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ABSTRACT

Motivation: Correct gene predictions are crucial for most analyses

of genomes. However, in the absence of transcript data, gene

prediction is still challenging. One way to improve gene-finding

accuracy in such genomes is to combine the exons predicted by

several gene-finders, so that gene-finders that make uncorrelated

errors can correct each other.

Results: We present a method for combining gene-finders called

Genomix. Genomix selects the predicted exons that are best

conserved within and/or between species in terms of sequence

and intron–exon structure, and combines them into a gene

structure. Genomix was used to combine predictions from four

gene-finders for Caenorhabditis elegans, by selecting the predicted

exons that are best conserved with C.briggsae and C.remanei. On a

set of �1500 confirmed C.elegans genes, Genomix increased the

exon-level specificity by 10.1% and sensitivity by 2.7% compared to

the best input gene-finder.

Availability: Scripts and Supplementary Material can be found at

http://www.sanger.ac.uk/Software/analysis/genomix

Contact: alc@sanger.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The number of genomes being sequenced is increasing, making
automatic prediction of genes all the more important

(Brent, 2005). At present, the most accurate gene-finders are

those that use transcript data to predict genes (Guigó et al.,
2006). However, many genomes being sequenced lack extensive,

or in some cases any, transcript data. For example, whole-
genome sequencing projects for at least a dozen nematode

species are under way (Liolios et al., 2006), and none of these
will have nearly as much transcript data as the model organism

Caenorhabditis elegans.
A straightforward way to improve gene-finding accuracy is

to combine the results of several gene-finders, to take
advantage of the fact that different gene-finders are good at

predicting different types of genes. In this way, gene-finders

that make uncorrelated errors can correct each other

(Dietterich, 1997). Burset and Guigó (1996) realized this when

they ran nine different gene-finders, and noticed that although

the predictions were poorly correlated at the nucleotide level,

only 1% of exons were missed by all the programs. A combined

gene set is most likely to improve accuracy if the input gene-

finders predict different sets of genes correctly and incorrectly

(Ali and Pazzani, 1996).

Several different combiners have been inspired by Burset and

Guigó’s observations (Allen et al., 2006; Howe et al., 2002;

Murakami and Takagi, 1998; Pavlović et al., 2002; Schiex et al.,

2001; Shah et al., 2003; Yada et al., 2003; Zhang et al., 2003;

Supplementary Table 1). The combiner software JIGSAW (Allen

et al., 2006) performed as well or better than any of the other

entries in the EGASP competition (Guigó et al., 2006). In that

competition, JIGSAW’s predictions for the human ENCODE regions

had 81% sensitivity and 89% specificity at the exon level.

Combiners for gene-finders generally have two elements:

a method of scoring predicted features such as exons or splice

sites, and a method of combining the highest-scoring features

into a gene structure. Most combiners score predicted exons

using the confidence scores provided by the input gene-finders

for the predicted exons. However, such confidence scores

are often poorly correlated with exon-level accuracy

(Rogic et al., 2001).
Several recently published combiners also use information on

the conservation level of predicted features. For example,

Zhang et al. (2003)’s combiner takes gene predictions, and

predicted conserved splice sites, start and stop codons, and

bases as input. Similarly, JIGSAW can use predicted conserved

regions as an input (Allen et al., 2006). The advantage of using

predicted conserved features as input to a combiner is that

sequence conservation is a good indicator of whether

a predicted feature is likely to be real (Parra et al., 2003;

Ureta-Vidal et al., 2003).
Here we present a new method for combining the results of

several gene-finders, called Genomix. Genomix selects the

predicted exons that are best conserved within and/or between

species in terms of sequence and intron–exon structure,

and combines them into a gene structure. Genomix differs

from previous combiners that use conservation information in

that it uses conservation as its primary score, and uses

conservation of exon boundaries as well as of exon sequence.*To whom correspondence should be addressed.
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Here we describe how Genomix was used to combine

exons predicted in the C.elegans genome by four different

gene-finders. We measured the accuracy of Genomix’s

predictions on a test set of �1500 confirmed C.elegans

genes, and found that Genomix increases the exon-level

specificity by 10.1% and sensitivity by 2.7% over the best

input gene-finder. Compared to JIGSAW, a state-of-the-art

combiner (Allen et al., 2006), Genomix has higher specificity

by 3.5% (Fisher’s test: P510�9) but slightly lower sensitivity

(by 0.7%; Fisher’s test: P¼ 0.1) when the same core set of

input predictions are used.

