, S5 Fig). To infer the location and extent of ‘genomic islands

of differentiation’, we followed a Hidden Markov Model (HMM) approach that assigns each

SNP to one of three differentiation states, ‘genomic background’, regions of ‘exceptionally low’

and ‘exceptionally high’ differentiation ([76], see Materials and Methods). We identified 37

genomic regions of ‘exceptionally high’ differentiation considered here as ‘genomic islands of

differentiation’ (Fig 4B). No regions of ‘exceptionally low’ differentiation remained significant

Fig 3. Distribution of pairwise differentiation (FST) across the genome. Panels A and B show comparisons between sites with similar habitat (A) lake-
lake (parapatric), (B) stream-stream (allopatric). Panels (C) and (D) show the two replicate lake-stream comparisons L1/S1 (sympatric breeding) and L2/S2
(parapatric breeding; see S4 Fig for other pairwise comparisons). Grey dots show single SNP pairwise FST estimates and black lines show FSTmeans (bold)
and 95%-quantiles (thin) in 2 Mb wide, non-overlapping windows across the genome. Windows with elevated differentiation are highlighted with blue
background frames (mean FST > 0.05) and red background bars (95%-quantile FST > 0.25).

doi:10.1371/journal.pgen.1005887.g003
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after correcting for multiple tests (see Materials and Methods). These 37 genomic islands of dif-

ferentiation were spread across 11 of the 20 autosomes, with a concentration on chromosome

VII (Fig 4B). Each island consisted of 1 to 26 SNPs, spanning up to 990 kb in size (S1 Table).

The presence of islands of differentiation was overall negatively associated with recombination

rates (Fig 4C, S2 Table). This association was mostly driven by the accumulation of islands on

chromosome VII, clustering in a genomic region showing low to intermediate levels of recom-

bination (S6 Fig) and further islands falling into such regions on chromosomes IV, IX and XV

(S2 Table, Fig 4). However, if the same test was repeated for each chromosome, the strength of

this association varied and was even positive on chromosome II (S2 Table), where a genomic

Fig 4. Genomic islands of differentiation among Lake Constance stickleback and distribution of Quantitative Trait Loci (QTL). (B)Of 37 genomic
islands of differentiation identified in Lake Constance stickleback, 19 showed parallel differentiation between lake and stream ecotypes both in sympatry and
parapatry (IPDs, black vertical bars), while non-parallel differentiation in 18 further islands (INDs, grey vertical bars) were mainly driven by differentiation
between the parapatric ecotype comparison only. Dots show SNPs assigned to genomic islands of differentiation (orange) or the neutral genomic
background (dark grey). (A)QTLs for traits previously studied among Lake Constance ecotypes and their overlap with parallel islands are shown. The left
grey column indicates if traits have previously been found to be divergent among Lake Constance ecotypes (‘Y’ = yes) or not (‘N’ = no). Significant clustering
of parallel islands inside QTLs for trait groups are indicated by asterisks in the right grey column. Blocks indicate 95%QTL confidence intervals (extent along
x-axis) and effect sizes (color). References for phenotypic data: 1[59], 2[57], 3[65], 4[56] and S7B Fig, 5[46], 6S7A Fig. (C) Recombination rates across the
stickleback genome estimated by Roesti et al. [77].

doi:10.1371/journal.pgen.1005887.g004
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island falls into a high recombination region (Fig 4C). Moreover, some of the strongest local-

ized reductions of recombination in the stickleback genome such as on chromosome I [77] are

not differentiated among the studied populations (Fig 4C). Thus, genomic islands of differenti-

ation identified in our study are not exclusively bound to low recombination regions.

We observed parallel allele frequency changes between the lake ecotype population and

both resident stream ecotype populations from the two streams in 19 of the 37 genomic islands

of differentiation (Figs 4B and 5). Importantly, very few of these 19 islands were differentiated

between the two stream ecotype populations or among lake ecotypes sampled at sites L1 and

L2 (Fig 3). These ‘islands of parallel differentiation’ are thus prime candidates for harboring

genes involved in ecological speciation. Interestingly, 12 of the 19 parallel islands clustered in a

10.5 Mb stretch on chromosome VII with low to intermediate recombination (S6 Fig), and the

Fig 5. Allele frequencies of parallel lake-stream differentiation SNPs in 19 islands of parallel lake-stream differentiation. Pie charts represent allele
frequencies at the sites S1, S2, L1 and L2 of parallel divergent SNPs within parallel islands. Light and dark blue segments show the respective proportions of
stream-like and lake-like alleles at those sites. Star-like dots show SNPs indicative of parallel lake-stream differentiation, while color coding of dots and
vertical bars are as in Fig 4.

doi:10.1371/journal.pgen.1005887.g005
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highest levels of pairwise differentiation were observed in this region (Fig 3C). Furthermore,

one other parallel island found on chromosome I is located in a region that has previously been

described as an inversion segregating between marine and freshwater stickleback [25]. The

remaining six parallel islands were each found on different chromosomes (III, IV, IX, XII and

XIII, Figs 4B and 5, S1 Table). All but one parallel islands contained multiple SNPs differenti-

ated among ecotypes breeding in sympatry (S1 Table).

These 19 parallel islands appear to be rather robust to gene flow given the significant allele

frequency differentials observed among the sympatric ecotypes. On the other hand, islands of

non-parallel differentiation seem mainly driven by large frequency differentials only in the

parapatric ecotype comparison (L2 vs. S2), which were not differentiated between ecotypes

breeding in sympatry (S1 Table). Overall, parallel islands that are robust to gene flow were

associated with regions of low to intermediate recombination rate, also including a single case

within a known inversion polymorphism region [26], while the association between presence

of islands with non-parallel differentiation and recombination was much weaker and the sign

of this association varied across chromosomes (S2 Table). Islands with non-parallel differentia-

tion showed on average slightly but not significantly lower diversity than both the genomic

background and that found in parallel islands (Fig 6), which is compatible with the action of

background selection, with a past selective sweep pre-dating the population splits or with mul-

tiple local selective sweeps leading to non-parallel differentiation between sampling sites. Paral-

lel islands showed on average slightly higher levels of nucleotide diversity than the genomic

background and diversity levels did not differ between sampling sites (Fig 6). The observed

increase in diversity is compatible with selection on standing genetic variation and notably the

Fig 6. Nucleotide diversity inside and outside genomic islands for each population.Genomic islands of parallel differentiation (IPDs) show on average
a slightly but not significantly higher diversity than both the genomic background and genomic islands of non-parallel differentiation (INDs) in all populations
and diversity did not differ between populations. Nucleotide diversity was calculated in non-overlapping windows spanning multiple RAD-loci that together
contained 2,500–2,685 sequenced bases. Windows were grouped into genomic background (n = 1,104 windows, filled violin plots), overlapping with non-
parallel islands (n = 17, triangles) and with parallel islands (n = 25, circles) and tested for group differences in mean nucleotide diversity using t-tests (n.s.: not
significant; *: Bonferroni-adjusted p-value < 0.05). Marker color indicates how extreme genomic island diversity is compared to the genomic background.

doi:10.1371/journal.pgen.1005887.g006
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highest diversity among parallel islands is found in chromosome VII islands 7.6 and 7.2, con-

sistently across all sampling sites (Fig 6). The only parallel islands with reduced diversity show

the same reduction in all populations (islands 13.1, 12.3 and 7.12, Fig 6), possibly due to back-

ground selection, a past sweep or multiple sweeps in each population with the same alleles

favored in the respective habitat. We thus have little evidence for hard selective sweeps in paral-

lel islands, although incomplete sweeps may not have led to a reduction in diversity yet. Rather,

our data suggests that selection on standing genetic variation was acting in both stream and

lake environments, or that sweeps have not been completed in either environment, as we

observe similar levels of elevated diversity in both habitats.

