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ABSTRACT

Imputation is an in silico method that can increase the power of association studies by inferring
missing genotypes, harmonizing data sets for meta-analyses, and increasing the overall number
of markers available for association testing. This unit provides an introductory overview of the
imputation method and describes a two-step imputation approach that consists of the phasing of
the study genotypes and the imputation of reference panel genotypes into the study haplotypes.
Detailed steps for data preparation and quality control illustrate how to run the computationally
intensive two-step imputation with the high-density reference panels of the 1000 Genomes
Project, which currently integrates more than 39 million variants. Additionally, the influence
of reference panel selection, input marker density, and imputation settings on imputation quality
are demonstrated with a simulated data set to give insight into crucial points of successful genotype
imputation. Curr. Protoc. Hum. Genet. 78:1.25.1-1.25.14. C© 2013 by John Wiley & Sons, Inc.
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INTRODUCTION
Since the first successful genome-wide

association study (GWAS; Klein et al., 2005),
the GWAS approach has been applied to
many complex traits and diseases, leading to
the identification of more than 5,500 variants
significantly associated with at least one of
more than 200 complex phenotypes (http://
www.genome.gov/gwastudies). The approach
assesses the genomes of several hundred or
thousand individuals by using high-density
genotyping arrays (see UNIT 2.9) to interrogate
from several hundred thousand to millions of
genetic markers (e.g., most commonly in plat-
forms from Illumina and Affymetrix). Such
markers were chosen to be representative of
the most common genomic variation in human
populations but only represent a small fraction
of the more than 50 million common and
rare variants that have been so far discovered
(http://www.ncbi.nlm.nih.gov/projects/SNP).
As a consequence, with only few exceptions,
the identified associated variants that were
discovered in these initial GWAS reports do
not represent the putative causal variants,

but variants that are associated indirectly,
i.e., due to their linkage disequilibrium (LD)
to the causal variants. An increase in the
density of genotyped markers will increase
the likelihood of refining the association
signal and pinpoint the causal variants.

The analysis of whole-genome sequencing
data of large studies would represent a superior
solution because it would allow a comprehen-
sive testing of all, even the rare, genetic vari-
ants. Generating and analyzing whole-genome
sequencing of a thousand individuals is still
not yet feasible for small to medium size labo-
ratories (Metzker, 2010; Wetterstrand, 2013),
but genotype imputation, a statistical frame-
work, provides an efficient strategy for infer-
ring and assessing in silico sequence data.
Such an approach, combined with the in-
formation from two large international con-
sortial efforts that aim to systematically and
comprehensively catalog human variations of
different populations, the HapMap Project
and the 1000 Genomes Project (International
HapMap 3 Consortium, 2010; 1000 Genomes
Project Consortium, 2012), represents a
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transitional solution. These projects, by geno-
typing or sequencing individuals from differ-
ent ancestry groups, allow the determination of
genomic variations and LD structures within
ethnicities and represent a reference set for
inferring untyped markers by looking at hap-
lotype similarities of individuals under study.

IMPUTATION METHODS:
OVERVIEW

Genotype imputation consists of inferring
untyped markers in a study sample by using
the LD structure among markers assessed in
an external reference panel for which a much
denser genetic map is available (Fig. 1.25.1).
Typically, the study sample is genotyped with a
commercial genotyping platform for hundreds
of thousands to millions of single nucleotide
polymorphisms (SNPs) located across the en-
tire genome.

The HapMap Consortium database (Inter-
national HapMap 3 Consortium, 2010) has
commonly served as the reference panel for
most of the GWAS published to date, but its
use is now being replaced by the larger and
more comprehensive set of individuals char-
acterized within the 1000 Genomes Project
(1KG; 1000 Genomes Project Consortium,

2012). Indeed, while the HapMap set charac-
terized 270 individuals with genotyping arrays
for ∼3 million markers, the 1KG reference set
has been generated from whole-genome se-
quencing of 1,092 individuals (181 samples
from Admixed American, 246 from African,
286 from East Asian, and 379 from European
ancestry groups), leading to the discovery of
∼39.7 million bi-allelic variants; ∼1.4 mil-
lion markers are short indels and large dele-
tions, and the rest are SNPs. Imputation per-
formed with this much denser data set will
yield a higher resolution of the genome for de-
tection of association signals, thus increasing
the power of the existing GWAS to identify
novel variants beyond what was found after
imputation with the HapMap data set and to
pinpoint the causal variants at known associ-
ated loci (Huang et al., 2009).