2 METHODS

Exon and gene predictions that have sequence similarity matches in

related species are more likely to overlap real genes than those that lack

similarity matches (Parra et al., 2003). We surmised that predicted

exons that have intron–exon boundaries that are conserved with

homologous exons are more likely to be correct than predicted exons

that have non-conserved intron–exon boundaries. Thus, we have

developed a method for combining the outputs of several gene-finders,

by assuming that the most plausible predicted exons are those that are

best conserved within or between species in terms of their sequence and

intron-exon boundaries.

2.1 Input gene sets

We refer to the species for which we want to make gene predictions as

the ‘query species’. To predict genes in a piece of genomic DNA from

the query species (e.g. from C.elegans) or for its whole genome, our

program requires gene predictions from multiple gene-finders for the

DNA sequence. It takes GFF (Gene Feature Format; R. Durbin and

D. Haussler; http://www.sanger.ac.uk/Software/GFF) files of gene

predictions as input. It also requires predictions from multiple gene-

finders for one or more homologous genomic regions, either from the

same species and/or from one or more related species (e.g. C.briggsae

and C.remanei). In the absence of genomic sequence from related

species, it is possible to run Genomix by using input predictions

from the query species alone. (In this case, Genomix selects the

predicted exons that are best conserved between paralogous genes in

the query species.)

2.2 Overall strategy of Genomix

The first step in our method is to divide the input DNA sequences from

the query species and related species (if any) into regions that are likely

to contain just one or a few genes. Then, for each genomic region

defined in the query species:

(i) we identify its top homologous region, which can be either an

orthologous region in a related species, or a paralogous region

in the query species;

(ii) for each predicted exon in the genomic region, we calculate a

score that reflects its conservation relative to the exons in the

top homologous region;

(iii) we use dynamic programming to select the best conserved

(top-scoring) predicted exons in the query region, and combine

them into a gene structure.

We explain each of these steps in more detail below.

2.3 Exon clusters

Different gene-finders often split one gene into several predictions

(for example, the SNAP predictions for ver-1 in Fig. 1), or merge several

genes into one prediction. To divide a piece of input DNA into regions

that are likely to contain one or just a few genes each, we followed

the approach used by Murakami and Takagi (1998) to identify ‘clusters’

of predicted exons along the input DNA. That is, two or more exons

on the same strand are put in the same ‘exon cluster’ if they overlap,

or if more than one gene prediction program placed them together in

a gene prediction. For example, an exon cluster may consist

of overlapping predictions for the C.elegans ver-1 gene (Fig. 1). In

practice each exon cluster usually contains 1–3 genes. Exon clusters

are identified along each contig or chromosome in each species.

We will refer to the exons in a query species exon cluster X as x1,

x2 . . . xn, and the exons in an exon cluster Y in a related species as y1,

y2 . . . ym.

Gene-finders sometimes predict the incorrect reading frame for an

exon. Thus, all of the exons in each exon cluster are translated in each

of their three possible reading frames. Any exon translations that

contain internal stop codons are discarded.

2.4 Finding matching exon clusters

For each exon cluster X in the query species, we identify

matching exon clusters within and between species. In other words,

we identify exon clusters corresponding to genes that are paralogs

or orthologs of the gene(s) in the query exon cluster. To do this,

we run BLASTP (Altschul et al., 1997) to compare the exon translations

from the query species (e.g. C.elegans) to a database of all translated

exons from the query species and related species (e.g. C.briggsae and

C.remanei). BLASTP is run using an E-value cut-off of 0.1.

In general, the exons in a query exon cluster have BLASTP hits to exons

from several different exon clusters from the query species and related

Fig. 1. The predictions for the C.elegans ver-1 gene from different gene-finders form one ‘exon cluster’. The gene model shown at the top has

been experimentally confirmed. Genomix aims to select the subset of predicted exons that are most likely to be correct, and join them into a

frame-consistent gene structure. For ver-1, although none of the input gene-finders predict the correct gene structure, Genomix predicts the correct

structure by selecting all the correct predicted exons (grey) and no incorrect predicted exons (black).
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species. A score is assigned to the match between a query exon cluster

and each of its matching exon clusters, by summing the bit scores for

the highest scoring BLASTP hits (HSPs) between their exons. For each

query exon cluster, the top-scoring matching cluster is identified, and

the others are discarded. The top-scoring matching cluster could

correspond to a gene that is either a paralog or an ortholog of the gene

in the query exon cluster.

