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Abstract

Background: Recently, manufactured nano/microparticles such as fullerenes (C60), carbon black

(CB) and ceramic fiber are being widely used because of their desirable properties in industrial,

medical and cosmetic fields. However, there are few data on these particles in mammalian

mutagenesis and carcinogenesis. To examine genotoxic effects by C60, CB and kaolin, an in vitro

micronuclei (MN) test was conducted with human lung cancer cell line, A549 cells. In addition,

DNA damage and mutations were analyzed by in vivo assay systems using male C57BL/6J or gpt delta

transgenic mice which were intratracheally instilled with single or multiple doses of 0.2 mg per

animal of particles.

Results: In in vitro genotoxic analysis, increased MN frequencies were observed in A549 cells

treated with C60, CB and kaolin in a dose-dependent manner. These three nano/microparticles also

induced DNA damage in the lungs of C57BL/6J mice measured by comet assay. Moreover, single

or multiple instillations of C60 and kaolin, increased either or both of gpt and Spi- mutant frequencies

in the lungs of gpt delta transgenic mice. Mutation spectra analysis showed transversions were
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predominant, and more than 60% of the base substitutions occurred at G:C base pairs in the gpt

genes. The G:C to C:G transversion was commonly increased by these particle instillations.

Conclusion: Manufactured nano/microparticles, CB, C60 and kaolin, were shown to be genotoxic

in in vitro and in vivo assay systems.

Background
Nano/microparticles are widely used because of their
desirable properties in industrial, medical and cosmetic
fields [1-6]. Accordingly, these particles can be released
into the human environment and then can be inhaled.
Most exposure to airborne nano/micromaterials occurs in
the work place. Nano/microparticles can be classified into
three groups: natural, anthropogenic and man-made (or
artificial). The natural kind, for example, is produced dur-
ing forest fires or volcanic eruptions. Anthropogenic par-
ticles are quite often a by-product of industrial activities
such as welding or polishing. Diesel exhaust products,
PM10 and PM2.5, well known as combustion nanoparti-
cles, also belong to this group. The man-made group
includes engineered nanomaterials [5].

Among these nano/mocroparticles, diesel exhaust parti-
cles have been well documented, in their general toxicity,
mutagenicity and carcinogenicity [7-10]. In addition,
asbestos, a naturally occurring nano-sized silicate mineral
fiber, has been considered to be a human carcinogen [11-
13]. Animal experiments and epidemiological studies
have already demonstrated that pulmonary fibrosis, bron-
chogenic carcinomas and malignant mesotheliomas are
closely associated with asbestos exposure. Another min-
eral fiber, titanium dioxide (TiO2) has also been subjected
to extensive research, and TiO2 has already been shown to
be carcinogenic [14]. Moreover, man-made vitreous
fibres, including glass fibres, refractory ceramic fibres, and
rock wool, have been sorted as carcinogens [15]. Kaolin/
kaolinite is a clay mineral with the chemical composition
Al2Si2O5(OH)4, and is used in ceramics, medicines, food
additives, toothpaste and cosmetics. The largest use of
kaolin is in the production of paper [3]. In 1993, W. B.
Bunn 3rd et al. reported that increased incidences of lung
tumors and mesotheliomas were observed in long-term
inhalation studies of rats and hamsters treated with
micro-sized refractory ceramic fibres containing kaolin as
the main component [16]. However, other genotoxic and
carcinogenic potentials of kaolin have not been studied in
vitro and in vivo. In addition, the mechanism of cancer
development by kaolin is still unclear.

On the other hand, carbon black (CB), fullerenes (C60)
and carbon nanotubes (CNTs) are developed as engi-
neered nanoproducts [1,2,6,17]. Despite their highly
desirable structures, their toxicity and carcinogenicity are
concerns because these engineered nanoproducts are con-

sidered to be very stable and could lead to continuous
inflammation when deposited in tissues. CNTs especially
have received much attention from the aspect of toxicity
due to their asbestos-like rod-shaped particles, and iron
content [17-19]. Recently Takagi et al. demonstrated that
multi-wall carbon nanotubes induced mesothelioma in
p53+/- mice by a single i.p. injection [20]. In contrast, C60

is a spherical molecule consisting entirely of carbon
atoms, and various derivatives have been reported
[6,21,22]. C60 has widely different properties, such as
scavenging of reactive oxygen species, direct interaction
with biomolecules and radical formation; however, clear
genotoxic and carcinogenic effects have not yet been dem-
onstrated.

