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Genotype-Based Matching to Correct for Population Stratification
in Large-Scale Case-Control Genetic Association Studies
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Genome-wide association studies are helping to dissect the etiology of complex diseases. Although case-control association
tests are generally more powerful than family-based association tests, population stratification can lead to spurious disease-
marker association or mask a true association. Several methods have been proposed to match cases and controls prior to
genotyping, using family information or epidemiological data, or using genotype data for a modest number of genetic
markers. Here, we describe a genetic similarity score matching (GSM) method for efficient matched analysis of cases and
controls in a genome-wide or large-scale candidate gene association study. GSM comprises three steps: (1) calculating
similarity scores for pairs of individuals using the genotype data; (2) matching sets of cases and controls based on the
similarity scores so that matched cases and controls have similar genetic background; and (3) using conditional logistic
regression to perform association tests. Through computer simulation we show that GSM correctly controls false-positive
rates and improves power to detect true disease predisposing variants. We compare GSM to genomic control using
computer simulations, and find improved power using GSM. We suggest that initial matching of cases and controls prior to
genotyping combined with careful re-matching after genotyping is a method of choice for genome-wide association studies.
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INTRODUCTION

With the success of the International HapMap Project [The
International HapMap Consortium, 2007], a dense set of single
nucleotide polymorphisms (SNPs) throughout the human
genome is now available for genetic studies of complex
diseases, and many genome-wide association studies
are being undertaken and published [Klein et al, 2005;
Maraganore et al., 2005; Cheung et al., 2005; Sladek et al., 2007;
Scott et al., 2007; Saxena et al., 2007; Zeggini et al., 2007].

Although case-control association tests are in principle
more powerful for detecting disease variants than family-
based association tests, population stratification can lead
to spurious disease-marker association or mask true
association [Li, 1972]. In genome-wide association studies,
thousands of samples are typically used to ensure
adequate power to identify disease predisposing variants,
making it difficult to guarantee genetic homogeneity of
the sample [Freedman et al., 2004]. Ancestry information
on the sampled individuals may be unavailable to the
researchers, and even when available, may not fully
specify the underlying population genetic structure, due
to vague definitions of ancestry groups and imperfect
accuracy of self-report information.

Several methods have been proposed to adjust for the
possible confounding effects of population substructure.
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Family-based association tests, such as the transmission/
disequilibrium test [Spielman et al, 1993], assess the
transmission of alleles from parents to affected offspring.
Comparisons are made within parent-offspring trios, and
the resulting association test is immune to potential
genetic heterogeneity between families. However, collect-
ing trios can be difficult and expensive, and may simply
be impractical for late-onset diseases. For unrelated case-
control samples, approaches have been proposed to adjust
the standard x> contingency test statistics according to
a non-central x2 distribution [Devlin and Roeder, 1999;
Gorroochurn et al., 2006], to infer population structure
[Pritchard et al., 2000], or to cluster the similarity estimates
into several components [Zhang et al., 2002]. A few more
recent approaches [Price et al., 2006; Epstein et al., 2007;
Kimmel et al., 2007; Luca et al., 2008] focus specifically on
genome-wide association studies.

In this article, we propose a different approach, genetic
similarity score matching (GSM), to correct population
stratification using individual-based matching rather than
clustering. The huge amounts of data in genome-wide
association studies have the potential to provide extremely
accurate matching of individuals who share similar
ancestries. We match cases with controls based on genetic
(dis)similarity scores calculated from the genotype data
available in a genome-wide association study or a large-
scale candidate gene study and test the resulting matched
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sets for disease-marker association by conditional logistic
regression. This matching-association framework builds
on our previous work [Guan et al., 2005] and is similar to
that of Luca et al. [2008]. Luca et al. [2008] derive the
dissimilarity (distance) scores based on principal compo-
nents of the variance matrix of genotypes, while our
approach obtains the dissimilarity scores based on
identity-by-state (IBS) measures. Simulations show that
GSM results in false-positive rates at the desired nominal
level while retaining high power to detect disease-
associated markers. We find that with large-scale
association data, the calculated genetic similarity scores
differentiate subpopulations well, and that matching can
be done with high accuracy even for samples that are
mixtures of genetically similar populations. We further
demonstrate that when population stratification is present,
association tests based on GSM-matched case-control data
can have a higher power than those that rely on either the
standard trend test or the genomic-control method.

METHODS

OUTLINE
GSM includes three basic components:

(1) Genetic similarity score: We calculate genetic similarity
scores between pairs of cases and controls across all
loci. Large scores should reflect pairs with similar
genetic backgrounds.