Currently, there are several programs able
to perform genotype imputation (e.g., PLINK,
BEAGLE, MaCH+minimac, fastPHASE, and
IMPUTE2), each implementing different al-
gorithms and with different limitations and
accuracy (Scheet and Stephens, 2006; Pur-
cell et al., 2007; Browning and Brown-
ing, 2009; Howie et al., 2009, 2012; Li
et al., 2010). PLINK and BEAGLE are
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Figure 1.25.1 Imputation of a missing sample genotype using a reference haplotype panel.
The most common reference haplotype can be unambiguously assigned to the upper sample
haplotype, while two reference haplotypes come into consideration for the lower sample haplotype.
Three methods to describe the imputed genotype are shown: best guess, dosage, and mixture.
Only the dosage and mixture methods take into account the uncertainty present.
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Figure 1.25.2 Comparison of the single-step imputation (left) and two-step imputation (right)
approaches. Although the input and reference panels are identical for both approaches, the main
difference is speed. Identification of the reference haplotype combination(s) that can best explain
the input genotypes (single-step imputation) takes longer than identification of the two reference
haplotypes that most likely represent the input haplotypes (phased genotypes; two-step imputa-
tion). The relative positions of genotyped variants are indicated by dashed lines.

computationally more efficient because they
focus on genotypes for a relatively small num-
ber of neighboring markers when imputing
each missing genotype. IMPUTE2, MaCH,
and fastPHASE are computationally more in-
tensive but provide a better estimate of missing
genotypes because they take into account all
available markers when imputing each missing
genotype. This strategy improves imputation
accuracy, particularly for rare variants.

To balance the increasing computational
burden necessary for large, dense reference
panels such as 1KG, the developers of IM-
PUTE2 and MaCH+minimac each introduced
the two-step imputation process, which con-

sists of an initial prephasing (i.e., haplo-
type estimation) of the GWAS genotypes and
a subsequent imputation of reference panel
markers into the estimated study haplotypes
(Fig. 1.25.2).

This separation of the computationally
intensive phasing from the data-intensive im-
putation can substantially reduce computation
time, compared with the one-step imputation,
which simultaneously estimates missing
genotypes and considers the uncertainty of
the phase of SNPs. For some populations the
imputation quality might be slightly lower in
the two-step approach, compared with their
specific one-step algorithms (e.g., for African
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Figure 1.25.3 Workflow for the individual steps required to successfully perform a two-step
imputation. An optional one-step imputation of candidate regions is indicated by the boxes with
dashed lines.

American populations). However, the time
saving usually outweighs the decrease in
imputation quality (Fig. 1.25.2). Moreover, it
is still possible to specifically and more accu-
rately impute the genotypes of target regions
in a single step once such targets are found.

The computational burden of the prephas-
ing step increases quadratically (using IM-
PUTE2 or MaCH) with the number of study
haplotypes, while it increases linearly with the
number of reference panel haplotypes in the
imputation step. Thus, this two-step approach
is well suited for the latest and still growing
reference panels that feature denser marker

sets and larger sample sizes. Moreover, once
imputation is done for a sample study and an
imputation with updated reference panels is
desired (e.g., from HapMap or 1KG projects
or to an updated release), the time-consuming
phasing can be skipped, and the phased study
genotypes at hand can be directly used for the
imputation.

The two-step imputation procedure suit-
able for IMPUTE2 and MaCH+minimac pro-
vides both the accuracy and power to im-
pute common, as well as rare markers of
large studies and the latest reference panels
(Howie et al., 2012). Here the focus will be
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on the general practice for genotype imputa-
tion using a two-step imputation on the basis
of MaCH+minimac. Because of their com-
parable approaches, the introduced MaCH+
minimac imputation is largely transferable to
IMPUTE2. Detailed documentation and ex-
ample scripts for both platforms can be found
in the “1000 Genomes Imputation Cookbook”
of MaCH+minimac and IMPUTE2 (see In-
ternet Resources). A schematic workflow is
represented in Figure 1.25.3, and a detailed
overview is presented below.

DATA PREPARATION
Preparing the data for phasing and impu-

tation is a crucial step of the analysis. Inac-
curately cleaned genotype data can lead to
false-positive and false-negative associations.
A good starting point is to format the ge-
netic data in the pedigree file format (pedfile).
This file has a row for each individual, where
the first five columns contain the pedigree in-
formation (IDs of family, individual, father,
mother, and sex), whereas the other columns
are usually genotypes. As a side note, because
the phasing procedure ignores relatedness be-
tween individuals, father and mother IDs could
also be set to 0 for all samples. In addition, all
individuals with available genotypes should be
included in the pedfile, regardless of their phe-
notypic assessment. The pedfile is always as-
sociated with a file (datfile or mapfile) contain-
ing the description of the columns following
the pedigree information of the pedfile; in this
case, it will contain the list of genetic markers.

