African Crop Science Journal, Vol. 20, No. 2, pp. 107 - 115 Printed in Uganda. All rights reserved

GENOTYPE BY ENVIRONMENT INTERACTION OF ADVANCED GENERATION SOYBEAN LINES FOR GRAIN YIELD IN UGANDA

P. TUKAMUHABWA, M. ASIIMWE, M. NABASIRYE, P. KABAYI¹ and M. MAPHOSA Makerere University, Department of Agricultural Production, P. O. Box 7062, Kampala, Uganda ¹National Crops Resources Research Institute (NaCRRI), P. O. Box 7084, Kampala, Uganda **Corresponding author's email address:** mmaphosa@agric.mak.ac.ug

(Received 16 December, 2011; accepted 11 June, 2012)

ABSTRACT

Grain soybean (*Glycine max* L.) is the primary source of vegetable protein for food and feed supplements, and accounts for much of the world's oil supply. In most parts of Africa, soybean production potential is yet to be realised largely due to lack of improved varieties. Uganda's soybean breeding programme has been actively involved in developing varieties to meet the needs of farmers in different parts of the country. This study was, conducted to determine the adaptation of new advanced generation soybean lines to identify high yielding stable lines, the most ideal testing environment and to determine the presence of soybean production mega environments in the country. Twenty one advanced generation soybean lines and three standard check varieties were evaluated in five sites and three consecutive rainy seasons. Results of AMMI analysis indicated the presence of a scale genotype-by-environment interaction for soybean grain yield. Through AMMI estimates and GGE visual assessment, BSPS48A was the highest yielding genotype in the most discriminating and stable environment, Nakabango. BSPS48A was, therefore, recommended for release subject to evaluation for commercial value. From the environmental focusing plot, the five multi-locations tested were grouped into two putative mega environments for soybean production.

Key Words: AMMI, genotype, GGE, Glycine max

RÉSUMÉ

Le grain de soja (*Glycine max* L.) est une importante source de protéine végétale comme supplément alimentaire, l'alimentation du bétail et produit une grande partie d'huile fournie au monde. Dans plusieurs contrées d'Afrique, la production potentielle du soja est pourtant affectée par le manque des variétés améliorées. Le programme ugandais d'amélioration du soja a été activement impliqué dans le développement des variétés afin de répondre aux besoins des fermiers de différentes parties du pays. Cette étude était conduite dans le but de déterminer l'adaptation des nouvelles lignées de générations avancées du soja pour identifier des lignées stables à haut rendement, l'environnement le plus idéal pour ce test et, déterminer la présence des méga environnement dans le pays. Vingt et une lignées de générations avancées de soja et trois variétés témoins étaient évaluées dans cinq sites en trois saisons consécutives de pluie. Les résultats d'analyse AMMI ont indiqué la présence d'une échelle d'interaction génotype-environnement pour le rendement en grain du soja. A travers AMMI estimé et l'évaluation visuelle de GGE, BSPS48A était le génotype à rendement le plus élevé dans laplupart d'environnement jugés stables, Nakabango. BSPS48A était, de ce fait récommendé pour une évaluation de la valeur commercial. Basé sur les différents environnements, les cinq multi-localisations testées étaient groupées en deux méga environnements reconnus pour la production du soja.

Mots Clés: AMMI, génotype, GGE, Glycine max

INTRODUCTION

Soybean (*Glycine max* L.) production constitutes 6% of all arable land in the world and has the highest percentage increase in area under production among crops annually. The global demand for the crop is expected to increase due to the crop's potential to improve the dietary quality of the vast majority of people and livestock (Hartman *et al.*, 2011).

In Uganda soybean is increasingly an important food and cash crop. Consequently, the national soybean breeding programme has been actively involved in developing varieties to meet the needs of farmers in the diverse environments of the country. However, Uganda's climate is highly variable with mean annual rainfall of 510-2160 mm, varied soil productivity and land use influenced by soil depth, texture, acidity and organic matter (Wortman and Eledu, 1999). Therefore, widely adapted soybean varieties with dynamic yield stability are necessary to sustain soybean production country wide.

The differential response of genotypes across environments (GE) tends to limit response to selection and subsequently progress in plant breeding programme (Cross et al., 1999). Development of improved varieties of soybean, using exotic breeding materials from different maturity groups, causes a change in photoperiodic response and general adaptation of the progenies. Therefore, to determine the pattern of genotype response to environment and prioritise genotypes for use in a breeding programme, quantification of genotype by environment interactions is necessary (Gauch, 2006). This is important especially when dealing with advanced generation soybean lines not tested for adaptation to the main soybean producing areas of the country. In addition, the pattern of genotype response allows partitioning of test sites into mega environments and ideal environments based on their discriminating ability (Yan et al., 2007). This is crucial in plant breeding in order to rationalise resources and confine genotype testing to sites with informative data facilitating a rapid response to selection.

This multi-environment trial (MET) used Additive Main effects and Multiplicative Interactions (AMMI) and Genotype main effects plus genotype-by-environment interaction (GGE) to (i) determine the adaptability and stability of advanced generation soybean breeding lines in different environments of Uganda, (ii) identify the most ideal test environment capable of discriminating yield differences between the genotypes and (iii) determine the presence of soybean production mega environments in Uganda.

