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Genoppi is an open-source software for robust and
standardized integration of proteomic and genetic
data
Greta Pintacuda1,2,8, Frederik H. Lassen 1,3,4,8, Yu-Han H. Hsu 1,3,8, April Kim1,3,5,8, Jacqueline M. Martín1,2,

Edyta Malolepsza1,3, Justin K. Lim1,3,6, Nadine Fornelos1,3, Kevin C. Eggan 1,2✉ & Kasper Lage 1,3,7✉

Combining genetic and cell-type-specific proteomic datasets can generate biological insights

and therapeutic hypotheses, but a technical and statistical framework for such analyses is

lacking. Here, we present an open-source computational tool called Genoppi (lagelab.org/

genoppi) that enables robust, standardized, and intuitive integration of quantitative proteomic

results with genetic data. We use Genoppi to analyze 16 cell-type-specific protein interaction

datasets of four proteins (BCL2, TDP-43, MDM2, PTEN) involved in cancer and neurological

disease. Through systematic quality control of the data and integration with published protein

interactions, we show a general pattern of both cell-type-independent and cell-type-specific

interactions across three cancer cell types and one human iPSC-derived neuronal cell type.

Furthermore, through the integration of proteomic and genetic datasets in Genoppi, our

results suggest that the neuron-specific interactions of these proteins are mediating their

genetic involvement in neurodegenerative diseases. Importantly, our analyses suggest that

human iPSC-derived neurons are a relevant model system for studying the involvement of

BCL2 and TDP-43 in amyotrophic lateral sclerosis.
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L
arge-scale genetic datasets, such as those obtained from
genome-wide association studies (GWAS) or exome
sequencing are becoming increasingly available. Simulta-

neously, advanced proteomic technologies can generate high-
quality cell- and tissue-specific quantitative proteomic data (e.g.,
from immunoprecipitations followed by tandem mass spectro-
metry [IP-MS/MS]1,2 or whole-proteome analyses of cells or
tissues3). Integration of genomic and proteomic datasets has
revealed that genetic variation implicated in rare and common
diseases often manifests at the proteome level, for example, by
impacting protein complexes or cellular networks4. Data from
genetics and cell-type-specific quantitative proteomics, therefore,
have the potential to inform each other and lead to key molecular
and biological insights. However, even for experts in these fields,
the relevant data types are often not interoperable. This creates a
bottleneck for functionally interpreting genetic data and dissect-
ing the molecular biology of human diseases. In the longer term,
difficulties in reconciling these data types will hamper efforts
towards gaining mechanistic insights from genetic data and
designing therapeutic interventions. To enable the robust, stan-
dardized, and intuitive integration of data from genetics and cell-
type-specific quantitative proteomics, we have developed an
open-source computational tool named Genoppi5 (web applica-
tion: lagelab.org/genoppi, R package source code: github.com/
lagelab/Genoppi), which we apply to 16 cell-type-specific
protein–protein interaction datasets to illustrate the functional-
ities of the tool.

Results
Genoppi enables integration of proteomic and genetic data.
Given log2 fold change (FC) values between studied conditions
(e.g., bait versus control IPs) for multiple experimental replicates,
Genoppi identifies proteins with statistically significant log2 FC by
applying user-defined thresholds, displays the data in scatter and
volcano plots, and provides options for integrating the results
with other forms of data (Fig. 1a, “Methods,” and Supplementary
Note 1). Genoppi can quality control (QC) a protein interaction
dataset6 by testing whether it is enriched for previously known
interaction partners compiled from InWeb_InBioMap (InWeb;
includes data from > 40,000 scientific articles7,8; Fig. 1b),
iRefIndex9, or BioPlex10,11. Genoppi further allows the user to
subset the protein interactions in these databases based on the
provided confidence metrics (Supplementary Note 1). The ability
to automatically integrate these databases with experimental data
in real-time makes it easy to distinguish between published versus
newly identified interaction partners of a protein of interest, thus
eliminating the need to extensively interrogate the literature on a
case-by-case basis.

Genoppi can also intersect and co-visualize proteomic data
with various types of data derived from population genetic
studies. One such data type is a list of single-nucleotide
polymorphisms (SNPs) derived from GWAS of a disease of
interest. Genoppi automatically uses linkage disequilibrium (LD)
information from the 1000 Genomes Project12 to identify
proteins in a proteomic dataset that are encoded by genes in
LD loci of NHGRI-EBI GWAS catalog13 or user-defined SNPs14

(Fig. 1c and “Methods”). In addition, exome and whole-genome
sequencing have been increasingly used to identify genes that
have a significant burden of rare mutations in individuals with a
particular disease compared to healthy controls. Genoppi is
designed to enable the identification of sets of proteins in a
proteomic dataset based on such user-defined gene lists15

(Fig. 1c). Genoppi can also incorporate gene constraint data
from gnomAD16 to label proteins intolerant to loss-of-function
mutations (Fig. 1d). When these external datasets are integrated

with proteomic results, overlaps are displayed in a number of
user-defined ways (as Venn diagrams or superimposed on
volcano plots), and statistically tested when appropriate (“Meth-
ods” and Supplementary Note 1).

Another feature of Genoppi is the annotation of proteomic
data with gene sets from several databases, including HGNC17,
GO18,19, and MSigDB20,21, to visually identify groups of proteins
that may be overrepresented in a particular dataset (Fig. 1e).
Genoppi can also perform tissue enrichment analysis using sets of
tissue-specific genes derived from RNA or protein expression
data in GTEx22,23 or the Human Protein Atlas (HPA)24

(Supplementary Fig. 1). This feature can be applied to sets of
tissue- or cell-type-specific genes uploaded by the user (e.g., cell-
type-specific genes identified from single-cell RNA sequencing).
Finally, it is possible to perform head-to-head comparisons of
proteomic experiments performed under different conditions
using Genoppi. For example, interaction experiments that
were executed with and without drug treatment6, or with the
wild-type and mutated versions of a protein, to elucidate the
cellular effects of either pharmaceutical or genetic perturbations
in a particular cell type (Fig. 1f). Overall, Genoppi provides
various ways to explore proteomic datasets, to guide hypothesis
generation, or to inform targeted follow-up experiments.