When creating a pedfile, it is important
to align the genotypes to the same strand as
the reference panel chosen for the imputation;
for example, the latest 1KG panel release is
all mapped to forward strand of NCBI build
37/hg19. MaCH+minimac offers an autoflip
option to identify possible allele strand flips
by looking at label match and frequencies;
however, this option is unable to identify flips
for very common ambiguous variants (A/T or
C/G). As most genotyping platforms generally
avoided such strand-ambiguous alleles in their
designs, the negative impact of such flipped
ambiguous alleles will be minimal when us-
ing the autoflip option. Alternatively, overall
exclusion of ambiguous variants might help
to prevent errors of flipped alleles, although it
should be carefully considered because of the
consequent reduction of marker density.

Once the files are formatted, several soft-
ware tools can be used (e.g., PEDSTATS, Mer-
lin, PLINK, or PedCheck) to perform qual-

ity control (QC; O’Connell and Weeks, 1998;
Abecasis and Wigginton, 2005; Wigginton and
Abecasis, 2005; Purcell et al., 2007; see UNIT

1.19). While it has been shown (Southam et al.,
2011) that the imputation accuracy does not
appear to be substantially affected by a GWAS
QC step, this observation is valid only for com-
mon variants and may not be generalized to the
imputation of low frequency (1% to 5% minor
allele frequency; abbreviated MAF) and rare
variants (<1% MAF).

The best practice procedures of GWAS QC
are described in detail in UNIT 1.19 (Turner
et al., 2011). Usually, before phasing and im-
putation, QC filters are applied to the samples
and to the markers. Filters on samples typically
include removing samples with low call rates,
or that are duplicated, and inconsistencies of
genotypes on X and Y chromosomes with re-
ported gender. Careful inspection of batch ef-
fects and presence of population stratification
should also be taken into account. Filters on
markers include removing SNPs with low call
rates, very low frequency, Mendelian inconsis-
tencies, and deviation from Hardy-Weinberg
equilibrium (HWE).

In general, QC checks are platform- and
study-specific, and the most appropriate fil-
ters have to be identified for each sample data
individually. Additional filters may be neces-
sary. For example, for a case-control study it
would be suitable to remove the SNPs with
high call-rate differences between cases and
controls or to restrict the check on deviation
from HWE only in the control sample; in fact,
a deviation from HWE in the case sample
could be a signal of association (see UNIT 1.18).
Similarly, the corresponding thresholds are
platform- and study-specific; therefore, per-
forming general statistical checks to validate
the QC procedure, e.g., quantile–quantile (Q–
Q) analyses and evaluation of inflation of asso-
ciation statistics, is recommended. Depending
on the observed indication for population strat-
ification, adjusting the output χ2 and p values
by genomic controls or by principal compo-
nent analysis might be required. Because these
indicators might be distorted in the imputed
data set, they should be determined before-
hand with only genotyped markers to evaluate
appropriate QC filters.

Using unified names or naming schemes
for identical markers is recommended (e.g.,
rs429608, rs116503776, chr6:31930462, and
6:31930462 represent the same SNP) be-
cause it enables matching of markers be-
tween the data sets by name. Numeric marker
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annotations (“<chromosome>:<position>”)
are sometimes used by public sets of reference
haplotypes or by resequencing analyses whose
detected variants do not match to the National
Center for Biotechnology Information (NCBI)
single nucleotide polymorphism database
(dbSNP; http://www.ncbi.nlm.nih.gov/SNP) or
have not yet received a reference ID (mostly
insertions and deletions). One solution is to
convert all marker names in the GWAS data to
their numeric annotations. Alternatively, min-
imac’s alias file, which contains all marker
name pairs that might have been labeled dif-
ferently between the data sets, can be used for
name harmonization in the imputation step. In
general, markers that are duplicated or map
to multiple positions in the genome should be
removed from all data sets.

Finally, the recoded and formatted data
files need to be sorted in ascending chromoso-
mal order and split by chromosome, because
phasing will be performed one chromosome
at a time. Because of the pseudoautosomal
regions PAR1 (chrX:60,001-2,699,520/chrY:
10,001-2,649,520)/PAR2 (chrX:154,931,044-
155,260,560/chrY:59,034,050-59,363,566)
and the hemizygosity of nonpseudoautosomal
regions of male individuals, the preparation of
X-chromosomal data (if present) requires ad-
ditional care. Usually, the recommendation is
to phase females and males separately, as well
as to split the X chromosome into nonpseudo-
autosomal and pseudoautosomal regions.