MATERIALS AND METHODS

The experiment was conducted at five different sites across Uganda; namely, Namulonge and Nakabango, located in the Lake Victoria Crescent; while Bulindi in the Western Grasslands, Ngeta in the north western savannah grasslands and Iki-iki in the Kyoga plains. These areas represent high and low potential environments, with different edaphic and environmental conditions. A more detailed biophysical description of the variation explored in the test environments is provided in Table 1.

The study was conducted for three consecutive seasons in 2008B, 2009A and 2009B (A and B refer to first and second season, respectively). The first rainy season stretches from mid-February to May, while the second season is from mid-July to November. Locations were selected based on the national agro-ecological zones (NARO, 2001) and level of soybean production.

The grain yield of 21 advanced breeding soybean genotypes developed by the breeding programme and three check varieties, Duiker, Maksoy 1N and Nam1 with similar growth cycles (maturity period 95-105 days) were evaluated (Table 2). Each entry was planted in three 4-m rows, with spacing of 60 cm between rows and 5 cm between plants. A randomised complete block design, with three replications was used for all the genotypes across locations and seasons. Standard agronomic practices were done in accordance with the requirements of soybean in Uganda (Tukamuhabwa, 2006).

After harvest maturity (R8 stage), data on yield of each genotype were standardised to 12% moisture content, using a Steinlite moisture meter (Model 400G) and converted into kilogrammes per hectare. Analysis of variance for yield was

TABLE 1.	Description of the five selected experimental sites used to evaluate grain yield during season 2008A.	, 2008B and 2009A
in Uganda		

Site	Coordinates	Altitude(masl)	Mean annual temperature (°C)	Mean annual rainfall (mm)	Soil type
Namulonge	00º32'N 32º53'E	1155	12.5	700-2100	Sandy clay loam
Nakabango	00º31'N 33º12'E	1178	12.5	700-2100	Crystalline basic
lki-iki	01º06'N 34º00'E	1156	15.0	700-1700	Sandy
Ngeta	02º17'N 32º56'E	1085	15.0	700-1700	Sandy loam
Bulindi	01º28'N 31º28'E	1230	10.0	500-1700	Sandy loam

Source: NARO (2001); masl = metres above sea level

combined across locations. AMMI and GGE biplots were constructed using GenStat 13th Edition (Payne *et al.*, 2010). AMMI analysis was based on the model by Gauch (1988) and GGE was based on the model for two Principal Components according to Yan and Kang (2003).

RESULTS AND DISCUSSION

Across environments, the highest seed yielding genotype was G5 (BSPS48A) with an average of 1409 kg ha⁻¹; whereas a commercial variety G21 (Nam 1) was the least yielder with a mean of 1044kg ha⁻¹. Genotype G5 was also the highest yielder (2204 kg ha⁻¹) in the highest yielding (Nakabango) and lowest yielding (Ngeta) environments, with 656 kg ha⁻¹ (Table 2). The lowest yield was recorded from the commercial variety G20 (Maksoy 1N) with 383 kg ha⁻¹ in the lowest yielding environment (Ngeta). AMMI analysis also showed highly significant GE (P<0.05), indicating great diversity among the genotypes with a scale GE interaction. The presence of a scale GE interaction among the soybean genotypes signifies the need to breed for general as opposed to specific adaption for soybean grain yield (Matus-Cadiz et al., 2003) in Uganda.

The AMMI bi-plot showed that the tested 15 environments (3 seasons x 5 locations) were scattered without any definite grouping, with most of the genotypes clustered around the midpoint. This suggests that most of the genotypes responded to environmental index in a similar manner (Fig. 1). This could be attributed to a narrow genetic base of the test soybean lines, whose progenies shared common parentage as shown in the pedigree codes of BSPS and DxT (Table 2). Three genotypes, G7 (Duiker), G23 (NAMIIXG CBLP20.2) and G21 (Nam 1) were the most interactive, having high eigen vector scores (Table 2). Genotypes along the same horizontal (IPCA1) had the same interaction across environments. Genotypes and location combination along the same perpendicular axis had the same mean yield.

In all the environments assessed, genotype G5 was the highest seed yielder, having a relatively low interaction value. The potential of each of the test environments across seasons showed consistency in the performance of high and low yielding locations (Fig. 1). This is important evidence in breeding that the pattern of variation explored was consistent over seasons. Genotype G21 was highly interactive and had the lowest yield. Genotypes G24 (NGDT8.10-10), G8 (DXTBLP (SRB) 12.4) and G16 (DXTPYT06A8.11) had high static stability due to low levels of GE (Table 1). Genotype G5 (BSPS 48A) was, however, outstanding in terms of adaptation and relative stability in all the environments. The dynamic stability exhibited by the genotype is a desirable trait as it performs well irrespective of the site and prevailing environmental conditions.

