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Abstract

Epistasis is thought to be a pervasive part of complex phenotypes due to the dynamics and 

complexity of biological systems, and a further understanding of epistasis in the context of 

biological pathways may provide insight into the etiology of complex disease. In this study, we use 

genotype data from the International HapMap Project to characterize the functional dependencies 

between alleles in the human interactome as defined by KEGG pathways. We performed chi-

square tests to identify non-independence between functionally-related SNP pairs within parental 

Caucasian and Yoruba samples. We further refine this list by testing for skewed transmission of 

pseudo-haplotypes to offspring using a haplotype-based TDT test. From these analyses, we 

identify pathways enriched for functional disequilibrium, and a set of 863 SNP pairs (representing 

453 gene pairs) showing consistent non-independence and transmission distortion. These results 

represent gene pairs with strong evidence of epistasis within the context of a biological function.

1 Introduction

In 1912, William Bateson first coined the term epistasis, (from the Greek for standing upon) 

when he observed an allele at one locus masking the effect of an allele at a second, 

independent locus [1]. Bateson's concept has also been described as biological epistasis, 

similar to a biochemist's observation that variation in the physical interaction of 

biomolecules affects a phenotype [2, 3]. Several years later, R.A. Fisher also used the term 

epistasis in a statistical context, observing multi-allelic segregation patterns that can be 

mathematically described as a deviation from additivity in a linear model of genotypes [4]. 

Given the complexities of known biological pathways that involve numerous inter-molecular 

interactions, epistasis is presumed to be ubiquitous both statistically and biologically [3]. 

This belief is driven largely by the notion that networks of gene regulation and protein-

protein interaction have a functional endpoint that may be influenced by the simultaneous 

presence of multiple variants in those genes [3, 5]. Epistasis has been well-documented in 

model organisms, and was discovered early in the field of genetics. In 1918, Lancefield 

described a two-locus inheritance pattern for the forked bristle phenotype in Drosophila [6]. 

A year later, Bridges reported statistical epistasis in Drosophila eye color, where 

combinations of several different alleles Mendelize with various eye color phenotypes [7]. 
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These alleles influence a biochemical pathway controlling eye pigmentation that was 

described many years later [8]. More recently, studies of mouse and rat chromosome 

substitution strains revealed substantial epistasis in over 140 quantitative trait loci [9]. But 

outside the exploration of these model systems, the concept of epistasis was largely ignored 

in the field of human genetics. Over the last fifteen years, however, the concept has resurged 

as the study of common complex human phenotypes has become more prominent.

Epistasis is an attractive concept for complex traits because techniques used to characterize 

strong single-gene effects (such as linkage analysis) typically fail to consistently identify 

genomic regions that explain variation in complex traits. Twin studies and family-based 

segregation analysis establish heritable genetic components to these traits, yet the source of 

genetic trait variation often remains unknown. One potential source of the unexplained 

heritability is that a larger proportion of trait variation is due to epistasis – combinations of 

genotypes at multiple loci -- rather than single independent loci [10]. Epistasis also fits well 

with the general notion that complex traits have complex underlying genetic etiologies.

Statistically, the concept of epistasis analysis is very similar in theory to haplotype analysis. 

Genetically, a haplotype occurs when loci in close physical proximity are linked by a stretch 

of chromosome and are thus often inherited together. When this occurs in a large population, 

these loci are said to be in linkage disequilibrium, and the alleles of these loci form 

haplotypes. Because these linked alleles have a high likelihood of being inherited together in 

the population, the genotypes of these loci are correlated, or alternatively their genotypes are 

non-independent.

It is also possible that there is correlation between genotypes of loci that are not physically 

linked on the chromosome. This phenomenon is sometimes referred to as gametic phase 

disequilibrium, as the alleles non-randomly segregate within gametes, but are not physically 

tethered on the chromosomes [11]. Even though alleles are not linked physically, they may 

still be linked on some higher biological level that causes the occurrence of the genotypes to 

be non-independent in the population, presumably by some function that confers a change in 

evolutionary fitness. We loosely define this phenomenon as functional disequilibrium, and 

the alleles of these functionally linked loci form a functional psuedo-haplotype.

The work of the International HapMap Project has characterized patterns of linkage 

disequilibrium among common SNPs in multiple human sub-populations. These patterns are 

useful for gene mapping studies to determine which portions chromosome (and marker loci) 

are typically co-inherited within a population, and thus reducing the number of genetic 

markers needed to effectively capture common variation in the genome. Also, the patterns of 

linkage disequilibrium established for a population identify haplotypes that can be tested for 

association with disease phenotypes or other traits. From a broader perspective, the HapMap 

provides an overview of the structural interdependencies of the human genome, which has 

given insight into various basic human genetics questions regarding recombination rates 

[12], segregation distortion [13], genomic regions of selection [14], and even mate choice 

[15].
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Similarly, patterns of functional disequilibrium may exist in human populations that 

encapsulate common genetic variation into functional (rather than structural) units. These 

patterns may provide insight into previously unknown interdependencies in biochemical 

pathways, such as gene expression patterns that detrimentally or beneficially alter pathway 

kinetics or function. Characterizing functional disequilibrium also builds a better 

understanding of the general genetic variation in the interactome, and could lead to a new 

understanding of the biochemistry of these systems.