STEP 1: PREPHASING
Before running imputation, the genotypes

of the GWAS individuals will be phased,
i.e., their most likely haplotypes will be es-
timated. If genotypes of unrelated individu-
als are phased, the estimated haplotypes are
less likely to represent the true allelic config-
urations of the corresponding chromatids, but
rather represent the best-guess mosaic of both
chromosomes that underwent numerous chro-
mosome crossovers. These crossovers repre-
sent assumed recombination events that dis-
rupted regions of linkage disequilibrium in the
common history of the study individuals. Con-
sequently, the lengths of these chromosomal
stretches are smaller in outbred than in founder
populations, and for this reason, in founder
populations the haplotype estimation may be
more accurate.

To phase genotypes for a group of indi-
viduals, MaCH, which uses a hidden Markov
chain, can be run with the option –phase.
Two key parameters, rounds and states, can

lead to more accurate results if appropriately
set. The rounds parameter represents the num-
ber of iterations that the Markov sampler uses
for haplotyping (at least 20 rounds recom-
mended). The states parameter represents the
number of sampled haplotypes in each itera-
tion (at least 200 states recommended). Larger
numbers lead to better quality but can require
much more computing time and memory us-
age. The computational cost of the prephasing
step increases quadratically with the number
of states and linearly with the number of the
rounds. If substantial computing resources are
available, 600 or even 800 states should be
considered to obtain optimal results.

Genotypes of males on the X and Y chro-
mosomes at nonpseudoautosomal regions are
already phased because of their hemizygosity
and just need to be manually converted into
the haplotype format (see Internet Resources
for the “Minimac: 1000 Genomes Imputation
Cookbook”).

Besides large genome association anal-
ysis tool sets, there are small helper tools
or example shell codes available that can
conveniently generate some additionally re-
quired input files (e.g., *.map file into
*.dat and *.snp files) and can ef-
ficiently split chromosomes into overlapping
chunks or offer quick manipulations of huge
files. For a more memory-efficient and parallel
processing, we recommend ChunkChromo-
some, a freely available tool (http://genome.
sph.umich.edu/wiki/ChunkChromosome;
Table 1.25.2) that automatically splits each
chromosome into overlapping chunks, allow-
ing imputation of chromosomes to be run
in multiple, simultaneous, lower memory–
demanding jobs. Because overlapping mark-
ers are selected between the chunks, Chunk
Chromosome circumvents decreasing impu-
tation accuracy at the chunk borders.

STEP 2: IMPUTATION
In this step, the reference panel genotypes

are imputed into the phased genotypes of the
GWAS sample. The imputation into haplo-
types takes significantly less time than the im-
putation into genotypes (one-step imputation;
see Fig. 1.25.2). However, the whole process
is still time consuming and largely depends
on the size of the available computing clus-
ter. As with phasing, performing the imputa-
tion in chunks is recommended, as this will
be more memory efficient and faster. Further-
more, if the ChunkChromosome tool is used,
it interfaces with minimac to ensure SNPs
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that overlap between chunks are only imputed
once.

There are three ways to describe the
imputed genotypes: best-guess genotype/
haplotype, allele dosages, and genotype
probabilities (Fig. 1.25.1). The standard output
files of minimac contain, for each individual
and for each marker, the allele dosages of the
reference allele (Al1). The dosage is the ex-
pected number of copies of Al1 and is a real
number between 0 and 2. Al1 is an arbitrary
allele, and typically, it is the first allele read
in the reference haplotypes. The specific allele
Al1 for each marker is stored in the info file
generated by minimac.

If the option –probs is selected, mini-
mac will also output a file that contains two
columns with the probabilities for the homozy-
gous and heterozygous states of allele 1, re-
spectively. This option is turned off by default
because the resulting file may generate several
additional gigabytes of data.

The output file size depends on the marker
density of the reference panel, number of study
individuals, and output format, but in general,
imputed GWAS data becomes very large, espe-
cially when using the 1KG reference panel. Di-
rectly compressing the output file using the op-
tion –gzip is recommended. The compressed
dosage and probability format files for 1,000
individuals with 8 million markers are ∼10 GB
and ∼15 GB, respectively, whereas these num-
bers will be four to five times as large when
using a more recent 1000 Genomes Project
reference panel of ∼40 million markers (2012-
03-14 release).

