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ABSTRACT Genotype imputation is a statistical technique that is often used to increase the power and

resolution of genetic association studies. Imputation methods work by using haplotype patterns in

a reference panel to predict unobserved genotypes in a study dataset, and a number of approaches have

been proposed for choosing subsets of reference haplotypes that will maximize accuracy in a given study

population. These panel selection strategies become harder to apply and interpret as sequencing efforts

like the 1000 Genomes Project produce larger and more diverse reference sets, which led us to develop an

alternative framework. Our approach is built around a new approximation that uses local sequence similarity

to choose a custom reference panel for each study haplotype in each region of the genome. This

approximation makes it computationally efficient to use all available reference haplotypes, which allows us

to bypass the panel selection step and to improve accuracy at low-frequency variants by capturing

unexpected allele sharing among populations. Using data from HapMap 3, we show that our framework

produces accurate results in a wide range of human populations. We also use data from the Malaria Genetic

Epidemiology Network (MalariaGEN) to provide recommendations for imputation-based studies in Africa.

We demonstrate that our approximation improves efficiency in large, sequence-based reference panels,

and we discuss general computational strategies for modern reference datasets. Genome-wide association

studies will soon be able to harness the power of thousands of reference genomes, and our work provides

a practical way for investigators to use this rich information. New methodology from this study is

implemented in the IMPUTE2 software package.
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Genotype imputation is a well-established statistical technique for

estimating unobserved genotypes in association studies (Browning

2008; Li et al. 2009; Marchini and Howie 2010). Imputation works

by copying haplotype segments from a densely genotyped reference

panel into individuals typed at a subset of the reference variants. In

this way, genotypes can be estimated and tested for association at

variants that were not assayed in a study. This approach can increase

the power of a given study (Guan and Stephens 2008; Li et al. 2010;

Marchini et al. 2007; Servin and Stephens 2007), find candidate sus-

ceptibility variants to guide fine-mapping (e.g. Liu et al. 2010), and

facilitate meta-analyses that combine studies genotyped on different

sets of variants (De Bakker et al. 2008; Zeggini and Ioannidis 2009).

Although the statistical methods for genotype imputation are now

highly developed and widely used, there are still open questions in the

field. Of these, one of the most pressing is how best to use rapidly

accumulating reference datasets from around the world to impute into

various human populations. Our goal in this paper is to develop

a framework for achieving accurate and efficient imputation with

current and future reference panels. We focus specifically on low-

frequency variation (defined here as polymorphisms with MAFs from

0.5 to 5%) because interrogating such variants is a major aim of

contemporary association studies (McCarthy et al. 2008; Stranger

et al. 2011).

In the first generation of genome-wide association studies

(GWAS), most imputation analyses used reference panels from Phase

2 of the International HapMap Project (The International HapMap

Consortium 2005), which contain a total of 210 unrelated individuals

with ancestry fromWest Africa, East Asia, and Europe. More recently,

Phase 3 of the HapMap Project (The International HapMap Consor-

tium 2010) increased the public reference set to over 1000 unrelated

individuals sampled from 11 locations, including parts of the world

Copyright © 2011 Howie et al.
doi: 10.1534/g3.111.001198
Manuscript received June 11, 2011; accepted for publication September 19, 2011
This is an open-access article distributed under the terms of the Creative
Commons Attribution Unported License (http://creativecommons.org/licenses/
by/3.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Supporting information is available online at http://www.g3journal.org/lookup/
suppl/doi:10.1534/g3.111.001198/-/DC1
1Corresponding authors: 920 E. 58th Street, #409, Chicago, IL 60637. E-mail:
bhowie@uchicago.edu; and 1 South Parks Road, Oxford OX1 3TG, UK.
E-mail: marchini@stats.ox.ac.uk

Volume 1 | November 2011 | 457

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
3
jo

u
rn

a
l/a

rtic
le

/1
/6

/4
5
7
/5

9
8
6
4
6
9
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001198/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001198/-/DC1
mailto:bhowie@uchicago.edu
mailto:marchini@stats.ox.ac.uk


that were poorly represented by HapMap 2. The 1000 Genomes Pro-

ject (The 1000 Genomes Project Consortium 2010) is currently

extending this resource by applying whole-genome shotgun sequenc-

ing to an even larger number of individuals (�2500) sampled from

a finer geographic grid (�25 separate locations). Direct sequencing

can identify variants not represented on the genotyping arrays that

were used in the HapMap Project, so this reference set will include

many more polymorphic sites than did previous imputation reference

panels, with most of the new variants occurring at low population

frequencies. As high-throughput genotyping and sequencing technol-

ogies continue to mature and decrease in cost, the worldwide collec-

tion of reference data will continue to grow.

There are numerous approaches for building imputation reference

panels from publicly available resources. Many published GWAS

simply used the HapMap 2 panel that most closely matched the

ancestry of the study population; e.g. CEU for European populations

and CHB+JPT for East Asian populations. This “best match” strategy

produced useful results in several studies, but it can yield suboptimal

accuracy with more diverse reference collections (The International

HapMap Consortium 2010) or in studies with no clear reference

matches (Huang et al. 2009a). A simple alternative is to use a “cosmo-

politan” reference set that includes all available haplotypes, each of

which is assigned an equal chance of being copied a priori. This

approach produces relatively accurate results in a variety of human

populations and has therefore been proposed as a good fallback choice

when the optimal panel composition is unclear (Guan and Stephens

2008; Huang et al. 2009a; Li et al. 2010). Another class of methods

tries to maximize accuracy by weighting reference panels through

cross-validation (Huang et al. 2009a) or ancestry estimation (Egyud

et al. 2009; Pasaniuc et al. 2010); the Pasaniuc et al. approach differs

from the others in that it uses local ancestry estimates to provide

customized reference weights for each study individual. As an alter-

native, Jostins et al. (2011) suggested balancing accuracy and compu-

tation by using reference panels that “approximately cluster” with the

study individuals on a plot of principal components (PC) that capture

genetic ancestry.

The standard way to impute genotypes in a GWAS is to apply one

of these panel selection schemes and then pass the indicated

haplotypes to an imputation method. Modern reference datasets pose

a couple of challenges to this paradigm. First, many panel selection

strategies become harder to execute or interpret as reference data are

sampled from more populations. For example, the systematic

HapMap 2 cross-validations from Huang et al. (2009a) would be more

difficult to implement with additional panels, and it is harder to make

clear demarcations on a plot of PCs [as recommended by Jostins et al.

(2011)] as more populations are included. More importantly, larger

reference panels increase the computational burden of imputation,

which may compel some investigators to use smaller panels at the

cost of imputation accuracy and association power. Methodological

developments like “pre-phasing” (which we address in the Discussion)

can alleviate this concern by speeding up imputation, but existing

methods still need substantial computing power to handle reference

sets with thousands of haplotypes.

Our work was motivated by the idea that growing reference

datasets need not make panel selection more difficult or force

tradeoffs between imputation speed and accuracy; in principle, larger

and more diverse reference collections could actually make it easier to

identify haplotype sharing with simple models, thereby making

imputation faster and more accurate. Kong et al. (2008) demonstrated

this point in a large sample from a founder population, where they

found that genotypes could be accurately phased and imputed using

simple identity-by-state (IBS) calculations to identify shared haplotype

segments. Howie et al. (2009) introduced a related idea for phasing

smaller samples from outbred populations, and we wanted to see

whether a similar approach could help impute genotypes from mod-

ern reference panels.

On the basis of our findings, we propose an imputation framework

with two basic components: (i) a cosmopolitan reference panel and (ii)

a new algorithmic approximation that maintains the accuracy of large,

diverse panels while controlling computational costs. We use

a cosmopolitan panel for its combination of simplicity and accuracy:

past studies have shown that such panels produce similar accuracy to

those chosen by more sophisticated schemes (Guan and Stephens

2008; Huang et al. 2009a; Li et al. 2010) and that they can improve

accuracy at low-frequency variants (Jostins et al. 2011; Marchini

and Howie 2010). Our approximation is based on the idea that,

within a limited genomic region, allelic consistency between study

and reference individuals can be used to quickly rule out unhelpful

reference haplotypes, thereby making imputation faster without sac-

rificing accuracy. In our framework, this approximation reduces

the full reference set to a custom panel for each study haplotype in

each part of the genome. The approximation is similar to the one

that drives the phasing algorithm of IMPUTE version 2 (IMPUTE2;

Howie et al. 2009), and we have implemented it in the same software

package.