The present study aims to examine the genotoxicity/clas-
togenicity of widely distributed nano/microparticles such
as C60, CB and kaolin by an in vitro micronucleus test.
Moreover, we analyzed the genotoxic effects of these parti-
cles by an in vivo comet assay and mutation assay system
using gpt delta transgenic mice. In this mouse model, point
mutations and deletions are separately analyzable by gpt

and Spi- selections, respectively [23,24]. The mutation
assay using the gpt delta mouse was validated and so far is
widely used in the field of environmental mutagenicity.

Results
Size distribution and agglomeration state in suspensions of 

nano/microparticles

Figure 1 shows representative transmission electron
microscope (TEM) images for the state of test materials

Representative TEM images of the presently used nano/microparticles within the suspensionsFigure 1
Representative TEM images of the presently used 
nano/microparticles within the suspensions. C60 (Pan-
elA), CB (Panel B) and kaolin (Panel C) were suspended in 
saline containing 0.05% Tween 80 at a concentration of 2 mg/
mL with a 10 min sonication. All images are shown at the 
original magnification of × 10,000.

A B C
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dispersed in saline containing 0.05% Tween 80. These
were commonly observed to be a mixture of well dis-
persed fine particles and agglomerates. C60 was frequently
agglomerated, but fine particles were also observed either
individually or within pear-shaped agglomerates. In con-
trast, CB was relatively well dispersed, and agglomerates
were occasionally present. In the case of kaolin, low-den-
sity tabular structures with rectangular or hexagonal shape
were characteristically observed. The size distribution of
materials used in the present study was analyzed by
dynamic light scattering (DLS). C60 demonstrated a wide
distribution with ranges of 10.5 to 12913.9 nm, and most
abundant sizes were two peaks at 234.1 ± 48.9 and 856.5
± 119.2 nm, respectively. CB particles formed a normal
distribution with ranges of 13.6 to 337.4 nm and major
peak average was at around 232.0 nm. In the case of kao-
lin, a major peak average was 357.6 ± 199.4 nm belonging
to a range of 5.1 to 4846.9 nm. Although the primary par-
ticle size of kaolin was 4.8 μm, it is likely that sonication
might lead to size reduction.

In vitro micronucleus test

To examine the genotoxicity of particles, we analyzed the
micronucleus inducing activity of C60, CB and kaolin
using human lung cancer cell line, A549. A six-hour treat-
ment of 200 μg/mL CB and kaolin caused growth inhibi-
tion of 60% in A549 cells; however, C60 did not inhibit
growth of cells at any concentrations (between 0.02 - 200
μg/mL, data not shown). As shown in Figure 2, C60 and
kaolin particles increased the number of micronucleated
cells in a dose-dependent manner. On the other hand, CB
increased the number of micronucleated cells up to 2 μg/
mL, and thereafter seemed to plateau. The background fre-
quency of micronucleated cells was 0.7% to 1.0%, and the
frequency rose to 10% and 5% at 200 μg/mL of C60 and
kaolin, respectively, and 3.3% at 2 μg/mL of CB treatment.
The increase of the frequency from that of the control cells
was statistically significant in all particle-treated cells. C60

demonstrated the most strong genotoxic/clastogenic
potencies among these three particles.

In vivo genotoxicity analyzed by alkaline comet assay

DNA damage induced by particles was evaluated using
comet assay under alkaline conditions. Figure 3 shows the
mean values of DNA tail moment in the lungs with or
without single-particle treatment at 0.2 mg/body for 3 hr.
In the case of particle exposure, DNA damage was signifi-
cantly increased as compared with the vehicle control up
to 2 - 3 fold, and its intensity was C60 > CB > kaolin. On
the other hand, we examined the genotoxicity of nano/
microparticles at a dose of 0.05 mg/animal. DNA damage
observed in the lung of mice was almost the same as those
of the vehicle control (data not shown). Moreover, we
examined the effects of different exposure times for 3 and
24 hr. While DNA damages induced by CB or kaolin were

not changed either for 3 or 24 hr, DNA damage caused by
C60 was decreased for 24 hr compared with 3 hr (data not
shown). It seems that DNA damage repair enzymes might
affect the result of comet assay.