We classified the two alleles of SNPs showing parallel allele frequency changes between the

lake ecotype and both populations of stream ecotypes either as lake-like or stream-like accord-

ing to their major frequency (Figs 5 and S8). A PCA based on these SNPs only (Fig 7) recovered

the distribution of ecotypes over sampling sites: most individuals from sympatric stream sites

S1a and S1b showed a lake-like genomic signature, but one and three of ten individuals at sites

S1a and S1b respectively did show a stream-like genomic signature (Fig 7). As expected, a

stream-like genomic signature was shown by a majority of the fish at site S1, with only four of

twenty individuals displaying lake-like genotypes (Fig 7). None of the 20 fish at site S2 showed

a lake-like genomic signature, and none of the 30 fish at lake sites L1 and L2 showed stream-

like genomic signatures. We observed increased levels of linkage disequilibrium (LD) among

almost all chromosome VII islands at site S1a and to a lesser extent at S1b and S1, while stickle-

back from the lake sites L1, L2 and the parapatric stream site S2 revealed two haplotype blocks

on chromosome VII (S9 Fig). These patterns of LD are in line with the presence of both eco-

types in sympatry at sites S1a, S1b and S1. There was overall little LD between islands located

on different chromosomes, except for islands 1.4, 4.1 showing some LD with islands on chro-

mosome VII at sites S1a and S1b, and islands 9.4 and 13.1 showing elevated LD with each

other and with chromosome VII islands at sites S1 and S1b (S9 Fig), again in agreement with

the presence of both ecotypes in sympatry at sites S1a, S1b and S1, and gene flow between

Fig 7. Principal component analysis of parallel lake-stream differentiation SNPs. PC1 separates
migratory lake and resident stream ecotypes based on the SNPs found in parallel genomic islands of lake-
stream differentiation shown in Figs 4B and 5(n = 75). Individuals with both lake-like and stream-like genomic
signatures occur at stream sites S1a, S1b and S1, but lake ecotypes dominated at sites S1a and S1b, while
stream ecotypes were most common at S1. Only stream ecotypes occurred at site S2 and only lake ecotypes
at sites L1 and L2. Fill colors indicate the habitat in which individuals were caught, four stream habitat sites
(orange) and two lake shore sites (black).

doi:10.1371/journal.pgen.1005887.g007

Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback

PLOS Genetics | DOI:10.1371/journal.pgen.1005887 February 29, 2016 12 / 34



them. Similarly, lake populations L1 and L2 displayed elevated LD between islands 12.3, 12.5

and islands on chromosome VII.

Trait associations with islands of parallel differentiation robust to gene
flow

The 19 parallel islands robust to gene flow overlap with 207 quantitative trait loci (QTLs) that

have been previously identified in other stickleback populations (Fig 4A, S3 Table, [78–103]).

Ten of these QTLs are major effect QTLs located on chromosomes IV and VII, while the other

QTLs are reported to have minor to moderate effect sizes (Figs 4A and S6 and S3 Tables). We

grouped QTLs into 32 phenotypic traits and tested if the 19 parallel islands clustered inside any

of these traits more than expected by chance. For this, we permuted the positions of the 19 par-

allel islands across the genome, both on the physical and on the genetic map to account for

recombination rate variation biasing confidence intervals of QTLs (see Materials and Meth-

ods). This test identified a significant clustering of parallel islands inside QTLs for 11 of 32

traits (Figs 4A, S10 and S11). We checked if our lake and stream ecotypes were phenotypically

divergent in these traits [56–59,65]. Six of these 11 traits with clustering of parallel islands con-

cerned divergent traits: male breeding coloration and most defense morphology related traits

such as first and second dorsal spine, pelvic spine, pelvic girdle morphology and lateral plate

width (Fig 4A). Three of the remaining five traits with clustering of parallel islands inside their

QTLs have not been studied yet among Lake Constance ecotypes (S11 Fig), while the last two

traits, jaw morphology and lateral plate number, are not divergent among Lake Constance eco-

types studied here (Figs 4A and S7B). 21 traits did not show significant clustering of parallel

islands inside their QTLs, while many of them are still overlapping with parallel islands, includ-

ing traits divergent among Lake Constance ecotypes such as head shape, body size, lateral plate

height, body depth and body shape [56–59,65]. However, two of these traits without clustering,

body depth and body shape, have been shown to be controlled largely by phenotypic plasticity

in response to the environment among these Lake Constance ecotypes [65].

Candidate targets of selection

We searched the 19 parallel islands for genes that might be candidate targets of divergent selec-

tion between ecotypes. They contained 243 Ensembl predicted genes, including 208 genes with

a known ortholog in human or zebrafish (S4 Table, [104,105]). No enrichment of gene ontol-

ogy terms was found in this gene set. However, a few of these genes might be candidate targets

for divergent selection between habitats or life histories because they are involved in the devel-

opment of traits that are divergent among ecotypes. For instance, beta-1,3-glucuronyltransfer-

ase 3 (b3gat3), positioned in island 7.6, is involved in cartilage and gill structure

morphogenesis in zebrafish [106–109]; phospholipase C beta 3 (plcb3), in island 7.6, is involved

in cartilage and viscerocranium morphogenesis, influencing gill raker and pharyngeal jaw

development [110–113]. Similarly, integrin alpha 5 (itga5, island 12.5) is involved in pharyn-

geal arch, head and eye development [104,114,115] and claudin 7a (cldn7a, island 7.9, [116])

and phosphatidylinositol 4-kinase type 2 beta (pi4k2b, island 9.4, [117]) are involved in head

development. In addition, ring finger protein 41 (rnf41, island 12.5) is involved in melanocyte

differentiation [118], thus potentially influencing pigmentation and camouflage. Fras1 related

extracellular matrix 1a (frem1a, island 7.12) is involved in morphogenesis of pectoral, caudal,

anal and dorsal fin as well as pharyngeal jaw [110,119], andmeiosis 1 associated protein

(M1AP, island 7.7) is involved in spermatogenesis, thus possibly a target of sexual selection

[104].H6 family homeobox 4 (hmx4, island 7.2) is involved in retinal cone development and

retinoic acid biosynthesis and might thus be relevant to vision and thus possibly to adaptation
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to deeper water habitats in the lake versus shallow stream habitats and also mate choice

[120,121]. While we lack full sequences of any gene in the stickleback genome, our RAD-

sequencing data contained two non-synonymous SNPs in the genes plcb3 andM1AP, that both

show high and parallel lake-stream differentiation. A pairwise FST = 0.50 in the sympatric (L1

vs. S1) and FST = 0.43 in the parapatric comparison was estimated for the non-synonymous

SNP within plcb3 and FST = 0.35 and FST = 0.57 for sympatric and parapatric comparisons

respectively for the non-synonymous SNP inM1AP.