GGE bi-plot analysis gave good visual assessment of GE with PCA1 and PCA2 explaining 73.87% of total GE sum of squares. The environmental vector bi-plot identified Nakabango and Bulindi as highly discriminating for the genotypes tested, as evidenced by the large environment vectors (Fig. 2). A long environment vector represents good discriminating ability for a given environment.

endypecude Pedigret Application Experimental sites Accomponential PCA1 PCA2 Initial Binitial Bunitial Manutorya Manutorya Manutorya PCA1 PCA1 PCA1 Initial Binitial Manutorya Manutorya Manutorya Manutorya PCA1 PCA1 PCA1 Initial BisPstatia 90 110 Manutorya Manutorya <th>ABLE 2. Grain</th> <th>yield (kg ha^{.1}) of 24 soybean g</th> <th>jenotypes in fi</th> <th>ve environments</th> <th>s (sites) in Uganda</th> <th>and the first two Pr</th> <th>incipal Compo</th> <th>nents derived from AMN</th> <th>VII analysis</th> <th></th> <th>110</th>	ABLE 2. Grain	yield (kg ha ^{.1}) of 24 soybean g	jenotypes in fi	ve environments	s (sites) in Uganda	and the first two Pr	incipal Compo	nents derived from AMN	VII analysis		110
M-H Buildi Maklango Nanuonge Ngat 1 85P5178 20 106 1951 161 43 1137 65127 24724 2 85P534 20 108 1951 112 65127 24724 3 85P534 200 178 1232 40 113 65127 24724 3 85P534 100 174 220 1472 152 2706 92594 5 85P536 104 123 166 1472 552 1476 92596 3466 1 85P535 104 178 123 455 1476 9256 54677 37605 5476 1 85P535 104 177 123 457 1466 147 147 1576 54577 37665 1 001KER 124 123 446 147 123 5466 54666 1 0101KER 124 </th <th>enotype code</th> <th>Pedigree</th> <th></th> <th>ш</th> <th>xperimental sites</th> <th></th> <th></th> <th>Genotype mean</th> <th>PCA1</th> <th>PCA2</th> <th></th>	enotype code	Pedigree		ш	xperimental sites			Genotype mean	PCA1	PCA2	
11 BSP51B 20 120 161 131 651271 2.4724 22 BSP534 99 1196 161 1320 40 1171 651271 2.4724 23 BSP542 28 1412 173 65 32502 2.38470 35 BSP543 900 1714 2204 1472 66 3.466 3.4730 3.2526 6 BSP543 1000 1714 2204 1472 666 100 1234 3.2526 3.3466 8 BSP543 1000 1714 2204 1472 666 1409 1236 3.4736 3.466 101 DUKER 133 136 517 124 3.3556 517 1.405 3.466 11 DUKER 133 136 137 136 4.3 1.406 1.324 3.3556 517 1.406 1.324 3.556 2.1406 3.5756 3.4663 3.6663			lki-lki	Bulindi	Nakabango	Namulonge	Ngeta				
2 BSP534 99 116 161 1320 400 1101 13740 92254 3 BSP542 8.0 142 173 123 33502 23470 3 BSP543 100 174 220 147 123 35202 23470 5 BSP543 100 174 220 147 123 35202 23470 6 BSP543 100 174 220 147 122 39566 34666 6 DNTBLPCRBN124 92 149 132 132 132 147 132 100 1223 34666 11 DNTPROCENER13 92 149 132 132 146 437 5506 3405 11 DNTPROCENER517 92 148 133 146 47 124 3533 21416 11 DNTPROCENER517 92 143 132 146 47 124 3666 <td< td=""><td>11</td><td>BSPS17B</td><td>920</td><td>1208</td><td>1954</td><td>1161</td><td>443</td><td>1137</td><td>-6.51297</td><td>2.47224</td><td></td></td<>	11	BSPS17B	920	1208	1954	1161	443	1137	-6.51297	2.47224	
3 BSPS42 8.0 1412 172 1239 35.2202 2.39470 6 BSPS43 000 174 2.00 102 2.3470 2.39470 6 BSPS43 000 174 2.00 102 2.3476 2.39470 6 BSPS43 100 174 2.00 1328 5.32 2.39470 3.55206 7 BSPS43 1074 1200 174 2.00 10530 0.02566 7 BSPS43 1074 120 1915 1326 5.3 4.966 0.0966 7 DUIKER 1136 1479 1902 1336 4.87 1110 149569 5.0662 11 DXTPROGENESA1.1 92 1221 1326 3.4666 5.9336 5.0662 11 DXTPROGENESA1.4 92 123 1467 144 1191 2.39316 3.4666 11 DXTPROGENESA1.1 82 123 147 92	12	BSPS34	686	1186	1611	1320	400	1101	1.37406	-9.22584	