General observations of gpt delta transgenic mice 

administrated with particles

Body weights of gpt delta mice receiving a single dose of
vehicle control reached 31.1 ± 1.8 g at 12 weeks after
instillation. Values for gpt delta mice which received a sin-
gle dose of particles at 0.2 mg/body were 30.0 ± 2.4 g for
C60, 32.6 ± 1.1 g for CB and 30.8 ± 2.3 g for kaolin, respec-
tively, at 12 weeks after instillation. The average consump-
tion of diet per day per mouse was 3.6 g, with no effects
from particle instillation. No body weight and diet con-
sumption changes were also observed with multiple doses
of particles. All mice used for the single dose study sur-
vived to the end of the study, although, in the case of mul-
tiple doses, one fullerene- and one kaolin-administrated
mouse died within two weeks after the last instillation,
probably due to respiratory disturbances.

gpt Mutations in the lungs of gpt transgenic mice with 

particle treatment

To determine the mutagenic effects of particles in the
lungs, gpt delta transgenic mice were exposed to C60, CB
and kaolin at doses of 0.2 mg/body by single intratracheal
instillation, and mutations were analyzed. Figure 3 shows
the mutant frequencies (MFs) of the lungs. The back-

Frequency of micronucleated A549 cells incubated with C60 CB or kaolinFigure 2
Frequency of micronucleated A549 cells incubated 
with C60 CB or kaolin. The values represent the mean of 
three experiments ± SD. An asterisk (*) represents that each 
frequency is significantly different (p < 0.01) from that of con-
trol cell in a Student's t-test. Concentrations in μg/cm2 are 
given in parenthesis.
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ground MF of lungs was 10.30 ± 0.53 × 10-6. MFs in the
lungs induced by C60 and kaolin were significantly
increased by 2-fold compared with vehicle-instilled ani-
mals. CB showed increasing tendency for MF in the lungs,
but not statistically significant.

Next, we examined the mutagenic effects of consecutive
exposure of particles. The gpt MFs in the lungs obtained
from mice multiply exposed (4 times) to 0.2 mg/body
each of C60, CB or kaolin are shown in Figure 4. In cases
of C60 and kaolin, MFs of the lungs were significantly
higher as compared to those of control animals, and their
values were 2 - 3 fold increased. In the case of CB expo-
sure, MFs were slightly increased but not statistically sig-
nificant.

To analyze the mutational characteristics induced by par-
ticles, we examined PCR and DNA sequencing analysis of
6-thioguanine (6-TG)-resistant mutants. More than 40
independent 6-TG resistant mutants derived from multi-
ple particle instillation (0.2 mg × 4), and 25 mutants from
vehicle instilled animals were identified. Classes of muta-
tions found in the gpt gene are listed in Table 1. Base sub-
stitutions predominated with both particle-induced and
spontaneous cases. No A:T to T:A and G:C to C:G transver-
sions were detected in vehicle control groups, indicating
that these types of mutations are rare events in the spon-
taneous mutations. Interestingly, G:C to C:G transversion

commonly increased in all three particle treatments com-
pared to the vehicle control. G:C to A:T transition also sig-
nificantly increased in CB and kaolin instillation but not
in C60. In addition, the numbers of A:T to T:A transversion
were slightly increased in the treatment with C60 and CB.
Other types of mutations, including deletions and inser-
tions, were also observed in both particle-treated and
vehicle control groups, but these were of minor signifi-
cance.

The distribution of spontaneous and particle-induced
mutations in the gpt gene is shown in Figure 5. Base sub-
stitutions were spread throughout the coding region with
a preference for some sites. However, clear mutational
hotspots for each particle could not be seen except dele-
tion mutations occurring at a run of 5 adenines (positions
8 to 12) and at position 244 for C60 treatment. The distri-
bution of base substitutions along the gpt gene did not
vary with the particle types. Twelve out of 200 particle-
induced mutations occurred at position 64, eighteen at
position 110, ten at position 115. All of the base substitu-
tions occurring at positions 110 and 115 were G to A tran-
sitions, and at position 64 were C to T transitions, which
were common among spontaneous mutants. In contrast,
four to eight mutations occurred at positions 116, 143,