(2) Matching: Based on the matrix of similarity scores
calculated in (1), we conduct optimal full matching
[Rosenbaum, 2002] which groups one case with one or
more controls, or one control with one or more cases to
maximize the overall similarity of matched cases and
controls.

(3) Association tests: We use conditional logistic regression
to assess the association between candidate markers
and disease status. For ease of exposition, we consider
here only single marker association tests, but other
genetic or environmental factors can be easily incor-
porated into the regression.

GENETIC SIMILARITY SCORE

We define a genetic similarity score for a pair of
individuals which measures the degree of similarity of
their genotype data. Individuals with similar genetic
backgrounds will generally have higher scores. For
simplicity, we consider M biallelic genetic markers each
with alleles “A” and “a”; the scores can easily be
generalized to multiallelic markers. We consider three
similarity scores.

The first score calculates the proportion of marker alleles
shared identical by state (IBS). If IBS, is the number of
alleles shared at marker k (Table I), then

1 &
Sis = > > IBS;, 6))
2M P

where 1 < M* <M is the number of markers that are
successfully genotyped in both individuals.

While Sigg has the virtue of simplicity, we may want to
allow different markers to make different contributions to

TABLE 1. Values of IBS; and IBSy; for calculation of
similarity scores

Genotype pair IBS; IBSk 4 IBSk,
aa aa 2 0 2
aa Aa 1 0 1
aa AA 0 0 0
Aa Aa 2 1 1
Aa AA 1 1 0
AA AA 2 2 0

measure similarity. For example, we may wish to weight
sharing a rare allele more strongly than sharing a common
allele. We define our second score as

1 &
Seq = 53 1 ; I_E{;) IBSy; - 10g(qi.), )

where g, ; is the frequency of allele i at marker k, and IBSy;
is the number of copies of allele i at marker k shared by the
pair of individuals (Table I). We can estimate g;; using our
sample or from the results of previous studies.

In a random mating population, markers are expected to
follow Hardy-Weinberg Equilibrium (HWE). When popu-
lation subdivision is present, tests of HWE tend to be
significant owing to excess homozygosity. Our third score
takes advantage of this by weighting markers based on
their one-sided (excess homozygosity) HWE test P-value
px [Wigginton et al., 2005]:

1 &
Suwe = — 577 ) IBSk - log(py). 3)

To avoid the impact of genotyping error that may lead to
strong deviation from HWE, we exclude the markers that
fail quality control; practically speaking, this might mean
using markers with HWE P-value satisfying P>10"°.

As an example, suppose three cases and three controls
are genotyped at three loci, as listed in Table II. Then the
similarity scores Sigg are as listed in Table IIL

For matching, we may use all genotyped markers, or a
selected subset. For example, we might pick the markers
with the smallest P-values in an HWE test for excess
homozygosity, excluding those that fail quality control, in
the hope that the selected markers provide maximal
information about population stratification in the sample.
Further, to avoid selecting markers which are highly
correlated, we might choose at most one marker in every
n-marker window or per linkage disequilibrium group.

In our analyses, matching relies on a transformed
dissimilarity score, defined as

max —5,']' )2 (4)

Dji = f(S;) = -
i = £(5i) max — min
where max = max;; S;j and min = min;; S;;, the maximum
and minimum similarity scores among all case-control
pairs.

MATCHING

We use the chosen (dis)similarity score to identify
optimal matches between cases and controls. The simplest
matching scheme is a 1:1 match in which each case is
matched to a unique control. This approach is widely used

Genet. Epidemiol.



510 Guan et al.

TABLE II. Example genotypes

Cases Controls
Individual Genotype Individual Genotype
1 aa, aa, AA 4 aa, aa, Aa
aa, aa, Aa 5 Aa, AA, aa
3 AA, AA, aa 6 AA, AA, aa

TABLE III. Similarity (dissimilarity) scores for individuals
in Table II

Controls
Cases 4 5 6
1 5/6 (1/36) 1/6 (25/36) 0 (1
10 2/6 (16/36) 1/6 (25/36)
3 1/6 (25/36) 5/6 (1/36) 1(0)

but has obvious drawbacks. For example, when the
numbers of cases and controls are not equal, some subjects
must be discarded, resulting in a loss of information.
Further, samples from various subpopulations often are
not equally represented among the cases and controls,
leading to forced mismatches if only 1:1 matching is
allowed

Instead, we consider an optimal matching approach that
minimizes the total dissimilarity score:

