
 1

Genotype-specific responses in Atlantic salmon (Salmo salar) subject to 

dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis 

 

Sofia Morais1
§
, Jarunan Pratoomyot1, John B. Taggart1, James E. Bron1, Derrick R. 

Guy2, J. Gordon Bell1, Douglas R. Tocher1 

 

1Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK 

2Landcatch Natural Selection Ltd, The e-Centre, Cooperage Way, Alloa, FK10 3LP, Scotland, 

UK 

 

§Corresponding author 

 

Email addresses: 

 SM: sofia.morais@stir.ac.uk 

 JP: jarunan@bims.buu.ac.th 

 JBT: j.b.taggart@stir.ac.uk 

 JEM: j.e.bron@stir.ac.uk 

 DRG: drguy@swim-back.com 

JGB: g.j.bell@stir.ac.uk 

DRT: d.r.tocher@stir.ac.uk 

  

 

 

 



 2

Abstract 

Background: Expansion of aquaculture is seriously limited by reductions in fish oil (FO) 

supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been 

investigated and recently a strategy combining genetic selection with changes in diet 

formulations has been proposed to meet growing demands for aquaculture products. This 

study investigates the influence of genotype on transcriptomic responses to sustainable feeds 

in Atlantic salmon.  

Results: A microarray analysis was performed to investigate the liver transcriptome of two 

family groups selected according to their estimated breeding values (EBVs) for flesh lipid 

content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected 

metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. 

Genotype had a much lower impact on metabolism-related genes and affected mostly 

signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain 

polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl 

elongase (elovl2) was only up-regulated and desaturases (∆5fad and ∆6fad) showed a higher 

magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty 

acid synthase (FAS) was also up-regulated by VO and the effect was independent of 

genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as 

PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat 

salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower 

expression in the Lean family group than in the Fat, when fed VO. Differences in muscle 

adiposity between family groups may have been caused by higher levels of hepatic fatty acid 

and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-

acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. 
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Conclusions: This study has identified metabolic pathways and key regulators that may 

respond differently to alternative plant-based feeds depending on genotype. Further studies 

are required but data suggest that it will be possible to identify families better adapted to 

alternative diet formulations that might be appropriate for future genetic selection 

programmes. 

 

Background 

Fish are highly nutritious components of the human diet. In addition to providing high quality 

and easily digested protein, vitamins and minerals, they are particularly important in being the 

main source of essential n-3 long-chain polyunsaturated fatty acids (LC-PUFA). The 

beneficial effects of these fatty acids, such as eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), include prevention of a range of cardiovascular and 

inflammatory diseases, and neurological disorders [1]. With catches from commercial 

fisheries stagnating since 2001, aquaculture is supplying an increasing proportion of fish for 

human consumption, estimated at around 50 % of total supply in 2008 [2]. However, the 

expansion of aquaculture and the demands it makes upon resources provide many challenges, 

leading to questions concerning the sustainability of this activity. In particular, marine and 

salmonid aquaculture relies heavily on fish meal (FM) and fish oil (FO), obtained from wild 

fishery stocks, for the production of fish feeds and around 88.5% of the total global 

production of FO is currently used by aquaculture [3]. The increasing scarcity of FO supplies 

will seriously limit aquaculture growth, and the future of this activity therefore strongly 

depends on reducing its reliance on FO by seeking to replace them with alternative, largely 

terrestrial, oils. Vegetable oils (VO) represent a potentially critical resource in this respect. 

However, VO lack the n-3 LC-PUFA which are abundant in FO, and farming fish on diets 
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containing a high proportion of VO results in lower levels of these omega-3 fatty acids in 

flesh, compromising their health-promoting effects to the human consumer [4]. 

The use of selective breeding programs to enhance traits of commercial importance is 

becoming increasingly more common in aquaculture [5]. Combining genetic selection with 

changes in commercial feed formulations (i.e., higher levels of inclusion of VO) may be a 

viable strategy to meet worldwide demand for farmed fish without compromising animal 

welfare or nutritional value. Recently we showed that deposition and / or retention in flesh of 

dietary n-3 LC-PUFA, EPA and DHA, is a highly heritable trait in salmon [6], prompting 

further interest in exploring genotype-nutrient interactions. Other recent work has investigated 

potential interactions between genetic selection for body fatness and dietary lipid level in 

rainbow trout [7,8], and the effects of FM and / or FO replacement on the liver transcriptome 

of both rainbow trout and Atlantic salmon [9-11]. However, there are few data on the 

interaction between genotype and dietary fatty acid composition. In this respect, microarrays 

have great potential for application as hypothesis-generating tools. The objective of the 

present study was to investigate nutrient-genotype interactions in two groups of Atlantic 

salmon families, Lean and Fat, fed diets where FO was completely replaced by a VO blend. 