Genoppi is an open-source software that is easily accessible and
flexible to meet data-driven custom needs in the research
community and is available both as an R package and as a Shiny
application with extensive documentation and exemplar datasets.
In particular, the Genoppi web application provides a simple
interactive interface with customizable options and the ability to
work with a wide variety of quantitative proteomic datasets (e.g.,
IP-MS/MS analyses, or whole-proteome analyses of cells or
tissues). For example, it is possible to dynamically explore a
dataset by changing various technical thresholds and visualizing
the results in real-time; furthermore, a search function enables the
quick identification of proteins of interest in various plots
(Supplementary Note 1). Users can also locally download the
generated data and plots to share with collaborators. For users
interested in building custom analytical pipelines, the R package
has extensive documentation and can be leveraged for these
purposes. For instance, the users may choose to analyze their data
with an alternative statistical method before performing down-
stream analyses using Genoppi. In summary, Genoppi is a highly
flexible platform for analyzing cell-type-specific proteomic
datasets and facilitating data sharing in cross-disciplinary
collaborations that are now common in both academia and
industry. Further details about options, workflows, and analyses
can be found in Supplementary Note 1.

Applying Genoppi to analyze cell-type-specific IP-MS/MS data.
To exemplify how analyzing cell-type-specific proteomic data
using Genoppi can uncover convergent and divergent disease-
relevant biology of the same protein in different cell types, we
generated IP-MS/MS data for four proteins of interest (BCL2,
TDP-43, MDM2, PTEN; baits, hereafter) in four distinct cell lines
(“Methods” and Supplementary Data 1). We chose these four
proteins because they play important, but not fully elucidated
roles in cancer, neurological disease, and psychiatric conditions.

We executed bait IPs in a human-induced pluripotent stem cell
(iPSC)-derived neuronal cell line (glutamatergic patterned
induced neurons [GPiNs]25) and three cancer cell lines (G401,
T47D, and A375; Fig. 2a, c and Supplementary Fig. 2a), along
with control experiments using isotype-matched immunoglobulin
gamma (IgG; “Methods”), which are commonly included to
control for background signal and nonspecific association with
antibodies or beads. All bait and IgG control experiments were
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Fig. 1 Overview of Genoppi. a Overview of the Genoppi features. b Volcano plot of published CRBN interaction data in MM1S multiple myeloma cells

versus control samples. The x-axis shows the log2 FC of each identified protein and the y-axis the corresponding −log10 P value. The bait protein (CRBN) is

marked in red; statistically significant interactors with log2 FC > 0 and FDR≤ 0.1 are in green; non-interactors that do not pass this threshold are in gray.

Known interactors of CRBN in InWeb_InBioMap are marked by black border circles; those significant in the experimental data are highlighted in yellow

(overlap enrichment P= 1.1e− 21, from one-tailed hypergeometric test). c The volcano plot from (b) is overlaid with genetic data. Proteins encoded by

genes mapped from acute lymphoblastic leukemia GWAS SNPs (GWAS genes), significantly mutated genes identified through exome sequencing in

multiple myeloma (Exome-seq genes), or recurrently mutated cis-regulatory elements identified via whole-genome sequencing in multiple myeloma (WGS

genes) are marked by black border circles, squares, or triangles, respectively; those significant in the experimental data are highlighted in orange, blue, or

purple, respectively. Overlap enrichment was not calculated since part of this gene list was mapped from GWAS SNPs using linkage disequilibrium

information. d The volcano plot from (b) is overlaid with proteins intolerant of LoF mutations in gnomAD. Proteins encoded by genes with pLI

scores ≥ 0.99 are marked by black border circles; those significant in the experimental data are highlighted in magenta (overlap enrichment P= 0.087,

from one-tailed hypergeometric test). e The volcano plot from (b) is overlaid with HGNC gene group annotations (square markers) for the significant

interactors. Marker size scales with the number of interactors assigned to each group. f Illustration of Genoppi’s ability to make comparisons between

proteomic experiments under different genetic or pharmaceutical perturbations; in this case, the comparison of CRBN interactors in untreated

(−Lenalidomide) versus lenalidomide-treated (+Lenalidomide) MM1S cells. Top: Venn diagram representing the overlap of significant (log2 FC > 0 and

FDR≤ 0.1) interactors between the two conditions. Bottom: scatter plots showing log2 FC of identified proteins in two replicates (x- and y-axis,

respectively) for each condition. Interactors shared between conditions are shown in purple; interactors unique to each condition are in blue or pink,

respectively. FC fold change, MS mass spectrometry, QC quality control, FDR false discovery rate, PPI protein–protein interaction, LoF loss-of-function, SNP

single-nucleotide polymorphism. Source data are provided as a Source Data file.
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Fig. 2 IP-MS/MS analysis through Genoppi. a Experimental design and representative western blots of immunoprecipitations prepared for MS/MS

analysis. The schematic to the left shows how Bait A (BCL2 as an example) was pulled down in two distinct cell lines (GPiN and G401) and detected in

western blots carried out on cell lysate input and IP material from both cell lines. The schematic to the right exemplifies the immunoprecipitation of Bait B

(TDP-43 as an example) and the parallel addition of nonspecific IgG control to GPiN lysates; a TDP-43 western blot was then performed on the cell lysate

input, IP flow-through, IP, and IgG control. Each blot is representative of three IP replicates. Asterisks (*) indicate the band corresponding to each bait

(BCL2 or TDP-43). b Top: Venn diagrams representing the overlap between BCL2 interactors identified in all cell lines and known InWeb_InBioMap

interactors, and the overlap of interactors identified in neurons (GPiN) and a cancer cell line (G401). Bottom: complete list of cell lines and baits used for

the experiments. c Scatter plots showing the reproducibility of three IP replicates in terms of log2 FC correlation for three sets of experiments: BCL2 versus