> Dy

i€ As,jeBs

s
T =
s=1
Here, As; and B, are the sets of cases and controls in a
matched set s, and S is the total number of matched sets. It
has been shown that an optimal solution to this mini-
mization problem is a full matching, in which each
matched set contains one case and one or more controls,
or one control and one or more cases, that is, a 1:m or m:1
matching [Rosenbaum, 1991]. Given n cases and # controls,
the summation can in principle contain as few as n terms
for 1:1 matching to as many as 2(n—1) terms for 1:n—1 and
n—1:1 matching. Since large sets result in larger numbers
of terms, optimization tends to favor small matched
sets. This helps mitigate any potential power loss due to
unbalanced matching, i.e., 1:m or m:1 matching with m > 1
(see section “Discussion”).
The problem of minimizing the total dissimilarity score
T is analogous to the classic minimum cost flow (MCF)
problem in computer science [Rosenbaum, 1991; Hansen,
2004; Hansen and Klopfer, 2006] (Appendix A), and can be
solved using the RELAX-IV algorithm [Bertsekas and
Tseng, 1994; Frangioni and Manca, 2006]. Given precalcu-
lated dissimilarity scores and an upper bound on m,
determining the optimal matched set takes on the order of
1’ log n operations, where 7 is the total number of subjects.
The choice of parameter m constrains the size of matched
sets and is somewhat arbitrary; we typically require m<5
when numbers of cases and controls are comparable (see
section “Discussion”). Prior to matching, we may exclude
a few individuals with maximum similarity scores that
are extremely small (this is the caliper parameter
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recommended by Hansen and Klopfer, 2006). In datasets
including ~2,000 individuals, the matching typically takes
<1min on a modern PC workstation.

To continue with the previous example, we calculate the
dissimilarity scores in Table III, and perform both 1:1
matching and optimal matching. In 1:1 matching, the best
match yields three pairs: (1, 4), (2, 5), and (3, 6). The total
dissimilarity score is 1/36+16/36+0=17/36. In contrast,
the optimal full match has two matched sets: (1, 2, 4) and
(3, 5, 6). The matched sets include 4 case-control pairs:
(1,4), (@2, 4),3,5), and (3, 6). The total dissimilarity score is
1/36+0+1/36+0=2/36. In this example, the individuals
within group (1, 2, 4) and (3, 5, 6) are similar to each other,
and less similar to the individuals in the other group. Full
matching offers an obvious matching advantage over 1:1
matching here. In the general case, full matching is
guaranteed to produce a total dissimilarity score that is
no greater than that obtained using 1:1 matching.

CONDITIONAL LOGISTIC REGRESSION

Once matching is done, a natural choice for matched-set
analysis is to use conditional logistic regression to test for
disease-marker association. We employ an additive model
for association by assigning values of 0, 1, and 2 to
genotypes AA, Aa, and aa, respectively. Other genotyping
coding schemes could be considered, corresponding for
example to dominant, recessive, or general models. The
regression can easily incorporate genotype, covariate, and
interaction effects.

In a genome-wide association scan, we apply condi-
tional logistic regression analysis to each marker sepa-
rately. The multiple testing problem can be addressed
using Bonferroni correction, permutation, or false-discov-
ery rates.

SIMULATION

We simulated case-control data influenced by genotypes
at a disease locus with alleles D and d, under six additive
disease models (Table IV). We assumed sampling from a
population that consisted of two subpopulations. We
randomly sampled 500 cases and 500 controls from this
mixed population. For each model, the relative risk (RR) of
the predisposing variant allele is set to be the same in
different populations. For models 1 and 2, the disease
prevalences K; =K, and predisposing variant allele fre-
quencies q; = gp; these models represent the scenario of no
population stratification. For models 3 and 4, K;<K;,
creating population stratification in the simulated data.
For models 5 and 6, K; <K, and §;#4,. For model 5, the
first population has lower prevalence but higher predis-
posing variant allele frequency (K; = 0.07, g = 0.55), than
the second population (K, =0.13, g, = 0.45). For model 6,
the population with higher prevalence also has higher
predisposing variant allele frequency (K, =0.13, g, = 0.55)
than the other population (K; =0.07, q; = 0.45). For each
model, we simulated 500 datasets.