DNA damage in lungs of C57BL/6J mice intratracheally instilled with particlesFigure 3
DNA damage in lungs of C57BL/6J mice intratrache-
ally instilled with particles. DNA damage was measured 
by comet assay. Male mice were treated at a dose of 0.2 mg 
per animal of particles, and mice were sacrificed 3 hr after 
particle administrations. The values represent the mean of 
five animals ± SE. An asterisk (*) denotes p < 0.01 in a Dun-
nett's test after one-way ANOVA of Tail Moment of particle-
treated vs. corresponding vehicle-control mice.
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gpt MFs in the lungs of mice singly and multiply 
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189, 320, 406 and 418 were only seen in the particle-
treated mice, therefore it is suggested that these mutations
can be considered as particle-induced mutations. Among
these, five out of six mutations at position 406 were found
in C60 instillation, and all mutation patterns were G to T
transversions. Four out of 7 and five out of 8 at positions
189 and 418 were detected in kaolin instillation, and the
majorities of the mutations were G to A and C to A, respec-
tively. Moreover, these hotspots induced by particles
occurred at G or C residues in the gpt gene without associ-
ation for specific sequences.

Spi- MFs in the lungs of gpt transgenic mice with particle 

treatment

We also measured the Spi- MFs in the lungs of gpt delta
mice instilled with multiple doses (0.2 mg × 4) of particles
(Figure 6). Spi- MFs of the vehicle control was 4.85 ± 2.04
× 10-6, in contrast, particle-administrated groups were
4.91 ± 3.03 × 10-6 for C60, 6.87 ± 4.06 × 10-6 for CB and
8.12 ± 3.32 × 10-6 for kaolin. As shown in Figure 6, Spi-

MFs in the lungs of the CB- and kaolin-treated, but not
C60-treated groups were increased, and in particular, the
values of the kaolin-treated groups were significantly ele-
vated up to 2-fold.

gpt Mutations in the kidneys of gpt transgenic mice with 

particle treatment

To determine the tissue distribution and specificity of par-
ticles with intratracheal instillation, gpt MFs of the kidney
were analyzed. gpt MFs of the vehicle control versus parti-
cle-multiple administrated groups (0.2 mg × 4) were 1.33
± 0.51 × 10-5 versus 1.67 ± 0.66 × 10-5 for C60, 1.03 ± 0.39
× 10-5 for CB and 1.32 ± 0.32 × 10-5 for kaolin. From these
observations, it is suggested that these particles did not
induce mutation in the kidneys under these conditions.

Histopathological evaluation

Histopathological analyses of lung tissues of gpt delta
mice consecutively instilled particles, C60, CB and kaolin,
at 0.2 mg/body per week for 4 weeks each are shown in
Figure 7. Test substances-phagocytized alveolar macro-
phages were diffusely found in the lungs, but not in the
vehicle group. Focal granulomatous formation accompa-
nied with or without the test substance-phagocytized
macrophages were also frequently observed in the lungs
of particle-multiply-instilled mice. Similar findings, but a
slight degree of particle accumulation and granuloma for-
mation, were also observed in lungs of mice with particle
single-instillations (data not shown). The degree of gran-
uloma formation in the lungs of multiple C60- or CB-
exposed mice appeared more severe than those in multi-
ple kaolin-exposed mice. No abnormalities were observed
in the kidneys obtained from mice multiply instilled with
particles (data not shown).

Discussion and conclusion
This study demonstrated the genotoxicity of nano/micro-
particles widely used for industrial, cosmetic and medical
fields. In in vitro genotoxic analysis, increased MN fre-
quencies were observed in A549 cells treated with C60, CB
and kaolin in a dose-dependent manner. On the other
hand, these three particles also induced DNA damage in
the lungs of C57BL/6J mice measured by comet assay. Fur-
thermore, we found that C60 and kaolin demonstrated
mutagenicity either or both of gpt and Spi- mutations in
the gpt delta transgenic mice systems. The gpt gene MFs
were significantly increased in the lungs of gpt delta mice
with C60 and kaolin, but not CB administrations. A dose-
dependent MF increase was observed in the lungs of C60,
but not kaolin treated groups. The reason is still unclear,
but suggesting that the single dose of kaolin already repre-

Table 1: Classification of gpt mutations from the lungs of control and particle multiply (0.2 mg × 4) treated micea)