2.5 Exon sequence conservation

We can rapidly identify matching exon clusters by using BLASTP to

search for matching exons. The BLASTP bit score gives a rough measure

of the sequence conservation between a predicted exon xi in a query

exon cluster X and an exon yj in the top matching exon cluster

Y. However, BLASTP does not give a very accurate measure of sequence

conservation, especially for short or poorly conserved exons.

Furthermore, as Zhang et al. (2003) pointed out, BLAST does not

identify the limits of the region of similarity between two exons

very well.

To obtain a more accurate measure of the sequence conservation

between each pair of exons xi and yj, we use PRSS (version 3.4t25;

Pearson, 1996) to calculate a P-value Pij for the significance of the

Smith-Waterman alignment between their amino acid sequences

(Fig. 2). We use the BLOSUM50 scoring matrix and 200 shuffles in

PRSS, and since indels are relatively rare within coding exons, high

gap-open and gap-extension penalties (�15 and �10) are used. The PRSS

P-value is transformed into a sequence similarity score S1ij for exons xi
and yj using the equation:

S1ij ¼ �log10ðPijÞ � b1

where b1 is a constant that determines the threshold used for the PRSS

P-value. For example, a value of 2 for b1 corresponds to a PRSS P-value

threshold of 10�2. Our method uses parameters b1–b10 and we discuss

how the values for these were set below.

2.6 Intron–exon boundary conservation

If the sequence similarity score for exons xi and yj is significant

(S1ij40), we also calculate an ‘exon-boundary similarity score’ (S2ij),

which reflects how well the exon boundaries of exons xi and yj are

conserved:

S2ij ¼ It*b2 þ ðIs þ IeÞ*b3 þ 30� Os þOeð Þ*b4ð Þ

where:

(a) It is the total number of positions in the PRSS alignment of exons

xi and yj that are identical and are flanked by two identical

positions and b2 is a constant;

(b) Is and Ie are the numbers of identities in the first ten and last ten

PRSS alignment positions, and b3 is a constant;

(c) Os and Oe are the number of overhanging residues at the

start and end of the PRSS alignment and b4 is a constant.

We only penalize up to 15 overhanging residues at the start

or end: if Os415 then we set Os¼ 15, and if Oe415 we

set Oe¼ 15.

If exons xi and yj have high sequence identity, and if there are no

overhanging residues at the start (or end) of the PRSS alignment, then the

intron–exon boundary at the start (or end) of exons xi and yj is inferred

to be highly conserved.

2.7 Exon phases and length conservation

If exons xi and yj have significant sequence similarity (S1ij40),

we calculate a ‘phase similarity score’ S3ij that reflects to what extent

their phases are conserved. We will use the term ‘exon start phase’ to

refer to the phase of an exon’s 5 0-flanking intron, and the term ‘exon

end phase’ to refer to the phase of the exon’s 3 0-flanking intron. S3ij is

initialized to zero, and is increased by a constant b5 if the start phases

of exons xi and yj are the same and/or by b5 if their end phases are the

same.

Even if an exon’s sequence is not conserved, its length may still

be conserved. Thus, if the sequence similarity score for exons xi and

yj is not significant (S1ij� 0), a score S4ij is calculated that reflects

whether their lengths are conserved. If the difference between

their lengths is �3 bp, we set S4ij equal to a constant b6 (otherwise

S4ij¼ 0).

2.8 Total conservation score

We calculate a total conservation score Sij for exons xi and yj as:

Sij ¼ S1ij þ S2ij þ S3ij þ S4ij

The matrix of scores S describes the similarities between each exon

in a query exon cluster and each exon in a matching exon cluster.

Matrix S is used as a scoring matrix in the dynamic programming step

of Genomix, as described below.

Fig. 2. Measuring exon conservation. (A) Four different gene-finders

predict different coordinates for the fifth exon of C.elegans gene

X. (B) Genomix calculates a score for each of the four predicted

C.elegans exons, which reflects how conserved is its sequence,

intron–exon boundaries, phases and length relative to the C.briggsae

exons in a matching exon cluster. Caenorhabditis elegans predicted

exon 5a has the highest conservation score, followed by 5b, then 5c

and 5d.
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2.9 Dynamic programming

For each query exon cluster, dynamic programming is used to search

for the set of predicted query exons whose added conservation scores

are maximized under their reading frame constraints (Fig. 3). The exons

in the query exon cluster and in its top matching exon cluster are first

sorted from 5 0 to 3 0. We then proceed to fill the dynamic programming

matrix D from top left to bottom right, by calculating Dij as:

Dij ¼ Sij þ maxðDkl þ B7 þ B8 þ B9 þ B10Þ

where:

(i) k� i and l� j, but !(k¼ i, l¼ j).