41 BSPS43 90 1289 1600 1714 2200 647837 55 BSPS48 1000 1714 2201 1479 102200 847837 65 BSPS48 1000 1714 2201 1479 102200 84783 7 DUIKER 1136 1479 1355 53 22 224 33556 34666 8 DVTBIPSRB124 958 1479 1375 557 1246 02523 14165 11 DXTPROCEINES47 136 1375 517 1246 03534 55062 11 DXTPROCEINES47 136 1477 1375 1466 437 1246 03934 11 DXTPROCEINES47 133 146 417 1191 23951 54506 11 DXTPROCEINES47 133 146 571 1228 659471 36593 11 DXTPROCEINES47 133 1416 571 1278 6594	33	BSPS42	826	1412	1726	1258	399	1124	3.53202	2.39470	
5 BSPS48A 100 1714 204 1472 656 1409 -103200 1032286 7 DUKER 104 12/0 138 132 52 12/3 34666 8 DXTBLP(SRB)12.4 93 1479 1323 43 101 13255 56.062 9 DXTBLP(SRB)4.21 942 138 1323 43 110 13355 56.062 9 DXTBLP(SRB)4.21 942 1373 43 170 13355 56.062 571 1246 39354 56.062 111 DXTPROGENIES.47 108 176 1375 1449 571 1246 395354 56.052 111 DXTPROGENIES.47 108 173 1440 571 1246 36.5276 36.5276 113 DXTPROGENIES.47 108 173 1449 571 1286 56.9373 36.7169 113 DXTPROGENIES.47 108 173 1449 571<	34	BSPS43	066	1289	1826	1602	416	1224	-2.20269	-8.47837	
6 BSPS85 10/4 12/0 1915 1328 5.22 12/4 3.93516 3.49656 3 DUIKER 1136 1479 1902 1326 517 12.46 3.93516 3.49656 3 DUIKER 1136 1479 1902 1376 517 12.46 3.93516 3.49656 310 DXTPROGENIES11.3 978 17.07 1376 4.47 1191 2.39016 3.65062 311 DXTPROGENIES4.17.4 882 1331 2.075 1449 571 12.86 6.99420 3.62716 312 DXTPROGENIES4.17 1035 1273 1449 571 12.86 6.99420 3.62793 313 DXTPYT06A2.1 891 1271 165 1770 1338 4.00 1071 2.39016 3.65493 314 DXTPYT06A3.1 881 1271 166 1770 1238 4.69 1.6775 1.64932 6.69420 3.62393	35	BSPS48A	1000	1714	2204	1472	656	1409	-1.03290	10.22586	
77 DUIKER' 1136 1498 1328 1323 436 1110 1495493 650662 69 DXTBP(SRB)124 958 1479 902 1376 517 1246 0.92523 5.1405 710 DXTPROGENIES13 978 1221 1395 488 1271 0.9951 3.1405 711 DXTPROGENIES13 978 1221 1395 488 1278 0.9961 711 DXTPROGENIES13 978 1275 1449 571 1226 6.99477 3.6543 713 D165 1770 1325 1449 571 1228 6.99477 3.6543 713 D416 1770 1328 1449 371 1028 5.69947 3.6543 717 DXTPYT06A811 881 1449 371 128 6.99477 3.6543 717 DXTPYT06A811 881 1449 371 128 6.99471 3.6543 717 D	95	BSPS85	1074	1270	1915	1328	532	1224	-3.93516	-3.49656	
S DXTBLP(SRB)12.4 9.66 1479 1902 1376 517 12.46 0.925.3 2.14105 311 DXTBLP(SRB)12.4 9.68 1478 1.395 4.88 1218 4.43788 0.09961 311 DXTPROGENIES:1.3 9.78 1.221 1.395 4.88 1218 4.43788 0.09961 311 DXTPROGENIES:1.1 9.78 1.295 4.87 1278 4.65477 3.65643 313 DXTPPT06AL14 813 1.410 1513 1184 371 1298 6.69477 3.6576 313 DXTPPT06AL10 813 1.410 1513 1184 371 1088 1.5413 2.54932 314 DXTPPT06A8.1 880 1282 1271 1328 4.49 1212 0.07112 316 DXTPPT06A8.1 880 1282 1770 1328 4.49 1217 2.64932 1.7169 316 DXTPPT06A8.1 880 1832 1770	57	DUIKER [†]	1136	1498	1358	1323	436	1110	14.95493	-6.50662	
90 DXTBLP(SRB)4.21 942 1498 1767 1395 488 1218 4.63788 0.09961 511 DXTPROGENIES4.1 928 1221 1788 1467 444 1191 2.39016 893354 512 DXTPROGENIES4.174 822 1243 2075 1465 471 1228 6.69471 3.65643 513 DXTPPT06AC3.14 813 1410 1513 1149 571 1228 6.69471 3.65643 515 DXTPPT06A2.14 813 1410 1513 1144 1513 21449 571 1228 6.69471 3.65643 515 DXTPPT06A2.10 773 1615 1770 1328 428 1183 2.64932 3.6576 516 DXTPPT06A8.11 881 1442 1873 1417 441 1272 0.69818 3.6536 517 DXTPPT06A8.11 881 1442 1873 2.6493 3.6536 3.7159 4.37396	85	DXTBLP(SRB)12.4	958	1479	1902	1376	517	1246	0.92523	2.14105	Р
510 DXTPROGENIES1.3 978 1221 178 1467 444 1191 -2.39016 -893354 511 DXTPROGENIES4.714 882 1343 2075 1405 437 1228 -6.94477 3.6643 513 DXTPROGENIES4.7 1036 1295 2075 1405 571 1228 -6.99420 -3.6276 513 DXTPYOGAZ14 813 1410 1513 1184 371 1058 8.90291 -007112 514 DXTPYT06AX.10 73 1615 1770 1328 4.28 1184 371 1058 5.69918 7.27159 515 DXTPYT06A8.11 881 1442 1873 1417 4.41 1212 2.69918 7.27159 516 DXTPYT06A8.11 881 1442 1873 1471 4.41 1212 2.65369 517 DXTPYT06A8.11 881 1442 1873 4.46 1197 -3.17599 4.37396 517 DXTPYT06A8.11 881 1442 1873 1430 5.22 1.7759	39	DXTBLP(SRB)4.21	942	1498	1767	1395	488	1218	4.63788	-0.09961	. 1