Control C60 CB Kaolin

Type of mutation in gpt No. % No. % No. % No. %

Base substitutions

Transitions 10 40 35 41 18 45 37 50

A:T->G:C 2 8 11 13 2 5 5 7

G:C->A:T 8 32 24 28 16 40 32 43

Transversions 10 40 35 40 17 43 30 41

A:T->T:A 0 0 2 2 1 3 0 0

A:T->C:G 2 8 3 3 4 10 5 7

G:C->T:A 8 32 25 29 8 20 17 23

G:C->C:G 0 0 5 6 4 10 8 11

Deletions 4 16 12 14 4 10 6 8

Insertions 1 4 3 4 0 0 1 1

Others 0 0 1b) 1 1C) 3 0 0

Total 25 100 86 100 40 101 74 100

a)Independent mutations were isolated no more than once from any individual mouse.
b)Multiple mutation (Four base substitutions)
C)Tandem mutation (GG->TT)
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sented the maximum response. On the other hand, kaolin
demonstrated significantly increased Spi- MFs; however,
C60 showed similar values compared with the vehicle con-
trol of the lungs. Spi- selection detects deletions in size
more than 1 bp and 10 kb [24]; therefore, additional DNA
damages involved in deletion mutations might be
induced by kaolin. It, it is also suggested that C60 does not
prefer to induce such kinds of DNA damages under these
conditions. In contrast to the present study, Xu et al. have
reported that C60 dramatically increases large deletion
mutations in gpt delta transgenic mouse primary embryo
fibroblast cells [25]. The observed difference of muta-
tional signatures of C60 between a cell line and lung tissue
might be related to differences between in vitro and in vivo

assay systems in DNA damage formations, DNA repair or
translesion DNA synthesis.

To further elucidate the mechanisms behind the increase
in mutant frequency observed in this study, we analyzed
mutation spectra using a PCR-direct sequencing method.
Most mutations induced by three particles in the present
study, occurred at G:C base pairs (52/76, 68%). Among
these, 13 G:C base pairs were located in the G or C runs.
The most prominent hot spots were at base pairs 143, 189,
320, 406 and 418, and there were no significant differ-
ences in the distributions of mutation hot spots in the
three particles. This may reflect the distribution of DNA
damage sites caused by particles. The most prominent
mutation type induced by particles was G:C to C:G trans-
version. Since these mutations were commonly increased
regardless of the constituents of particles (i.e. C60 and CB
were graphite and kaolin was aluminum silicate), it is sug-
gested that mechanisms leading to the induction of such

Spontaneous and particle-induced mutations in the coding region of the gpt geneFigure 5
Spontaneous and particle-induced mutations in the coding region of the gpt gene. Mutations obtained from the 
control mice are shown above the wild type sequence, and mutations obtained from the particle-treated mutant clone are 
shown below the wild type sequence. The types of particles are indicated by color coding: red for C60, blue for CB and sky blue 
for kaolin. Mutation types, base substitution, and deletion and insertion are indicated by circle, triangle, and inverted triangle, 
respectively.

-1T

atgagcgaaa aatacatcgt cacctgggac atgttgcaga tccatgcacg taaactcgca agccgactga tgccttctga acaatggaaa ggcattattg
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kinds of mutations might be same. In general, the G:C to
C:G transversion is thought to be a rare event in both
spontaneous and chemically-induced mutations. How-
ever, various oxidative stresses caused by sunlight, UV
radiation, hydrogen peroxide and peroxy radicals fre-
quently induce G:C to C:G transversion in in vitro assay
systems [26-29]. Reactive oxygen species (ROS) and DNA
damage, including 8-oxo-7,8-dihydro-2'-deoxyguanosine
(8-oxo-dG), were reported to be increased by nanoparti-
cles, including asbestos, treatment [4,21,30-34]. The
mechanism of the generation of ROS by nanoparticles is
still unclear; however, these nanoparticles would be able
to trigger ROS production by iron-catalysed Fenton reac-
tions, or would be accumulated in the cells by phagocyto-
sis, then enhance the production of ROS from
macrophages and leucocytes [35,36]. In the present study,
test substance-phagocytized macrophages and granulo-
mas were frequently observed in the lungs, and the degree
of the granulomas formation was partly associated with
the mutagenic effect on gpt gene by particles. In the case of
C60, generation of ROS along with lipid peroxidation via
electron transfer between C60 and other molecules has
been reported [21]. The most typical lesion of oxidative
damage is 8-oxo-dG which can pair with dA and leads G
to T transversions [37,38] but it is not responsible for G to
C transversion since dG is not incorporated opposite 8-
oxodG [37,39]. Moreover, a variety of oxidative lesion
products of guanine other than 8-oxodG, including imi-
dazolone (Iz), oxazolone (Oz), spiroiminodihydantoin
(Sp) and guanidinohydantoin (Gh), have been reported

[39-45]. Recently, three such molecules, Oz, Sp and Gh
are thought to be the key molecules causing G to C trans-
version using the translesion synthesis systems [43-46].
Moreover, these molecules have also been detected in bac-
terial cells and rat liver [47,48]. Therefore, it is suggested
that G:C to C:G transversions induced by particles such as
C60, CB and kaolin could involve Oz, Sp and Gh forma-
tions.