The knowledge gained concerning how this substitution affects hepatic metabolism and, 

furthermore, how these effects may depend on the genetic background of the fish, not only 

informs our understanding of lipid metabolism more generally but is also highly relevant to 

the strategy of genetic selection for families better adapted to alternative and more sustainable 

feed formulations in the future. A previous study has already focused on hepatic cholesterol 

and lipoprotein metabolism [12], which was shown to present a significant diet × genotype 

interaction, while here we will present more broadly the effects of the factors 'diet' and 

'genotype'.    

Results 
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Microarray results 

Two-way ANOVA of the cDNA microarray dataset returned a high number of features 

showing evidence of differential expression for each factor - 713 for diet and 788 for 

genotype – and hence a more detailed analysis was restricted to the top 100 most significant 

hits for each factor, which were then categorised according to function (excluding 33-35% 

non-annotated features) (Fig. 1). The functional category most affected by diet was that of 

metabolism (mainly lipid and carbohydrate metabolism), while immune response and 

intracellular trafficking were also affected. Within lipid metabolism, the affected genes are 

involved in PUFA, fatty acid and cholesterol biosynthesis (fatty acyl desaturases - ∆5fad and 

∆6fad, fatty acid synthase - FAS, squalene monooxygenase and possibly cytochrome P450 

reductase), glycerophospholipid metabolism (phospholipase D3) and acylglycerol 

homeostasis (angiopoietin-like 3). Some genes related to carbohydrate metabolism, implicated 

in glycolysis, glutamine/fructose 6-phosphate and glycerol-3-phosphate metabolism, such as 

alpha-enolase, glutamine-fructose-6-phosphate transaminase 1(GFPT1) and glycerol kinase, 

respectively, were also identified as being significantly affected by diet. Genotype had a lower 

impact on metabolism-related genes (primarily lipid and protein metabolism) and affected 

mostly genes involved in signalling. Regarding lipid metabolism, primary roles of affected 

genes are in glycerophospholipid metabolism (N-acylethanolamine-hydrolyzing acid amidase 

precursor, lipid phosphate phosphohydrolase 2 - LPP2 and 1-acyl-sn-glycerol-3-phosphate 

acyltransferase - AGPAT), fatty acid transport (intestinal fatty acid binding protein) and 

lipoprotein metabolism (apolipoprotein B – ApoB and endothelial lipase – EL). In addition, 

both factors had an effect on a relatively high number of transcription-related genes. Detailed 

lists of the top 100 most significant genes for diet and genotype, organised by biological 

function and including the normalised expression ratio between treatments, are shown in 

Tables 2 and 3, respectively. Gene Ontology enrichment analysis, which enables the 

identification of GO terms significantly enriched in the input entity list when compared to the 
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whole array dataset, was performed for both factors, providing evidence for which biological 

processes may be particularly altered in the experimental conditions being compared. For diet, 

seven significant GO terms, all interrelated, were identified: oxidoreductase activity, stearoyl-

CoA 9-desaturase activity, unsaturated fatty acid biosynthetic and metabolic processes, very 

long chain fatty acid (VLCFA) biosynthetic and metabolic processes. This is explained by the 

high number of ∆5fad and ∆6fad features that were significantly altered when dietary FO was 

replaced by VO (Table 2). In contrast, no GO terms were significantly enriched in the 

genotype list. 

RT-qPCR 

Quantification of gene expression by RT-qPCR was performed to partially validate the 

microarray results and to examine particular genes of interest in detail. The latter included 

several fatty acyl desaturase and elongase genes involved in the LC-PUFA biosynthesis 

pathway that were identified by GO analysis as being significantly affected by diet, as well as 

peroxisome proliferator-activated receptors (PPAR) and sterol regulatory element binding 

protein 1 (SREBP-1), which have important roles in regulating the expression of multiple 

lipid metabolism genes (Table 4). In spite of the generally low fold changes, a good 

correspondence in terms of expression ratios or in the direction of change (up- or down-

regulation), was obtained between the microarray and RT-qPCR results for most quantified 

genes, including ∆5fad and ∆6fad, FAS and heme oxygenase 1 (HOX) for the factor diet, and 