Discussion

Genomic signatures of ecotype formation in the presence of gene flow

We characterized genomic differentiation among very young lake and stream stickleback eco-

types, breeding in sympatry and in distant parapatry in two different streams, to understand

processes acting at what might be the onset of ecological speciation. Our first and perhaps

most salient result is that ecotypes are genetically differentiated at multiple places in the

genome, both in sympatry and in parapatry. Hence we can rule out that these very young eco-

types are maintained by adaptive phenotypic plasticity only. Instead, significant genomic dif-

ferentiation has arisen within less than 150 generations of evolution since the arrival of

stickleback in Lake Constance. Because differentiation is found not just in parapatry but also in

sympatry, our results are consistent with the incipient stage of ecological speciation. In the fol-

lowing we will discuss the evidence and attempt inferences of evolutionary mechanisms from

our genomic data.

Different from previous lake-stream stickleback studies, we investigated pairs of resident

stream and potamodromous lake ecotype, the latter breeding in streams but spending most of

its adult life in the lake. Combined with the migratory behavior of the latter, our sampling of

both ecotypes from a short and a long stream gradient allowed us to compare phenotypically

and ecologically very similar pairs of ecotypes where breeding is sympatric in one but parapa-

tric in the other pair (Fig 1). Of the 37 genomic islands of differentiation identified in this sys-

tem, 19 islands distributed across eleven chromosomes showed differentiation between the

ecotypes breeding in sympatry. These islands thus persist in the face of gene flow (S1 Table). In

contrast, where ecotypes breed in distant parapatry, all 37 genomic islands (Fig 3, S1 Table)

show differentiation among the ecotypes, including the 19 islands also differentiated among

the sympatrically breeding ecotypes. Both the heterogeneity of genome-wide differentiation

and the average level of differentiation are higher in the parapatric comparison where there is

much less opportunity for gene flow, in keeping with models of ecological speciation with gene

flow [3–6]. Remarkably, all genomic islands with differentiation in sympatry thus showed dif-

ferentiation in parapatry too, with the same alleles favored in the same ecotype (Fig 5). Some of

these parallel islands, islands 1.3, 7.9, 7.10 and 7.13 (S3 Tab.), overlap with SNPs identified as

divergent between the lake ecotype and stream ecotype populations North, West and South-

West of Lake Constance [53]. While genetic drift, background selection, or local adaptation

could all have created islands in a single contrast, islands that are repeatedly divergent between

the lake ecotype and two stream ecotype populations, with the same alleles favored in the same

habitat and with divergence persisting in the face of gene flow, suggest that habitat- and/or life-

history-associated divergent selection have led to their emergence.

A striking feature of these islands of parallel differentiation that are found both in sympatry

and in parapatry in Lake Constance stickleback is that they overlap with many QTLs and clus-

ter in some QTLs for traits that are clearly differentiated between these ecotypes (Fig 4A) [56–

59,65]. Although most QTLs have been identified in different populations, possibly with other

causative mutations, the same genes might be involved in controlling the traits that differ
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among Lake Constance stickleback ecotypes. Many ecologically relevant traits controlling e.g.

defense morphology and head shape are among these overlapping traits, as well as two traits,

body size and male coloration, that are relevant to mate choice and thus possibly to pre-zygotic

reproductive isolation. Body size often differs between migratory and resident stream fish life

history morphs, not just in stickleback [122]. Lake Constance migratory lake fish are much

larger than the stream residents [56,58] and body size is known to often mediate assortative

mating in stickleback [123]. In addition, we identified a number of candidate genes within the

islands of parallel differentiation that may underlie phenotypes under natural and sexual selec-

tion that diverge between the Lake Constance ecotypes. Phenotypic plasticity in some traits

[65] might be responsible for additional differences between ecotypes and may also have

reduced the power to detect associations between some of the phenotypic differences and geno-

mic differences. The associations between islands of parallel differentiation and QTLs for diver-

gent traits we observed support the view that divergent selection between migratory and

resident life histories and lake and stream habitats underlies the genomic divergence persisting

in sympatry.

That the genomic basis of various ecologically relevant traits is often highly clustered on a

few chromosomes in stickleback [96] may have facilitated the simultaneous divergent evolution

of multiple phenotypic traits: several feeding and defense morphology trait QTLs as well as

male coloration QTLs are clustered on chromosomes IV and VII (Fig 4A). Divergent selection

on any gene in these regions could then possibly have led to phenotypic divergence in several

other traits, given sufficient standing genetic variation and linkage disequilibrium in that geno-

mic region. Furthermore, given that both adaptation and reproductive isolation traits are

located in these regions, divergent selection in these genomic regions may serve as a nucleus

for ecological speciation. Most of the genomic islands of parallel differentiation are found in a

region of low to intermediate recombination on chromosome VII, which shows the highest

level of pairwise differentiation in sympatry (Fig 3C) and in parapatry in our populations (Fig

3D) and also among the lake population and two stream populations North andWest of Lake

Constance [53]. Furthermore, the parallel island 1.3 (S3 Table), also found divergent between

three stream populations North, West and South-West of Lake Constance and the lake ecotype

[53], overlaps with a region known to be polymorphic for an inversion that differentiates

marine and freshwater stickleback [26], suggesting that this inversion could potentially be poly-

morphic and suppressing recombination in this pair too [53]. These observations are consis-

tent with models and evidence that the recombination landscape may influence adaptation and

ecological speciation the face of gene flow [6,15,26]. Nevertheless, genomic islands of differenti-

ation in our sympatric stickleback ecotypes are not exclusive to regions of low recombination

(S2 Table), suggesting that recombination rate variation alone cannot explain the overall differ-

entiation patterns we observe. Rather, the interaction of life history-driven and/or habitat-

driven divergent selection with recombination rate variation and gene flow seem to determine

patterns of genomic differentiation. Furthermore, that several unlinked genomic regions

beyond chromosome VII diverge in parallel suggests that either many genomic targets are

under correlated divergent selection, that partial reproductive isolation has evolved or that a

combination of both is maintaining the genomic differences between these ecotypes in sym-

patry, a situation that is thought to characterize the beginnings of ecological speciation [2].

This observation is consistent with the hypothesis that genomic islands with large and pleiotro-

pic effects may act as seeds for ecological speciation with gene flow, when selection favors link-

age disequilibrium between such a region and genes elsewhere in the genome [1].