If desired, it is also possible to output the
best-guess haplotypes, which represent the al-
leles with the highest posterior probability of
each chromosome. However, treating these es-
timated genotypes as true genotypes in subse-
quent analyses will lead to misleading results,
especially for poorly imputable rare variants
that are likely to be called homozygous for the
common allele. It is important to remember
that the imputation is not perfect, so use of
the dosages (or probabilities) to account for
the uncertainty of genotypes is highly recom-
mended.

Reported run times for the imputation
step using the European ancestry group from
the 1000 Genomes Project (379 individuals;
37.4 million SNPs) as reference was ∼24 CPU
min per study individual (Howie et al., 2012),
when using IMPUTE2. For minimac, a rough
estimate for the imputation run time is ∼1 hr
to impute 1 million markers in 1,000 individ-

uals using a reference panel with 100 haplo-
types. For example, imputation of 40 million
markers in 1,000 individuals using the Euro-
pean ancestry group would take ∼300 hr or 12
to 13 days on a modern single-core machine.
These estimates are approximate because they
may change in reality, given cluster settings
(e.g., disk access speed or memory conflict
with parallel jobs on the same core; see the
minimac reference in Internet Resources for
the corresponding formula).

MEASURING IMPUTATION
QUALITY

The imputation quality is commonly mea-
sured with a parameter called Rsq, i.e., the es-
timate of the squared correlation between im-
puted and true genotypes or, in other words, the
ratio of the variances of imputed and true allele
counts. This parameter is calculated and stored
in the info file. Nonmonomorphic variants with
Rsq>0.3 are usually considered as success-
fully imputed variants. Most of currently pub-
lished GWAS and meta-analysis papers that
used the MaCH software for imputation have
chosen this threshold to discard poorly im-
puted (common) variants (Scott et al., 2007;
de Bakker et al., 2008; Sanna et al., 2008).
However, one should be aware that most if not
all of these studies focused on common vari-
ants, and a more stringent threshold might be
required for rare variants. In fact, some stud-
ies have chosen to use more stringent thresh-
olds, e.g., Rsq>0.50 (Meschia et al., 2011) or
variable Rsq thresholds, depending on allele
frequency (Liu et al., 2012).

There are several factors that affect impu-
tation quality, and in this section, we focus
on three factors: choice of reference panel,
quality of input genotypes or haplotypes, and
number of genotypes in input. To evaluate the
impact of these aspects, we simulated haplo-
types of 1,000 unrelated individuals of Euro-
pean ancestry at SNPs present in the OmniEx-
press array on chromosome 20 (17,250 SNPs)
with the software HAPGEN (Su et al., 2011)
and then performed several runs of prephas-
ing (MaCH) and imputation (minimac) using
different settings.

To assess and compare imputation accu-
racy, we looked at mean Rsq values and the
proportion, as well as the total number, of
variants that were considered successfully im-
puted (Rsq>0.3). In this context, it should be
noted that the accuracy of predicted Rsq values
is, in general, high for common variants, but
decreases with frequency, thereby limiting the
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Figure 1.25.4 Imputation accuracy for imputed SNPs on chromosome 20. Imputation quality was
measured by MaCH’s estimated Rsq obtained from a 1000G-EUR panel imputation of a sample
of 1000 unrelated European individuals. (A) Imputation accuracy plotted versus physical position.
The corresponding chromosomal ideogram is shown above the plot. (B) Imputation accuracy
plotted versus minor allele frequency.

applicability of such general filters, especially
for rare variants.

Choosing the Best Reference Panel
The genotype imputation technique uses

LD patterns to infer untyped markers; thus,
the ideal reference panel includes individu-
als selected from the same population as the
study samples. We phased the simulated geno-
types using 25 rounds and 300 states and per-
formed imputation using the total reference
panel of the 1KG project (ALL, n=1,092),
as well as its subsets stratified by European
(EUR, n=379), East Asian (ASN, n=286),
African (AFR, n=246), and Admixed Amer-
ican (AMR, n=181) ancestry groups. More
details about the 1KG samples can be found
on the 1000 Genomes Project Web page (see
Internet Resources).