We evaluate our framework by running extensive cross-validations

in HapMap 3 and in African data from the MalariaGEN Project

(Malaria Genomic Epidemiology Network 2008). With a more de-

tailed panel selection scheme as a benchmark, we find that our ap-

proach produces high imputation accuracy in all populations

considered, with the greatest benefits at low-frequency variants. We

also use simulated data to show that our approximation substantially

reduces the computational cost of adding haplotypes to a reference set.

We further demonstrate that an implementation of our framework is

faster and more accurate than another leading method (Beagle;

Browning and Browning 2009) when imputing from large, se-

quence-based reference panels. On the basis of our results, we discuss

general computational strategies for balancing efficiency and accuracy,

and we explain how our methodology can be combined with other

techniques for speeding up imputation.

We have tied together numerous threads from the literature to

create a coherent, efficient, and accurate framework for imputing

genotypes from modern reference datasets. Imputation-based GWAS

are beginning to harness the power of thousands of reference

genomes, and we expect that the practical solutions provided here

will help investigators make the most of these rich genetic resources.

MATERIALS AND METHODS
IMPUTE2 algorithm

We begin by describing the basic IMPUTE2 algorithm, which will be

retained in this work with some modifications. Full details of the

original algorithm are available in Howie et al. (2009). Although that

paper addressed the use of multiple reference panels typed on different

SNP sets (“Scenario B” in their terminology), for simplicity we will

focus on the situation where the reference haplotypes are all defined

on the same SNPs (“Scenario A”). Although we do not discuss Sce-

nario B in this paper, the ideas presented here are easily extended to

that setting.

IMPUTE2 uses a Markov chain Monte Carlo (MCMC) algorithm

that alternates between phasing typed SNPs and imputing untyped

SNPs. Each MCMC iteration includes two steps:
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1. Sample a new phase configuration for each study individual, using

information from other study individuals and reference panel hap-

lotypes at SNPs typed in the study.

2. Given the newly sampled haplotypes for all study individuals, treat

each haplotype as independent (conditional on the reference panel)

and analytically impute the alleles at untyped SNPs.

This MCMC algorithm is run for a number of iterations (typically

30, including 10 burn-in iterations), then the probabilities from Step 2

are averaged across iterations to produce marginal posterior genotype

probabilities at each untyped SNP.

The phasing and imputation calculations are driven by the hidden

Markov model (HMM) of Li and Stephens (2003). This model can be

used to update an individual's haplotypes by constructing them as

“imperfect mosaic” copies of a set of template haplotypes. In the

simplest case, the templates would include all reference+study haplo-

types (minus the pair being updated) in Step 1 and all reference

haplotypes in Step 2.

To reduce the computational burden of Step 1, Howie et al. (2009)

introduced an approximation that restricts each phasing update to

a set of k template haplotypes, which are chosen separately for each

individual at each iteration; the other templates are implicitly assigned

copying probabilities of zero. The k templates are chosen by comput-

ing Hamming distances between an individual's current sampled hap-

lotypes and each possible template haplotype. We refer to the k

templates with the smallest distances as “surrogate family members”

because they (ideally) share recent ancestry with the study individual.

[These haplotypes were called “informed conditioning states” in the

Howie et al. (2009) paper and early versions of the IMPUTE2 docu-

mentation. We now prefer the nomenclature used here because of the

approximation’s relationship to the “surrogate parent” phasing

method of Kong et al. (2008).]

Howie et al. (2009) used the surrogate family approximation to

speed up the phasing updates in IMPUTE2 (Step 1 of the MCMC

algorithm described above), but they used all available reference hap-

lotypes for the imputation updates (Step 2). To make computation

faster in large, ancestrally diverse reference panels, we now extend the

approximation to imputation updates.

To decide which reference haplotypes to copy at a particular point

in an IMPUTE2 run, we add an extra step between Steps 1 and 2.

After individual i has sampled a new haplotype pair in Step 1, we

calculate the Hamming distance from each of these haplotypes to each

of the reference haplotypes, using only the overlapping SNPs. Then,

separately for each of individual i 's haplotypes, we perform Step 2

(haploid imputation of untyped alleles) using only the khap nearest

reference haplotypes as templates. This procedure is not guaranteed to

identify khap unique haplotypes as multiple haplotypes near the khap
cutoff may have the same Hamming distance. In these situations, we

select a random subset of the boundary haplotypes to produce a ref-

erence panel with khap states. Intuitively, our approach corresponds to

imputing each study haplotype from a “custom” reference panel con-

taining close genealogical neighbors. We generally choose larger val-

ues for khap than for k because phasing updates require evaluation of

k2/2 HMM states per individual per SNP, whereas imputation updates

require evaluation of only khap states.

HapMap 3 cross-validation experiments

To assess the accuracy of genotype imputation from reference panels

of diverse ancestry, we performed leave-one-out cross-validations in

data from HapMap Phase 3. The HapMap 3 paper (The International

HapMap Consortium 2010) includes a number of similar compari-

sons, which use a series of carefully controlled experiments to show

how population ancestry in the reference and study data affects im-

putation accuracy. By contrast, our main goal is to validate a general

strategy for using ancestrally diverse reference data. One way to view

this distinction is that their experiments provide information about

the kinds of reference data one might want to collect to improve

imputation accuracy in a given population, whereas our experiments

illustrate a strategy for getting good results from whichever data are

available. To the extent that we consider how reference panels of

different ancestries affect imputation accuracy, the main point is to

guide intuition about why the overall strategy works.

All of our experiments were based on phased haplotypes from

HapMap 3, release 2, in NCBI Build 36 coordinates. HapMap 3 in-

cludes samples from 11 analysis panels, which are listed in Table 1.

After some minor processing (which is described in the Table 1 legend),

there was a total of 1011 unrelated individuals from 10 panels in this

dataset. Recent work on the HapMap data has revealed a small number

of close relatives among these putative unrelateds (Pemberton et al.

2010). We conducted the analyses for this study before those relation-

ships were revealed, but we do not anticipate that removing the related

individuals would have a major effect on our results or conclusions.

The HapMap 3 samples were genotyped on both the Affymetrix

SNP 6.0 platform and the Illumina 1M Human platform. For our

cross-validations, we masked the SNPs not typed on the Affymetrix

platform in one individual at a time, then imputed the masked

genotypes from the haplotypes of other HapMap 3 individuals; details

about which individuals were included in the reference panel are

provided below. We also masked the phase of the observed genotypes

in the individual being imputed. For these experiments, we used all of

the HapMap 3 SNPs on chromosome 20, which led to 16,606 non-

Affymetrix SNPs being imputed from 19,650 Affymetrix SNPs. We

also repeated the experiments after reversing the roles of the SNP

platforms, with results shown in File S3.

Once every individual in a panel had been masked and imputed,

we assessed accuracy at each SNP as the squared Pearson correlation

(R2) between the masked genotypes, which take values in {0,1,2}, and

the imputed allele dosages (also known as posterior mean genotypes),

which take values in [0,2]. The allele dosage is defined for each geno-

type G as
P2

x¼0PrðG ¼ xÞ � x, where Pr (G = x) is a marginal pos-

terior probability generated by an imputation method. Once the

correlation R2 had been measured for every masked SNP, we calcu-

lated the mean R2 across SNPs and reported this as a scalar summary

of imputation accuracy in that cross-validation experiment. In rare

situations, the correlation at a SNP was undefined because the impu-

tation produced identical allele dosages for all individuals. In these

cases, we set R2 = 0 to capture the intuition that there would be no

power to detect an effect at such SNPs. We note that the HapMap 3

samples were phased together in continental groups, which implies

that the absolute accuracies in this experiment may be slightly opti-

mistic. However, our main focus is on the relative accuracy of different

reference panel configurations, so the non-independence of cross-

validation samples is not a meaningful shortcoming.