Heterogeneous genomic divergence with islands of differentiation is also expected under

scenarios of divergence without gene flow [14,40], but this could only occur if complete repro-

ductive isolation had already evolved among now sympatrically breeding lake and stream
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stickleback. This seems rather unlikely: first, there is no evidence that any pair of stickleback

ecotypes studied before has reached complete reproductive isolation after less than many thou-

sand generations of divergence. Second, our results suggest ongoing gene flow as we observe

that the geographical opportunity for gene flow is negatively related to the number of islands

that show differentiation in the ecotype pairs (S1 Table) and to the magnitude of pairwise dif-

ferentiation within islands (Fig 3). Furthermore, genetically intermediate individuals between

lake and stream ecotypes occur where they breed in sympatry, as suggested by genome-wide

variation (Figs 2A and S2) and by patterns of variation and LD in genomic islands of parallel

differentiation (S8 and S9 Figs).

Comparisons with older stickleback ecotypes and species

Although genomic changes associated with habitat-dependent adaptation in stickleback have

been extensively studied [24–26,36,53,70,88,124–132], genomic differentiation that persists

among sympatrically breeding stickleback species has only been demonstrated in a few small

lakes at the Pacific Coast of British Columbia [25], perhaps the most classical cases of ecological

speciation [133–135]. This repeated evolution of sympatric limnetic and benthic stickleback

species has occurred over the past ~12,000 years and is thought to have included an allopatric

phase, after which these lakes were colonized a second time from the ocean [25,72]. Despite the

very different evolutionary histories and divergence times of the Canadian limnetic-benthic

stickleback species pairs and the ecotype pairs from Lake Constance, the number of chromo-

somes containing genomic islands with parallel differentiation is remarkably similar between

the two systems (Constance eight, versus Canadian limnetic-benthic ten chromosomes) and

the number of such islands is even higher among Lake Constance ecotypes (19 versus 15

islands, but note that different methodologies to define islands were used in [25]). The number

of divergent regions among sympatric Lake Constance ecotypes is also higher than that found

among parapatric lake and stream ecotypes from several catchments on the Haida Gwaii archi-

pelago, Canada [70]. The latter lake and stream ecotypes also evolved from a marine ancestor

over the past ~12,000 years since the retreat of the ice sheets, or potentially even earlier and

survived in ice age freshwater refugia [136–138]. The similarity in number of diverging chro-

mosomes among these systems is surprising, as older, more diverged and more strongly repro-

ductively isolated ecotypes are expected to accumulate divergence across much of the genome

with time, due to background selection, selection unrelated to speciation itself (including diver-

gent selection between species) and due to drift. However, the stream and lake ecotypes that we

studied emerged in only 150 years [46], suggesting that genomic regions differing between

older ecotypes or species might already have been involved at the onset of ecological speciation.

Given the short time that was available for evolutionary divergence and the observed patterns

of diversity in parallel islands, the adaptive variation differentiating Lake Constance ecotypes

must have originated from older, standing genetic variation present in the colonizing linage

from the Southern Baltic Sea catchments.

Despite high numbers of repeatedly diverging genomic regions among Lake Constance eco-

types, there is limited overlap in identity with such regions identified in lake-stream stickleback

ecotype pairs from Canada, Alaska, Northern Germany and elsewhere [36,70,130], or with

divergent regions identified among freshwater-marine ecotypes [24,26,45,139] or limnetic-ben-

thic species [25,93]. Of the 19 genomic islands of parallel differentiation we identified in our

study, only seven regions have been previously found as outlier regions between ecotypes or

species outside the Lake Constance system (S3 Table). Most strikingly, island 1.3 has been iden-

tified as divergent between allopatric marine and freshwater stickleback populations [24–

26,45,125,127] and between lake and stream ecotypes in Northern Germany (S3 Table, [36]),
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and has been shown to be an inversion for which alternative haplotypes are favored in one or

the other environment [26,53]. Three other shared outlier regions on chromosome VII have

previously been identified as outliers: Island 7.14 on chromosome VII is divergent between

fully sympatric limnetic and benthic stickleback in one of three studied lakes in British Colum-

bia, Canada [25], in eight out of nine parapatric lake-stream pairs on Haida Gwaii and Vancou-

ver Island, Canada [70,130], as well as in an allopatric marine-freshwater comparison from

Northern Scandinavia [127]. Island 7.11 on chromosome VII, is differentiated between multi-

ple allopatric marine and freshwater populations from across the Northern hemisphere [26]

and island 7.7 between parapatric lake and stream ecotype from Alaska [36]. Finally, islands

3.1, 12.3 and 12.5 are divergent between multiple marine and freshwater populations

[24,125,127] and islands 12.3 and 12.5 both between lake and stream ecotypes from Alaska

[36] and among Norwegian freshwater populations [125] (S3 Table).

There is a discrepancy between the widespread genomic parallelism among marine-fresh-

water ecotypes that have been studied around the Northern Hemisphere [24,26,45] and limited

shared divergence among lake-stream ecotypes from different lakes [25,32,36,70,130]. One rea-

son for this discrepancy could be the more diverse and complex evolutionary histories of stick-

leback populations living and diverging within freshwater bodies. Marine stickleback have

larger effective population sizes resulting in large standing genetic variation, much of which is

broadly shared among marine stickleback populations [43]. In contrast, standing genetic varia-

tion is smaller and less widely shared among isolated and geographically disjunct freshwater

populations. The combination of these factors may explain the lack of parallelism in pheno-

typic [66,130,140–142] and genomic divergence [32,36,70,130], as well as the large phenotypic

diversity [46,57,59,143–145] observed among lake ecotype stickleback and among stream eco-

type stickleback from different systems.

Models for rapid genomic lake and stream ecotype divergence

Contrary to the reported lack of phenotypic and genomic parallel evolution between lake-

stream stickleback ecotype pairs from other regions of the world [25,32,36,70,130], we find pat-

terns of parallel differentiation at the genomic level between a lake ecotype and stream ecotype

populations in two streams of the recently colonized Lake Constance system. Multiple scenar-

ios of colonization and ecotype formation could plausibly explain the observed parallel geno-

mic differentiation. First, if lake-adapted stickleback were originally introduced, multiple

streams may have been colonized independently and repeated recruitment of adaptive alleles

could have occurred from the same initial standing genetic variation, resulting in parallel geno-

mic differentiation. This ‘lake first’-scenario would be a true ‘parallel evolution’ scenario [146]

and the marine-like phenotypic composition of Southern Baltic Sea catchment stickleback that

colonized the Lake Constance system may be in favor of this scenario. Second, if stream-

adapted stickleback were introduced into the system, ecotypic differentiation may have evolved

once at the habitat transition to the lake. Under this ‘stream first’-scenario, colonization of

other streams may have occurred after the evolution of a lake ecotype, either (a) through long-

distance migration of stream genotypes through the lake to other streams or (b) through

repeated adaptation from standing genetic variation retained in the lake ecotype. The former

would require fortuitous, simultaneous long-distance dispersal of several stream-adapted stick-

leback to a new stream, possibly aided by active habitat selection [147], and would not be con-

sidered a case of parallel evolution. The latter would need allele combinations or haplotypes

favored in the original stream ecotype to be added to the standing genetic variation of the lake

ecotype via gene flow and then be recruited from the standing variation into newly evolving

populations of stream ecotype in other streams. This mechanism, also referred to as
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‘transporter hypothesis’, would be considered parallel evolution [146] and was proposed to

explain the widespread genomic and phenotypic parallelism among marine and freshwater

stickleback [148]. Long-distance dispersal and transporter mechanisms are not exclusive and a

combination of dispersal between streams and transport of adaptive variants via standing vari-

ation in the lake population are possible. Third, a generalist could have been introduced into

the system and rapidly expanded its range to both stream and lake environments, followed by

adaptation to these habitats. Adaptation may have involved standing genetic variation spread-

ing with the initial expansion or ‘transported’ to replicate stream habitats later, both ideas com-

patible with parallel evolution. A fourth scenario could be secondary contact between already

divergent lake and stream ecotypes that independently colonized the lake and effluent streams,

leading to parallel patterns of differentiation between lake and stream populations but no in-

situ parallel evolution.