Because imputation quality is homoge-
neous over the chromosome, except for the
region around the centromere (Fig. 1.25.4A),

but not over the allele frequency spectrum
(Fig. 1.25.4B), we grouped variants in dif-
ferent MAF bins. As expected, consider-
ing that we simulated haplotypes of Euro-
pean ancestry, the 1KG-EUR panel provided
the highest imputation quality among all
ethnicity-specific panels, with remarkable dif-
ferences for low-frequency and rare variants
(MAF<5%; Fig. 1.25.5 and Table 1.25.1). Al-
though the overall imputation accuracy was
very comparable between the ALL and the
EUR panel imputation (Fig. 1.25.5), the impu-
tation with the ALL panel resulted in slightly
more successfully imputed variants than with
the EUR panel (332,415 and 330,835 vari-
ants, respectively; Table 1.25.1). Notably, this
marginal gain of variants was achieved by an
approximately three-fold increased computa-
tional burden of the imputation step. A pos-
sible explanation for this observation is that
these additional variants were relatively rare
or not present in the EUR panel, but more
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Figure 1.25.5 Factors influencing the imputation quality. All imputations were performed on a
sample of European ancestry and were based on 17,250 genotyped SNPs phased with 25 rounds
and 300 states, unless otherwise stated. The total 1KG reference panel of 1,092 individuals (ALL,
n=1,092) was partially stratified by European (EUR, n=379), East Asian (ASN, n=286), African
(AFR, n=246), and Admixed American (AMR, n=181) ancestry groups. (A) Mean Rsq values of
successfully imputed SNPs versus minor allele frequency bins. Mean Rsq is calculated on SNP
that were present in all panels (159,438 SNPs). (B) Mean Rsq values of successfully imputed
SNPs versus minor allele frequency bins for different imputations with the EUR reference panel
(n=379) using the reduced marker density (5,750 SNPs in study sample), reduced EUR reference
panel size (n=200 and n=100, respectively), or low-quality phasing (1 round per 100 states).
Details can also be found in Table 1.25.1.

frequent in other ancestry groups whose addi-
tional haplotype information increased impu-
tation quality.

Clearly, genetic similarity between study
samples and reference populations leads to
better quality. However, if the ancestry of the
study sample is unknown or is a known mix-
ture of different ancestries, there are, in gen-
eral, three options to be considered: (1) use a
reference panel that has not been subdivided
in ancestry groups (e.g., 1KG-ALL); (2) per-
form imputation of a defined genomic region
on each available reference panel, and then
select the population that offers the highest
imputation quality; or (3) use a study-specific

reference panel generated from a subset of the
study population by resequencing or genotyp-
ing it on a high-density SNP array. The last ap-
proach can be particularly efficient if applied
to isolated populations (Kong et al., 2008).
However, one should carefully balance the
pros (availability of population-specific vari-
ants, same haplotypic background) and the
cons (additional costs and time), as well as
evaluate how many samples and what cover-
age is actually needed to improve the perfor-
mance of an imputation over the current 1KG
panel.

In addition to genetic similarity, larger ref-
erence panels may lead to more accurate
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Table 1.25.1 Comparison of Average Imputation Accuracies and Variant Numbers Obtained from Different Phasing and/or
Imputation Settings

Mean Rsqa Number of variantsa

Reference
panel

Reference
panel (n)

Rare
MAF≤1%

Less common
1%<MAF≤5%

Common
MAF>5%

Rare MAF
≤ 1%

Less common
1%<MAF≤5%

Common
MAF>5%

Phasing: 25 round 300 states; 17,250 genotyped SNPs

ALL 1,092 0.962
(0.496)

0.988 (0.976) 0.995
(0.990)

140,538
(277,177)

61,954
(62,769)

129,923
(130,573)

AFR 246 0.580
(0.095)

0.662 (0.484) 0.870
(0.845)

31,741
(333,144)

49,903
(77,287)

130,606
(135,415)

AMR 181 0.646
(0.162)

0.747 (0.602) 0.911
(0.889)

41,256
(225,439)

50,034
(66,352)

127,027
(130,929)

ASN 286 0.625
(0.069)

0.727 (0.426) 0.881
(0.846)

7,843
(132,212)

20,379
(40,311)

119,217
(125,350)

EUR 379 0.963
(0.869)

0.987 (0.979) 0.995
(0.989)

139,119
(154,594)

61,931
(62,415)

129,785
(130,645)

EUR 200 0.731
(0.632)

0.841 (0.834) 0.955
(0.949)

84,044
(99,776)

63,410
(63,967)

130,315
(131,292)

EUR 100 0.660
(0.509)

0.762 (0.725) 0.929
(0.919)

43,412
(61,486)

59,649
(63,876)

130,181
(131,693)

Phasing: 25 round 300 states; 5,750 genotyped SNPs

EUR 379 0.939
(0.814)

0.973 (0.964) 0.988
(0.979)