IgG control in G401 cells or GPiNs, and TDP-43 versus IgG control in GPiNs. Pearson’s correlation (r) is reported in each plot. d BCL2 versus IgG control IP

results in G401 cells. The volcano plot is overlaid with known BCL2 interactors in InWeb_InBioMap (overlap enrichment P= 0.15). e, f BCL2 versus IgG

control IP results in GPiNs. The volcano plot is overlaid with known BCL2 interactors in InWeb_InBioMap (e; overlap enrichment P= 1.0) or proteins

encoded by ALS genes (f; overlap enrichment P= 0.041). g, h TDP-43 versus IgG control IP results in GPiNs. The volcano plot is overlaid with known TDP-

43 interactors in InWeb_InBioMap (g; overlap enrichment P= 0.085) or proteins encoded by ALS genes (h; overlap enrichment P= 0.046). In plots (c–h),

the bait (BCL2 or TDP-43), interactors (log2 FC > 0 and FDR≤ 0.1), and non-interactors are shown in red, green, and gray, respectively; overlaid proteins

are marked by black border circles, and their overlap enrichment P values were calculated using one-tailed hypergeometric tests. i TDP-43 versus IgG

control IP results in GPiNs shown as volcano plot, with the bait (TDP-43) shown in red, interactors (log2 FC > 0 and FDR≤ 0.1) that are GPiN-specific (i.e.,

not interactors in G401) in green, and other detected proteins in gray. Black border circles indicate interactors in the MSigDB Reactome “processing of

capped intron-containing pre-mRNA” pathway; two GPiN-specific interactors in the pathway, FUS and HNRNPA2B1, have been linked to ALS and are

highlighted in brown. IN input, FT flow-through, IP immunoprecipitation, IgG Immunoglobulin G isotype control. Source data are provided as a Source

Data file.
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conducted in triplicate and quantitated by liquid chromatography
followed by label-free liquid chromatography-tandem mass
spectrometry (LC-MS/MS; “Methods”). Genoppi was used to:
(i) QC, analyze, and visualize all IP-MS/MS results; (ii) identify
significant interaction partners of each bait in each cell type; (iii)
compare significant interaction partners between cell types; and
(iv) integrate these data with published genetic datasets for
biological discovery and hypothesis generation (Fig. 2, Supple-
mentary Fig. 2, Supplementary Data 2 and 3, and “Methods”).

BCL2 interactomes in cancer and neuronal cells. We first
explored BCL2, which is a well-studied oncoprotein functioning
as an apoptosis suppressor in a variety of cell types;26 it was also
recently shown to be an important regulator of plasticity and
cellular resilience during neuronal development27. Intriguingly,
data from both human brain tissue and animal models of neu-
ropathological conditions suggest a role for BCL2 in cell death
regulation in the mature nervous system28 and in amyotrophic
lateral sclerosis (ALS)29,30. However, little is known about the
specific role of BCL2 in different human cell types, and insights
into its overlapping and differential interaction partners in neu-
rons compared to cancer cell lines could generate actionable
biological hypotheses of therapeutic relevance.

Across the four tested cell lines, BCL2 had a total of 177
nonredundant statistically significant interaction partners. Inter-
action partners of any bait protein will hereafter be defined as
proteins with a log2 FC > 0 and false discovery rate (FDR) ≤ 0.1 in
the experiment compared to the cell-type-matched IgG control
(“Methods”), while non-interactors are proteins that do not fulfill
either criteria. Among BCL2 interactors, only five were previously
reported in InWeb (Fig. 2b and Supplementary Data 3). However,
when comparing the BCL2 interaction partners in GPiNs versus a
cancer cell line (G401), we found both a large set of shared
interactors and interactors unique to each cell line (Fig. 2b).
Specifically, 23 out of 33 (69.7%) interactors found in GPiNs were
also interactors in G401 cells; conversely, 23 out of 108 (21.3%)
interactors found in G401 cells were also interactors in GPiNs (P
= 7.8e− 11, using a hypergeometric distribution). This indicates
that, despite little overlap with InWeb interactors and the
identification of many cell-type-specific interactors (10 in GPiNs
and 85 in G401 cells), a significant subset of new BCL2
interaction partners (n= 23) were common to two different
cellular backgrounds, and thus are likely to be true interaction
partners that have not been reported before (Supplementary
Data 3).

We next determined the correlation between replicate samples
(Fig. 2c) and visualized the differential interactions of BCL2 in
G401 cells versus GPiNs (Fig. 2d–f). Superimposing known
interaction partners from InWeb with proteins detected in our
IPs (Fig. 2d, e) shows that the majority of the interaction partners
we identified in both cell types were new (104 of 108 in G401 cells
and 33 of 33 in GPiNs; Supplementary Data 3).

To test whether the BCL2 interactome was enriched for known
cancer driver genes in G401 cells, and for genes involved in
neurological disorders in GPiNs, we integrated genetic and
proteomic data in Genoppi. We used datasets of cancer driver
genes31, genes involved in neurodevelopmental delay, autism
spectrum disorders (ASDs)32,33, or schizophrenia (SCZ)34, as well
as a curated list of genes involved in ALS35,36 (Supplementary
Data 4). The statistical analyses compare the enrichment of
disease-related proteins among the interactors of the bait protein
versus the non-interactors (“Methods”). Thus, the statistical
enrichment is always conditional on the proteome being
expressed in the tested cell line.

We found that known cancer driver genes were evenly
distributed between proteins significantly interacting with BCL2
and other proteins in the G401 immunoprecipitate (i.e., the non-
interactors; Supplementary Fig. 3a). In contrast, the BCL2
interactome in neurons was enriched for ALS-associated proteins
compared to the overall GPiN immunoprecipitate (P= 0.041,
using a hypergeometric distribution; Fig. 2f). We further show
that ALS-implicated proteins were not enriched among BCL2
interactors found in any of the three cancer cell lines
(Supplementary Fig. 3b–d), confirming that a potential connec-
tion to ALS is a feature of the neuron-specific interaction partners
of BCL2. Genoppi thus points to targeted follow-up experiments
to explore the biological implications of newly identified neuron-
specific interactors of BCL2.