We think that the ‘generalist’ scenario is the most likely scenario, given the patterns of geno-

mic variation observed in the populations studied here: genomic diversity levels in parallel geno-

mic islands suggest that selection on standing variation occurred in both lake and stream

ecotypes (Fig 6). ‘Lake first’ and ‘stream first’ scenarios may however lead to very similar genomic

patterns of variation due to selection on standing genetic variation and thus are plausible alterna-

tives we cannot reject. In contrast, we exclude a secondary contact scenario between already dif-

ferentiated lake and stream stickleback. Such a model cannot explain that our two stream

ecotype populations are genetically as distinct from each other as either is from the lake ecotype

(Figs 2B and S2). Furthermore, phylogeographic reconstructions and population genetic analysis

also clearly reveal our lake and stream ecotypes as closely related sister groups to the exclusion of

other Swiss and central European populations [46,59] and suggest they have received only very

little if any gene flow from outside the system [55]. This does not rule out that some of the stand-

ing variation on which selection acted could have arrived in the gene pool through contributions

from outside, a hypothesis we are currently investigating. In contrast, we think that a secondary

contact scenario likely applies to stream and lake populations from the North, West and South-

West of Lake Constance: Mitochondrial haplotypes from Rhine (South-West) and Rhone

(North) lineages are numerous in the streams of those regions, whereas the adjacent lake popula-

tions are nearly exclusively composed of Baltic Sea catchment haplotypes [56]. Similarly, fish

with reduced body armor occur at high proportions in these moreWestern streams but not in

the adjacent lake [53,56], whereas this contrast is completely lacking in the South-Eastern sec-

tions of the lake that we studied here and reduced armor is rare in Southern Baltic Sea catchment

stickleback with the same haplotype as Lake Constance stickleback [46,55,61].

By studying sympatric ecotypes with ongoing gene flow, we show that adaptive genomic dif-

ferentiation, reminiscent of incipient speciation, has arisen in a very short period of time (150

years or ~100 generations). Genomic and phenotypic divergence between a migratory lake eco-

type and two populations of resident stream ecotypes possibly involved the re-use of standing

genetic variation and resulted in the persistence of stream ecotype populations even where

there is ample opportunity for gene flow between ecotypes in sympatry. We propose that the

high levels of differentiation observed between ecotypes despite existing gene flow was facili-

tated by genomic properties such as reduced recombination and the genomic co-localization of

genes controlling several phenotypic traits relevant to adaptation and mate choice.

Materials and Methods

Study site and collection

We sampled adult stickleback in spring 2007/09 and 2012/13 from six sites in two streams

draining into Lake Constance and the lake shores close to the stream inlets (Fig 1A, Table 1).
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From each site, 10–21 individuals from the same year (except for site S2, for which fish from

2007 and 2009 were combined) with both sexes equally represented were randomly picked for

genomic analyses.

Ethics statement

Stickleback were caught using minnow traps and hand nets and subsequently anesthetized and

euthanized in clove oil solution, in accordance with granted permits issued by the fishery

authorities of the canton St. Gallen. Fish collection followed the Swiss veterinary legislation in

concordance with the federal food safety and veterinary office (FSVO) and the cantonal veteri-

nary office in St. Gallen (Veterinäramt Kanton St. Gallen).

Morphological analysis

In addition to morphological, ecological and life history traits described earlier from the Lake

Constance system [46,56,57,59,65], we quantified a previously unexplored morphological trait,

lateral plate cover, that we observed to diverge among lake and stream ecotypes. We measured

the height of the first 28 lateral plates after the pelvic girdle in all fully-plated stickleback fol-

lowing [94] and body depth at the first dorsal spine (‘BD1’, following [59]) from sites L1, L2, S1

and S2 using ImageJ v1.49 [149]. We performed a PCA on size-corrected plate heights, i.e.

residuals from linear regressions of plate height against body depth at the first dorsal spine,

and used an ANOVA to test for differences in PC1 between lake stickleback from L1 / L2 and

stream stickleback from S1 / S2 (S7A Fig). Furthermore, we identified the plate morph of each

fish by counting lateral plates following [150] and tested for differences between lake stickle-

back from L1 / L2 and stream stickleback from S1 / S2 (S7B Fig).

RAD sequencing

We prepared three RAD libraries following Baird et al. [151] with slight modifications: We

used 400 ng genomic DNA per sample and digested each for 12 hours with four units SbfI-HF

(New England Biolabs). We multiplexed 98, 77 resp. 49 individuals per library, after the liga-

tion step using P1 adapters (sensu [151]; synthesized by Microsynth) with custom six base pair

barcodes with a minimal distance of two bases between any barcodes. The first two libraries

were sheared using a Sonorex Super RK 102 P sonicator (Bandelin) for 2 minutes. The third

library was sheared on an S220 series Adaptive Focused Acoustic (AFA) ultra-sonicator (Cov-

aris) with the manufacturer’s settings for a 400 bp mean fragment size. Sheared fragments

between 300–500 bp were size-selected on a 1.25% agarose gel. We carried out the enrichment

step in four aliquots with 50 μl reaction volumes each, and combined these prior to the final

size selection step. All three libraries were single-end sequenced on an Illumina HiSeq 2000

platform, yielding 136, 200 and 166 million 100 bp long reads, respectively. We sequenced each

library on a single lane together with 7–20% bacteriophage PhiX genomic DNA (Illumina Inc.)

to increase complexity at the first 10 sequenced base pairs. Sequencing was performed at the

Center of Integrative Genomics (CIG), University of Lausanne and at the Next Generation

Sequencing (NGS) Platform, University of Bern, Switzerland.

Sequence data preparation, variant and genotype calling

We filtered raw sequencing reads from each lane and library for an intact SbfI restriction sites,

de-multiplexed and barcode-trimmed them using the FASTX toolkit v.0.0.13 (http://

hannonlab.cshl.edu/fastx_toolkit/) and custom python scripts. We aligned reads for each indi-

vidual and library against the October 2013 re-assembly version of the threespine stickleback
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reference genome [26,77] using end-to-end alignment in Bowtie 2 v2.0.0 with default parame-

ters [152]. SAMtools v0.1.19 [153] was used to convert alignments to binary format. We recali-

brated base quality scores of aligned stickleback reads using empirical error rate estimations

derived from bacteriophage PhiX reads. Raw sequencing reads from each lane were aligned

against the PhiX 174 reference genome (accession: NC_001422; [154]), known variation was

masked and PhiX-alignments were used to create a base quality score recalibration table for

each lane and library combination using BaseRecalibrator from GATK v.2.7 [155]. We

obtained between 0.9–2.5 billion base pairs of PhiX-reads per lane, sufficient to ensure good

recalibration results. Using the GATK-tool PrintReads and PhiX-based recalibration tables, we

then recalibrated base quality scores in stickleback alignments from the respective lanes.