311 DXTPROGENIES4.17-4 882 1343 2075 1405 437 1228 -6,95471 3.6643 312 DXTPROGENIES4.7 1036 1295 2053 1449 571 1228 -6,95471 3.6643 313 DXTPYT06A2.14 813 1410 1513 1184 371 1028 1.6473 -6,95471 3.6643 314 DXTPYT06A2.14 813 1410 1513 1184 371 1028 -6,99420 -3.62716 315 DXTPYT06A2.14 813 1410 1513 1184 371 1028 -6,99418 -3.6432 316 DXTPYT06A8.11 811 1442 1873 1171 411 1212 0.33872 1.7169 318 DXTPYT06A8.11 810 1380 1366 451 1197 -3.1759 4.3796 318 DXTPYT06A8.3 959 1449 2040 1323 4.60 1211 -3.1759 -3.3096 3.4553	310	DXTPROGENIES1.3	978	1221	1788	1467	444	1191	-2.39016	-8.93354	TUI
312 DXTPROGENIES4.7 1036 1295 2053 1449 571 1298 -6.89420 -3.62276 313 DXTPYT06A2.14 813 1410 1513 1184 371 1058 8.90291 -007112 314 DXTPYT06A2.14 813 1410 1513 1184 371 1058 8.90291 -007112 315 DXTPYT06A8.11 881 1274 1682 1770 1328 428 1183 -6.89918 7.27159 316 DXTPYT06A8.11 880 1449 206 1470 1328 428 1183 -6.9918 7.27159 317 DXTPYT06A8.11 880 1449 206 1449 206 137159 4.3796 4.3796 318 DXTPYT06A8.12 880 1380 1363 52 1275 3.34953 1.7169 318 DXTPYT06A8.3 959 1449 2040 1338 460 1271 -3.56064 3.45539 31759 MAKSOY 1N' 823 1372 1273 1.275 3.4953 <	311	DXTPROGENIES4.17-4	882	1343	2075	1405	437	1228	-6.95477	3.65643	ΚA
313 DXTPYT06A2.14 813 1410 1513 1184 371 1058 8,90291 -007112 314 DXTPYT06A4.22 894 1274 1665 1770 1328 428 1183 2,64932 315 DXTPYT06A1.10 773 1615 1770 1328 428 1183 2,64932 316 DXTPYT06A3.10 773 1615 1770 1328 428 1183 2,64932 317 DXTPYT06A8.11 881 1442 1873 1417 441 1212 0.53872 1.7166 317 DXTPYT06A8.11 881 1449 2040 1403 522 1275 3.3098 3.65369 319 DXTPSPS4.19 902 1372 1980 1338 460 1271 3.34953 320 MAKIS 1191 1332 1736 1275 3.34953 3.4953 320 MAKIS 1322 1233 1276 4.31759 4.571759 4.57169 321 MAKIS 176 1323 1276 12	312	DXTPROGENIES4.7	1036	1295	2053	1449	571	1298	-6.89420	-3.62276	MU
314 DXTPYT06A4.22 894 1274 1682 1251 390 1098 15413 -2.64932 315 DXTPYT06A7.10 773 1615 1770 1328 428 1183 6.98918 7.27159 17106 316 DXTPYT06A8.11 881 1442 1873 1417 441 1212 0.53872 1.71696 317 DXTPYT06A8.11 881 1449 2040 1306 451 1197 -3.17759 4.37396 318 DXTPYT06A8.12 880 1380 1968 1328 426 1274 0.53872 1.71696 319 DXTPYT06A8.12 880 1380 1403 1326 13736 4.37396 3.34953 319 DXTSPS4.19 902 1372 1736 4.23 3.4953 3.4953 320 MAKSOY 1N' 823 1352 1736 1274 6.31 1.026 1.92568 2.47588 321 NAMINGCELP11.3 1108 1386 2005 1274 6.31 1.9256 2.42688	313	DXTPYT06A2.14	813	1410	1513	1184	371	1058	8.90291	-0.07112	JH
515 DXTPYT06A7.10 773 1615 1770 1328 428 1183 6.98918 7.27159 516 DXTPYT06A8.11 881 1442 1873 1417 441 1212 0.53872 1.11696 517 DXTPYT06A8.11 880 1380 1968 1306 451 1197 -3.1759 4.37396 518 DXTPYT06A8.12 880 1380 1968 1306 451 1197 -3.1759 4.37396 518 DXTPYT06A8.12 959 1449 2040 1403 522 1275 -3.30898 3.65369 519 DXTSPS4.19 902 1372 1980 1338 4.60 1211 -3.1759 4.37396 520 DXTSPS4.19 902 1372 1980 1338 4.60 1211 -3.68064 3.34553 521 NAM I* 910 1430 1515 863 505 1044 10.38710 4.67006 522 NAMIXGCBLP70.2 990 1386 2075 1274 631 1295 -4.92658<	314	DXTPYT06A4.22	894	1274	1682	1251	390	1098	1.54413	-2.64932	AB
516 DXTPYT06A8.11 881 1442 1873 1417 441 1212 0.53872 1.71696 517 DXTPYT06A8.12 880 1380 1968 1306 451 1197 -3.17759 4.37396 518 DXTPYT06A8.12 880 1380 1968 1306 451 1197 -3.17759 4.37396 518 DXTSPS4.19 902 1372 1980 1333 4.60 1211 -3.10799 3.34953 519 DXTSPS4.19 902 1372 1980 1333 4.60 1211 -3.10797 3.14953 520 MAKSOY 1N' 823 1352 1736 1273 388 1003 1.92347 2.07197 521 NAM 1' 910 1430 1515 863 565 1044 10.38710 4.67006 522 NAM 1' 910 1430 1515 863 565 1044 10.38710 4.67006 523 NAMIIXGCBLP20.2 990 1095 2.026 1281 438 1166 -1.92658	315	DXTPYT06A7.10	773	1615	1770	1328	428	1183	6.98918	7.27159	WA