We simulated autosomal SNPs using GENOME, a
coalescent-based simulator [Hudson, 1983, 1990; Donnelly
and Tavaré, 1995; Liang et al., 2007]. Assuming discrete
generations, GENOME simulates the genealogy of a
sample of sequences. As the algorithm proceeds back-
wards in time, coalescence, recombination, and migration
events are simulated. Multiple events can occur in the
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TABLE IV. Characteristics of simulated disease models:
samples drawn from two subpopulations in 1:1 ratio

Population 1 Population 2

Model K] P1 RR] K2 P2 RR2
1 0.10 0.5 1.6 0.10 0.5 1.6
2 0.10 0.2 1.6 0.10 0.2 1.6
3 0.07 0.5 1.6 0.13 0.5 1.6
4 0.07 0.2 1.6 0.13 0.2 1.6
5 0.07 0.55 1.6 0.13 0.45 1.6
6 0.07 0.45 1.6 0.13 0.55 1.6

K;, disease prevalence in population i; p; predisposing variant
allele frequency in population i; RR; relative risk of the
predisposing variant allele in population i.

same generation. We set the effective population size as
10,000, the recombination rate as 10~® per base pair, and
the mutation rate as 10~° per base pair, assuming the
infinite-site mutation model [Kimura, 1969]. We set the
rate of migration between subpopulations to 0.0025 per
individual per generation, which resulted in a distribution
of allele frequency differences similar to that observed
when comparing HapMap Han Chinese (HCB) and
Japanese (JPT) samples (www.hapmap.org). In particular,
the mean allele frequency difference between the two
simulated populations is 0.0470, compared to 0.0477
between the HCB and JPT samples. The simulated genome
scans surveyed autosomal genomes of ~2,866 Mb com-
posed of 22 chromosomes, whose lengths approximate the
actual lengths of the human autosomes (NCBI build 33,
www.ncbi.nlm.nih.gov/genome/seq/). We randomly
selected 300,000 SNPs with minor allele frequencies
>0.05, and choose a disease liability locus with the
desired allele frequencies.

To calculate the similarity scores, we used 10,000
markers with the smallest one-sided HWE P-values,
choosing no more than one marker from each 10-marker
window. We set the maximum size of matched groups (171)
to 6. We compared the type I error and power of GSM, the
trend test, genomic control, and EIGENSTRAT for each
simulated setting. Given that the simulated samples were
drawn from two subpopulations, we used the first
principal component to adjust for stratification in EIGEN-
STRAT; using additional principal components gave
similar results. The estimated type I error rates are the
proportion of simulated SNPs in which the association test
P-value is less than the nominal value 107, a significance
threshold similar to that typically used in genome-wide
scans. In this evaluation of type I error rates, we only
considered SNPs that were effectively unlinked to the
disease locus. We calculated power as the proportion of
simulated replicates where the empirical P-value is <10~°
at the disease locus using a threshold obtained by
inspection of test statistics at the null loci.

BIPOLAR DATA

We applied GSM to genome-wide association data from
the Pritzker Consortium bipolar study (unpublished data).
We selected 717 independent bipolar I European
American cases and 779 independent European American
controls from NIMH Human Genetics Initiative
(www.nimhgenetics.org); controls were carefully matched

to cases by self-reported ethnicity prior to genotyping. In
addition, we downloaded genotype data on 3,182 inde-
pendent European American controls from Illumina
iControlIDB  database (www.illumina.com/pages.ilm-
n?ID =231). All individuals were genotyped using the
[Mlumina HumanHap550 BeadChip; 505,796 autosomal
SNPs passed quality-control criteria in the Prtizker bipolar
study: (1) HWE P-values>10"% (2) genotype call rate
>95%; and (3) no more than 1 non-Mendelian inheritance
or inconsistency among 15 father-mother-offspring trios
and 30 duplicate samples. Of these, we excluded 1,632
SNPs due to allele frequency differences >0.05 between
the Ilumina and Pritzker control samples. We applied
GSM and trend tests for association on the Pritzker
samples alone and then on the combined Pritzker and
[llumina samples. In GSM, we used the 100,000 markers
that passed quality control and have the smallest P-values
from the one-sided HWE test to calculate the similarity
scores. Given the relatively large control:case ratio of
3,961/717~5.5, we set the upper limit of the group sizes
(m) to 30.

RESULTS

SIMILARITY SCORE PERFORMANCE IN
HAPMAP

We first examined the performance of our similarity
scores in the HapMap dataset. We calculated our three
similarity scores for all pairs of the 89 independent Han
Chinese (CHB) and Japanese (JPT) individuals in the
HapMap sample, using 100,000 HapMap phase I auto-
somal SNPs with MAF >0.05, selected based on one-sided
HWE test P-values of 4.3 x 107° to 0.11. In Figure 1, we
showed plots from using multidimensional scaling on the
similarity score matrices. All three scores showed good
separation between the two populations, except for one
JPT individual residing in between the two clusters in the
plots. The same individual is at a similar position in
principal component analysis (PCA) when plotting the
first two principal components. While Sgs and Sgeq
provided similar separation, Sywe provided less separa-
tion with that JPT individual much closer to the CHB
cluster instead of the JPT cluster. The relatively poorer
performance of Sywg arises because of the heavy weight-
ing of the small subset of markers with very small P-values
from the one-sided HWE test, even after we have excluded
markers with HWE P-value <107°.