TDP-43 interactomes in cancer and neuronal cells. We further
set out to investigate a well-established ALS-associated risk factor,
TDP-43. TDP-43 is a ubiquitously expressed RNA-binding pro-
tein encoded by the gene TARDBP. Rare mutations in TARDBP
have been identified as a cause of familial ALS and fronto-
temporal dementia (FTD). TDP-43 aggregation is also a common
pathological hallmark of both neurodegenerative disorders37. To
gain insights into neuronal functions of TDP-43, we analyzed the
IP-MS/MS data of TDP-43 in GPiNs (Fig. 2c) and found many of
its known InWeb interaction partners (P= 0.085, using a
hypergeometric distribution; Fig. 2g). We also integrated known
ALS-associated risk genes with the TDP-43 interactome in GPiNs
and show that the experiments in GPiNs recapitulate known
interactions between TDP-43 and VCP, MATR3, FUS, ATXN2,
HNRNPA2B1, and EWSR1 (P= 0.046, using a hypergeometric
distribution; Fig. 2h).

In the literature, it is highly debated whether the pathologies
related to TDP-43 aggregation are due to altered transcriptional
regulation or cell toxicity. Interestingly, a large portion of TDP-43
interactors in GPiNs (including two out of six ALS-associated
interactors, FUS and HNRNPA2B1) are involved in RNA
metabolism, suggesting that the role of TDP-43 in human
neurons is mostly related to transcriptional and post-
transcriptional regulation, as highlighted using Genoppi’s gene
set annotation feature (Fig. 2i). Importantly, none of the ALS-
associated interactors involved in transcriptional or post-
transcriptional regulation were identified among TDP-43 inter-
actors in any of the cancer lines (Supplementary Data 5),
suggesting that in a nonneuronal context, TDP-43 may function
through a different molecular mechanism involving a discrete set
of cell-type-specific interactors.

TDP-43 has previously been studied in human brain homo-
genates, which are an aggregate of many different cell types38, or
in HEK cells39 that are less relevant to its role in ALS or FTD.
Our Genoppi analyses illustrate that GPiNs recapitulate the
known biology of this protein and its physical interactions to a
number of known ALS-related proteins. To confirm the
interactors identified in GPiNs, we made biological replicates of
the TDP-43 IP, quality-controlled 23 interactor-specific anti-
bodies (Supplementary Data 1), and tested 23 interactors
identified by IP-MS/MS through western blots (Supplementary
Fig. 4 and Supplementary Data 6). We observed a validation rate
of 21/23 (or 91.3%) among interactors that span a wide range of
log2 FC values in our IP-MS/MS data and note that this validation
rate is concordant with the FDR cutoff of 0.1 used to separate
significant interactors from non-interactors in Genoppi. Impor-
tantly, we were able to validate both known TDP-43 interactors
reported in InWeb (validation rate of 10/11, or 90.9%; including
all five of the tested ALS-relevant proteins) and newly identified
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interactors (validation rate of 11/12, or 91.7%) with the same
degree of success. Among the newly identified interactors, we
validated eight out of nine (or 88.9%) interactors found in
multiple cell lines and three out of three (or 100%) GPiN-specific
interactors. Our validation experiments also span 19 interactors
with ≥ two values imputed prior to log2 FC calculation (see
“Methods”); 17 out of 19 (or 89.5%) could be confirmed, strongly
supporting the procedure we used to impute missing values in the
mass spectrometry data.

We further executed reciprocal IPs of five of the TDP-43
interactors validated by western blots, including three ALS-
relevant proteins (MATR3, ATXN2, and FUS) and two non-ALS
proteins (RBMX and PARP1; Supplementary Fig. 5a). We tested
for the presence of TDP-43 in these IPs and were able to detect it
in 80% of the experiments (Supplementary Note 2 and
Supplementary Fig. 5b). The reciprocal IPs further validate our
IP-MS/MS data and indicate that human iPSC-derived neurons
(GPiNs) can be used as a cell model for studying TDP-43
interactions with proteins involved in neurodegenerative diseases.
In the future, it will be of interest to test the functional
significance of the convergence of ALS risk genes in the TDP-43
pathway and dissect the role of individual interactions between
TDP-43- and ALS-related proteins in the context of transcrip-
tional regulation.

Cell-type-specific and cell-type-independent interactions. We
performed analogous IP-MS/MS experiments and Genoppi ana-
lyses of two more proteins (MDM2 and PTEN) that are also
hypothesized to have divergent functions in cancer and neuro-
development. Similar to the observations for BCL2 and TDP-43,
we observed a large set of new interaction partners that can be
replicated across multiple cell types, as well as a set of cell-type-
specific interaction partners that can inform targeted hypotheses
and follow-up experiments (Supplementary Note 3, Supplemen-
tary Fig. 2b–h, and Supplementary Data 3).

Most published protein–protein interactions to date were
derived from large-scale screens using systems that lack human
cell-type-specific information (e.g., highly proliferative cell lines
such as HEK293 cells, or yeast two-hybrid screens). This means
that high-quality interaction experiments executed in specific
human cell types can lead to the discovery of many novel
interactions. Indeed, when we combined the IP-MS/MS results of
BCL2, TDP-43, MDM2, and PTEN across four different cell lines,
we found that only 16.6% (144/870) of the interaction partners
were reported in InWeb, meaning that up to 83.4% (726/870) of
these interactions were new, offering potentially exciting insights
into the biology of these proteins. Stratified by protein, 97.2%,
65.8%, 72.0%, and 93.0% of the interaction partners were new for
BCL2, TDP-43, MDM2, and PTEN, respectively. Across cell lines,
73.4%, 80.6%, 79.7%, and 78.8% of the interaction partners
identified for the four proteins were new in GPiN, G401, T47D,
and A375 cells, respectively. We note that, while the statistics here
were calculated based on known interactions curated in InWeb,
most of the interaction partners were also new according to the
iRefIndex or BioPlex database (Supplementary Data 3).