517 DXFPYT06A8.12 880 1380 1968 1306 451 1197 -3.1759 4.37396 518 DXFPYT06A8.3 959 1449 2040 1403 522 1275 -3.30998 3.65369 519 DXFPYT06A8.3 959 1449 2040 1403 522 1275 -3.30998 3.65369 519 DXTSPS4.19 902 1372 1980 13338 460 1211 -3.68064 3.34953 220 MAKSOY 1N ¹ 823 1352 1736 1223 383 1103 1.92347 2.07197 221 NAM 1 ¹ 910 1430 1515 863 505 1044 10.38710 4.67006 522 NAMIIKGCBLP70.2 990 1095 2.0755 1274 6.31 1295 4.45706 523 NAMIIKGCBLP70.2 990 1095 1281 4.83 1166 1.6706 -3.49558 2.42568 524 NAMIIKGCBLP70.0 939 1657 1206 1296 -4.92658 -2.42568 -3.45568	316	DXTPYT06A8.11	881	1442	1873	1417	441	1212	0.53872	1.71696	Α ε
518 DXFPYT06A8.3 959 1449 2040 1403 522 1275 -3.3098 3.65369 519 DXTSPS4.19 902 1372 1980 1338 460 1211 -3.68064 3.34953 520 MAKSOY 1N ⁺ 823 1352 1736 1223 383 1103 1.92347 207197 521 NAM 1 ⁺ 910 1430 1515 86.3 505 1044 10.38710 4.67006 522 NAM 1 ⁺ 910 1430 1515 86.3 505 1044 10.38710 4.67006 523 NAM IIXGCBLP71.3 1108 1386 2075 1274 6.31 1295 2.42588 523 NAM IIXGCBLP20.2 990 1095 2026 1281 4.83 1166 -11.06689 -2.34527 523 NAM IIXGCBLP20.2 939 1189 1657 1206 385 1077 0.37389 -3.99568 524 NGDT8.10-10 939 1189 1657 1206 385 1077 0.37389 -3.94507 6an 916 1834 1318 464 1184 1.99400 6an 939 1367	317	DXTPYT06A8.12	880	1380	1968	1306	451	1197	-3.17759	4.37396	et a
519 DXTSPS4.19 902 1372 1980 1338 460 1211 -3.68064 3.34953 320 MAKSOY 1N ⁺ 823 1352 1736 1223 383 1103 1.92347 207197 321 NAM 1 ⁺ 910 1430 1515 863 505 1044 10.38710 4.67006 322 NAMIIXGCBLP11.3 1108 1386 2075 1274 6.31 1295 -4.92658 2.42588 323 NAMIIXGCBLP20.2 990 1095 2026 1281 4.8 1166 -11.06689 -2.34527 324 NGDT8.10-10 939 1189 1657 1206 385 1077 0.37389 -4.99490 Aean 939 1367 1834 1318 464 1184 155	318	DXTPYT06A8.3	959	1449	2040	1403	522	1275	-3.30898	3.65369	ıl.
320 MAKSOY 1N [†] 823 1352 1736 1223 383 1103 19247 207197 321 NAM 1 [†] 910 1430 1515 863 505 1044 10.38710 4.6706 322 NAMIXGCBLP11.3 1108 1386 2075 1274 6.31 1295 -4.92658 2.42588 323 NAMIXGCBLP20.2 990 1095 2026 1281 4.8 1166 -11.06689 -2.34527 324 NGDT8.10-10 939 1189 1657 1206 385 1077 0.37389 -4.99490 Aean 939 1367 1834 1318 464 1184 1657 -4.99490 SE± 18.7 29.0 42.9 28.9 15.5 15.5 1656 -4.99490	319	DXTSPS4.19	902	1372	1980	1338	460	1211	-3.68064	3.34953	
321 NAM 1 ¹ 910 1430 1515 863 505 1044 10.38710 4.67006 322 NAMIXGCBLP11.3 1108 1386 2075 1274 6.31 1295 -4.92658 2.42588 323 NAMIXGCBLP20.2 990 1095 2026 1281 4.38 1166 -11.06689 -2.34527 324 NGDT8.10-10 939 1189 1657 1206 385 1077 0.37389 -4.99490 Mean 939 1367 1834 1318 464 1184 SE± 18.7 29.0 42.9 28.9 15.5	320	MAKSOY 1N [†]	823	1352	1736	1223	383	1103	1.92347	2.07197	
322 NAMIIXGCBLP11.3 1108 1386 2075 1274 631 1295 -4,92658 2,42588 323 NAMIIXGCBLP20.2 990 1095 2026 1281 438 1166 -11.06689 -2.34527 324 NGDT8.10-10 939 1189 1657 1206 385 1077 0.37389 -4,9490 Mean 939 1367 1834 1318 464 1184 5E± 18.7 29.0 42.9 28.9 15.5	321	NAM 1 [†]	910	1430	1515	863	505	1044	10.38710	4.67006	
323 NAMIIXGCBLP20.2 990 1095 2026 1281 438 1166 -11.06689 -2.34527 324 NGDT8.10-10 939 1189 1657 1206 385 1077 0.37389 -4.99490 Aean 939 1367 1834 1318 464 1184 L± 18.7 29.0 42.9 28.9 15.5	322	NAMIIXGCBLP11.3	1108	1386	2075	1274	631	1295	-4.92658	2.42588	
324 NGDT8.10-10 939 1189 1657 1206 385 1077 0.37389 -4.9490 Mean 939 1367 1834 1318 464 1184 SE± 18.7 29.0 42.9 28.9 15.5 1184	323	NAMIIXGCBLP20.2	066	1095	2026	1281	438	1166	-11.06689	-2.34527	
Aean 939 1367 1834 1318 464 1184 5E± 18.7 29.0 42.9 28.9 15.5	524	NGDT8.10-10	939	1189	1657	1206	385	1077	0.37389	-4.99490	
5E± 18.7 29.0 42.9 28.9 15.5	Aean		939	1367	1834	1318	464	1184			
	SE±		18.7	29.0	42.9	28.9	15.5				