Functional disequilibrium should also have consequences for disease etiology. Biological 

pathways likely have distinct genetic architectures that influence overall function, and some 

genetic architectures may alter susceptibility to disease. Also, alterations in pathway 

function may influence how environmental exposures are processed, leading to increased or 

decreased risk of disease upon exposure, such as with nicotine metabolism and lung cancer 

[16].

As such, a catalog of pathway-based pseudo-haplotypes would be an excellent resource for 

conducting candidate epistasis studies using genome-wide association data. With these goals 

in mind, in this work we investigate the presence of functional disequilibrium, observed as 

correlated genotypes in non-linked SNPs, among a set of core biological pathways from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

2 Methods

2.1 Data

For this study, we used publicly available Single Nucleotide Polymorphisms (SNPs) from 

the Hapmap Phase III dataset. 1,403,896 SNPs genotyped in 57 trios from Utah (Centre 

d'Etude du Polymorphisme Humain (CEPH) Collection) and 1,484,416 SNPs genotyped in 

54 trios from the Yoruba population of Ibadan, Nigeria.

2.2 Domain Knowledge

The Kyoto Encyclopedia of Genes and Genomes [17-19] [accessed 4/27/2009] contains 203 

metabolic and regulatory pathways. 183 of these pathways, containing mappings to human 

genes and of manageable size, were used as gene groups encompassing 4,826 unique genes. 

Entrez-gene IDs from the KEGG database were mapped to Ensembl gene IDs using the 

Ensembl database [20]. From these gene groups, 2,096,620 unique gene pairs were 

constructed by forming all possible pairs of genes within each gene group. Using the 

Ensembl Variation database, SNPs residing within the Ensembl gene physical (base-pair) 

start and end were mapped. SNP pairs were created by forming all possible combinations of 

two SNPs across the two genes. Pairs of SNPs that fall within the same gene, or within 500 

KB of each other on the same chromosome were excluded from this analysis as genotypes of 

these SNPs may be non-independent due to linkage disequilibrium. Two-SNP models were 

generated using the Biofilter procedure outlined in [21].
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2.3 Statistical Analysis

The non-independence of genotypes for each SNP pair was assessed within each dataset 

using a chi-square test of independence. The chi-square test compares the observed 

frequency of a genotype combination to the frequency expected if the genotypes are 

independent. Analysis was conducted using an internally developed C++ program 

incorporated into the Biofilter framework. Internal software was validated with STATA 10.1.

SNP pairs with genotypes that are non-independent were further analyzed. SNP pairs with a 

minor allele frequency < 0.10 were excluded from further analysis. We did not filter SNPs 

based on Hardy-Weinberg Equilibrium tests because unviable or lethal combinations of 

SNPs could appear out of Hardy-Weinberg Equilibrium if analyzed alone. For the remaining 

SNP pairs, r2 correlation coefficients were computed using PLINK software [22, 23]. Using 

the haplotype transmission disequilibrium test implemented in PLINK, the co-transmission 

of SNP pairs within CEU and YRI trios was assessed. This test uses a chi-square statistic to 

measure multi-locus segregation distortion. In this application, the test determines if 

pathway-based pseudo-haplotypes observed in the parent generation are significantly over- 

or under-transmitted to offspring in the population, based on the parental haplotype 

frequencies.

3 Results

3.1 Analysis Overview

To investigate the presence of functional disequilibrium in the human genome, we used a 

bioinformatics approach to group genes together by functional relationships. 183 pathways 

from the KEGG database were used to group genes by function, and these gene groups were 

used to construct SNP pairs that exclude haplotype effects (the SNPs must be > 500 KB 

apart). Pathway-based SNP pairs were evaluated in the HapMap phase III dataset for Yoruba 

(YRI) and Caucasian (CEU) populations.

As an initial screen, unrelated individuals (parents) were extracted from the YRI (n=108) 

and CEU (n=114) datasets and a chi-square test of independence was conducted to assess 

the correlation between the genotypes of each pathway-based SNP pair. SNP pairs with chi-

square statistics > 9.487 (α = 0.05, df = 4) were carried forward to the next phase of 

analysis. To provide additional evidence of functional disequilibrium between the SNP pairs 

identified in the screen, we conducted a transmission disequilibrium test (TDT) to determine 

if there was non-independent transmission of pseudo-haplotypes (pathway-based genotype 

combinations) to offspring in the sample. Because we are testing transmission of the pseudo-

haplotype, this test is independent of the chi-square test used in the initial screen.