In Fig. 2b, we show that a sizable subset (~70%) of the newly
identified interaction partners of BCL2 in GPiNs can be
replicated in G401 cells, supporting the biological validity of
these interactions even if they have not been previously reported
in the literature. Here, we extended the same analysis to all four
baits in all possible pairs of cell lines (Supplementary Fig. 6 and
Supplementary Data 3), showing that although we identified a
large set of new interaction partners for each bait, 54.7% (397/
726) of them can be reproduced in multiple cell types. In other
words, 37.8% (329/870) of the interactors are not curated in

InWeb nor recapitulated in multiple cell types. However, when
we performed western blots to validate TDP-43 interactors
identified in GPiNs, we observed comparable validation rates
between known InWeb interactors (10/11, or 90.9%), non-InWeb
interactors found in multiple cell lines (8/9, or 88.9%), and non-
InWeb interactors found only in GPiNs (3/3, or 100%;
Supplementary Note 2 and Supplementary Data 6). Overall,
these observations support the robustness of the new interaction
partners we report in this study and illustrate the remarkable
opportunity for biological discovery through cell-type-specific
proteomic experiments.

Finally, we clustered the four cell lines based on the overlap of
interaction partners for each bait between pairs of cell lines, and
observed a clear clustering of cancer cells (G401, T47D, and
A375) versus GPiNs for three out of four bait proteins (BCL2,
TDP-43, and PTEN; Supplementary Fig. 6). This indicates that, as
expected, for these proteins the cancer cell interactomes are more
similar to each other than to the neuronal interactomes. We
pooled the interaction partners of all four bait proteins in the
three cancer cell lines (cancer cell interactors, hereafter) and in
the neurons (GPiN interactors, hereafter), and tested for
enrichment of disease genes in the pooled interactors. While
the cancer cell interactors were not enriched for cancer driver
genes, GPiN interactors were nominally enriched for the ALS
genes (P= 0.040, using a hypergeometric distribution).

Together, all four tested proteins exhibited a pattern of both
unique interaction partners in each cell type and a statistically
significant set of shared interaction partners across cell types.
New interaction partners of TDP-43 in GPiNs validated in ~90%
of the cases, illustrating the reproducibility of the generated IP-
MS/MS data. Our results further suggest that the neuron-specific
interactions of BCL2 and TDP-43 link them to genes implicated
genetically in ALS and its related biology. Overall, our data
indicate that proteins have different groups of interaction
partners, some that are cell-type-specific and some that are
conserved across many cell types (i.e., cell-type-independent). In
the examples we show in this paper, the cell-type-specific
protein–protein interactions in a model of human neurons link
the tested proteins more strongly to neurodevelopmental diseases
than the interactions identified in cancer cell lines.

Discussion
Several programs are available to the community to analyze raw
MS/MS data40,41, while other tools, such as ProHits-viz42, provide
visualization capabilities to summarize protein interaction data as
well as communicate quantitative differences between a protein of
interest and its potential interaction partners. However, none of
these tools focuses specifically on creating a systematic and uni-
fied workflow for integrating cell-type-specific quantitative pro-
teomic datasets and genetic information. Genoppi is designed so
it can be easily incorporated into any functional genomics pipe-
line by allowing users to integrate datasets, download the results,
and modify the code as needed to extend the software and meet
different usability requirements.

Beyond providing Genoppi as an accessible tool, we also apply
it to analyze a large set of cell-type-specific protein interaction
experiments. Together, these datasets provide insights into the
interactome landscape of BCL2, TDP-43, MDM2, and PTEN, and
open potential avenues to explore their links to cancers and
neurological disorders based on the newly found cell-type-specific
interactions. We use the generated data to showcase Genoppi as a
resource that can be employed to combine original and published
datasets in a simple and clear format, allowing systematic ana-
lysis, visualization, and exploration of otherwise heterogeneous
proteomic and genetic datasets. Genoppi is available as both an R
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package and as a Shiny application with documentation and test
datasets to get the users started (Supplementary Note 1). We
believe that as more genetic and proteomic datasets become
available, Genoppi will become an increasingly valuable resource
for the scientific community.

Methods
Genoppi documentation. A user-friendly documentation of analytical and
visualization features implemented in the Genoppi application (v1.0.0) is provided
in Supplementary Note 1; documentation for the accompanying R package is
available on GitHub (https://github.com/lagelab/Genoppi). This section provides
additional technical details for analyses performed by Genoppi.

Moderated t test for identifying significant interaction partners. Given protein
log2 FC values from ≥ 2 replicates, Genoppi performs a one-sample moderated t
test from the limma43 R package to calculate a two-tailed P value and
Benjamini–Hochberg FDR for each protein. Limma was originally developed to
robustly identify differentially expressed genes in microarray experiments and has
since been used on a variety of data types, including proteomic results44,45. The
empirical Bayes moderated t test is used in Genoppi, as it is less sensitive to
underestimated sample variances and performs best on small sample sizes com-
pared to the classical t test44. Throughout the paper, we define significant inter-
action partners of a bait protein as proteins with log2 FC > 0 and FDR ≤ 0.1 in the
bait versus IgG IP-MS/MS data, but we note that Genoppi allows the user to adjust
these thresholds according to their needs.

SNP-to-gene mapping. To generate the precalculated data Genoppi uses for SNP-
to-gene mapping, we filtered the 1000 Genomes Project12 (phase 3) dataset to
obtain genotype data for unrelated individuals residing in Utah with Northern and
Western European ancestry and SNPs with minor allele frequency ≥ 0.05 and
missing rate ≤ 0.1. Pairwise LD between SNPs was calculated using a sliding
window of 200 kb, which is the default haplotype block estimation distance used in
PLINK46 (v1.07). Next, for each SNP, the LD genomic locus was defined as the
region covered by other SNPs that have r2 > 0.6 with the SNP, ± 50 kb on either
end. These parameters were chosen to comply with established community
standards34,47–49. Using the precalculated LD locus boundaries, Genoppi can then
identify all Ensembl50 protein-coding genes whose coordinates overlap with LD
loci given a SNP list of interest. If multiple genes are present in the locus defined by
a SNP of interest, all genes are mapped to that SNP.