137,955
(159,780)

62,660
(63,285)

139,632
(140,961)

Phasing: 1 round 100 states; 17,250 genotyped SNPs

EUR 379 0.572
(0.392)

0.706 (0.671) 0.894
(0.885)

99,063
(165,152)

57,643
(62,019)

129,389
(131,106)

aApplied quality filter was Rsq > 0.3; values for the unfiltered sets are given in parentheses. Abbreviations: ALL, all individuals from the current 1000
Genomes release; AFR, African; AMR, Admixed American; ASN, East Asian; EUR, European; MAF, minor allele frequency.

imputation by increasing the chance to find
perfect matches for the study haplotypes
and possibly allow the imputation of rare,
haplotype-specific variants. For example, if we
select only 100 or 200 haplotypes from the Eu-
ropean reference panel, the quality decreases,
especially at low frequencies (Fig. 1.25.5B).
Thus, we recommend using the most updated
reference panel release, which will likely con-
tain not only more individuals, but also more
variants.

Quality of Input
Genotypes/Haplotypes

As mentioned in the previous section, per-
forming the standard battery of QC filters be-
fore phasing, as well as running phasing with
the recommended parameters, is highly rec-
ommended. To assess the impact of inaccu-
rate haplotyping, we re-ran phasing with only
1 round and 100 states, followed by imputa-
tion with the 1KG-EUR reference panel, and

compared the results with the ones of the
previous setting of 25 rounds and 300 states
(Table 1.25.1).

Whereas lower imputation quality was ob-
served in all frequency bins, the accuracy most
severely dropped for less frequent and rare
variants. Although the number of successfully
imputed SNPs (286,095) was higher compared
with any imputation results of genetically
more distant populations (≤218,317), their
Rsq mean values were comparable (Fig. 1.25.5
and Table 1.25.1).

Number of Genotypes in Input
Imputation quality usually improves with

the number of SNPs genotyped in the study
by providing a refined definition of study hap-
lotypes and by increasing the chance to dis-
criminate between multiple similar reference
haplotypes. In our example, we performed im-
putation by selecting 5,750 of the total set
of 17,250 genotyped markers, and we again
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evaluated the resulting imputation accuracy.
To preserve a similar coverage over the chro-
mosome, we selected one out of every three
markers. Although the total number of suc-
cessfully imputed variants were slightly higher
in the sparser data set compared with the
denser data set (340,247 and 332,415, respec-
tively), their mean Rsq values were lower,
especially for the rare variants (Rsq=0.939
and Rsq=0.963, respectively; Fig. 1.25.5 and
Table 1.25.1).

The results obtained for the EUR panel
show that if the reference panel is genetically
close to the study sample, it is possible to have
a good coverage of well imputed variants even
if we use a sparser set of genotypes. Coverage
is thus important, but it has only a moderate
impact with respect to the choice of the ref-
erence panel and the accuracy of prephasing.
However, lower quality is expected when the
markers are reduced but are not homogenous

along the chromosome, e.g., for custom arrays
where SNPs are located in genes of interest
(Voight et al., 2012).

ASSOCIATION TESTING
After postimputation quality control and fil-

tering, the imputed genotypes can be tested
for trait associations. Rounding the obtained
allele dosages to integers (i.e., selecting the
most likely or best-guess genotype; Fig.
1.25.1) would enable the application of the
whole spectrum of classic genetic associ-
ation tests. However, the obtained results,
especially of variants with lower imputa-
tion quality and lower allele frequencies,
should be treated with extreme care. Instead,
the recommendation is to account for the
genotype uncertainty by analyzing the ob-
tained allele dosages or genotype probabilities
(Fig. 1.25.1) as continuous variables in a re-
gression model.

Table 1.25.2 Software Programs that Aid in Data Management for Imputation

Tool or software (Web page) Typical usage

PLINK (http://pngu.mgh.harvard.edu/∼purcell/
plink)

Whole-genome association analysis.

Merlin (http://www.sph.umich.edu/csg/abecasis/
merlin/index.html)

Whole-genome association analysis.

PEDSTATS (http://www.sph.umich.edu/
csg/abecasis/PedStats/index.html)

Quick validation and summary of any pair of pedigree (.ped) and
data (.dat) files.

PedCheck (http://www.genomeutwin.org/
member/cores/stat/linkage/pedcheck.html)

Quality control of pedigree files, detects marker typing
incompatibilities in pedigree data.

liftOver (http://genome.ucsc.edu/cgi-bin/
hgLiftOver)

Conversion of positions between different genome assemblies.
(Download the liftOver executable and the appropriate chain file.)