We repeated this experiment for each of the 10 HapMap 3 panels

in Table 1 under various conditions. To understand the benefits and

drawbacks of different reference panel compositions, we sequentially

added HapMap 3 panels to the reference set and re-imputed after each

addition. Adding the panels in all possible orders is combinatorically

daunting and of dubious interpretive value, and we preferred to have

an objective ordering, so we added panels in order of increasing

pairwise FST to the cross-validation panel. We calculated FST between

each pair of panels as the average across all HapMap 3 SNPs on the
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autosomes. The panel orderings induced by this criterion are shown in

File S1. We also considered different orderings – e.g. adding panels as

dictated by a greedy algorithm based on cross-validation accuracy –

but these did not change our qualitative results (data not shown).

Up to this point, we have described 10 separate cross-validation

experiments for each HapMap 3 panel: a cross-validation within the

panel of interest, followed by 9 additional experiments with succes-

sively more inclusive reference panels. We also wanted to assess the

sensitivity of the inference to the khap parameter in IMPUTE2, so we

repeated each of these experiments across a grid of khap values: 15, 30,

60, 90, 120, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000,

1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, and 2020 (which

is the total number of HapMap 3 haplotypes, 2022, minus the two

haplotypes of the masked individual). By definition, khap cannot ex-

ceed the number of haplotypes in the reference panel, so each refer-

ence configuration used only the values that were consistent with its

panel size. Each configuration also used a special khap value that was

set to the total number of reference haplotypes in that experiment,

since this value seldom fell on a grid point.

We performed these experiments with IMPUTE version 2.1.2

under the following settings: k = 80 (tuning parameter for phasing

updates), iter = 30 (total number of MCMC iterations), burnin = 10

(number of iter to discard as burn-in), hap_spec_fam (flag to make the

program choose a custom reference panel for each study haplotype),

and Ne = 20000. The Ne parameter represents the effective size of the

population being analyzed, and it is used to scale the recombination

rates in the imputation HMM. It may seem odd that we use a single

Ne value in populations that clearly have different effective sizes, but

our pilot experiments showed that IMPUTE2 is largely insensitive to

this parameter and that 20000 is a good universal value (data not

shown). The approximations underlying the k and khap parameters

are modeled on local genealogies with limited recombination, so we

split chromosome 20 into nonoverlapping 5-Mb chunks for analysis,

with a 250-kb buffer region on each side to prevent edge effects (this is

a default setting in IMPUTE2).

It is useful to run a separate imputation method as an external

benchmark. We chose to compare against Beagle (Browning and

Browning 2009) because past results showed that it could be compet-

itive on a dataset of this scale (Browning and Browning 2009; Howie

et al. 2009; Jostins et al. 2011). Beagle has already been compared with

IMPUTE2 in a large, well-matched reference panel of European an-

cestry (Howie et al. 2009), so to simplify the presentation we applied it

only to the cosmopolitan HapMap 3 reference panels. We used Beagle

version 3.0.2 with default settings for all experiments presented here.

To facilitate parallel computation, we ran Beagle on the same 5-Mb

chromosome chunks (with buffers) that were used by IMPUTE2.

We also attempted to use a “coalescent-based” method for choos-

ing custom reference panels (Pasaniuc et al. 2010), but we could not

get it to produce accurate results on our data; see File S6 for details.

We omitted another leading imputation method, MaCH (Li et al.

2010), because it was not computationally feasible with the full Hap-

Map 3 panel at the time of these experiments. Both IMPUTE2 and

MaCH have recently been made more efficient through “pre-phasing”

of GWAS genotypes (the MaCH implementation is called “mini-

mac”). While we did not evaluate these approaches here, we have

found that pre-phasing is complementary to our khap approximation

in preliminary experiments, as we explain in the Discussion. All else

being equal, we would expect minimac to achieve similar accuracy to

IMPUTE2 since both methods are based on the Li and Stephens

(2003) model of DNA sequence variation, although further work

may be needed to compare these methods in various contexts.

MalariaGEN cross-validation experiments

To evaluate strategies for reference panel construction in African

populations, we performed cross-validation experiments in genotypes

that were kindly provided by the Malaria Genetic Epidemiology

Network (MalariaGEN; Malaria Genomic Epidemiology Network

2008). The data we used were collected by MalariaGEN investigators

for genome-wide association studies of human resistance or suscepti-

bility to severe malaria. The individuals in these datasets were

recruited at medical centers in the Gambia and Ghana; we henceforth

refer to these samples by the tags GMB and GHN, respectively, with

the understanding that they may not represent the full spectrum of

genetic diversity in the countries of origin. Further details about the

study recruitment are available at www.malariagen.net.

Each dataset consists of trios (658 from GMB and 608 from GHN)

that were ascertained via proband children diagnosed with malaria in

hospitals. The members of each trio were genotyped on the Illumina

650Y array, with the genotypes subjected to standard quality control

procedures and phased by Beagle with trio information. MalariaGEN

n Table 1 HapMap 3 panels used for cross-validation

Panel ID Panel Description
Number of Unrelated

Individualsa

ASW African ancestry in Southwest USA 63
CEU Utah residents with Northern and Western European

ancestry from the CEPH collection
117

CHBb Han Chinese in Beijing, China 84
CHD Chinese in Metropolitan Denver, Colorado 85
GIH Gujarati Indians in Houston, Texas 88
JPTb Japanese in Tokyo, Japan 86
LWK Luhya in Webuye, Kenya 90
MKK Maasai in Kinyawa, Kenya 143
MXL Mexican ancestry in Los Angeles, California 52
TSI Toscani in Italia 88
YRI Yoruba in Ibadan, Nigeria 115

All panels 1011
a
In panels that included trios (ASW, CEU, MXL, MKK, and YRI), we retained the trio parents as “unrelated” individuals. In panels that included parent-child duos
(ASW, CEU, MXL, and YRI), we retained the observed duo parent and the inferred transmitted haplotype from the unobserved duo parent, yielding three
“unrelated” haplotypes per duo; we then paired the inferred transmitted haplotypes at random to create diploid pseudo-individuals.

b
We combined the CHB and JPT panels into a single CHB+JPT panel with 170 individuals for all of the analyses in this paper.
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carried out the genotyping and data processing, then provided us with

inferred haplotypes for the trio parents (1316 GMB individuals and

1216 GHN individuals) in NCBI Build 36 coordinates.

As in the HapMap 3 comparisons, our main goal in designing

a cross-validation experiment was to provide guidance on how to use

existing and future imputation reference panels. We chose to focus on

the GMB panel because genotype imputation has previously been

evaluated in a Gambian GWAS (Jallow et al. 2009) and because the

1000 Genomes Project is planning to sequence a set of individuals

from the Gambia.

To mimic the planned 1000 Genomes Gambian dataset, we

randomly allocated 100 GMB individuals to a reference panel. We

also formed a reference panel from 100 randomly chosen GHN

individuals. Ghana is located between Nigeria (the source of the

HapMap YRI panel) and the Gambia on the Atlantic coast of Africa,

so this panel contains reference haplotypes sampled nearer to the

location of interest than those in the HapMap data.

We used the remaining 1216 GMB individuals as a validation set to

model imputation into a Gambian GWAS. We imputed the GMB

genotypes from a series of reference panels: all 2022 HapMap 3 (HM3)

haplotypes; 200 GMB haplotypes (GMB); 200 GMB haplotypes plus

200 GHN haplotypes (GMB+GHN); and a combined set containing all

2422 GMB, GHN, and HM3 haplotypes (GMB+GHN+HM3).

For each reference panel, we masked and imputed every 25th SNP

in the GMB validation set, then repeated this analysis in a sliding

window so that every genotyped SNP was imputed exactly once. To

mimic a GWAS of unrelated individuals, we treated the nonmasked

genotypes in the GMB validation set as unphased. We masked and

imputed all available Illumina 650Y SNPs on chromosomes 20 and 11

(we added chromosome 11 to raise the counts of low-frequency SNPs,

which are underrepresented in this dataset), except for those that were

not typed in or had allele conflicts with HapMap 3, yielding a total of

40,300 SNPs for imputation. As in the HapMap 3 cross-validations, we

split the chromosomes into non-overlapping 5-Mb regions to speed up

the analysis and support IMPUTE2’s computational approximations.