[†] Local check genotypes

Genotype & Environment means

Figure 1. Bi-plot of Principal Component Analysis (PCA) Axis 1 versus Mean Yield (kg ha⁻¹) of 24 genotypes grown in five test environments during 2008A, 2008B and 2009A seasons in Uganda.

Discriminant test environments accurately resolve genotype differences, thereby providing the necessary information for selection by a breeder. Ngeta was the least discriminating of the five environments, as evidenced by the short environment vector. Therefore, testing soybean genotypes for yield in Nakabango only may suffice, as it is the most representative and discriminating site for soybean yield in Uganda. Bulindi is discriminating but not representative; therefore, it can be useful as a "culling environment" for quickly eliminating unstable genotypes during the selection process (Yan and Kang, 2003). Evaluation in other environments may give misleading results because of their low discriminating capability and lack of representativeness.

Environment comparison using the Average Environment Axis (AEA) identified Nakabango as the highest yielding and representative environment (Fig. 3). The AEA is a measure of the representativeness of the average environment. The innermost concentric rings represent the most ideal test environment for genotypes with the greatest yield. The high yielding potential of Nakabango was consistent with results presented by AMMI estimates. In addition, the small angle that Namulonge, Ngeta

Scatter plot (Total - 73.87%)

Figure 2. The environment vector bi-plot showing environmental differences in discriminating the 24 genotypes for grain yield at the five test environments during 2008A, 2008B and 2009A seasons in Uganda.

and Nakabango vectors had with AEA indicates greater relative stability of these environments across the three seasons 2008A, 2008B and 2009A for soybean production. Yan and Rajcan (2002) defined an ideal test environment as having small PC2 scores (more representative of the overall environment) and large PC1 scores (power to discriminate).

Based on the five locations used in this study, two mega environments with different "winning" genotypes were identified using a scatter plot with polygon bisectors (Fig. 4). Mega environments are test environments with different winning genotypes located at the vertex of the polygon. Locations within mega environment I were Namulonge, Bulindi, Nakabango and Ngeta. For this mega environment, G5 was the highest yielder with genotypes G22 (NAMIIXGCBLP11.3) and G18 (DXTPYT06A8.3) being second and third best, respectively. Mega environment II only had the location Iki-iki found in the Kyoga plains ecological zone, where genotypes G11 (DXTPROGENIES4.17-4) and G12 (DXTPROGENIES4.7) were most adapted. This implies that the country has two broad regions

Figure 3. The environment comparison plot showing the Average Environment Axis (AEA) for grain yield of 24 genotypes at the five test environments during 2008A, 2008B and 2009A seasons in Uganda. Environments having a smaller angle with AEA are considered stable.

with unique environmental characteristics with specific high yielding genotypes. Therefore, soybean genotypes respond in a similar way for a greater part of the country; this is further corroborated by presence of a scale GE interaction for grain yield.