ApoB, LPP2 and AGPAT for the factor genotype (Tables 2-4). However, comparison of the 

microarray and RT-qPCR expression results show an inverse change in expression for GFPT1 

and glutathione S-transferase A (GST) in response to diet, the latter only in the Fat group, and 

of EL between family groups, although only when feeding on FO (where the fold-change in 

the microarray was negligible). Nonetheless, a perfect match was not expected given that RT-

qPCR primers were obtained either from published work (e.g., GST) or, when available, 
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designed on well characterized sequences such as GenBank reference sequences or clusters on 

the gene index database for Atlantic salmon (ASGI), which do not necessarily match exactly 

the clone on the array. In fact, in the case of EL there is evidence that the microarray probe 

has high similarity with multiple EST’s and hence is likely to have resulted in cross-

hybridisation [12], while the reference sequence for GFPT1 and the clone in the microarray 

are only 93% identical in the aligned region. 

In terms of regulation of gene expression by the factor diet, the qPCR results confirmed the 

significant up-regulation of ∆5fad and ∆6fad in fish fed VO, with a higher fold change being 

measured for ∆6fad. In addition, the expression ratio was higher in the Lean family group 

than in Fat fish, as had also been indicated in the microarray analysis. Of the elongase genes, 

only elovl2 was significantly up-regulated by the VO diet, but just in the Lean family group. 

Furthermore, quantification of PPAR genes revealed that only PPARα was down-regulated 

significantly when salmon were fed the VO diet, but only in the Lean family group. On the 

other hand, expression of SREBP-1 was only significantly affected in Fat fish, being up-

regulated in fish fed the VO diet. Other genes which were significantly and consistently 

regulated were FAS and EL (both up-regulated when VO replaced FO in the diet), while GST, 

HOX and AGPAT only showed significant regulation in Fat fish. Finally, comparison 

between the two family groups showed a significantly lower expression of ∆5fad, ∆6fad, 

PPARα, PPARβ, SREBP-1 and GST in the Lean group but only when fish were fed FO, in 

the case of fads, or when fed the VO diet, in the case of PPARs, SREBP-1 and GST. In 

addition, FAS was also significantly down-regulated in the Lean group, independent of diet. 

Liver fatty acid composition 

Fatty acid analysis of liver showed significant differences in all fatty acid classes related 

mostly to diet but also to genotype (except for total n-3 PUFA and total PUFA) (Table 5). The 

percentage of total n-6 PUFA (reflecting mainly 18:2n-6) was significantly increased when 
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VO replaced FO in the diet. Levels of total n-3 PUFA were, on the other hand, significantly 

higher in the FO treatments independent of genotype. For EPA and DHA there was a 

significant diet × genotype interaction, resulting from the fact that, when comparing Fat and 

Lean fish, higher levels of these LC-PUFA were found in the Fat family group when fed the 

FO diet but the inverse was observed when the same fish were fed the VO diet. 

Discussion 

In the present study we analysed the effects of diets containing high levels of plant proteins 

and with complete replacement of FO by VO on the liver transcriptome of Atlantic salmon, 

which is the primary metabolic organ of fish, as well as the influence of genotype on these 

responses. Here we focus on the separate effects of diet and genotype given that interactions, 

indicating pathways that were differentially affected by diet depending on the genetic 

background of the fish, were discussed in detail previously [12].  

A common methodological difficulty in this type of nutritional experiment is that effects 

are typically quite subtle although physiological and metabolic pathways can be impacted by 

even small fold changes in gene expression. This has been demonstrated by several studies 

[7,9,11] and by previously reported data from the present study showing that low fold changes 

in gene expression were associated with biochemical differences in tissue lipid class and 

apolipoprotein composition [12]. Furthermore, low fold changes observed in this study were 

generally corroborated by RT-qPCR, even if the low expression ratios meant that differences 

were not always significant. It should also be noted that a total match between the microarray 

and the RT-qPCR results is not expected due to the approach taken to design RT-qPCR 

primers on better annotated reference sequences rather than on less well characterized 

microarray clones. In view of the whole genome duplication event that occurred in salmonid 

fishes [13], transcriptomic and gene expression studies are often more challenging due to the 

presence of duplicated and highly similar genes whose transcripts might be differentially 
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regulated, as observed previously for lipoprotein lipase [12]. Therefore, collectively, and in 

conjunction with previous studies, data obtained in the present microarray study enabled 

identification of pathways that may be differentially affected by both dietary oil composition 

and genetic background related to flesh adiposity.      