We also wanted to compare against Beagle on reference panels of

primarily African ancestry, so we generated another reference panel

called “HM3.afr” that included the HapMap3 haplotypes from the

ASW, LWK, MKK, and YRI panels (822 haplotypes). We then used

IMPUTE2 and Beagle to impute genotypes in the 1216 Gambians

based on two reference panels: GMB (200 haplotypes) and GMB

+GHN+HM3.afr (1222 haplotypes). We masked the SNPs as de-

scribed above, except that this time we masked every 13th SNP so

that Beagle would treat the data as it would a standard GWAS anal-

ysis. (Beagle invokes a different model-fitting strategy when fewer than

7% of the genotypes are missing from the study dataset.)

Computational benchmarking

To produce computational benchmarks in a realistic imputation

scenario, we simulated data that model the large, ancestrally diverse

reference panel that is being generated by the 1000 Genomes Project.

Our simulations were based on the sfs_code program (Hernandez

2008), which uses a pre-specified demographic model (typically

obtained from unbiased site frequency spectra) and DNA sequence

annotations to drive a forward simulation that models the effects of

genetic drift and natural selection on a population of chromosomes.

Ryan Hernandez kindly provided us with the output of an sfs_code

run that used a joint demographic model of three HapMap panels

(CEU, CHB, and YRI) on chromosome 17p12 (a 4.7-Mb region). At

the end of the forward simulation, the program sampled 10,000 hap-

lotypes from each of the three populations. These haplotypes do not

capture the full demographic complexity of the 1000 Genomes sample

set, but the simulation does provide realistic DNA sequence data for

three major sources of human genetic variation.

Given these simulated sequences, we sought to create imputation

reference panels that would capture features of the anticipated 1000

Genomes panels. We mirrored the overall size of the 1000 Genomes

reference set by sampling a panel of 1600 chromosomes from each

population, which yielded a total of 4800 chromosomes worldwide,

just under the 1000 Genomes target of 5000. The genome-wide

sequencing module of the 1000 Genomes Project is based on a low-

coverage design, so a certain fraction of low-frequency variants will be

missed in the real data. To mimic this ascertainment process, we used

power calculations from the 1000 Genomes pilot paper (The 1000

Genomes Project Consortium 2010) to determine the chances of

discovering SNPs with different numbers of variant allele copies. The

discovery probabilities are shown in Table S2; we applied them sep-

arately in each set of 1600 reference chromosomes, under the assump-

tion that true SNPs are discovered (or not) independently of each

other. Conditional on a SNP being discovered in any panel, we as-

sumed it was genotyped perfectly in all three panels. This is a reason-

able assumption for a benchmarking experiment because sporadic

genotyping errors are unlikely to have a noticeable effect on a pro-

gram’s computational burden.

Having simulated a reference panel, we then simulated a GWAS

dataset as the target for imputation. Of the 8400 CEU-like haplotypes

from sfs_code that were not included in the reference set, we selected

2000 and randomly paired them to create a GWAS sample of 1000

individuals. We thinned this dataset to the approximate SNP density

and MAF distribution observed in real Affymetrix 500k data on a set

of British controls [the 1958 Birth Cohort of the Wellcome Trust Case

Control Consortium (2007)].

We imputed our simulated GWAS dataset from two different

reference panels: a “Cosmopolitan” panel containing the full set of

4800 haplotypes and a “European” panel containing 1000 haplotypes

sampled from the 1600 CEU-like reference chromosomes. The first

panel models the worldwide 1000 Genomes set, whereas the second

panel models a single cluster of related populations (roughly speaking,

the 1000 Genomes samples will be divided among five such clusters

containing 500 individuals each). By imputing from both reference

panels, we can see how reference panel size and diversity affect the

computational loads of different imputation methods.

To provide a simple benchmark, we selected an imputation region

that contained exactly 10,000 polymorphic sites in the European

panel of 1000 haplotypes; this yielded the 1.9-Mb interval

[11200000,13096366] on chromosome 17. This region contains

a larger number of SNPs in the Cosmopolitan reference panel, but

we restricted that panel to the same 10,000 SNPs to simplify the

comparison. In practice, GWAS investigators may perform similar

filtering on Cosmopolitan reference panels to remove variants that are

underpowered in a particular study.

For each 10,000-SNP reference panel, we imputed the 1,000

GWAS individuals using IMPUTE v2.1.2 and Beagle v3.0.2. We used

the default settings for both methods (for IMPUTE2, the default khap
setting is 500), and we also ran IMPUTE2 with khap set to include all

available reference haplotypes. We recorded the single-processor run-

ning times and memory requirements for each run.

RESULTS
We performed a series of experiments to evaluate our proposed

imputation framework, which combines a cosmopolitan reference
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panel with a new approximation for speeding up imputation from

large reference datasets.

We implemented our approximation within IMPUTE2, which uses

an iterative algorithm to impute untyped variants in GWAS datasets.

Whereas the original algorithm imputes genotypes from the full set of

reference haplotypes, the new approximation imputes each study

haplotype from a custom subset of reference haplotypes. (Study

genotypes seldom come with known phase, but the haplotypes can

be inferred as part of the algorithm.) Each of these custom reference

panels includes the khap reference haplotypes that have the fewest allele

differences with a study haplotype at overlapping SNPs, where khap is

a user-defined parameter that controls the computational cost of im-

putation. If this method is applied over a limited genomic region (e.g.

a few million base pairs rather than a whole chromosome), we expect

the khap reference haplotypes to be enriched for those that share recent

common ancestry with the study haplotype of interest. We refer to

these haplotypes as “surrogate family members” because, like real fam-

ily members, they may share segments of nearly identical DNA that can

be used for imputation. We explore the relationship between khap and

accuracy in the results that follow, and we provide practical suggestions

for applying this approximation in the Discussion.

HapMap 3 cross-validation experiments

We first tested our proposed imputation framework on a chromosome

20 dataset from HapMap 3. This dataset includes hundreds of

haplotypes from each of several locations around the world, making

it a good qualitative model for future reference panels like those being

generated by the 1000 Genomes Project. The HapMap 3 panels used

in this study are described in Table 1; note that we combined the CHB

and JPT panels for this analysis.

Within each of the 10 panels, we masked a set of SNPs in one

individual at a time and used IMPUTE2 to infer the hidden genotypes.

We repeated this procedure across a range of khap values and with

various reference panels, which were creating by cumulatively adding

HapMap 3 panels in the order dictated by genome-wide average FST.
One way to think of this procedure is to imagine building a composite

reference panel for a population of interest: we start with a popula-

tion-specific reference panel, and we successively add more-diverged

panels to see if they will help (or possibly hurt) the imputation accu-

racy. These composite panels capture aspects of the Huang et al.

(2009a) cross-validation strategy for choosing reference sets, and they

provide population-label-informed benchmarks against which to

compare our label-free way of using reference data.

Selected results for ASW and TSI: In this section, we present results

for the ASW (African American) and TSI (Italian) panels, which

exhibit general trends and unexpected outcomes from our HapMap 3

cross-validations. Figure 1 shows how imputation accuracy depends

on reference panel composition and the number of surrogate family

haplotypes chosen from each composite panel (khap). We constructed

these plots in ways that highlight interesting features, and we re-

stricted the results to SNPs with MAF , 5% in the target panel.

We provide analogous plots for all HapMap 3 target panels in File S1.

The x-axis shows the value of the khap parameter, and the y-axis

shows the imputation accuracy, which is measured as the mean SNP-

wise R2 between true and imputed allele dosages (posterior mean

genotypes) for each cross-validation experiment. The computational

cost of imputation is roughly proportional to khap. Applying different

khap settings to a single reference panel generates a curve, and each

curve represents a different reference panel. (For further details of the

R2 distributions underlying the mean values at khap = 500, see File S2.)

Each individual was imputed initially from haplotypes in the same

panel, then from reference sets that cumulatively added panels in the

order shown in the plot legends, reading from bottom to top. The

black curves represent our suggested strategy of using a cosmopolitan

reference panel.