In the present study, G:C to A:T transition and A:T to T:A
transversion were also increased in the particle treatment.
G to A transition has commonly been observed in sponta-
neous and chemically-induced mutants and deamination
of 5-methylcytosine or alkylation of guanine might be

MFs of deletions in the lungs of gpt delta mice exposed to multiple doses of particlesFigure 6
MFs of deletions in the lungs of gpt delta mice 
exposed to multiple doses of particles. An asterisk (*) 
denotes p < 0.05 in a Student's t-test of MFs of particle-
treated vs. the corresponding vehicle-control mice.
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Microscopic findings in lungs of gpt delta mice intratracheally instilled with particlesFigure 7
Microscopic findings in lungs of gpt delta mice intrat-
racheally instilled with particles. Normal appearance of 
pulmonary parenchyma in a vehicle-control (Panel A). Pulmo-
nary parenchyma obtained from gpt delta mice intratracheally 
instilled with four consecutive doses of 0.2 mg/mice of C60 

(Panel B), CB (Panel C) and kaolin (Panel D). Test substance-
phagocytized macrophages (arrowheads) can be observed, 
and granulomaous (arrows) formations are also found in 
lungs of particle-instilled mice. A-D; Original magnification × 
40.
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involved in these mutations. In contrast to G to A transi-
tion, A:T to T:A transversion is known as a rare mutation.
It has been reported that the most common mutations
induced by N-ethyl-N-nitrosourea in the mouse are A:T to
T:A transversions [49]. However, at present, the mecha-
nisms underlying generation of A to T transversion by par-
ticles are still unclear.

As mentioned above, we found that all three particles, C60,
CB and kaolin increased significant DNA damage in the
lungs compared to the vehicle control using the comet
assay. Comet assay under alkaline conditions is used to
detect both strand breaks and DNA altering lesions such
as an AP site [50]. Moreover, in the present study, treat-
ments with C60, CB and kaolin significantly increased the
frequency of micronucleated A549 cells in a dose-depend-
ent manner. However, these genotoxic/clastogenic poten-
cies did not necessarily correspond to the mutagenicity
observed in gpt transgenic mice.

In conclusion, we demonstrated that manufactured nano/
microparticles such as C60, CB and kaolin were shown to
be genotoxic in both in vitro and in vivo assay systems.
Moreover, it was not necessarily the case that genotoxic
potency was related to particle size (C60 and CB are nano-
sized, but kaolin is micro-sized particles used in the
present study.). From the prominent mutation spectra, it
is suggested that oxidative DNA damage might be com-
monly involved in their mutagenicity. The dose of parti-
cles used in the present study seems to be extremely high
compared with human exposure in the work place. How-
ever, it is likely that these materials would be deposited
for a long time in tissues, same as those of asbestos fiber.
Therefore, further studies of the mechanisms of genotox-
icity and application routes other than trachea are needed.
Moreover, exposure levels of these genotoxic particles in
the working environment should be determined.

Materials and methods
Materials and chemicals

CB nanoparticles with a primary particle size of 14 nm
(Printex 90) were obtained from Degussa, Dusseldorf,
Germany. The surface area was 300 m2/g (disclosed by
Degussa). The CB was autoclaved at 250°C for 2 h before
use. High purity (99.9%) C60 was purchased from Sigma-
Aldrich. (St. Louis, MO, USA). The declared primary par-
ticle size of C60 was 0.7 nm. Kaolin, white crystal, with a
primary particle size of 4.8 μm was obtained from Engel-
hard Corp., Iselin, NJ. C60, CB and kaolin particles were
suspended in saline (Otsuka Pharmaceutical Co. Ltd.,
Tokyo, Japan) containing 0.05% of Tween 80 (Nacalai
Tesque, Kyoto, Japan) by sonication for 15 - 20 min, at a
concentration of 2 mg/mL. The size distributions of the
presently used nano/microparticles in the suspensions
were measured by dynamic light scattering (DLS) using
FPAR-1000 (Otsuka electronics Co., Ltd., Osaka), and the

agglomeration state was assessed by transmission electron
microscope (TEM) (H-7000, Hitach, Ltd., Tokyo, Japan).
The size distributions were determined with the algorithm
CONTIN. For the TEM assessment, an aliquot of 5 μL was
put on the nickel glid coated by hydrophilized formbar
and assessed with an accelerating voltage of 75 kV.