We used the GATK tool UnifiedGenotyper to call variants and genotypes in a combined

fashion for all individuals, using the following parameters: minimal phred-scaled base quality

score threshold of 20, genotype likelihood model calling both SNPs and insertions/deletions

(indels) and assumed contamination rate of 3%. Using custom python scripts and vcftools

v0.1.12 [156], all genotypes with quality< 30 or depth< 10 were set to missing. Variants with

quality< 30 or> 50% missing genotypes per sampling site, monomorphic sites, SNPs

with> 2 alleles, indels and SNPs 10 bp around indels as well as SNPs from the sex chromo-

some XIX were removed from the dataset, the latter due to mapping and calling uncertainty in

males. RAD-sequencing datasets contain PCR duplicate reads for a locus and individual, a

well-known caveat of this technology [73–75,157,158], that cannot be identified in single-end

sequencing data and can cause a bias towards calling homozygote genotypes when one allele of

a heterozygote was by chance over-amplified [75]. We therefore additionally removed all sites

that showed an excess of homozygotes, as measured by a significant deviation from Hardy-

Weinberg equilibrium (p< 0.01) within any of the six populations using Arlequin v3.5.1.4

[159]. We noticed a higher prevalence of PCR duplicates in the first two libraries containing

populations S1, L1 and S2, likely due to different shearing device used in the library preparation

step. This is visible in elevated mean FIS in these populations (see results section, Fig 2B). To

reduce noise introduced by these PCR duplicates, we therefore randomly picked one allele per

high-quality filtered genotype and used this ‘allele dataset’ in some of the analyses, while the

high-quality filtered genotype dataset was used in analyses where we could account for an

excess of homozygotes, i.e. for inbreeding. We used PGDSpider v2.0.5.0 [160] for conversion

from VCF format to other formats.

Population genomic analyses

We partitioned genomic variation in the allele dataset into principal components using ade-

genet [161], for sites with a minor allele frequency> 1%. We also performed Bayesian cluster-

ing assignment of individuals into one to five clusters using STRUCTURE v2.34. 10 [162],

using the allele dataset with sites of greater than 1% minor allele frequency, following [163].

We ran 10 replicates assuming one to five clusters with 100,000 steps burn-in and 200,000 sam-

pling steps and checked convergence of replicates visually. We identified the most likely num-

ber of clusters by the highest delta K statistics among the tested clusters [164].

We studied the genome-wide distribution of genetic differentiation by computing for each

SNP FST estimates between pairs of sampling sites (‘pairwise FST’, Fig 3) and among all sam-

pling sites grouped hierarchically (‘hierarchical FST’, S12A Fig). We used pairwise FST to char-

acterize levels and heterogeneity of differentiation across the genome between pairs of

populations, but we identified genomic islands of differentiation based on hierarchical FST in

order to maximize the power to detect outlier SNPs, which were used to identify genomic

islands of differentiation. SNP-level F-statistics (FST, FIT and FIS) were estimated in a locus-by-
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locus AMOVA in Arlequin v3.5.1.4 [159]. We characterized heterogeneity in genome-wide dif-

ferentiation by calculating the mean, 95%-quantile and standard deviation of pairwise FST’s in

non-overlapping, 2 Mb-wide adjacent windows across the genome containing at least 20 SNPs.

We defined heterogeneity in differentiation as the absolute coefficient of variation of these pair-

wise mean window FST’s.

Single SNP hierarchical FST was estimated in a locus-by-locus AMOVA analysis in Arle-

quin, with populations grouped into three groups (stream 1, stream 2, lake) while maintaining

the six sampling sites as separate populations. The grouping was based on genetic similarity

between the sampling sites, assessed from genomic PCA (Fig 2A), mean weighted pairwise FST
results (Fig 2B) and Bayesian clustering of individuals (S2 Fig). The first two, stream-like

groups thus contained sites S1 and S2 respectively, and the third, lake-like group sites L1, L2,

S1a and S1b (S2 Fig). In order to detect loci putatively under selection, we performed an outlier

analysis based on a hierarchical island model [165]. This approach identified outlier SNPs by

comparing observed hierarchical FST and heterozygosity values against a null distribution from

a hierarchical island model, derived from 500,000 simulations of 10 groups with 100 demes

each, as implemented in a modified version (v3.5.2.3) of Arlequin [165] (S12 Fig). Significantly

positive population-specific FIS, potentially due to RAD sequencing PCR duplicates and lead-

ing to an apparent excess of homozygotes, were taken into account in the simulations used to

build the joint null distribution of heterozygosity and FST. In brief, for each simulated diploid

individual the population-specific FIS coefficient was used as the probability that the two gene

copies present on homologous chromosomes were identical by descent or not. This procedure

amounts at reducing the sample size by a factor 1-FIS in the simulations, and thus to correctly

take into account measured levels of inbreeding, which could either be due to true inbreeding

or to PCR duplicates of a single chromosome. Our choices of group and deme size for simulat-

ing null distributions followed the recommendations of [165], who showed that reliable outlier

probability estimation is obtained from simulations performed with numbers of groups and

numbers of demes per group that exceed the actual (but unknown) numbers. We also ran the

outlier analysis with different group / deme size combinations (3 groups / 4 demes, 3 / 10, 5 /

10, 50 / 10, 50 / 50) and found highly congruent outlier probabilities for each SNP (correlation

coefficient r> 0.9999). We tested if outlier loci were randomly distributed on each chromo-

some by calculating Ripley’s K function following the approach by Flaxman et al. [7] account-

ing for recombination rate bias by using SNP positions on a genetic map (see section ‘genetic

distances and recombination rates‘ below), with one modification: The null distribution of Rip-

ley’s K was simulated by 10,000 times sampling n SNPs among all the SNPs in our dataset for

the respective chromosome, not by drawing them from random positions in the genome [7],

with n being the number of outliers on a chromosome. This was to avoid a bias in estimating

expected values for Ripley’s K due to the non-random location of RAD-sequencing derived

SNPs biased towards G/C-rich regions in the genome [151].

Genomic islands of differentiation

We identified ‘genomic islands of differentiation’ following the approach of Hofer et al. [76]

(S12 Fig). The HMM is based on three underlying and unobserved states, corresponding to

‘genomic background’ (assumed to be neutral under a hierarchical island model), regions of

‘exceptionally low’ differentiation, and regions of ‘exceptionally high’ differentiation. We refer

to exceptionally high differentiation regions as ‘genomic islands of differentiation’. All three

types of regions can consist of single SNPs or of several consecutive SNPs, depending on how

outlier loci are clustered in the genome. The most likely state for each SNP is inferred from the

HMM, based on its observed probability to be an outlier from the hierarchical FST analysis
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outlined above [76]. Subsequently, we retained only exceptional regions after multiple-testing

correction with a false discovery rate of 0.001 for outlier loci [76]. Our approach differs in two

aspects from [76]. First, we used only SNPs with minor allele frequencies> 1%. This minor

allele frequency cutoff was not necessary for the data used by Hofer et al. [76], because they

used ascertained SNPs. We found very low frequency allele SNPs to disrupt the detection of

high differentiation levels, because they can never reach high differentiation and are thus less

informative [166], even though they are naturally very abundant in unascertained sequence

data. Second, we ran the HMMmethod for the concatenated SNP dataset instead of modeling

every chromosome separately. This increased information for parameter estimation and did

not affect the identification of islands of differentiation (i.e. no spurious islands of differentia-

tion extending across chromosomes were identified).