Using these analyses, we present pathways potentially enriched for non-independent 

genotypes in both populations, pathway-based pseudo-haplotypes that show distorted 

transmission, and an overall collection of gene pairs showing evidence of functional 

disequilibrium.
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3.2 Initial Screen

In the initial screen phase, we evaluated roughly 428 million CEU SNP pairs and 479 

million YRI SNP pairs generated from gene combinations found in KEGG pathways. The 

overall significance rate for the screen was 0.0284 for CEU and 0.0303 for YRI. Both the 

peptidoglycan biosynthesis (CEU 0.25, YRI 0.15) and atrazine degradation (CEU 0.16, YRI 

0.04) pathways had high proportions of significant results, however these two pathways 

contained relatively few SNP pairs (903 and 2437 respectively). Nearly all of the pathways 

with high proportions of significant results in the screen were metabolic rather than 

regulatory pathways. In fact, several large regulatory pathway groups, such as “Pathways in 

cancer” (CEU 0.0045, YRI 0.0053), axon guidance (CEU 0.0116, YRI 0.0148), tight 

junction (CEU 0.0145, YRI 0.0186), and focal adhesion (CEU 0.011, YRI 0.0063) had a 

very low proportion of significant results.

In this screening phase of the analysis, we used a liberal significance threshold (α = 0.05). 

Corrections for multiple hypothesis testing in this setting are difficult due to the correlation 

between tests; we therefore rely on a two-phase design where results from the initial screen 

are validated using an independent approach.

3.3 Confirmation

We exploit a unique property of genetic data to conduct a confirmatory analysis; based on 

Mendel's law of independent assortment, the transmission of two alleles at unlinked loci 

should be independent. If the potential functional SNP pairs discovered in our screening 

analysis are transmitted together more or less often than expected by chance, this could 

further indicate a functional relationship between the loci. Using the full set of 57 CEU trios 

and 54 YRI trios, we assessed transmission distortion using the haplotype-based TDT for all 

significant SNP pairs identified in the screening phase. Of the 40,312,276 tests conducted, 

the TDT identified 1,698,521 (4.21%) significantly distorted haplotype transmissions in 

CEU. For the YRI samples, 50,175,211 of 2,187,530 (4.36%) tests were significant. The 

proportion of significant tests by pathway is shown in figure 2.

3.4 Gene-Gene Pairings with Putative Epistasis

From the results of our genotypic non-independence and pseudo-haplotype transmission 

tests, we compiled a list of SNP-SNP and subsequent gene-gene pairs that indicate putative 

epistasis. These SNP-SNP pairs had correlated genotypes and significant pseudo-haplotype 

TDT statistics in both CEU and YRI samples. The most compelling results are SNP pairs 

that were correlated in both samples, and also whose haplotypes were identical and similarly 

distorted in the TDT statistics. 863 of these cases were detected. Of these, 763 SNP pairs 

contained two intronic SNPs, 98 SNP pairs contained only one intronic SNP (others were 

coding, within a splice site, or within the 3′ or 5′ UTR), and only 2 SNP pairs contained 

two non-intronic SNPs. The two non-intronic SNP pairs are shown in table 1.

The distribution of gene pairs exhibiting putative epistasis by pathway is shown in figure 4. 

A database of all significant results from the confirmation phase of this study is also 

available upon request.

Bush and Haines Page 5

Appl Evol Comput (2014). Author manuscript; available in PMC 2017 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Discussion

In this work, we illustrate how a bioinformatics analysis of population-based genetic data 

can reveal allelic dependencies between genes of biochemical pathways. Just as the physical 

structure of the chromosome gives rise to correlations among genotypes called linkage 

disequilibrium, the structure of biochemical systems can likewise give rise to correlations 

among genotypes that presumably alter offspring viability or evolutionary fitness in some 

way, a phenomenon we loosely phrase functional disequilibrium. Gene pairs that contain 

SNPs exhibiting functional disequilibrium are potentially indicative of epistasis in relation to 

some phenotype.

The results of the initial screen seem to indicate that a higher degree of functional 

disequilibrium is present in more purely metabolic pathways. Despite this observation, the 

strongest and most consistent examples of functional disequilibrium occur mostly in 

regulatory and signaling pathways. Interestingly, pathways with high numbers of implicated 

gene pairs are heavily involved in nervous signal transduction, such as tight junction, 

chemokine signaling, and Wnt signaling and general nerve cell function, such as focal 

adhesion, axon guidance, and regulation of actin cytoskeleton. Several neurological 

phenotype pathways are well represented in this respect also, such as Alzheimer's disease, 

Parkinson's disease, and Huntington's disease. Genotypic dependencies among the elements 

of these disease related pathways should be further investigated, and may lead to new 

insights into population level risk for these conditions, and for general neurological 

development.