One observation from Figure 1 is that the full set of reference

haplotypes generated some of the highest accuracy levels in this exper-

iment – the black curves almost always lie above the other curves. As

we show in Figure 2 and File S3, this holds true across HapMap 3 target

panels, genotyping arrays, and SNP frequency classes. Another salient

feature of Figure 1 is that the curves plateau quickly with increasing

values of khap (moving from left to right within each plot). This shows

that our surrogate family approximation can decrease computing time

without losing accuracy. For example, the runs that selected 500 hap-

lotypes from the full HapMap 3 panel (khap ¼ 500; black curves)

achieved similar accuracy to the runs that didn't use this approximation

(khap = 2020), but the first set of runs was about four times faster.

Figure 1 also shows how imputation accuracy improved as partic-

ular panels were added to the reference set. The trends for the ASW

panel (Figure 1A) are basically as expected: each successive African

panel (MKK, LWK, and YRI) improved the accuracy incrementally,

and the panels that capture components of European ancestry (MXL,

GIH, TSI, and CEU) collectively raised the accuracy to its maximum

value for this experiment. The east Asian panels (CHB+JPT and

CHD) did not increase imputation accuracy any further, but nor

did they reduce it; this demonstrates the ability of the method to

ignore unhelpful reference haplotypes.

The results for the TSI panel (Figure 1B) are more surprising. As we

would expect, accuracy improved with the addition of each panel that

contains recent European ancestry (CEU and MEX). The GIH panel

also increased the accuracy, which is reasonable given the relatively

modest genetic divergence between this panel and TSI. Perhaps unex-

pectedly, the maximum imputation accuracy in TSI was not achieved

until a set of African haplotypes (MKK) was added to the reference

panel. This improvement was also observed when adding MKK hap-

lotypes to the reference set for CEU imputation (File S1). Supplementary

results from the HapMap 3 paper (The International HapMap Consor-

tium 2010) show that the MKK panel has an admixture component that

could reflect an ancient migration from Europe or the Middle East into

eastern Africa, which might explain our results, although we observed

a similar increase in accuracy after replacing the MKK panel with the

remaining African panels (data not shown). Regardless of the underly-

ing explanation, these results highlight the complexity of human de-

mographic history, which is one motivation for frameworks like ours

that use inclusive reference panels without population labels.

Notably, the common SNPs did not follow all of the patterns seen

here for low-frequency SNPs (see File S3.) A cosmopolitan reference

panel produced high imputation accuracy in both frequency classes, but

the accuracy at common SNPs came almost entirely from the most

closely related panels. For example, the maximum accuracy at common

SNPs in TSI was attained with a TSI+CEU reference panel, and the

addition of other panels neither increased nor decreased the accuracy.

Hence, our results confirm that cosmopolitan reference panels are be-

nign for imputing common variants, while showing that such panels

can be positively helpful for imputing low-frequency variants. This

difference can be understood in terms of the representation of

the minor allele in the reference panel: common alleles are usually

well-represented in population-matched panels of nontrivial size,

whereas low-frequency alleles may be present in only a few copies or

absent entirely, depending on allele frequency, SNP ascertainment

scheme, and the number of reference haplotypes. Additional copies
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of these alleles (and their associated haplotype backgrounds) may some-

times be found in other populations, which explain why a cosmopolitan

reference panel can improve imputation accuracy at low-frequency

variants. These statements are supported by the results in File S2.

High-level results for all HapMap 3 panels: We now extend the

results from Figure 1 to the full set of HapMap 3 panels and a compet-

ing imputation method. We chose to compare against Beagle (Brown-

ing and Browning 2009) because past studies showed that it could

achieve competitive speed and accuracy with large reference panels

(Browning and Browning 2009; Howie et al. 2009; Jostins et al. 2011).

The high-level results of our cross-validation experiment are

shown in Figure 2. As before, the solid black curves depict IMPUTE2

results with our suggested strategy of using a cosmopolitan reference

panel, and different points on the x-axis correspond to different values

of khap. Here, the multicolored curves from Figure 1 (which represent

imputation from subsets of the HapMap 3 haplotypes) are replaced

with orange curves. The identities of the orange curves are omitted for

plotting clarity, but full details are provided in File S1. We imputed

and evaluated 1,523-2,364 low-frequency SNPs per HapMap 3 panel,

with the exact numbers provided in Table S1. The black dashed lines

in Figure 2 show the results of using Beagle with the full HapMap 3

reference panel; these lines are flat because Beagle does not have an

analog of the khap parameter.

As in Figure 1, our proposed framework always produced near-

maximal accuracy. Also as before, the solid black curves typically

reach their highest accuracy values at small values of khap. Figure 2

shows that IMPUTE2 achieved higher accuracy than Beagle in every

panel, except at the lowest khap settings. In some target panels, the

difference between methods was small; for example, IMPUTE2 was

only slightly more accurate than Beagle in the CEU and TSI panels,

which is consistent with previous results comparing these methods on

a European dataset (Howie et al. 2009). [We note that Jostins et al.

(2011) reached the contradictory conclusion that Beagle is more ac-

curate than IMPUTE2 when imputing Europeans from diverse refer-

ence panels. We believe that their conclusion was driven by spurious

IMPUTE2 results, as we explain in File S4.] On the other hand,

IMPUTE2 was more accurate by a large margin in the African panels

(YRI, LWK, and MKK). These trends cannot be attributed to the fact

that we are running Beagle with a stratified reference panel when the

method is not designed for that situation: IMPUTE2 also produced

higher accuracy when we used reference panels that were well-

matched to the target panels, both in the current HapMap 3 frame-

work (data not shown) and in our MalariaGEN analyses (results

below). We further note that the Beagle results shown here are better

than the ones we obtained with smaller, less diverse HapMap 3 ref-

erence sets (data not shown). We tried running Beagle with larger

values of its niterations and nsamples parameters, but there was es-

sentially no change in these results (data not shown). We speculate on

the mechanistic reasons for the accuracy differences between IM-

PUTE2 and Beagle in the Discussion.

A subtle feature of Figure 2 is that not all of the IMPUTE2 curves

are monotonically increasing with khap: some of the black curves peak

at intermediate values of this parameter, then steadily decay as khap
grows to its maximum value of 2,020. This trend is clearest in the YRI

panel, but it is also observable in other panels. There should be few

problems of statistical computation (e.g. failure of the MCMC algo-

rithm to converge) in our leave-one-out experiments, so we assume

that this result reflects a real feature of the method. Our interpretation

is that restricting the reference set via khap actually imposes a more

appropriate prior distribution on the haplotype copying probabilities

when there is significant population structure in the panel. Tuning this

prior by changing khap has only a small effect on mean accuracy,

which implies that our imputation method is largely robust to strat-

ified reference data even without the surrogate family approximation.

At the same time, this result implies that choosing custom reference

panels may have benefits beyond just speeding up the computation,

which is consistent with the conclusions of Pasaniuc et al. (2010).

It is not straightforward to compare these results to those of Huang

et al. (2009a) because our experimental design is somewhat different.

Nonetheless, we believe that our basic conclusions align with theirs.

For example, we observed that the imputation accuracy with a world-

wide reference panel (khap = 2020) was never much lower than the

accuracy with the optimal khap (peaks of black curves in Figure 2), and

the Huang et al. (2009a) results show a similar trend for cosmopolitan

vs. optimal mixtures of HapMap 2 panels. In this sense, our khap
approximation can be viewed as a flexible and automatic way of

implementing the Huang et al. (2009a) panel selection approach with

an arbitrarily large number of reference populations.

MalariaGEN cross-validation experiments

To assess whether our imputation strategy would yield similar benefits

in African populations outside the HapMap 3 set, we performed

additional cross-validations in a Gambian dataset from the Malaria

Genomic Epidemiology Network (MalariaGEN; Malaria Genomic Ep-

idemiology Network 2008). Previous work on imputing Gambians in

Figure 1 Imputation accuracy at low-frequency
SNPs in HapMap 3 cross-validations in ASW
and TSI, as a function of reference panel
composition and khap value. These plots show
the imputation accuracy of IMPUTE2 in (A) the
ASW panel and (B) the TSI panel. The accu-
racy of each experiment is plotted on the y-
axis as the mean R2 across all SNPs with MAF
, 5% in the cross-validation panel (identified
by the gray box in each plot). The x-axis
shows the khap parameter, which scales line-
arly with the computational burden of impu-
tation updates in IMPUTE2. Each curve
represents a different reference panel, with
panels added cumulatively in the order
shown in the legends, reading from bottom
to top. Similar plots for other HapMap 3 tar-
get panels can be found in File S1.
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a disease study found that the HapMap 2 YRI panel produced weaker

association signals than did a Gambia-specific panel at the strongly

selected beta-globin gene (Jallow et al. 2009). Here, we extend that

work to examine imputation accuracy in larger reference panels and

a broader variety of loci. We also rephrase the question to ask whether

haplotypes sampled outside The Gambia can improve accuracy when

a dedicated Gambian panel is available.