Among genomic islands of differentiation identified by the HMM, we distinguished

between islands showing parallel differentiation between both lake and stream stickleback

breeding in sympatry and lake and stream stickleback breeding in parapatry and between

islands of differentiation without parallel differentiation. We inferred parallel differentiation

for each SNP by comparing allele counts between lake site L1 and the stream endpoint S1 as

well as between lake site L2 and stream site S2. A parallel differentiation SNP had to show (a)

parallel allele frequency change between habitats, i.e. the same allele had to be found at higher

frequency in the same habitat in both comparisons and (b) the allele frequencies had to be sig-

nificantly different in both lake-stream comparisons as assessed by a significant pairwise FST
estimated in an AMOVA accounting for inbreeding levels as described above. We defined

islands of parallel differentiation as islands containing at least one parallel differentiation SNP

and computed a PCA with only those SNPs as described above. For all pairs of parallel differen-

tiation SNPs, we estimated the extent of linkage disequilibrium within each sampling site from

the absolute of the correlation coefficient between pairs of loci (|r|) based on genotype counts

using PLINK v1.07 [167]. For all genomic islands of differentiation, we counted the number of

SNPs showing significantly different allele frequencies in sympatry (L1 vs. S1) and in parapatry

(L2 vs. S2) also assessed by a significant pairwise FST between these populations (S1 Table).

Nucleotide diversity in each population was calculated using one allele per high-quality

genotype with quality> 30, depth> 10 and maximal 50% missing data, excluding sites located

within 10 bp from indels or sites on the sex chromosome XIX. These filtered sites were parti-

tioned into windows of variable size containing at least 2,500 sequenced sites, without splitting

single RAD sequence reads, resulting in a mean window size of 324,800 bp (median 302,900

bp, range 58,960–1,036,000 bp). Arlequin v3.5.2.3 [165] was used to calculate nucleotide diver-

sity for each window in each population. Windows were checked for the presence of parallel

and non-parallel islands and labelled as ‘genomic background’, ‘parallel island’ and ‘non-paral-

lel island’ windows accordingly (Fig 6). Within each population, we tested for differences in

mean nucleotide diversity between parallel island, non-parallel island and genomic background

windows using t-tests and Bonferroni-based multiple comparison adjusted p-values.

Genetic distances and recombination rate

We derived genetic distances and recombination rates from a previously published recombina-

tion map based on a cross between threespine stickleback from Lake Constance and Lake

Geneva, Switzerland [77]. Position along the genetic map for each SNP was estimated by linear

interpolation of genetic vs. physical positions as published in [77]. We estimated the regional

recombination rate around each SNP in our dataset by smoothing the genetic vs. physical map

[77] with cubic splines and a spline parameter of 0.7 for each chromosome and calculating the

smoothed curve’s first derivate [168]. We used non-parametric tests to find correlations

Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback

PLOS Genetics | DOI:10.1371/journal.pgen.1005887 February 29, 2016 22 / 34



between recombination rate and the presence of islands of differentiation (Kruskal-Wallis

test), hierarchical, and pairwise differentiation (FST, Spearman-rank correlations) and assessed

significance with a Bonferroni-corrected alpha level of 0.05.

Identification of putative targets of selection

We studied the overlap of islands of parallel differentiation and previously identified QTL, can-

didate genes, expression outliers and outlier regions: We assembled a database of previously

identified QTL in threespine stickleback from the literature published up to mid-2015 [78–

103]. If reported, 95% confidence intervals were directly taken from the literature or the mark-

ers in the genetic map of the study adjacent to the ‘peak LOD score minus 1.5’ boundaries on

both sides of the LOD peak were used as 95% confidence intervals. In studies where only the

highest-scoring markers were reported, we used the marker ± 1 Mb as approximate QTL confi-

dence intervals. Physical positions of QTL and confidence interval estimates were transformed

into October 2013 stickleback re-assembly coordinates [77] using the UCSC tool liftOver [169]

and corresponding positions along the genetic map were calculated as for SNPs (see above).

We then tested if QTLs grouped into 32 traits and genomic islands of parallel differentiation

overlap, using a buffer of ±10 kbp on both sides of genomic islands to alleviate effects of sparse

SNP sampling by RAD sequencing (also applied in all following overlap analyses). We tested if

overlaps were expected by chance by permuting the physical and genetic positions of these

islands 100,000 times randomly across the genome, re-calculating overlaps and deriving empir-

ical null distributions and p-values for the observed number of overlaps with a Bonferroni-cor-

rected alpha level of 0.05, based on the repeated testing for overlaps with 32 traits.

We further examined gene content of genomic islands of differentiation and their overlap

with previously identified candidate genes for divergent adaptation [88,126,128,132] and

expression outliers [129,131], for which full gene lengths and a buffer of ± 10 kbp sequence on

both sides of each gene were used. The set of overlapping genes was tested for enrichment in

gene ontology (GO) terms for the GO categories ‘biological processes’ and ‘molecular func-

tions’ using the STRING v9.1 database [170], applying a Bonferroni-corrected alpha level of

0.05. Finally, we overlapped genomic islands of parallel differentiation from our study with pre-

viously identified outlier markers [25,53,70,124,125,127,130] or outlier regions [24,26,36], of

which physical locations were publicly available. We used either the exact outlier region if

reported [26,36], an approximation of an outlier region based on its reported content ± 100

kbp sequence on both sides [24], the ± 100 kbp region surrounding a reported outlier marker

for high-density SNP data [53,70] or the ± 1 Mb region surrounding an outlier marker for low-

density microsatellite datasets [25,124,125,127,130] for comparison with our genomic islands

of differentiation. Statistical analyses and plotting was done using R v3.0.1 [171]. Data analysis

was conducted using the bioinformatics infrastructure of the Genetic Diversity Centre (GDC),

ETH Zurich/Eawag.

Supporting Information

S1 Fig. Timing of threespine stickleback breeding season at Lake Site L1 and Stream Site S1

in 2009. Stickleback start breeding at the same time at sites L1 and S1, preliminarily suggesting

synchronous reproduction in sympatry and thus the absence of temporal isolation. Note how-

ever that both lake and stream ecotypes not distinguished in this dataset may occur at site S1.

Furthermore, we lack information on the length of breeding seasons of lake and stream eco-

types each at these sites, leaving the possibility for partial temporal isolation.