(ii) exon xk must be in the same reading frame as exon xi, and exon

yl must in the same reading frame as exon yj.

(iii) if k5i, then query exon xk must end 430 bp before query

exon xi begins in the chromosomal DNA. This prevents us

from predicting introns of 530 bp, which would probably

be shorter than the minimum length for an intron to be

spliced correctly (Deutsch and Long, 1999). Likewise, if l5j,

then exon yl must end 430 bp before exon yj begins in the

chromosomal DNA.

(iv) if (k¼ i, l!¼ j), then the PRSS alignment between the amino acid

sequences of exons xi and yl, and the PRSS alignment between

exons xi and yj, must not overlap with respect to the amino acid

sequence of exon xi.

(v) B7 is a score designed to favour exons that were predicted by

the same input gene-finder. If k!¼ i and if exons xk and xi were

predicted as adjacent exons in a gene by at least one of the

input gene-finders, then B7¼ b7, where b7 is a constant. B7¼ 0

otherwise.

(vi) B8 is a score designed to favour predicted conserved initial

exons. If exons xk and yl have significant sequence conservation

(S1kl40), and if they are both possible initial exons (start in

phase 0 with Met), then B8¼ b8, where b8 is a constant.

Otherwise B8¼ 0.

(vii) B9 is a score designed to favour predicted conserved terminal

exons. If exons xi and yj have significant sequence conservation

(S1ij40), and if they are both terminal exons (end in phase 0

with a stop codon), then B9¼ b9, where b9 is a constant. B9¼ 0

otherwise.

(viii) B10 is a penalty designed to disfavour a very long predicted

intron between exons xk and xi that is much longer than the

median C.elegans intron length (65 bp). B10¼ 0 if the

intron length is 5250bp; and B10¼ 0.75*b10 if the intron is

250–500bp, where b10 is a constant. For introns larger than

500 bp, B10 increases in steps of b10 every 250 bp, from B10¼ b10
for introns of 500–750bp to B10¼ 5*b10 for introns of

�1500 bp.

After calculating matrix D, the optimal alignment between the

exons in the query exon cluster and the exons in the top matching

exon cluster is found by tracing back through matrix D. We start at the

cell (i,j) that has the max(Dij). This is the best score for an

alignment between predicted exons x1 . . .xi from the query exon cluster

and predicted exons y1 . . . yj from the top matching exon cluster.

We trace back through the matrix until a cell for which Dij� 0 is

reached. The exons selected by the dynamic programming

algorithm form Genomix’s final gene prediction(s) for the query exon

cluster. Note that this process can, and frequently does, generate

multiple genes and can also generate partial genes, although these

are rarer. To make gene predictions for a whole genome, for example,

for C.elegans, dynamic programming is used to select the best

predicted exons in each query exon cluster, by comparison to the top

matching exon cluster, for example from C.briggsae, C.remanei

or C.elegans.

Dynamic programming can also be used to select the best predicted

exons in a query exon cluster by comparison to two, three or more top

matching exon clusters. For example, we can select the best conserved

predicted exons in the C.elegans ver-1 locus by comparison to the

predicted exons in the C.remanei ver-1 locus using 2D dynamic

programming (Fig. 3), or by comparison to the predicted exons in

both the C.remanei ver-1 and C.briggsae ver-1 loci by using 3D dynamic

programming.

In a post-processing step, Genomix discards gene predictions that

lack any high-scoring exon (having exon score S� 1). This is designed

to discard gene predictions that correspond to pseudogenes or gene

fragments.

2.10 Output gene set

The output gene set is in GFF format. A score S is given to each exon

predicted by Genomix: this is the maximum conservation score Sij

observed for exon xi when compared to all other exons yj in the top

matching exon cluster.

2.11 Optimizing Genomix parameters

The parameters b1–b10 were hand-tuned by starting with prior estimates

and iteratively adjusting these parameters to improve Genomix’s

prediction accuracy on the training set of 381 genes (described

below). Using this manual tuning strategy, we chose parameter values

of b1¼ 1, b2¼ 3, b3¼ 0.3, b4¼ 1.5, b5¼ 5, b6¼ 2, b7¼ 1, b8¼ 3, b9¼ 10,

and b10¼�0.2.