Type I agarose, low melting point agarose, dimethylsul-
foxide and Triton X-100 were bought from Sigma-Aldrich.
Ethidium bromide was obtained from Merck (Darmstadt,
Germany). Other chemicals were purchased from Wako
Pure Chemical Industries (Osaka, Japan).

Micronucleus test

Human lung carcinoma A549 cells obtained from the
RIKEN Cell Bank (Wako, Japan) were cultured in Eagle's
minimum essential medium (Nissui Pharmaceutical Co.
Ltd., Tokyo, Japan) supplemented with 10% fetal bovine
serum (JRH Biosciences, Lenexa, KS, USA) in a 5% CO2

atmosphere at 37°C. The cells (7 × 105 cells/dish) were
seeded in plastic cell culture dishes (φ60 mm) one day
before treatment. Particles were suspended in physiologi-
cal saline containing 0.05% (v/v) Tween-80 with sonica-
tion (for 5-10 min at room temperature). One volume of
the suspension was mixed with 9 volumes of the culture
medium with serum (altogether 3.3 mL/dish), and then
cells were treated at indicated concentrations for 6 hr.
Since a long exposure (48 hr) increased the frequency of
micronucleated cells in the solvent control (data not
shown), we chose a 6 hr treatment. After treatment, cells
were further cultured for 42 hr. Then, cells were
trypsinized and counted, and centrifuged. Growth inhibi-
tion was calculated by following the formula:

Cells were resuspended in 0.075 M KCl, and incubated for
5 min. Cells were then fixed 4 times in methanol:glacial
acetic acid (3:1), and washed with methanol containing
1% acetic acid. Finally, cells were resuspended in metha-
nol containing 1% acetic acid. The cell solution was
dropped onto slides and the nucleus was stained by
mounting with 40 μg/mL acridine orange (Nacalai
Tesque) solution and immediately observed by fluores-
cence microscopy using blue excitation. The number of
cells with micronuclei was recorded based on observation
of 1,000 interphase cells. The data of EMS and mitomy-
cine C (MMC) for positive system controls in CHL cells
under the same experimental conditions were as follows;
Percentage of micronucleated cells were 9.8 ± 0.68 for
EMS (1 mg/mL) and 10.3 ± 1.1 for MMC (100 n/mL),
respectively.

Animals

Male C57BL/6J mice (9 weeks old) were purchased from
Charles River Japan, Inc. (Atsugi, Japan) and gpt delta
mice (9 weeks old) were obtained from Japan SLC (Shi-

Growth rate the number of treated cells the number of n= ( ) /( oon-treated cells)
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zuoka, Japan), respectively. The gpt delta mice carry
approximately 80 copies of lambda EG10 DNA on each
chromosome 17 on a C57BL/6J background [23]. Ani-
mals were provided with food (CE-2 pellet diet, CLEA
Japan, Inc., Tokyo, Japan) and tap water ad libitum and
quarantined for one week. Mice were maintained under
controlled conditions: 12-h light/dark cycle, 22 ± 2°C
room temperature, and 55 ± 10% relative humidity. The
experiments were conducted according to the "Guidelines
for Animal Experiments in the National Cancer Center" of
the Committee for Ethics of Animal Experimentation of
the National Cancer Center.