Our experiences in simulations and real data (unpub-
lished results) suggest that Sgeq may perform slightly
better than Sigs in matching the samples. In the following
simulations and analyses, we report results using Sgeq as
our measure of genetic similarity. Although the P-values
from one-sided HWE test may not be the best weights for
the similarity score as in Sywg, they can still be employed
to select a subset of markers for the score computation.
In doing so we assume that markers with small HWE
P-values but still passing quality control provide more
information about population heterogeneity than ran-
domly selected markers. In the following analyses, the
matching is usually based on a subset of markers
(10,000-100,000 markers) which had the smallest P-values
from one-sided HWE test among those passing quality
control filters.

Genet. Epidemiol.
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Fig. 1. Multidimensional scaling plots using dissimilarity scores as distance measure (calculated from 100,000 SNPs) for Han Chinese

(HCB) and Japanese (JPT) HapMap samples. Red, HCB; blue, JPT.

FALSE-POSITIVE RATE AND POWER

For the six simulation models, mismatch rates are
calculated as the proportion of individuals from popula-
tion 1 matched to individuals from population 2. The
minimal degree of mismatch in the simulations (Table V)
suggests accurate matching given the similarity measures
and numbers of markers used.

In the absence of population stratification (models 1 and
2), all three methods give false-positive rates close to the
nominal value of 10™". The power of our GSM method is
typically ~2% lower than the trend test and genomic
control, assumedly due to the unnecessary grouping of
samples. When population stratification is present (models
3-6), the type I error rate of the trend test is ~30 times
greater than the nominal value, while GSM and genomic
control maintain the type I errors at or lower than the
nominal value. Using empirical type I error rates, the
power of the trend test is equal to that of genomic control,
but significantly lower than that of GSM for models 3—4.
For models 5 and 6, where population stratification is
present, the variation of disease variant frequency may
mask the association (model 5) or increase the power to
detect association (model 6). For model 5, power of the
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trend test and genomic control drop ~30% compared to
model 3, while GSM maintains the same level of power.
For model 6, although the type I error is inflated, the trend
test has adjusted power comparable to that of GSM.
EIGENSTRAT has power similar to GSM in all simulation
settings examined.

We also compared the frequency with which the disease
variant is the most strongly associated marker, or among
the most strongly associated 10, 100, and 1,000 markers, in
the trend test or GSM (Fig. 2). The results are consistent
with the observations above. In the absence of population
stratification (models 1 and 2), the trend test identifies the
disease variant slightly more frequently than GSM. When
population stratification is present, GSM picks the correct
disease variant more frequently for models 3-5. For model
6, GSM picks the correct disease variant almost as
frequently as the trend test.

BIPOLAR DATA

We first applied standard trend tests to the Pritzker
bipolar case and control samples. The estimated genomic
control variance inflation factor A of the test statistics was
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TABLE V. Average false-positive rate and power of GSM, trend test (§2), and genomic control (GC) given 500 cases and
500 controls, 300,000 SNPs with MAF >0.05, significance level =10~

Average false-positive rate ( x 107°) Power®
Setting Mismatch (%) A GSM x GC EIGEN GSM GC EIGEN
1 0 1.01 1.08 1.29 1.19 0.93 0.80 0.82 0.82
2 0 1.01 1.10 1.16 1.10 0.97 0.55 0.56 0.56
3 0.016 1.39 117 31.8 0.73 1.03 0.75 0.53 0.76
4 0.015 1.38 1.15 30.7 0.47 1.07 0.54 0.28 0.55
5 0.010 1.37 1.14 31.2 0.64 0.90 0.72 0.22 0.72
6 0.010 1.38 1.09 33.0 0.66 0.87 0.79 0.78 0.81

“The global correction parameter in genomic control (GC), averaged over simulation replicates.
PPower adjusted for the nominal false-positive rates.

K1=10,FZ=10, RRT=1T8, FRI=1T0 pl=34 pi=§ K1=_10.FE=10, RRI=TH FRI=T 6 pT=Z pi=1I

1 10 100 1000 1 10 100 1000

Ki=07 K2=.13, RR1=15, RRi=15, p1=.4,pi=§ K1= 07 Ki=13, RR1=15, RRl=1.6,pl=i, pi=.2