(TIF)
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S2 Fig. Bayesian clustering of Lake Constance threespine stickleback. Assignment of all 91

individuals to 2–5 clusters, based on the 13,509 SNP allele dataset with a minor allele frequency

of> 1%, using the Bayesian clustering algorithm STRUCTURE [162]. According to the opti-

mality criterion developed by Evanno et al. [164], three clusters best fit the data. Grey boxes

around x-axis labels show the grouping of sampling sites used for the hierarchical outlier analy-

sis (see Materials & Methods).

(TIF)

S3 Fig. Optimal number of clusters from Bayesian clustering. Estimated likelihoods and

likelihood derivatives for different numbers of clusters based on 10 replicate runs per cluster

number of the Bayesian clustering algorithm STRUCTURE [162]. Three clusters best fit the

data according to Evanno et al. [164].

(TIF)

S4 Fig. Genome-wide distribution of pairwise differentiation (FST). Pairwise FST distribu-

tions across the genome for the comparisons between pairs of sampling sites not already

shown in Fig 3. Note striking differentiation on chromosome VII between sites dominated by

stream ecotypes versus sites with mostly lake ecotypes (A, B, D, E, H, I) and the absence of dif-

ferentiation between sites both dominated by lake ecotypes (C, F, G, J). Grey dots show single

SNP pairwise FST estimates and black lines show FST means (bold) and 95%-quantiles (thin) in

2 Mb wide, non-overlapping windows across the genome. Windows with elevated differentia-

tion are highlighted with blue background frames (mean FST> 0.05) and red background bars

(95%-quantile FST> 0.25).

(TIF)

S5 Fig. Test for clustering of outlier SNPs per chromosome. For each separate chromosome

with more than 2 outlier SNPs, Ripley’s K function is plotted, for outlier SNPs (red line, alpha-

level 5%) and for the neutral model of loci without clustering, where median, 95% and 99%

confidence intervals are shown (blue lines, see Materials & Methods). Chromosomes for which

the red line crosses blue confidence intervals show evidence for clustering of outliers beyond

expectations from recombination rate.

(TIF)

S6 Fig. Detail view of genomic islands of differentiation and QTLs on chromosome VII.

(B) Chromosome VII contains 12 genomic islands of parallel differentiation (IPDs, black verti-

cal bars) and two islands of non-parallel differentiation (INDs, grey vertical bars). (A)QTLs

for traits previously studied among Lake Constance ecotypes and their overlap with parallel

islands are shown. The left grey column indicates if traits have previously been found to be

divergent among Lake Constance ecotypes (‘Y’ = yes) or not (‘N’ = no). Significant clustering

of parallel islands inside QTLs for trait groups are indicated by asterisks in the right grey col-

umn. Blocks indicate 95% QTL confidence intervals (extent along x-axis) and effect sizes

(color). References for phenotypic data: 1[59], 2[57], 3[65], 4[56] and S7B Fig, 5[46], 6S7A Fig.

(C) Recombination rates across the stickleback genome as estimated by Roesti et al. [77] are

visualized.

(TIF)

S7 Fig. Ecotype differences in lateral plate cover but not lateral plate morph among Lake

Constance ecotypes. (A) First axis of a PCA of size-corrected lateral plate height data from

lake and stream ecotypes from sampling sites S1, S2, L1 and L2, showing that lateral plate

height differs among lake and stream ecotypes in Lake Constance (ANOVA, F1,50 = 7.52,

p< 0.009), with lake ecotypes having higher lateral plate cover (Fig 1B). (B) Lake and stream
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ecotypes from sampling sites S1, S2, L1 and L2 however do not differ in plate morph (χ22 =

1.76, p = 0.41), with most fish being fully-plated (FP) and few individuals being partially plated

(PP) and low plated (LP).

(TIF)

S8 Fig. Distribution of genotypes in genomic islands of parallel lake-stream differentiation

across the six sampling sites. In the sites S1a and S1b, both individuals with lake-like geno-

types and others with stream-like genotypes occur, as well as more intermediate / admixed

individuals. Columns show the same parallel lake-stream differentiation SNPs in islands of par-

allel differentiation as in Fig 5, with the color code for stream- (light blue) and lake-like alleles

(dark blue). The grey left column shows the Bayesian clustering assignment of individuals to

K = 3 clusters (see S2 Fig).

(TIF)

S9 Fig. Heat map for linkage disequilibrium (LD) within sampling sites between parallel

lake-stream differentiation SNPs. The pattern of LD between SNPs found in genomic islands

of lake-stream differentiation and showing parallel changes in allele frequencies is revealed by

the absolute value of the correlation coefficient r, a classical measure of LD. Different islands of

differentiation are divided by either white or black vertical and horizontal lines, the black lines

also dividing different chromosomes. SNPs are grouped by parallel islands as in Figs 5 and S8.

(TIF)

S10 Fig. Probability of overlap between genomic islands of parallel differentiation and 32

QTL categories. Probability distributions from 100’000 random permutations of the 19 islands

of parallel differentiation on the genetic map and their overlap with QTL from different trait

categories (grey histograms), as well as the observed overlap between islands and QTL and

associated p-values (black arrows). P-values significant after Bonferroni correction for multiple

testing are shown in bold.

(TIF)

S11 Fig. Genomic islands of parallel differentiation and their overlap with QTLs.QTLs for

traits that have not yet been studied in Lake Constance ecotypes and their overlap with geno-

mic islands of parallel differentiation. Significant overlap with parallel genomic islands is indi-

cated by asterisks in the right grey column. Blocks indicate 95% QTL confidence intervals

(range along x-axis) and effect sizes (color) respectively.

(TIF)

S12 Fig. Islands of differentiation identification using a hierarchical outlier analysis and

Hidden Markov Model (HMM) approach. (A) Results from an outlier analysis under a hierar-

chical island model [165] showing all SNPs colored according to their associated p-value, i.e.

the probability of the observed FST under neutrality. The SNP p-value color coding is the same

in all three plots, and the scale is shown in pane B. HBP: observed heterozygosity between popu-

lations. (B) Z-transformed p-values from the outlier analysis (z-scores, see histogram) of SNPs

with minor allele frequency> 1% are used in parameter estimation for an HMMwith three

states of genomic differentiation [76]: genomic background differentiation (grey line), excep-

tionally low differentiation (green line) and exceptionally high differentiation (orange line).

The lines show the normally distributed emission probabilities in the HMM for each state (see

Materials and Methods). (C) Example for the inference of genomic islands of differentiation:

regions identified as genomic background differentiation are shown with a grey background

and regions of genomic islands of differentiation (i.e. regions with exceptionally high
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differentiation) are shown with an orange background.

(TIF)

S1 Table. Genomic islands of differentiation (DIFF) and parallel differentiation (PAR-

DIFF) and SNP counts.

(DOCX)

S2 Table. Associations between recombination rate and genomic islands of differentiation,

parallel (IPD), non-parallel (IND) islands and SNP FST estimates.

(DOCX)

S3 Table. Previously identified QTLs and outlier regions overlapping with genomic islands

of parallel differentiation.

(DOCX)

S4 Table. Ensembl predicted genes overlapping with islands of parallel differentiation

among Lake Constance lake and stream ecotypes.

(DOCX)
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