Interestingly, check genotypes G7 (Duiker), G20 (Maksoy 1N) and G21 (Nam 1) which are commercial varieties did not fit onto any mega environment during our study. This could be attributed to the susceptibility of Nam 1 and Duiker to soybean rust, and the breakdown of rust resistance reported in Maksoy 1N (Tukam uhabwa *et al.*, 2009). However, the test locations within the two putative mega environments were close to one another, implying that targeted breeding for each of them may not be necessary before validation tests are done.

Iki-iki site, characterised by poor sandy soils, with low moisture retention capacity, was the only test location representing the second mega environment. Despite the relatively low potential for soybean grain yield at Iki-iki, G5 had the fifth highest mean yield, implying that it had good

P. TUKAMUHABWA et al.

PC1-52.47%

Figure 4. An environment focused bi-plot showing "winning" genotypes for the two different mega environments for grain yield at the five environments during 2008A, 2008B, and 2009A seasons in Uganda.

dynamic stability. This is an important attribute for any commercial variety given the unpredictable nature of rainfall in most parts of the country (Wortman and Eledu, 1999).

This is the first study to attempt to classify soybean production into mega environments and assess discriminating ability of test environments based on grain yield of soybean genotypes in Uganda. Such an attempt is important as it may reduce costs when conducting multi-locational trials for soybean grain yield. In this study, the tests were carried out in four zones; Victoria Crescent, western grasslands, north-western savannah grasslands and Kyoga plains. Further studies are recommended in south-western farmlands and north-eastern savannah grassland which were not represented in the test to determine which mega environment they fall in. This study, however, laid the basis for exploiting GE not only to identify stable genotypes but to classify environments into broader mega environments, and identify the most discriminating, high yielding and stable environment for soybean production in Uganda.

CONCLUSION

Genotype G5 is the most adapted as well as the best seed yielder in the most discriminating environment in Uganda. It is highly recommended for release after tests for its commercial value. Uganda can be divided into at least two putative mega environments in terms of soybean grain yield. Nakabango and Bulindi are the most descriminating sites and are therefore recommended as primary testing centres for new soybean genotypes.

ACKNOWLEDGEMENT

This research was supported by Alliance for a Green Revolution in Africa (AGRA) and Vegetable Oil Development Project, of the Ministry of Agriculture Animal Industry and Fisheries, Uganda. We thank Makerere University and National Agricultural Research Organisation (NARO) for the germplasm and facilities used in this study.

REFERENCES

- Crossa, J., Vargas., Eeuwijk, F.A., Jiang, C., Edmeades, G.O. and Hoisington, D. 1999. Interpreting genotype x environment in tropical maize using linked molecular markers and environmental covariables. *Theoretical Applied Genetics* 99:611-625.
- Gauch, H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. *Crop Science* 46:1488-1500.
- Hartman, G.L., West, E.D. and Herman, T.K. 2011. Crops that feed the World 2. Soybeanworldwide production, use and constraints caused by pathogens and pests. *Food Security* 3:5-17.
- Matus-Cadiz, M.A., Hucl, P., Perron, C.E. and Tyler, R.T. 2003. Genotype x environment

interaction for grain color in hard white spring wheat. *Crop Science* 43:219-226.

- NARO. 2001. Mid-term plan 2001-2005. Responding to research challenges for modernization of Agriculture. National Agricultural Research Organisation (NARO), Ministry of Agriculture, Animal Industry and Fisheries, Entebbe, Uganda.
- Payne, R.W., Harding, S.A., Murray, D.A., Soutar, D.M., Baird, D.B., Glaser, A.I., Channing, I.C., Welham, S.J., Gilmour, A.R., Thompson, R. and Webster, R. 2010. The Guide to GenStat Release 13, Part 2: Statistics. Hemel Hempstead UK: VSN International.
- Tukamuhabwa, P. 2006. How to Grow Soybeans in Uganda. Department of Crop Science, Makerere University, Kampala, Uganda. 8pp.
- Tukamuhabwa, P., Tusiime, G., Nanfumba, D., Oloka, H., Kabayi, P., Kyarisiima, S. and Yiga, G. 2009. Progress in breeding for resistance to soybean rust disease in Uganda. *The Match towards a Green Revolution in Africa: Improving lives of farmers through stronger seed system.* Bamako, Mali: Center International des Conference Bamako (CICB).
- Wortmann, C.S. and Eledu, C.A. 1999. Uganda's agroecological zones: A guide to planners and policy makers. Centro Internationale de Agricultural Tropical (CIAT), Kawanda, Uganda.
- Yan, W. and Kang, M.S. 2003. GGE Biplot analysis: A graphical tool for Breeders, Geneticists and Agronomists. Florida, USA: CRC, Press.
- Yan, W., Kang, M.S., Ma, B., Woods, S. and Cornelius, P.L. 2007. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. *Crop Science* 47:643-655.
- Yan, W. and Rajcan, I. 2002. Bi-plot Analysis of Test Sites and Trait Relations of Soybean in Ontario. *Crop Science* 42:11–20.