A specific compelling example from this study is the functional disequilibrium between 

rs1053454, a SNP located in the 3′ untranslated region of the 1-phosphatidylinositol-5-

phosphate 4-kinase type II alpha gene (PIP4K2A) and rs749338, a synonymous SNP in the 

inositol 1,4-5-triphosphate receptor type 3 gene (ITPR3). These genes function in the 

phosphatidyinositol signaling pathway (KO:04070), a signal transduction mechanism 

involved in multiple physiological functions, including neurotransmitter release and other 

aspects of the nervous system. These two SNPs have non-independent genotypes in CEU 

and YRI unrelated individuals (CEU p = 0.0366, YRI p = 0.0323), and the “CT” pseudo-

haplotype of these SNPs is significantly and consistently over-transmitted to offspring in 

both CEU and YRI samples (CEU hap-TDT = 0.026, YRI hap-TDT = 0.026).

Figure 5 illustrates the biochemical relationships between these two genes in 

phosphatidylinositol signaling pathway. PIP4K2A converts 1-Phosphatidyl-1D-myo-inositol 

5-phosphate to 1-Phosphatidyl-D-myo-inositol 4,5-bisphosphate, which is then converted to 

Inositol 1,4,5-trisphosphate (IP3) by phospholipase C enzymes (PLC). IP3 then binds to the 

IP3 receptor (IP3R) to activate downstream calcium release. Phosphatidylinositol signaling 

has been implicated in neuronal function and development[24].

There are several important limitations to this work. There are numerous pathway databases 

that could be used for this type of analysis. We chose the KEGG database because it is a 

well-established and supported collection of biochemical and regulatory pathways. Other 

sources of functional information that relate genes could be used as well, and will be 
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explored in future research. We elected to use the phase III Hapmap data only because this 

data is the most recent large scale collection of genotypes from multiple ethnicities. Using 

the full collection of Hapmap SNPs was logistically and computationally prohibitive for this 

work, but is also an area of future research.

The chi-square test of independence is not appropriate for contingency tables with fewer 

than 5 observations per cell -- a Fisher's exact test should be used in these cases. The 

computational complexity of a 3×3 Fisher's exact test calculation precluded us from 

conducting that calculation in these experiments, and instead we filtered the significant 

results from the chi-square test by minor allele frequency to limit this bias. The haplotype 

transmission disequilibrium test implemented in PLINK software was intended for true 

haplotypes of SNPs in linkage disequilibrium on the same chromosome, and performs an 

expectation maximization (EM) procedure to estimate the chromosomal phase of the 

haplotypes. When performing the EM procedure on genotypes across chromosomes, the 

phased haplotype distribution should very closely match the observed multi-locus genotype 

distribution, and when compared for randomly selected example SNPs they match well. It 

notable, however, that we are employing this test outside its original design, and the phasing 

procedure may slightly alter the distribution of transmitted and untransmitted pseudo-

haplotypes. Furthermore, it is extremely difficult to assess the false positive rate for this 

study. Linkage disequilibrium, for example among 10 SNPs of gene 1 and 7 SNPs of gene 2, 

causes correlations between the tests statistics of all SNP combinations spanning gene1 and 

gene2.

Finally, for simplicity, we are using the Ensembl definition of a gene region (3′ to 5′ 
untranslated region), which does not include upstream or downstream regulatory elements. It 

is likely that these regulatory elements also contain variants that in combination alter 

pathway function. These combinations of variants would not be detected in this analysis due 

to our myopic gene definition.

This work is an initial first step in cataloging correlated collections of functionally related 

genetic variations in multiple human populations. Future directions include expanding the 

datasets to include all 11 populations in the Hapmap data, expanding the bioinformatics 

stores to include protein-protein interaction databases and protein family information, and 

further refining the statistical analysis of non-independence by conducting multi-locus 

Hardy-Weinberg Equilibrium tests. Correlated pairs of genetic variants could further be 

annotated to include evolutionary conservation information, potential gene-based function 

(such as presence in or near a regulatory sites), and local linkage disequilibrium data. Stored 

in a public database system, these results could provide insight into new biochemical or 

regulatory mechanisms, and would provide a set of potential ethnic specific differences in 

pathway dynamics and function.
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Figure 2. Distributions of Significant Haplotype TDT. YRI in red, CEU in blue
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Figure 4. Distribution of gene-pairs exhibiting strong evidence of epistasis across both CEU and 
YRI populations, listed by biological pathway
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Figure 5. Putative epistasis in the Phosphatidylinositol Signaling pathway (Adapted from KEGG 
KO:004070)
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