Percentage

1 10 100 1000 1 10 100 1000

LA B v 0 3 B v ) S A LB v BN B S S i e

i 10 100 1000 1 10 100 1000
Best Markers
| e ] I EIGENSTRAT . Chiso

Fig. 2. The frequencies of disease predisposing variant being identified among the best markers by similarity score matching method
(GSM), EIGENSTRAT, and trend test ().
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1.03, close to the expected value of 1 when there is no
population stratification [Devlin and Roeder, 1999], ar-
guing that the matching based on self-reported ethnicity
resulted in a sample with only limited population
stratification. Applying GSM reduced the estimated A
slightly to 1.02. However, when we added the Illumina
control samples to the analysis, the estimated A from
standard trend tests became 1.51, indicative of strong
population stratification between the cases and controls.
We then applied our GSM method on the combined
samples, excluding one Illumina control sample that had a
noticeably high similarity score with one Pritzker case
sample (Sigs = 0.85), consistent with a first-degree relation-
ship. Using GSM, the estimated A dropped to 1.072 when
we used Sgeq as our similarity measure and 1.088 using
Sips, suggesting that GSM using either score provided
good correction for the stratification problem. Using Sgeq,
each of the 712 cases was matched to one or more controls
(i.e., 1:m matching only): 316 cases were matched to 1
control, 207 cases to 2-5 controls, 79 cases to 6-10 controls,
and 115 cases to 10-30 controls. To check the appropriate-
ness of setting the maximum number of controls () at 30,
we repeated our analysis by changing m to 10 or 50,
resulting in estimated A values of 1.23 and 1.067,
respectively. This suggests that some controls may be
matched to dissimilar cases when we only allow up to 10
controls per case, while increasing m from 30 to 50 resulted
in little improvement on the matching. Since the combined
sample contains many more controls than cases, we
considered removing some controls with relatively high
dissimilarity by restricting the total number of controls to
be matched from 3,960 to 3,500, and the estimated A
dropped slightly to 1.065. We also repeated the matching
using 50,000 markers instead of 100,000, and in this setting
the estimated A increased slightly to 1.086, as expected

As a comparison, we also applied EIGENSTRAT and
another principal component-based method (Luca et al.
[2008], GEM) to the bipolar data, using 10 principal
components. Without removing any potential outliers,
EIGENSTRAT gave an estimated A of 1.074, comparable to
our results. GEM removed 132 samples as outliers and
gave a slightly better estimated A of 1.063. When we
applied our method to the same set of samples used
in GEM, we obtained an estimate A of 1.065. Although
the removal of these samples decreased the inflation of
type I error rates, its impact on power requires further
investigation.

DISCUSSION

Population stratification, which can result in high false-
positive rates and mask true associations, poses a potential
problem for case-control association studies. In this article,
we propose GSM, a practical approach to correct for
population stratification for large-scale association studies
that uses information at thousands of genotyped genetic
markers to group case and control subjects according to
their similarity. Simulation studies show that GSM can
control the false-positive rates in the presence of popula-
tion substructure, while maintaining power to detect
disease loci.

GSM is computationally efficient. The computational
time for similarity score calculation is linear in the number
of markers used and in the number of all case-control
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pairs, and the time for matching is approximately cubic in
the number of individuals.

We have compared the performance of GSM to the
commonly used genomic control method [Devlin and
Roeder, 1999]. Genomic control assumes that a scaled test
statistic (dividing the standard test statistic by a global
correction factor %) has an approximate central x>
distribution. When stratification is modest, the genomic
control procedure is able to control the false-positive rate
at the nominal level through X, but does not change the
relative order of the test statistics along the genome. As
shown in our simulations (model 3-5), when stratification
masks the association, genomic control can be quite
conservative. Another popular approach to correct
for population stratification is structured association
[Pritchard et al., 2000] which infers population structure
using a set of independent makers. We did not evaluate
this method in our simulations due to its computational
intensity. Structured association also requires an assump-
tion about the number of underlying subpopulations in the
sample. EIGENSTRAT [Price et al., 2006] is an approach
for genome-wide association studies based on PCA. It has
been shown that the K-1 principal components can be
related to the solution to the K-way clustering solution
[Ding and He, 2004]. EIGENSTRAT is less sensitive to the
number of components than structured association (if the
number is sufficiently large) because of orthogonality of
the axes of variation, but the interpretation of the axes is
less intuitive.