To answer these questions, we masked and imputed 40,300 SNPs

from the Illumina 650Y array in a set of 1216 Gambian individuals

from MalariaGEN. We repeated the analysis for each of four reference

panels: all 2022 HapMap 3 haplotypes (HM3); 200 Gambian

haplotypes (GMB); 200 Gambian haplotypes plus 200 Ghanaian

haplotypes (GMB+GHN); and all of the aforementioned panels

combined (GMB+GHN+HM3; 2422 haplotypes). For each imputation

Figure 2 Imputation accuracy at low-frequency SNPs in HapMap 3 cross-validations, as a function of target panel, reference panel composition,
khap value, and imputation method. These plots show the imputation accuracy of IMPUTE2 and Beagle in various cross-validation experiments.
The accuracy of each experiment is plotted on the y-axis as the mean R2 across all SNPs with MAF, 5% in the cross-validation panel (identified by
the gray box in each plot). The x-axis shows the khap parameter, which scales linearly with the computational burden of imputation updates in
IMPUTE2. The solid black curves show how R2 varies with khap when using IMPUTE2 with a reference panel containing the full set of 2020 HapMap
3 haplotypes; the dashed black lines show the accuracy of Beagle with this reference panel. IMPUTE2 was also applied to subpanels of the full
HapMap 3 panel, with results shown as orange curves. Similar plots for other observed SNP sets and imputed SNP MAFs can be found in File S3.
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run, we used IMPUTE2 with khap = 500. In reference panels with fewer

than 500 haplotypes, we reduced khap to the number of available hap-

lotypes. The results are shown in Figure 3, which breaks down the

imputation accuracy by the minor allele frequencies of the SNPs in

the 1216 imputed Gambians.

Figure 3A shows the results for all imputed SNPs, whereas Figure

3B is restricted to SNPs with MAF , 10%. We omitted SNPs with

MAF , 1% from both plots as there were too few of these to provide

reliable measurements. Like previous authors (Jallow et al. 2009), we

found that a Gambia-specific reference set outperformed a HapMap

set that did not include Gambians: the GMB panel (blue curves)

produced higher overall accuracy than did the HM3 panel (red

curves), despite the fact that there were�800 chromosomes of African

ancestry in the HM3 set and only 200 chromosomes in the GMB set.

This suggests that historical divergence between the populations in the

HapMap 3 and Gambian panels makes HapMap 3 less accurate as an

imputation resource.

The HapMap 3 panel is still useful, however. Across the allele

frequency spectrum, the difference in mean R2 between the GMB and

HM3 panels was never larger than 2.5%, and the difference was small-

est at low-frequency SNPs. In fact, the HM3 panel was more accurate

than the GMB panel for SNPs in the 1–2% and 2–3% MAF bands

(Figure 3B); this shows that an ancestrally inclusive, nonspecific ref-

erence panel can capture low-frequency alleles that are poorly repre-

sented in a Gambia-specific panel. A recent simulation study found

that association power and mean imputation R2 have a roughly linear

relationship with a slope near 1.0 (Zheng et al. 2011), which suggests

that using the HM3 panel in place of the GMB panel would cause only

a small loss of power in an imputation-based association scan. [We

note that the results from Zheng et al. (2011) appear to conflict with

those of a recent study by Huang et al. (2009b), which found that

power drops quickly with mean R2. We believe that the Zheng et al.

(2011) results more accurately reflect this relationship because the

mathematical model of imputation errors used by Huang et al. ignores

the correlation of imputation error across individuals, which could be

substantial, e.g. at hard-to-impute SNPs.

Figure 3 also shows that non-Gambian panels can improve impu-

tation accuracy in the presence of a Gambian panel: the orange curve

represents the addition of haplotypes from a moderately diverged

population (GHN) and the black curve represents the further addition

of a worldwide reference panel (HM3). These results support our

strategy of using cosmopolitan reference panels: regardless of which

reference data are available, the highest accuracy is achieved when

using all available haplotypes and letting the imputation method de-

cide which ones to use.

Aside from these questions of reference panel composition, we can

also ask whether the choice of imputation method matters in African

datasets. Our HapMap 3 comparisons suggest that Beagle has trouble

imputing African genotypes, and we wanted to see if this conclusion

would hold up in the MalariaGEN data. To address this, we used

Beagle to impute the Gambian validation set using two different

reference panels: (i) the GMB panel and (ii) a composite reference set

containing the GMB panel, the GHN panel, and the HM3 panels with

majority African ancestry (ASW, LWK, MKK, and YRI). We decided

to reduce the HM3 set to these panels (which we label “HM3.afr”) in

case Beagle’s difficulties in the previous comparisons were caused by

the inclusion of non-African haplotypes in the reference panel. For

consistency, we also imputed from the GMB+GHN+HM3.afr panel

with IMPUTE2.

The results of this comparison are shown in Figure 4. Results based

on the GMB panel are shown in blue, while results based on the GMB

+GHN+HM3.afr panel are shown in gray. Accuracy curves for IM-

PUTE2 and Beagle are drawn with solid and dashed lines, respectively.

In concurrence with our previous results on African populations, we

found that Beagle was much less accurate than IMPUTE2 when pro-

vided with the same reference panel: for each color, the solid line in

Figure 4 is consistently above the dashed line. In fact, IMPUTE2

achieved higher accuracy when imputing from 200 GMB haplotypes

(solid blue line) than Beagle did when imputing from 1222 African

haplotypes (dashed gray line), of which the 200 GMB were a subset.

The difference between methods was largest at low-frequency SNPs,

but there was a substantial gap across the entire frequency spectrum.

We believe that Beagle's difficulties in imputing African datasets

arise from properties of its clustering model. It is possible that Beagle

could produce better results with different settings, although we tried

varying both the model-fitting parameters (niterations, nsamples) and

the model-building parameters (scale, shift) without observing a mean-

ingful change in accuracy (data not shown).

Computational benchmarking

To provide computational benchmarks for the imputation methods

used in this study, we simulated two reference panels: one containing

4800 haplotypes modeled on the ancestrally diverse reference dataset

that is being produced by the 1000 Genomes Project, and another

Figure 3 Imputation accuracy in Gambian
validation set as a function of reference panel
composition and minor allele frequency.
These plots show the accuracy obtained
when imputing masked SNPs in 1216 Gam-
bian individuals from the MalariaGEN dataset
using IMPUTE2 with khap = 500. Each refer-
ence panel is represented by a different
color, and the results are shown for (A) all
SNPs and (B) SNPs with MAF , 10% in the
Gambian validation set. The results are
binned by MAF, with 5% bins in (A) and 1%
bins in (B). Each point on a curve is located in
the middle of the corresponding MAF bin.
The following reference panel codes are used
in the legend: GMB (Gambia, 200 haplo-
types); GHN (Ghana, 200 haplotypes); and
HM3 (HapMap 3, 2022 haplotypes).
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containing 1000 haplotypes modeled on the European component of

the 1000 Genomes set. We restricted the panels to a shared set of

10,000 SNPs spanning 1.9 Mb of sequence, and we imputed from both

panels into a simulated GWAS of 1000 European individuals. The

GWAS samples were provided with genotypes at SNPs that mirror the

properties of the Affymetrix 500k platform; there were 337 such SNPs

in the simulated region.

We imputed the simulated GWAS dataset from each reference

panel using IMPUTE2 and Beagle. We ran Beagle on the same

(default) settings as in the cross-validations, and we ran IMPUTE2 on

two settings for each panel: khap = 500 and khap = N, where N is the

number of haplotypes in the reference panel. As in the cross-validations,

we fixed the IMPUTE2 phasing parameter at k = 80. Table 2 shows

the single-processor running times and random-access memory

(RAM) requirements of each program. We obtained these bench-

marks from a single computer with 148 GB of RAM and a 2.4 GHz

Intel Xeon processor.