To verify that SNPs are robustly mapped to genes using the mapping method in
Genoppi, we mapped 20 random SNPs to genes using both Genoppi and Disease
Association Protein-Protein Link Evaluator51 (DAPPLE; v0.18 on https://gpbroad.
boardinstitute.org), which is a standard tool for SNP-to-gene mapping. DAPPLE
uses the following definition for LD locus of a SNP: “the region containing SNPs
with r2 > 0.5… extended to the nearest recombination hotspot.” Nonetheless, in
our comparison test, 100% of genes mapped from SNPs using DAPPLE were
analogously mapped using the Genoppi algorithm, illustrating the robustness of
our approach.

Hypergeometric test for assessing overlap enrichment between datasets.
One-tailed P values are calculated using a hypergeometric distribution to assess the
enrichment of overlap between experimental proteomic results and other gene lists,
known protein interactors from InWeb7,8, iRefIndex9, or BioPlex10,11, genes
intolerant of loss-of-function (LoF) mutations derived from gnomAD16, and tissue-
specific genes derived from GTEx22,23 or HPA24. To test overlap with a gene list
(e.g., known causal genes for a disease), the “population” (N) is defined as all genes
encoding proteins identified in the experimental data and “success in population”
(k) is defined as the subset of N that pass the user-defined significance threshold
(i.e., genes encoding significant proteins). The “sample” (n) contains genes from
the gene list that are found in N and “success in sample” (x) is the overlap between
k and n. Similar definitions apply to test overlap with InWeb, iRefIndex, BioPlex,
gnomAD, GTEx, or HPA data, except in this case the “population” (N) is the
intersection of all genes in the experimental data and in the respective database,
while the “sample” (n) is the subset of N consisting of known interactors for a
chosen bait in InWeb, iRefIndex, or BioPlex, LoF-intolerant genes defined using a
gnomAD pLI score cutoff, or tissue-specific genes in GTEx or HPA (Supplemen-
tary Note 1). The hypergeometric test52 is performed to calculate the statistical
significance of having a given amount of success in a population. This procedure
tests the statistical significance of the overlap between the proteomic and external
datasets, while taking into consideration that only a subset of all proteins (and their
corresponding genes) are identified in the proteomic data, meaning that the sta-
tistical test is conditional on the proteome of the cell type being tested.

The hypergeometric test is not performed for genes derived from the SNP-to-
gene mapping feature in Genoppi. Correctly testing the overlap between these
genes and the proteomic results is a complicated statistical problem that can easily
lead to confounded results and inflated P values. Confounders include whether the
mapped gene is from a single gene or multigenic locus, the gene length, and its

tissue-specific expression pattern, to name a few. To accurately perform this
analysis requires a workflow that is dataset-specific and is beyond the scope of
Genoppi. To not mislead users, and to ensure that other statistical tests in Genoppi
can be considered reliable, we do not test the statistical significance of the overlap
between proteomic data and genes mapped from SNPs.

Cell culture
Glutamatergic patterned induced neurons. GPiNs were differentiated to day 31
from a clonally selected induced PSC line (iPS hDFn 83/22 iNgn2#9 [iPS3]) by
conditional expression of the neuralizing transcription factor NGN225. Plates were
coated with Geltrex (LifeTechnologies, A1413301) adhesion matrix (1:100 in
Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 (DMEM/F:12); Gibco)
and seeded at a density of 40,000 cells cm−2 in Stemflex media (Gibco, A3349401)
containing 1:400 Genetecin (Thermo Scientific, 10131027) as selective antibiotic
and rock inhibitor Y27632 (RI; Stemgent, 04-0012). After expansion, day 0 cells
were passaged onto plates coated with Geltrex and adhesion matrix (1:100 in
DMEM/F:12) in DMEM/F:12 media containing 1% N2 supplement (Gibco), 1%
Glutamax, 0.3% glucose, 0.2% normocin (Invitrogen), 1:10,000 doxycycline hyclate
(DOX; Sigma-Aldrich), 1:10,000 LDN-193189 (LDN; Stemgent, 04-0074), 1:5000
XAV939 (XAV; Stemgent, 04-00046), 1:1000 SB431542 (SB; Tocris, 1614), and
1:1000 RI. Day 1 cells were differentiated in DMEM/F:12 media supplemented with
1% N2 supplement, 1% Glutamax, 0.3% glucose, 0.2% normocin, 1:10,000 DOX,
1:20,000 LDN, 1:10,000 XAV, and 1:2000 SB. Day 2 media were DMEM/
F:12 supplemented with 1% N2 supplement, 1% Glutamax, 0.3% glucose, 0.2%
normocin, and 1:10,000 DOX. On day 3, cells were passaged onto plates coated
with Geltrex and adhesion matrix (1:100 in DMEM/F:12) in neurobasal media
(Gibco) supplemented with 2% B27 (50×, Gibco), 1% Glutamax, 0.3% glucose,
0.2% normocin, 0.5% Minimum Essential Medium-Eagle with non-essential amino
acid (MEM NEAA) (Gibco), 1:10,000 DOX, 1:10,000 brain-derived neurotrophic
factor (BDNF), 1:10,000 ciliary neurotrophic factor (CTNF), 1:10,000 glial cell-
derived neurotrophic factor (GDNF) (R&D Systems; 248-BD/CF, 257-NT/CF, and
212-GD/CF). On day 6, cells were fed by replacing 50% of the media with neu-
robasal media supplemented with 2% B27, 1% Glutamax, 0.3% glucose, 0.2%
normocin, 0.5% MEM NEAA, 1:10,000 DOX, 1:10,000 BDNF, 1:10,000 CTNF,
1:10,000 GDNF, 2.5 µg mL−1 laminin, and 1:10,000 floxuridine (Sigma-Aldrich).
On days 9 and 13, cells were fed by replacing 50% of the media with neurobasal
media supplemented with 2% B27, 1% Glutamax, 0.3% glucose, 0.2% normocin,
0.5% MEM NEAA, 1:10,000 DOX, 1:10,000 BDNF, 1:10,000 CTNF, 1:10,000
GDNF, and 2.5 µg mL−1 laminin. From day 13 onwards, cells were fed every
3–4 days by replacing 50% of the media with neurobasal media supplemented with
2% B27, 1% Glutamax, 0.3% glucose, 0.2% normocin, 0.5% MEM NEAA, and
1:10,000 DOX.