Our new GSM method tackles the stratification problem
by matching at the individual level, without assuming an
explicit population structure. Effectively, it treats every
sample as a single population and compares it to the most
similar counterparts. For samples from clearly distin-
guished subpopulations, such as the HapMap HCB and
JPT populations or the two subpopulations in our
simulations, GSM performs almost as well as cluster-
based matching or EIGENSTRAT, with little loss of power.
In real GWA studies, where sampled individuals may
often derive from continuous mixtures of ancestral
populations, the individual-based matching in GSM
should be more flexible than cluster-based matching. Luca
et al. [2008] (GEM) also applied full matching to correct for
population stratification, but used a different score
calculated from the top eigenvectors from PCA. They
showed that outliers may greatly inflate type I errors of
association tests using EIGENSTRAT and need to be
carefully removed beforehand. The similarity scores in
GSM can be used like the GEM scores to identify outliers,
but are more intuitive in measuring genetic similarity,
compared to the abstract measures from eigenvectors used
in GEM. In addition, PCA analysis is very sensitive to the
independence of samples, while GSM can actually help to
identify related samples through IBS scores. In our
Pritzker study example, we found one pair of individuals
with large similarity score of 0.85 (Sigs), which strongly
suggested a potential first-degree relative. Although the
two samples showed strong correlation in their PC scores,
they were not identified as outliers by EIGENSTRAT or
GEM because their scores did not show strong deviation
from the center of the score distributions in the top 10 PCs.

The success of our GSM procedure depends on the
accuracy of matching. Incorrectly grouping individuals
from different populations could inflate the type I error
rate, decrease the power to detect the susceptibility genes,
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or both. To ensure correct matching, a well-defined
similarity measure and a substantial number of markers
in which to compute this measure are both important. Our
simulations analysis and practical experience, show that
similarity measures derived from the distribution of IBS
between pairs of individuals, which are simple to calculate
and do not require much computing power, provide an
effective means of matching individuals. Furthermore, we
found that weighting IBS estimates by a function of the
marker allele frequencies (Sgeq) improved the accuracy of
matching. Other score metrics also exist and can be easily
incorporated into our approach to substitute the IBS-based
scores presented. As an experiment, we considered
similarity scores based on pairwise IBD estimates calcu-
lated using an E-M algorithm, and the average mismatch
rates using IBD-based scores were slightly higher than
those for IBS-based scores. A weakness of IBD based scores
is that they are truncated at zero: when many pairs of
individuals are assigned IBD ~0, it becomes difficult to
select optimal pairings. Figure 3 demonstrates the relation-
ship between the IBD scores and IBS scores (Sgeq)
computed on the HapMap HCB and JPT samples.

The number of markers used in score calculation is
another factor that affects the matching. We prefer to
calculate the scores based on a large set of markers
(typically including 10,000-100,000 SNPs). However, using
too many markers increases the computational load while
not necessarily improving the accuracy of matching. In our
simulations, 10,000 markers with the smallest P-values
from one-sided HWE test can correctly match the
individuals from closely related populations such as Han
Chinese and Japanese, with zero or almost zero mismatch
(Table V). In this example, using 30,000 markers worked as
well as using 10,000 markers, while using only 1,000
markers led to incorrect grouping of individuals from
different populations with up to ~10% mispaired indivi-
duals. For samples with subtle differences in genetic
ancestry, such as the European American samples in the
bipolar data, more markers (50,000-100,000, passing
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Fig. 3. Similarity scores (calculated from 888,071 SNPs) between
each pair of Han Chinese (HCB) and HCB-Japanese (JPT) in
HapMap. Red, HCB-HCB pair; blue, HCB-JPT pair.

quality control) may help to obtain better matching.
Inspecting the genomic control parameter A on its
closeness to the expected value of 1 from different analysis
strategies can help to determine the appropriate number of
markers for controlling stratification. To select the subset
of markers, we usually prefer those with smaller P-values
from one-sided HWE tests, because they tend to be more
informative about population structure. However, we need
to be cautious regarding data quality, since markers with
high error rates may show strong deviation from HWE
and then give incorrect information about the genetic
background of sampled individuals. A reasonable com-
promise is to exclude SNPs with extreme deviations from
HWE (say, P<107°) but focus on those with mild
deviations (say, 1072<P<10"°) to evaluate stratification.
GSM does not require that all markers should be
independent of disease status, since in a typical genome-
wide setting the vast majority of markers will meet this
criterion and the impact of disease-associated markers on
the similarity scores is negligible and can be ignored.
Furthermore, since our similarity scores are a function of
the mean (weighted) IBS values across a large number of
markers, it is also not critical that the assessed SNPs
should be independent of each other.

We chose not to include X-linked markers in our
matching scheme to avoid any possible biases due to
differences by gender. Given genome-wide association
data, the autosomal markers provide ample information
for accurate matching,.