ChunkChromosome (http://genome.sph.umich.
edu/wiki/ChunkChromosome)

Splitting chromosomes into overlapping chunks.

GTOOL (http://www.well.ox.ac.uk/∼
cfreeman/software/gwas/gtool.html)

Generation of subsets of genotype data, conversion of different
formats of genotype data (e.g., pedigree file to IMPUTE format
and vice versa), merging of genotype data sets, orientation of
genotype data according to a strand file.

VCFtools (http://vcftools.sourceforge.net) Reduction of the complete reference panel to certain individuals,
e.g., from a certain ancestry group (e.g., AMR, AFR, ASN, and
EUR) or extraction of the haplotypes of a candidate region for a
targeted one step imputation.

UNIX command-line utilities Handling and modification of very large files, e.g., awk, cut, sed,
or sort.

SNP and indel imputability (http://www.unc.
edu/∼yunmli/1000G-imp)

Estimation of the ability to impute a candidate SNP or the variants
of a given region of interests based on the standard SNP set of
several genotyping arrays.

prob2plink (http://www.sph.umich.edu/csg/
yli/prob2plink.V001.tgz)

Conversion of MaCH prob+info output into PLINK dosage file.
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Most of the imputation-based analysis soft-
ware tools can handle allele dosages or
genotype probabilities, but they often require
a specific input format for genotype proba-
bilities and the marker information. The com-
mon imputation platforms are accompanied by
analyses tools that can directly use the cor-
responding and compressed output files. For
the MaCH+minimac these are MACH2QTL
(quantitative traits) or MACH2DAT (discrete
traits; see Internet Resources). The use of al-
ternative imputation software might offer more
flexibility, but it often comes with the require-
ment to unpack and/or reformat the gener-
ally huge output files. Instructions on how
to load imputation data to the different soft-
ware tools can usually be found on the de-
velopers’ Web pages, while a quick online
search might reveal powerful conversion tools
(Table 1.25.2).

Finally, in case interesting candidate re-
gions are identified and a more accurate phas-
ing and imputation of these regions is intended,
it might be helpful to repeat the imputation of
these target regions in a single step directly into
the reference panel genotypes and use more
rounds and more states (Fig. 1.25.3). Although
the resulting gain in imputation quality and
thus power compared with the two-step im-
putation might be small (Howie et al., 2012),
it could be crucial for borderline association
signals.

CONCLUSIONS
Genotype imputation has become a funda-

mental tool for genetic analyses. At no cost,
it improves the power of GWAS by increas-
ing the resolution of each single study and by
allowing direct comparison of findings. After
its initial use for imputation of HapMap data,
the approach rapidly changed to handle large
amounts of data generated with the advent of
next-generation sequencing technologies. We
can envisage future modifications that increase
accuracy at rare and structural variants and fur-
ther reduce computational time. Here, together
with a baseline tutorial, we have described the
main factors affecting imputation quality and
their impacts on the full allele frequency spec-
trum. It is clear that the choice of the reference
panel plays a fundamental role in the process;
thus, we expect that future releases of the 1000
Genomes Project, with more individuals from
diverse populations, as well as the study of
specific reference panels, will enhance the dis-
covery and dissection of genetic components
of complex diseases.
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INTERNET RESOURCES

http://www.sph.umich.edu/csg/abecasis/MaCH/
tour

Tutorial for the MACH 1.0 program for carrying
out genotype imputation.

http://genome.sph.umich.edu/wiki/MaCH FAQ
Frequently asked questions about the MaCH pro-
gram.

http://genome.sph.umich.edu/wiki/Minimac
Using the minimac program to carry out genotype
imputation.

http://genome.sph.umich.edu/wiki/Minimac:
1000 Genomes Imputation Cookbook

The 1000 Genomes Imputation Cookbook contains
detailed documentation and example scripts for the
MaCH+minimac platform.

http://genome.sph.umich.edu/wiki/IMPUTE2:
1000 Genomes Imputation Cookbook

The 1000 Genomes Imputation Cookbook contains
detailed documentation and example scripts for the
IMPUTE2 platform.
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http://www.1000genomes.org
The 1000 Genomes Project Web site.

http://hapmap.ncbi.nlm.nih.gov
The HapMap Project Web site.

http://www.unc.edu/∼yunmli/software.html
Web site for Li Group Software.

https://mathgen.stats.ox.ac.uk/genetics software/
hapgen/hapgen2.html

HAPGEN software for simulating haplotypes.