Table 2 illustrates the computational benefits of our surrogate family

approximation. In the Cosmopolitan reference panel with 4800 haplo-

types, reducing khap from 4800 to 500 decreased IMPUTE2’s running

time by a factor of 4.8. Another way of viewing this is to notice that

with khap fixed at 500, IMPUTE2's running time increased by only

a factor of 1.4 when moving from a panel with 1000 haplotypes to

a panel with 4800 haplotypes. By comparison, Beagle's running time

increased by a factor of 9 with the same panels. In this setting, fixing

khap fixes the cost of the imputation calculations used by IMPUTE2, so

the 1.4-fold increase in running time at khap = 500 reflects the additional

time needed to evaluate a larger number of haplotypes when choosing

which 500 to use for imputation. Preliminary experiments suggest that

this evaluation step could be shortened by ignoring divergent haplo-

types after the first few iterations of the algorithm (data not shown),

which would make the overall running time almost independent of the

number of reference haplotypes for fixed khap.
On these kinds of imputation datasets, IMPUTE2 shows clear

computational advantages over Beagle. Even when using a large,

ancestrally diverse reference panel, IMPUTE2 finished in less time on

default settings (127 min with khap = 500) than it took Beagle to

impute from an ancestrally homogeneous panel with almost five times

fewer haplotypes (655 min). IMPUTE2 also required much less RAM:

for each reference panel, Beagle needed about 20 times more memory.

These results, in combination with our cross-validation results, con-

firm that IMPUTE2 is both more accurate and more efficient than

Beagle in the kinds of imputation datasets that are beginning to drive

the field. As with any sophisticated inference method, there are ways

to tweak Beagle's settings to achieve better speed, but all of them

would reduce imputation accuracy. (Beagle's memory footprint can

also be reduced, at the cost of even longer running times.) We explore

some of the factors underlying these computational differences, and

the implications they hold for future methods development, in the

Discussion.

For fixed k and khap, IMPUTE2’s computational burden scales

linearly with the number of study individuals, the number of reference

haplotypes, the number of study SNPs, and the number of reference

SNPs. Each of these factors makes a different per-unit contribution to

the overall running time, with the number of study individuals and the

number of reference SNPs having the biggest effect in modern data-

sets. Extrapolating the numbers from Table 2 to the entire genome

and assuming the availability of 100 parallel computer processors, we

predict that it would take IMPUTE2 about a day to impute 1000

individuals from a reference panel with thousands of sequenced hap-

lotypes. For investigators with limited computational resources or very

large GWAS cohorts, the imputation can be made even faster by

prephasing the GWAS genotypes, as we explain in the Discussion.

DISCUSSION
Advances in DNA sequencing technologies have made it feasible to

obtain near-complete genome sequences from thousands of individ-

uals. Association mapping studies will immediately benefit from these

developments: whole-genome sequencing of large GWAS datasets will

not be practical for a while yet; in the meantime, we can impute a wide

range of genetic variation from genomes that have already been

sequenced. Most of the mutations discovered in these genomes will

occur at low population frequencies, so it is important that imputation

Figure 4 Comparison of imputation accuracy between IMPUTE2 and
Beagle in Gambian validation set. This plot shows the accuracy
obtained when imputing masked SNPs in 1216 Gambian individuals
from the MalariaGEN dataset using either IMPUTE2 with khap = 500
(solid lines) or Beagle on default settings (dashed lines). Imputation
was performed with a reference panel of Gambian haplotypes (blue)
and a reference panel of Gambian, Ghanaian, and HapMap 3 African
ancestry haplotypes (gray). The results are grouped into 5% MAF bins,
and each point on a curve is located in the middle of the correspond-
ing MAF bin. The following reference panel codes are used in the
legend: GMB (Gambia, 200 haplotypes); GHN (Ghana, 200 haplo-
types); and HM3.afr (HapMap 3 African ancestry, 822 haplotypes).

n Table 2 Computational benchmarks for a simulated GWAS of
1000 European individuals imputed from reference panels with
10,000 SNPs

Method khap
Reference

Panel
Running Time

(minutes) RAM (GB)

IMPUTE2 500 Europeana 90 0.26
500 Cosmopolitanb 127 0.60

1000 European 157 0.30
4800 Cosmopolitan 603 0.74

Beagle — European 655 5.2
— Cosmopolitan 5904 15.2

a
The European panel contains 1000 haplotypes.

b
The Cosmopolitan panel contains 4800 haplotypes with ancestry from Africa,
Asia, and Europe.
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strategies be tailored to capture low-frequency variants. As sequencing

projects produce larger and more diverse reference datasets, imputa-

tion-based GWAS will also face practical challenges like choosing

appropriate reference panels and keeping computation tractable.

We have developed a coherent and convenient imputation

framework that addresses these concerns. To simplify the process of

choosing reference haplotypes from a diverse collection, our approach

uses a cosmopolitan reference panel. Previous work suggested that

cosmopolitan panels could increase imputation accuracy at low-

frequency variants, and our results extend these findings to a wide

range of human populations. It is computationally intensive to

perform imputation with large, ancestrally diverse reference panels,

so we have also developed an approximation that decreases the cost of

adding haplotypes to a reference set without sacrificing accuracy.

Our framework was motivated by the idea that larger reference

datasets should make imputation faster and simpler, rather than

slower and more complicated. We believe that our work represents

a first step toward bridging current imputation practice with the

paradigm suggested by Kong et al. (2008), in which large population

samples eliminate the need for complex models and reference panel

selection, and investigators do not have to balance efficiency and

accuracy. Detailed population models and reference panel weighting

schemes may provide modest accuracy improvements in the short

term, but we expect that the power gains from such developments

will seldom justify the added computational costs.

Conversely, imputation strategies that are agnostic to population

labels (as ours is) may become increasingly attractive as sequencing

studies fill in the continuum of human genetic diversity. One benefit

of such approaches is that they can capture unexpected allele sharing

without needing to model the complexities of human demographic

history, as we demonstrated by showing that African haplotypes can

improve imputation accuracy in Europeans. Approaches like ours are

also well-suited for imputation in recently admixed populations:

methods that choose custom reference panels for different admixed

individuals in different parts of the genome can increase accuracy

by adapting to local ancestry changes, as previously suggested by

Pasaniuc et al. (2010).

The framework we have proposed can serve as a general approach

for using reference data in current and future imputation studies, and

we expect that it will spur additional methods development in this

area. Below, we discuss the aspects of this framework that make it

successful in modern reference panels, along with some practical and

theoretical questions that may arise when extending the conclusions of

this study to other datasets.

Extending our results to future studies

Our cross-validation experiments have provided a wealth of in-

formation about how to use existing imputation resources like

HapMap 3, but these datasets do not capture the full range of features

that will be present in future reference panels. For example, our results

are based on data from commercial SNP arrays, whose composition is

biased toward variants that share alleles across populations. Conse-

quently, population-specific accuracy contributions like the ones seen

in Figure 1 should not be treated as quantitative predictions for newly

discovered variants. While we could have used 1000 Genomes data to

address the SNP ascertainment issue, the data available when we were

preparing this manuscript contained smaller sample sizes and a nar-

rower sampling of human genetic diversity than found in HapMap 3,

so we decided to focus on the latter dataset as a model of future 1000

Genomes reference panels. We have run similar imputation experi-

ments with an interim release of the 1000 Genomes Phase I haplo-

types, and we have continued to see benefits from using ancestrally

inclusive reference panels (B. Howie; unpublished data).