Cancer cell lines. We used the following cancer cell lines: A375 (ATCC CRL-1619),
a human malignant melanoma cell line exhibiting a wild-type p53 genotype; G401
(ATCC CRL-1441), a kidney rhabdoid tumor cell line with a wild-type p53 gen-
otype; and T47D (ATCC HTB-133), a human breast tumor cell line with a mutated
p53 genotype. All cell lines were plated at a density of 40,000 cells cm−2 (uncoated
plates). Cell maintenance media contained 10% fetal bovine serum and PenStrep
(1:1000). A375 cells were cultured in DMEM (Thermo Scientific) and split every
2 days (at a 1:12 ratio), G401 were cultured using McCoy’s 5A (Thermo Scientific)
media and split every 2 days (at a 1:10 ratio), and T47D cells were cultured in
RPMI no phenol red (Thermo Scientific) media and split every 3 days (at a ratio
of 1:4).

All cell lines were incubated at 37 °C, 5% CO2. To achieve detachment during
passaging, all cell lines were exposed to TrypLE (Thermo Scientific).

Protein extraction and immunoblotting. Total protein extract was obtained by
harvesting cells and either processing them immediately or snap-freezing them on
dry ice for storage at −80 °C53. In both cases, cell pellets were washed with
phosphate-buffered saline (PBS) and resuspended in 10× packed cell volume
(PCV) IP lysis buffer (Pierce), with freshly added Halt protease and phosphatase
inhibitors (Thermo Scientific). After a 20 min incubation at 4 °C, cells were col-
lected by centrifugation (16,200 × g, 20 min, 4 °C) and resuspended in 3× PCV lysis
buffer. The concentration of the samples was quantified using the Thermo BCA
protein assay, and when not used immediately, samples were stored at −80 °C.
Samples for immunoblotting were diluted in 6×SMASH buffer (50 mM Tris HCl
pH 6.8, 10% glycerol, 2% sodium dodecyl sulfate (SDS), 0.02% bromophenol blue,
1% β-mercaptoethanol), boiled for 10 min at 95 °C, separated on a NuPAGE
4–12% Bis-Tris Protein Gel (Thermo Scientific), and transferred onto a PVDF
membrane (Thermo Scientific) by wet transfer (100 V for 2 h). Membranes were
blocked by incubation for 1 h at room temperature in 10 mL Tris-buffered saline
(TBS) and 0.1% Tween (TBST) with 5% (w/v) Bio-Rad Blotting-grade Blocker.
Blots were incubated overnight at 4 °C with the primary antibody (1:1000), washed
three times for 10 min with TBST, and incubated for 45 min with the secondary
horseradish peroxidase-conjugated antibody. After washing three times for 5 min
with TBST, bands were visualized using ECL (GE Healthcare). All antibodies used
in this study are listed in Supplementary Data 1.
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Immunoprecipitations. For each individual experiment, 1–2 mg of protein extract
was incubated at 4 °C overnight in the presence of 1–2 μg of the relevant antibody.
The next day, 50 μL of Protein G beads (Pierce) were added to each sample and
incubated at 4 °C for 4 h. Flow-through was collected and beads were washed once
with 1 mL lysis buffer (Pierce) supplemented with Halt protease and phosphatase
inhibitors (Thermo Scientific), and twice with PBS. Beads were resuspended in 60
μL of PBS and 10% of the volume was employed for immunoblotting, after being
boiled in 6×SMASH buffer (50 mM Tris-HCl pH 6.8, 10% glycerol, 2% SDS, 0.02%
bromophenol blue, 1% β-mercaptoethanol) for 10 min at 95 °C. The remaining
volume was stored at −80 °C and subsequently used for MS analysis.

Sample preparation for MS. All immunoprecipitated samples (n= 48) and IgG
controls (n= 12) were in PBS buffer on beads. PBS was removed and samples were
dissolved in 50 µL TEAB (triethylammonium bicarbonate, 50 mM) buffer, followed
by trypsin (Promega) digestion for 3 h at 38 °C. Digested samples were dried to 20
and 10 µL of each sample was injected in the mass spectrometer.

Mass spectrometry. LC-MS/MS was performed on a Lumos Tribrid Orbitrap
Mass Spectrometer (Thermo Scientific) equipped with Ultimate 3000 (Thermo
Scientific) nano-high-performance liquid chromatography. Peptides were separated
onto a 150-µm inner diameter microcapillary trapping column, packed with ~2 cm
of C18 Reprosil resin (5 µm, 100 Å, Dr. Maisch GmbH, Germany), followed by
separation on a 50-cm analytical column (PharmaFluidics, Ghent, Belgium).
Separation was achieved by applying a gradient from 5 to 27% acetonitrile in 0.1%
formic acid for > 90 min at 200 nL min−1. Electrospray ionization was enabled by
applying a voltage of 2 kV using a home-made electrode junction at the end of the
microcapillary column and sprayed from metal tips (PepSep, Denmark). MS survey
scan was performed in the Orbitrap, in a range 400–1800 m/z at a resolution of 6 ×
104, followed by the selection of the 20 most intense ions (TOP20) for CID-MS2
fragmentation in the ion trap using a precursor isolation width window of 2 m/z,
automatic gain control setting of 10,000, and a maximum ion accumulation of 100
ms. Singly charged ion species were not subjected to collision-induced dissociation
fragmentation. Normalized collision energy was set to 35 V and an activation time
of 10 ms. Ions within a 10 p.p.m. m/z window around ions selected for MS2 were
excluded from further selection for fragmentation for 60 s.