Fig. 3. Using dynamic programming to select predicted exons.

(A) To select the best subset of exons predicted in the C.elegans query

exon cluster (here exon cluster 18196, which corresponds to the

C.elegans ver-1 locus), dynamic programming is used to find

the optimal alignment between the C.elegans exons and the exons in

the top matching exon cluster (here C.remanei exon cluster 48 051,

which corresponds to the C.remanei ver-1 locus). (B) The solution of the

dynamic programming algorithm is the optimal alignment between

the predicted exons from the query C.elegans exon cluster and the

predicted exons from the matching C.remanei exon cluster.

Genomix: a method for combining gene-finders’ predictions
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2.12 Training set and test set

A total of 4025 C.elegans genes that each have one coding transcript

that has been confirmed by mRNA or EST alignment (and are not

known to be alternatively spliced) were downloaded from WormBase

(version WS147; Schwarz et al., 2006). Out of these genes, 381 were

randomly chosen as a training set for tuning parameters during

development of our algorithm. Excluding the training set genes, 1534 of

the remaining genes were randomly selected as a test set for

assessing the accuracy of Genomix. Note that not all of the 4025

confirmed genes were used for the training and test sets; some were

kept back in case an extra test set was needed. To measure Genomix’s

specificity in intergenic regions, we randomly selected 1179 intergenic

regions from the �20 000 intergenic regions in the whole genome.

Any predicted exons in gene predictions that lie completely in these

intergenic regions were counted as false positives. The test set genes and

intergenic regions span �6% of genic DNA and �6% of intergenic

DNA in C.elegans.

2.13 Input gene sets

We analysed C.elegans gene predictions for the WormBase WS147

release of the genome (Schwarz et al., 2006). TWINSCAN predictions

(Korf et al., 2001) were downloaded from http://mblab.wustl.edu.

Several other gene-finders were also run on the C.elegans genome:

Genefinder (release 980504; P. Green, unpublished data), FGENESH

(Salamov and Solovyev, 2000), and SNAP (version 2005-10-24; Korf,

2004). For FGENESH the nematode-specific trans-splicing (-n) option

was used.

We analysed gene predictions for the cb25.agp8 C.briggsae genome

assembly (Stein et al., 2003). C.briggsae gene sets made using FGENESH

and Genefinder during the C.briggsae genome project (Stein et al.,

2003) were downloaded from WormBase. TWINSCAN predictions were

downloaded from http://mblab.wustl.edu.

Gene predictions based on version 041227 of the C.remanei genome

were analysed (GenBank accession AAGD01000000). Gene sets that

were made as part of the C.remanei genome project using FGENESH,

Genefinder and SNAP were downloaded from WormBase. TWINSCAN

predictions were downloaded from http://mblab.wustl.edu.

2.14 JIGSAW predictions

Version 3.2.5 of JIGSAW (Allen et al., 2006) was downloaded from http://

www.cbcb.umd.edu/. We made two different gene sets using JIGSAW,

each with different input data:

(i) FGENESH, Genefinder, SNAP and TWINSCAN predictions for

C.elegans;

(ii) The four gene sets, plus BLAT alignments of C.elegans mRNAs

to the C.elegans genome, and predicted splice sites.

We will refer to these gene sets as JIGSAW_1 and JIGSAW_2.

The positions of the best BLAT alignments of C.elegans mRNAs to the

genome were downloaded from WormBase (release WS147). To predict

the positions of splice sites in the C.elegans genome, the Genefeatures

program by R. Durbin was used. Genefeatures is based on part of the

Genefinder software (P. Green, unpublished data) and is available as

part of the AceDB database software (Durbin and Thierry-Mieg, 1994

and http://www.acedb.org). Predicted splice sites that were assigned

confidence scores of �3.0 by Genefeatures were used as input for

JIGSAW. For each of the two JIGSAW gene sets, JIGSAW was trained using

the ‘oblique splits’ option on our training set of 381 fully confirmed

C.elegans genes and then was run on the whole C.elegans genome.

3 RESULTS

The accuracy of Genomix was assessed on a test set of 1534
randomly chosen C.elegans genes, and 1179 randomly chosen

intergenic regions (see Methods Section). These cover 6% of
the total genic DNA and 6% of the intergenic DNA in the

C.elegans genome. Since we do not expect any genes in the

intergenic regions, predictions within these regions are counted
as false positives.