Treatment of wild type and gpt delta transgenic mice with 

particles

All particles were well sonicated and suspended in saline
containing 0.05% of Tween 80. For comet assay, 5 male
C57BL/6J mice were intratracheally instilled with particles
using a polyethylene tube under anesthesia with 4%
halothane (Takeda Chemical, Osaka, Japan). Single doses
of 0.05 or 0.2 mg per animal were employed. The control
mice (n = 5) were instilled intratracheally with 0.1 mL of
the solvent alone. The mice were sacrificed 3 hr after these
particle administrations, and lungs were removed then
used for comet assay immediately. In addition, different
exposure time (24 hr) was also examined. For histological
and mutation analysis, each group of 10 male gpt delta
mice was intratracheally instilled with particles at a single
dose of 0.2 mg per animal, and multiple doses of 0.2 mg
per animal per week for 4 consecutive instillations, as
described for comet assay. The intratracheal instillation
dose of particles between 0.05 and 1 mg/mouse has been
commonly used for the pulmonary inflammation and
genotoxicity test [51,52]. The control mice (n = 10) were
instilled intratracheally with the solvent alone. The mice
were sacrificed at 22 weeks old being 12 (for single instil-
lation) or 8 (for multiple instillations) weeks after particle
administrations, respectively. Tissues, including lungs and
kidneys, were removed. Lungs and kidneys obtained from
4 mice were used for histological evaluation and exam-
ined under a light microscope for any abnormalities. For
histopathological evaluation, organs were fixed in 10%
neutral buffered formalin, embedded in paraffin blocks
and routinely processed to H&E stained sections. The
remaining 6 mice were used for mutation analysis and the
tissues were stored at -80°C until the DNA was isolated.

Alkaline comet assay

The alkaline comet assay was performed according to the
method of Sasaki et al. [53] or Toyoizumi et al. [54] with
some modification. The lungs were taken from treated
mice and weighed, and lung tissue was minced and sus-
pended with chilled homogenizing buffer, then homoge-
nized gently using a Dounce-type homogenizer in ice.

Lung cell suspension was mixed with the same volume of
1.4% low melting point agarose in PBS. The mixture was
layered on the slide coated with 0.7% agarose layer, and
then covered with 0.7% low melting point agarose. After
slide preparation, slides were immersed in lysing solution
and refrigerated at 4°C for 1 h. Each slide was then placed
in alkaline electrophoresis buffer for 10 min to allow for
DNA unwinding. Electrophoresis was performed at 25 V,
300 mA for 15 min at 0°C. The slides were neutralized
with Tris buffer for 5 min twice, and dehydrated with 70%
ethanol to fix. The cells were stained with ethidium bro-
mide solution. Comet images were analyzed using a fluo-
rescence microscope (magnification 200×) equipped with
a CCD camera. Fifty cells were examined per mouse. The
tail moment of DNA was measured using Comet Analyzer
Youworks Bio Imaging Software.

gpt and Spi- mutation assays

High-molecular-weight genomic DNA was extracted from
the lungs and kidneys using a RecoverEase DNA Isolation
Kit (Stratagene, La Jolla, CA) according to the instruction
manual provided by the supplier. Lambda EG10 phages
were rescued using Transpack Packaging Extract (Strata-
gene).

The gpt mutagenesis assay was performed according to
previously described methods [55]. Briefly, E. coli YG6020
was infected with the phage and spread on M9 salt plates
containing Cm and 6-TG, then incubated for 72 hr at
37°C. This enabled selection of colonies harboring a plas-
mid carrying the gene for chloramphenicol acetyltrans-
ferase, as well as a mutated gpt. Isolate exhibiting the 6-
TG-resistant phenotype was cultured overnight at 37°C in
LB broth containing 25 mg/mL Cm, then harvested by
centrifugation (7,000 rpm, 10 min), and stored at -80°C.

The mutation spectrum of 6-TG cording sequence were
performed by PCR and direct sequencing. Briefly, a 739
bp DNA fragment containing gpt was amplified by PCR as
described previously [30,53]. Sequencing analysis was
done at Takara Bio Inc. (Mie, Japan).

The Spi- assay was performed as described previously [53].
The lysates of Spi- mutants were obtained by infection of
E. coli LE392 with the recovered Spi- mutants. gpt and Spi-

MFs were determined in each mouse and the means ±
standard deviations were calculated.

Statistical analysis

The data from micronucleus test and gpt and Spi- mutation
assay are expressed as mean ± standard deviations. The
data obtained from comet assay are expressed as mean ±
standard errors. The data were statistically compared with
the corresponding solvent control using the Student's t-
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test for micronucleus and gpt and Spi- mutation assay. To
test for significant differences of tail moment in the comet
assay between a group treated with materials and an
untreated group, Dunnett's test after one-way ANOVA was
used to evaluate the differences; p values lower than 0.05
were considered to indicate statistical significance.
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