When there is no population stratification, our simula-
tions showed a small loss of power in GSM due to
unnecessary matching. Studies have shown that when the
population is indeed homogeneous, random matching by
pairs (1:1) can do almost as well as the unmatched test
[Chase, 1968]. Additional power may be lost when the
matching is not balanced, so that multiple controls are
compared to a single case subject or multiple cases are
compared to a single control (i.e., 1:m or m:1 when m>1).
However, when stratification is present, larger values of m
are preferred to decrease the chance of matching errors. It
is then a trade-off of efficiency and bias that we need to
consider in practice. In our GSM method, the objective
function (T) we choose for optimal matching favors
smaller groups, minimizing loss of efficiency. Although
the original optimal matching [Rosenbaum, 1991] is
unconstrained (m = o) so that all controls are allowed to
be matched to a single case or all cases to a single control,
Hansen [2004] showed that the matching with restriction
on m can reduce the variance of estimated parameters with
little increase in bias, and suggested a linear search for
good values of m that are as close to 1 as possible. In our
simulations, a large proportion of the matched sets are 1:1
matches even when the proportions of the two populations
in cases and controls are not equal, and the average size of
matched sets does not vary much for different values of
the upper bound of m. For example, for simulated setting
3, the average matched set size is 2.44 and 2.47 when the
upper limits of m are set as 2 and 5, respectively.

Although the full matching scheme is flexible, cases (or
controls) from a population without a corresponding
partner among the controls (or cases) will decrease power
and may lead to spurious association if matching is forced.
Further, 1:1 matching is more efficient than m:1 for m>1.
Therefore, we still strongly encourage careful sample
selection during the study design. Skol et al. [2005]

Genet. Epidemiol.
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showed that the self-reported ethnicity can be a good
predictor for population structure, consistent with our
results based on the NIMH case and control samples alone.

In summary, we propose a new framework to match
case and control samples by their genetic similarity and
adjust for the underlying population substructure. Our
GSM method is specifically designed to use the full
information provided by the large number of genotypes in
genome-wide association studies or large-scale candidate
gene studies. Our method can correctly control the false
positives, while maintaining considerable power to detect
the disease-marker association. Our individual-based
matching scheme can reflect the continuous mixing of
ancestral populations. By comparing each case to one or
more controls sharing the most genetic backgrounds, we
hope our method may increase the chance to identify the
genetic variants that influence disease risk. Our GSM
software is available freely with C++ source code at
http:/ /www.sph.umich.edu/csg/liang/gsm/. The pack-
age allows the users to automatically calculate matching
score matrices, conduct full matching with a range of
parameter choices, and carry out association analyses. We
expect our method will aid analyses of large-scale genome-
wide association studies.
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APPENDIX A

In a minimum cost flow (MCF) problem, we define a
directed graph consisting of nodes, i€ ./", and arcs
connecting the nodes, (i,j) € .«/. For each arc (ij), an
integer a;; denotes the cost and a positive integer c;; the
capacity. For each node i, an integer s; denotes the
exogenous supply. A solution of the MCF problem is a
set of arc flows x;; that minimizes

> iy
(et

subject to the constraints on capacity:

Cages Controls

Overflow

Fig. 4. Solve optimal full matching problem as a minimum cost
flow (MCF) problem. U denotes the maximal number of controls
each case can match, Uc the maximal number of cases each
control can match, nc the number of controls to match, and # the
total number of cases and controls.

Xij — E Xji = Si forallie /7 0< Xij < Cij

{jlGfess} {j1G.Des}

for all (1,) € .

It is easy to see the equivalence between the MCF and the
optimal matching (Fig. 4). The nodes in a directed graph
correspond to the cases and controls, a;; is the dissimilarity
measure between i and j, and the capacity of the flow, cij, is
1 between case and control nodes, and 0 between two
cases or two controls. The optimal solution of the MCF
problem is equivalent to an optimal matching. The nodes
connected by arcs with non-zero flow are assigned to the
same matched set.

In full matching, the numbers of case-control pairs vary
across matched sets, so the supply of nodes (s;) cannot be
predetermined. To deal with this complication, we include
an “overflow” node to the graph to balance the flows from
or to the case or control nodes. Parameters U and U,
control the maximum flows going to “overflow” from each
node, which correspond to the maximum number of cases
or controls allowed in each matched set, i.e., the upper
limit of m in 1:m or m:1 match. For each case node, there
are m connected control nodes and U-m arcs connecting it
to “overflow”; for each control node, there are m
connected case nodes and m arcs connecting to “over-
flow.” The cost for arcs entering “overflow” is set as 0, so
these extra arcs do not affect the total cost. Similarly,
another node, “sink,” may also be added to control the
total number of controls to be matched, and the cost for
arcs entering “sink” is also 0 (Hansen and Klopfer, 2006).

The translation is demonstrated in Figure 4. The MCF
problem is then solved by iteratively updating a dual cost
vector and the flow vector x (Bertsekas and Tseng, 1994;
Frangioni and Manca, 2006).
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