3.1 Combining four gene-finders using Genomix

Genomix was used to combine predictions from FGENESH

(Salamov and Solovyev, 2000), Genefinder (P. Green, unpub-
lished data), SNAP (Korf, 2004) and TWINSCAN (Korf et al., 2001)

for C.elegans. Conservation with C.elegans paralogs and
homologs from C.briggsae and C.remanei, was used to identify

the most conserved C.elegans predicted exons. That is, each

C.elegans exon cluster was compared to its top matching exon
cluster from either C.elegans, C.briggsae or C.remanei.
Gene prediction accuracy was measured in terms of

sensitivity and specificity at the nucleotide, exon and gene

level (Burset and Guigó, 1996; Table 1). The exon-level
sensitivity is the fraction of real exons predicted correctly by

a gene prediction program. For an exon prediction to be
considered correct, both the 5 0 and 3 0 boundaries must match

the true exon exactly. The exon level sensitivities of the input

gene-finders were 86.4% for FGENESH, 86.7% for Genefinder,
84.2% for SNAP and 88.8% for TWINSCAN (Table 1). Only 96.4%

of the real exons in the test set of 1534 C.elegans genes were
predicted correctly by at least one of FGENESH, Genefinder, SNAP

or TWINSCAN. As for other combiners that focus on exons as the

indivisible elements to be combined, it is impossible for
Genomix to predict an exon that was missing from all the

input predictions. As a result, Genomix’s maximum possible
sensitivity is 96.4%. Genomix has 91.5% sensitivity at the

exon level, i.e. it has 2.7% higher sensitivity than the

most sensitive of the four input gene-finders. Furthermore,
Genomix outperforms the individual gene-finders in terms

of gene-level sensitivity by 6.4% (increasing gene-level

Table 1. Comparison of the accuracy of the input gene sets to that of

the combined gene sets made by Genomix and JIGSAW, for a test set of

1534 confirmed C.elegans genes and 1179 intergenic regions

Method Base Base Exon Exon ME WE Gene Gene MG WG

Sn Sp Sn Sp Sn Sp

Genefinder 97.5 81.5 86.7 72.7 3.7 19.4 53.8 51.4 2.6 3.6

TWINSCAN 96.1 83.6 88.8 77.2 4.8 17.2 62.8 57.7 2.8 9.1

SNAP 96.2 85.4 84.2 73.3 5.3 17.2 53.3 42.1 2.0 15.9

FGENESH 97.1 80.8 86.4 72.3 4.0 20.0 55.3 50.0 1.4 7.0

Genomix 97.2 91.9 91.5 87.3 3.7 8.1 69.2 67.4 3.5 2.7

JIGSAW_1 98.2 87.2 91.8 82.1 2.9 13.2 70.5 64.1 1.3 8.4

JIGSAW_2 98.2 88.7 92.2 83.8 2.7 11.6 72.1 67.0 1.5 6.7

Standard measures of predictive accuracy are given: Sn–sensitivity; Sp–specificity;

ME–proportion of true exons for which there is no overlapping predicted exon;

WE–proportion of predicted exons that do not overlap any true exon;

MG–proportion of true genes for which there is no overlapping predicted gene;

WG–proportion of predicted genes that do not overlap any true gene.
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sensitivity from �62.8 to 69.2%). Here a test set gene is
considered to have been predicted correctly if the prediction

made for the gene contains all of its real exons and no false-
positive exons.
The exon-level specificity is the fraction of the predicted

exons that are real. Taking into account false-positive whole-
gene predictions completely contained in the 1179 test set

intergenic regions, the exon level specificities for the input gene-
finders were 72.3% for FGENESH, 72.7% for Genefinder, 73.3%

for SNAP and 77.2% for TWINSCAN (Table 1). Genomix has
87.3% exon-level specificity, which is 10.1% higher than that of

TWINSCAN, the input gene-finder with the highest specificity.
In addition, in terms of gene-level specificity Genomix performs

better than the best of the input gene-finders, TWINSCAN,
by 9.7%.

3.2 Comparison to JIGSAW

The accuracy of Genomix was compared to that of JIGSAW

(Allen et al., 2006), a combiner software that performed as well

or better than any of the other entries in the EGASP competition
(Guigó et al., 2006). For EGASP, Allen et al. (2006) used JIGSAW

to combine six different gene-finders, mRNA and EST
alignments, curated genes and predicted conserved elements.