In this work, we have highlighted the fact that combining reference

data from different populations can improve imputation accuracy at

low-frequency variants. This finding reflects both the limited sample

sizes of existing reference panels and the shared ancestry of human

populations: an allele that occurs at low frequency in a study

population may be poorly represented in a well-matched reference

panel due to sampling effects; however, that same allele may be found

in reference sets from other populations due to genetic drift or

introduction by recent migrants. While a multipopulation reference

panel can improve accuracy at this kind of variant, there are other

situations in which accuracy might be harmed by such panels. Possible

mechanisms for decreased accuracy include (i) the imputation of

variant alleles at sites that do not segregate in a study dataset, (ii)

signal dilution from reference haplotypes that are similar to those in

a study population but do not carry a variant allele that segregates in

that population, and (iii) misleading results from reference haplotypes

that carry recurrent mutations. We discuss these issues in File S5; we

conclude that they will seldom hurt the imputation of low-frequency

alleles from HapMap 3 or 1000 Genomes haplotypes, but that refer-

ence panel composition may need to be reevaluated when imputing

rare alleles (MAF , 0.5%) or using other reference datasets.

Another question to consider when applying our framework is

whether the optimal number of surrogate family haplotypes will

change with different reference datasets. Judging from our experience

in a variety of studies, we suggest the rule of thumb that khap should be

set to the number of reference haplotypes that have broadly similar

ancestry to the study population. For example, the broad ancestral

groupings in HapMap 3 (Europe, East Asia, Africa) each include 500–

800 haplotypes, and we found that khap = 500 worked well with this

resource. Imputation accuracy is not highly sensitive to this variable,

regardless of other factors like chunk size and local recombination

rate, so it should not usually be necessary to optimize khap empirically.

As reference sets grow and we further develop our approximation, we

anticipate that it will be possible to achieve high accuracy with even

lower values of khap.

Suggestions for imputation-based GWAS in Africa

African populations pose a special challenge for imputation because

they are among the most genetically diverse in the world (Rosenberg

et al. 2010). Genetic relationships among African populations have

been shaped by complex demographic histories, deep ancestries, and

strong selective pressures, which can cause patterns of haplotype shar-

ing in Africa to look much different than patterns in other parts of the

world (Bryc et al. 2010; Campbell and Tishkoff 2008, 2010; Reed and

Tishkoff 2006; Tishkoff et al. 2007, 2009). African populations also

carry substantial burdens of common disease, yet few large-scale

GWAS have been conducted in this setting. Efforts like the 1000

Genomes Project and MalariaGEN are changing this landscape, so

it will be important to define effective reference panels for GWAS

in a variety of African populations.

We addressed this question by performing cross-validation experi-

ments in Gambian individuals from MalariaGEN. In concurrence

with a more limited analysis by Jallow et al. (2009), we found that

a population-specific reference panel yielded higher average accuracy

than did a larger HapMap 3 panel that lacked Gambian haplotypes.

However, we also found that the HapMap 3 panel produced reason-

able imputation accuracy across the allele frequency spectrum, and

that non-Gambian haplotypes improved accuracy when added to

a Gambia-specific reference panel.
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Although these findings were obtained from a limited sampling of

African genetic diversity, they provide some intuition about general

strategies for imputation in people of recent African ancestry. It will

always help to collect new reference data through population-specific

sequencing or genotyping, but the gains from this approach will often

be larger in Africa. Whether or not a well-matched panel is available for

a particular study population, imputing from all available haplotypes of

African ancestry may often improve the results. Non-specific reference

panels can weaken association signals near loci that have recently

experienced strong selection, as with the beta-globin region in the

Jallow et al. study, so it may be worthwhile to re-impute from just the

ancestry-matched reference haplotypes (when such haplotypes are

available) in regions showing decisive evidence of selective sweeps.

Imputation methods based on the Li and Stephens (2003) model of

DNA sequence variation (like IMPUTE2 and MaCH) are well suited

to performing imputation in African GWAS. As shown in our

HapMap 3 and MalariaGEN cross-validations, this kind of model can

consistently produce higher accuracy than clustering approaches like

the one used by Beagle, for reasons we discuss below. When the model

is implemented via an efficient algorithm like IMPUTE2, this accuracy

can be achieved at a fraction of the computational price.

Looking ahead, we anticipate that many of the initial African

GWAS will be conducted in west African populations; for example,

such populations constitute a large part of MalariaGEN's Consortial

Project 1. The power of these studies could potentially be boosted by

using African American haplotypes to augment the reference sets

collected in Africa. While there are clear merits to this idea, one might

worry that the haplotype segments of non-African ancestry would

pose problems for imputation. We can address this question by in-

specting the IMPUTE2 results from our HapMap 3 cross-validations.

Encouragingly, these results show that adding the HapMap 3 ASW

panel to the reference set improved accuracy in every African cross-

validation panel (File S1).

Computational strategies for imputation with large,
sequence-based reference panels

Throughout our imputation experiments, we found that IMPUTE2

can attain both higher accuracy and faster computation than Beagle,

which is a leading inference method for large datasets. We believe that

the success of IMPUTE2 in this context can be attributed to its

computational strategies and its model of DNA sequence variation.

We discuss these attributes here in hopes that they will inform future

methods development, and we address the role that prephasing can

play in speeding up imputation.

Beagle's basic modeling approach is to combine haplotypes into

clusters. This speeds up computation because it restricts the number

of HMM states that need to be considered: rather than perform HMM

calculations on every haplotype in a dataset, Beagle can run the cal-

culations on a smaller set of clusters. Similar state-reduction techni-

ques are used by GERBIL (Kimmel and Shamir 2005), fastPHASE

(Scheet and Stephens 2006), GEDI (Kennedy et al. 2008), and other

related methods. By contrast, the basic HMM used by IMPUTE2 and

MaCH includes a state for every haplotype. Using all of the states

makes computation intractable, which is why IMPUTE2 restricts the

states via its k and khap parameters. The intuition is that the “surrogate

family members” identified in this way should include the most in-

formative haplotypes for a particular individual in a particular part of

the genome.

Both of these state-reduction approaches speed up imputation, but

our cross-validations show that IMPUTE2 attains higher accuracy

than Beagle in practice, especially at low-frequency variants in datasets

that have higher haplotype diversity (e.g. those with recent African

ancestry). We suggest that this is because clustering models have in-

herent difficulties capturing low-frequency variation: by grouping sim-

ilar haplotypes into clusters, these methods obscure the differences

between those haplotypes, which reduces the ability to impute low-

frequency variants. This could explain why the accuracy disparity

between IMPUTE2 and Beagle was largest in African populations,

which have higher genetic diversity than non-African populations

and hence a larger fraction of low-frequency haplotypes. Methods like

Beagle may be able to make up some of this ground by using more

clusters, but this will further increase the computational load.

These trends should persist as imputation datasets continue to

grow: clustering models will need to add even more states to their

HMMs to remain competitive on accuracy, whereas the closest k (or

khap) surrogate family haplotypes will become even more informative,

thereby enhancing the running time and accuracy advantages of

methods like IMPUTE2. The natural endpoint of this process will

arrive when so many genomes have been sequenced that imputation

requires just a handful of the closest genealogical neighbors, which is

where “surrogate parent” methods, like the one developed by Kong

et al. (2008), will take hold. Until that point is reached, we suggest that

our surrogate family approximation will remain an attractive way to

balance accuracy and speed.

Another technique for increasing the efficiency of imputation is

called “pre-phasing.” The idea is to (pre-)phase the assayed genotypes

in a GWAS dataset, then impute directly into the inferred haplotypes;

this speeds up imputation by more than an order of magnitude at the

cost of a small amount of accuracy (B. Howie and C. Fuchsberger,

unpublished data). In principle, most imputation methods could use

this approach, and researchers can already download implementations

based on the IMPUTE2 and MaCH models (the MaCH implementa-

tion is called “minimac”). We have found that khap has similar accu-

racy characteristics in both unphased and pre-phased GWAS datasets

(data not shown), so we view pre-phasing as being complementary to

our surrogate family approximation: both approaches speed up im-

putation, and they can be used together for even greater efficiency.

Extensions

One potential extension of the results and methodology seen in this

study is to whole-genome sequencing efforts like the 1000 Genomes

Project. One study design that has arisen in this context is to sequence

many individuals at low coverage; say, 2–4·. The data from this kind

of experiment are too sparse to directly and confidently determine

most genotypes, but they can be called with high accuracy by applying

the same kinds of models that are used for genotype imputation in

GWAS (Li et al. 2011; The 1000 Genomes Project Consortium 2010).

We expect that the approach of combining information across pop-

ulations will help call low-frequency alleles in that setting, much as it

helped impute low-frequency alleles in this study.
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