Raw data were analyzed with Proteome Discoverer (v2.4; Thermo Scientific).
Assignment of MS/MS spectra was performed using the Sequest HT algorithm by
searching the data against a protein sequence database including all entries from
the Uniprot_Human2018_SPonly database54 as well as other known contaminants
such as human keratins and common laboratory contaminants. Quantitative
analysis between samples was performed by label-free quantitation (LFQ) between
different sets of samples. Sequest HT searches were performed using a 10 p.p.m.
precursor ion tolerance and requiring each peptide’s N/C termini to adhere with
trypsin protease specificity, while allowing up to two missed cleavages. CID-MS2
spectra were searched with 0.5 Da ion tolerance for fragmentation. Methionine
oxidation (+15.99492 Da) was set as variable modification. An MS2 spectra
assignment FDR of 1% was applied to both proteins and peptides using the
Percolator target-decoy database search.

Proteomic data preprocessing. Starting with protein level LFQ reports, we per-
formed the following preprocessing steps before inputting the data into Genoppi:
(1) performed log2 transformation and median normalization of protein intensity
values in each experimental sample; (2) filtered out contaminants and protein
entries supported by < 2 unique peptides; (3) imputed missing protein intensity
values in each sample (see details below); (4) calculated log2 FC for each pair of
replicate samples (e.g., bait versus IgG control). All preprocessed data and sub-
sequent analysis results (average log2 FC, P value, and FDR calculated in Genoppi)
can be found in Supplementary Data 2.

In order to derive log2 FC statistics for each protein detected in the proteomic
data, we imputed missing protein intensity values in each sample using a well-
established approach55 prior to calculating log2 FC for a pair of samples.
Specifically, to replace each missing value in a sample, we randomly sampled from
a normal distribution with a mean of μ− 1.8σ and standard deviation of 0.3σ,
where μ and σ are the mean and standard deviation of the observed intensity values
in the sample. This procedure works under the assumption that proteins with
missing values likely have low intensities below MS detection threshold, and
therefore place these proteins in the lower tail of the observed intensity
distribution. As positive control examples for this imputation strategy: some of our
bait proteins and their known InWeb interaction partners needed to be imputed as
they were not detected in the IgG controls; after imputation, they generally showed
statistically significant log2 FC values that overlaid nicely with the non-imputed
log2 FC distribution. As further support, we also successfully validated 17 out of 19
(89.5%) TDP-43 interactors with ≥ 2 imputed values prior to log2 FC calculation in
GPiNs (Supplementary Note 2).

SAINTexpress analysis. To assess the robustness of the statistical method
(moderated t test from the limma R package) implemented in Genoppi when
applied to our experimental data, we also used an alternative statistical method,

SAINTexpress56, to identify significant interaction partners of the four bait pro-
teins in the four cell lines (Supplementary Data 7). For each bait in each cell line,
we used the intensity data (from protein level LFQ reports) for the bait versus IgG
control samples as input to run SAINTexpress, excluding contaminants and pro-
tein entries supported by < 2 unique peptides to be consistent with the filtering
used for the analogous Genoppi analysis. We assessed the overlap between the
significant interactors identified by Genoppi (log2 FC > 0 and FDR ≤ 0.1) and by
SAINTexpress (BFDR ≤ 0.1; Supplementary Data 7). On average, SAINTexpress
identified more significant interactors compared to Genoppi, but ~85% of the
interactors identified by Genoppi were also identified by SAINTexpress. This
indicates that there is good agreement between the two methods when applied to
our experimental data, and that most of the significant interaction partners we
identified using Genoppi could be recapitulated using an alternative, established
method.

Lists of disease-associated genes. In order to investigate the overlap between
interactors identified in our proteomic data and disease-associated genes, we
compiled several gene lists from published genetic studies (Supplementary Data 4).
For cancer, we used a list of 260 genes identified by exome sequencing31. For
neuropsychiatric disease, we aggregated a total of 571 unique genes that have been
implicated in ASD or SCZ. This list includes ASD genes identified by exome
sequencing32 and mapped from genome-wide significant GWAS index SNPs33

using Genoppi’s SNP-to-gene mapping framework. For SCZ, we mapped genome-
wide significant GWAS regions34 to genes overlapping these regions. For ALS, we
curated a list of 53 genes based on literature review35,36.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw IP-MS/MS data generated in this study have been deposited to the
ProteomeXchange Consortium via the PRIDE57 partner repository with the dataset
identifier PXD022667; processed IP-MS/MS data are available in Supplementary Data 2.
External databases/datasets used in this study include: UniProt [https://www.uniprot.
org], InWeb_InBioMap [https://inbio-discover.intomics.com/#downloads], iRefIndex
[https://irefindex.vib.be/wiki/index.php/iRefIndex], BioPlex [https://bioplex.hms.
harvard.edu], 1000 Genomes Project [phase 3; https://www.internationalgenome.org],
Ensembl [GRCh37; https://www.ensembl.org/Homo_sapiens/Info/Index], NHGRI-EBI
GWAS catalog [https://www.ebi.ac.uk/gwas/], gnomAD [https://gnomad.broadinstitute.
org], Human Protein Atlas [https://www.proteinatlas.org], GTEx [https://gtexportal.org/
home/] tissue-specific genes from Finucane et al.22 or Jiang et al.23, HGNC [https://www.
genenames.org], GO [http://geneontology.org], MSigDB [http://www.gsea-msigdb.org/
gsea/msigdb/index.jsp], cancer genes from Lawrence et al.31, ASD genes from
Satterstrom et al.32, ASD GWAS loci from Grove et al.33, SCZ GWAS loci from PGC34,
ALS genes from Farhan et al.35 and Volk et al.36. Source data are provided with
this paper.

Code availability
Source code and documentation for the Genoppi5 (v1.0.0) R package and Shiny
application are available on GitHub [https://github.com/lagelab/Genoppi]. Custom
Python (v3.8.0) and R (v3.6.3) scripts used to pre-process the IP-MS/MS data and
generate plots shown in the figures, respectively, are available from the corresponding
authors upon request.
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