To see how well JIGSAW performs using just raw gene
predictions as input, a JIGSAW gene set was made by

combining the FGENESH, Genefinder, SNAP and TWINSCAN

predictions (‘JIGSAW_1’). JIGSAW had 92% exon-level

sensitivity and 82% exon-level specificity. This is roughly the
same as the exon-level sensitivity of Genomix (92%),

but slightly less than Genomix’s exon-level specificity
(87%; Table 1).

However, while JIGSAW’s input can be restricted to the
outputs of several gene-finders, it performs better if its input

also includes other data sources, especially alignments of
mRNAs (Allen et al., 2006). Thus, to make a fair comparison

of JIGSAW’s and Genomix’s accuracies when supplied with their
optimal input data, a second JIGSAW gene set was made by

combining the four input gene-finders, plus predicted splice
sites and mRNA alignments. At the exon level, this second

JIGSAW gene set (‘JIGSAW_2’) had 92.2% sensitivity and 83.8%
specificity. Compared to Genomix, the JIGSAW_2 gene set has

0.7% higher exon-level sensitivity (Fisher’s test: P¼ 0.1;
McNemar’s test: P¼ 0.02), but 3.5% lower exon-level specifi-

city (Fisher’s test: P510�9).

3.3 Suggested changes to WormBase curated genes

Genomix sometimes assigns a higher score to a predicted

exon than to an overlapping confirmed exon in the test set.
We surmised that some of these high-scoring predicted exons

could be extensions to existing confirmed exons, or alternative
transcripts. To investigate this, we examined exons to which

Genomix assigns a score that is4100 higher than the score that
it assigns to the overlapping test set exon. For example,

Genomix assigns a score of 215 to the confirmed initial exon of
T20D3.5, but assigns a score of 401 to an overlapping exon

predicted by FGENESH and TWINSCAN. In its final prediction
for that locus, Genomix selected the FGENESH/TWINSCAN exon

and also selected an additional upstream exon. We realized

that, compared to the confirmed transcript from WormBase

WS147, the FGENESH/TWINSCAN exon and extra initial exon align

further upstream to the orthologs in human and fly.

This information was sent to WormBase, who curated

our suggested gene structure as alternative isoform T20D3.5b

and renamed the original confirmed transcript as T20D3.5a

(Fig. 4).
We also examined exons predicted by Genomix that did not

overlap any curated WormBase WS147 exon, but that had high

Genomix conservation scores of4100. There were 4373 such

conserved exons, belonging to 2418 gene predictions that do

not overlap any curated WormBase gene or annotated

pseudogene. Of these 2418 putative new genes, 106 have �3

exons with conservation scores of4100, have valid start and

stop codons, and contain coding DNA that is510% repetitive.

Two examples that we examined had already been added to

WormBase since release WS147 (independently of our predic-

tions): Y46E12A.4 and T07C4.11. A third example was a novel

C.elegans gene prediction that does not have similarity to any

curated C.elegans gene but shows high sequence conservation

(61% identity) with the C.briggsae and C.remanei orthologs

predicted by Genomix. We informed the WormBase curators

about this putative gene, and it has been accepted into the next

WormBase release (WS169) as R01H2.8. We are compiling a

list of the most convincing new genes and exons suggested by

Genomix to give to WormBase.

Fig. 4. An alternative isoform of a WormBase curated gene that

was suggested by Genomix. (A) WormBase release WS147 contained

one confirmed transcript for gene T20D3.5, now known as T20D3.5a.

Genomix suggested an alternative isoform T20D3.5b. The

grey box indicates the extra upstream coding region of T20D3.5b that

is missing from T20D3.5a. (B) A multiple alignment of T20D3.5a,

T20D3.5b and their C.briggsae, C.remanei, Drosophila melanogaster

and human orthologs. The alignment is truncated after the start

of T20D3.5a, since T20D3.5a and T20D3.5b are identical after this

point. The human and D.melanogaster orthologs were identified

from TreeFam (Li et al., 2006). Here ‘human4’ is Ensembl gene

ENSG00000189332. Gene predictions for the C.briggsae and C.remanei

orthologs were made using Genomix.
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4 DISCUSSION

Predicting genes in eukaryotic DNA is still a challenge for

the best gene-finders. We have presented a method for

combining predictions from two or more gene-finders, which

successfully improves prediction accuracy. Genomix should

prove useful in providing accurate gene predictions for the

increasing number of genomes that are being sequenced,

and especially where transcript data is not available to aid

gene prediction, for example in the many groups of

related invertebrate species currently being sequenced. These

include arthropods (12 Drosophila species), platyhelminths

(Schistosoma mansoni and S.japonicum), cnidarians (the sea

anemone Nematostella and coral Acropora), mollusks (bivalves

Spisula and Mytilus and gastropods Lottia, Aplysia and

Biomphalaria), and annelids (Helobdella and Capitella)

(Liolios et al., 2006).

In a large test set of C.elegans genes, Genomix improves

the exon-level sensitivity by 2.7% and the exon-level

specificity by 10.1% compared with the input gene-finders.

Genomix’s high exon-level specificity is due to its approach of

scoring predicted exons according to their conservation, which

allows it to discard many false positive non-conserved

exons that were predicted by the input gene-finders.

Genomix also correctly predicts some exons that the most

accurate gene-finder misses. At the exon level TWINSCAN has

2.1% higher sensitivity and 3.9% higher specificity than

FGENESH, Genefinder or SNAP, but Genomix can still

improve on TWINSCAN’s accuracy by combining it with the

other three gene-finders (Table 1). In fact, despite the fact

that Genomix does not make use of EST or mRNA data, its

exon-level accuracy is close to the 92% sensitivity and 87%

specificity achieved by TWINSCAN_EST (on a different data set),

which uses EST data (Wei and Brent, 2006).
The recent combiner GLEAN (Elsik et al., 2007) is the first

combiner for gene-finders that does not require any training

set. This is a huge advantage for annotating newly sequenced

genomes that lack EST or cDNA resources. In contrast,

in order for Genomix to achieve its best performance on a new

genome, its parameters b1, b2 . . . b10 should be re-tuned for the

new genome. However, we found that Genomix performs quite

well on an unseen genome even if parameters b1, b2 . . . b10 are

not re-tuned. We used the version of Genomix that was tuned

for C.elegans to make gene predictions for D.melanogaster by

combining the output of three different gene-finders, and

found that Genomix increased exon-level sensitivity by 2.3%

and exon-level specificity by 3.5% over the best input gene-

finder (Supplementary Table 2). That is, while it is advisable to

re-tune Genomix parameters, in the absence of any training

data it is safe to assume that Genomix will produce reasonably

good predictions without re-tuning. This is probably due to the

fact that Genomix tries to avoid the need for a large training set

by using PRSS (Pearson, 1996) to directly estimate the

probability that a predicted exon overlaps a real coding exon.

That is, we use PRSS to calculate the P-value for the significance

of the alignment between the amino acid sequence of a

predicted exon and a homologous exon from the same or a

related species. The P-values calculated by PRSS for amino acid

sequences are very accurate (Brenner et al., 1998; Pearson,

2000), and so give us a reliable estimate of the probability that a

predicted exon has conserved amino acid sequence. As a result,

predicted exons and genes that are assigned non-significant

P-values by PRSS are often wrong (do not overlap any real

exon). This probably underlies Genomix’s good performance

with respect to completely wrong exon predictions

(WE¼ 8.1%) and completely wrong gene predictions

(WG¼ 2.7%; Table 1).

The fact that Genomix assigns a conservation score to

each predicted exon separately makes it possible to use

input gene sets that are correlated without biasing the results.

This is because an exon predicted in correlated gene

sets will only be assigned a high score if it is highly conserved.

As a result, it is possible, for example, to combine

predictions from a single gene-finder using two different

parameter settings.
Genomix only works for genes that have sequenced homo-

logs in the same species or in a closely related species. However,

this does not affect sensitivity too badly. While Genomix

does completely miss some whole genes that are not conserved,

these are only� 3.2% of test set genes (Genomix’s total

MG¼ 3.5%, of which 0.3% is due to genes completely

missed by the four input gene-finders). Likewise, Genomix

completely misses some non-conserved exons in otherwise

conserved genes, but this only occurs for �1% of test set exons.
Many genes in animal genomes are thought to undergo

alternative splicing (Kan et al., 2001). Ten percent of C.elegans

genes are annotated as having alternative splicing in the coding

region, and this is probably an underestimate. Predicting

alternative splicing is a very important challenge for the gene-

finding field (Guigó et al., 2006). So far, only a few combiner

programs such as EuGène (Foissac and Schiex, 2005) predict

alternative transcripts. In its current implementation, Genomix

predicts only a single isoform for each gene. The test set

analysed here consists of genes that each has a single isoform.

However, for genes that do undergo alternative splicing,

Genomix will miss many real alternative isoforms.

An important future direction is to develop Genomix so

that it can predict alternative isoforms, for example by making

use of mRNA/transcript data.
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