Effects of diet on lipid metabolism 

Within the list of genes affected by diet, those involved in fatty acyl desaturation were 

prominent, leading to the identification, through GO enrichment analysis, of several terms 

related to LC-PUFA biosynthetic and metabolic processes. The up-regulation of ∆5fad and 

∆6fad in both family groups when dietary FO was replaced by VO was confirmed by RT-

qPCR. Several studies have previously demonstrated up-regulation of genes involved in LC-

PUFA biosynthesis in salmon when FO is replaced by VO [10,14,15]. RT-qPCR also 

confirmed previous work showing that elovl2 is responsive to dietary n-3 LC-PUFA levels 

[15], being the only elongase whose expression was up-regulated when FO was replaced by 

VO. However, a significant effect was only observed in the Lean family group. In addition, 

both microarray and RT-qPCR analyses indicated that the up-regulation of ∆5fad and ∆6fad 

showed a considerably higher fold-change in the Lean fish, due mainly to lower basal 

expression of fads in Lean salmon, compared to Fat, when fed FO. These results indicate that 

the activity of this biosynthetic pathway may be dependent on the genetics of the fish, with 

different family groups showing differences in the magnitude of response. The liver fatty acid 

composition revealed that differences in EPA and DHA levels between fish fed either diet 

were smaller in the Lean fish, due to higher n-3 LC-PUFA in fish fed VO and lower n-3 LC-

PUFA in fish fed FO, compared to the equivalent treatments in the Fat group. In addition, 

intermediates in the biosynthetic pathway, such as 20:4n-3 and 22:5n-3, tended to be present 

at higher levels in the Lean family group, suggesting that differences observed in the levels of 

mRNA of LC-PUFA biosynthesis genes, which have been shown to correlate with the 
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enzymatic activity of this pathway in salmon [16,17], were reflected in biochemical 

composition. 

Another lipid metabolism gene significantly affected by diet was FAS, which was up-

regulated in both family groups when fed VO. A well demonstrated effect of dietary FO 

supplementation in mammals is hypotriglyceridemia, resulting from a coordinated effect of n-

3 LC-PUFA in suppressing hepatic lipogenesis and enhancing fatty acid oxidation in liver and 

muscle [18]. Furthermore, this gene also appears to be regulated at a pre-translational level 

and hence changes in FAS transcription are likely to result in important effects in terms of 

enzyme activity [19]. Similar mechanisms are believed to operate in fish but, although 

reduced hepatic lipogenic activity modulated by LC-PUFA has been demonstrated in vitro 

[20], a direct relationship with dietary FO and VO has not always been clear in vivo [21,22]. 

The regulation of FAS in response to FO replacement by VO did not show an interaction with 

the flesh leanness/fatness phenotype in this study, as might have been expected. This was 

because genotype also had a significant effect, with the Lean group having lower levels of 

FAS expression than the Fat fish, with a similar fold-change in both diets. 

Regulation of lipid metabolism is complex and controlled by several transcription factors 

and nuclear receptors, including PPARs and SREBPs. SREBP-1c is a major regulator of 

lipogenesis in mammals [18]. Here we measured the expression of SREBP-1 as there is no 

evidence for the existence of alternatively spliced isoforms in salmon, and primers 

corresponded to an identical region in mammalian SREBP-1a and SREBP-1c [23]. Our results 

agree with Minghetti et al. [23], who showed SREBP-1 was increased by cholesterol and 

decreased by EPA and DHA supplementation in a salmon cell line, denoting a similar 

nutritional regulation to mammals [18]. However, there was a clear genetic effect as 

expression of SREBP-1 was 3-fold higher in Fat salmon fed VO, containing lower EPA, DHA 

and cholesterol, than in fish fed FO, whereas no regulation was observed in the Lean group. 
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PPARs have been less studied in fish than in mammals but present evidence suggests 

PPARα and PPARβ have similar ligands and functions to their mammalian homologues, 

while PPARγ may present some functional differences [24,25]. LC-PUFA are well recognised 

enhancers of PPARα activity in fish, and while the response of PPARβ to LC-PUFA might be 

variable between fish species, an enhancement of activity in sea bass, plaice and sea bream 

[24-26] and of expression in Atlantic salmon [27] has been observed. In addition, and unlike 

rodents, PPARα and PPARβ have a similar pattern of expression in response to fasting and 

feeding in sea bream liver, indicating that they may be regulated similarly [25]. In the present 

study, PPARα was down-regulated when VO replaced FO but only in the Lean family group 

and, although not statistically significant, PPARβ showed a similar trend, suggesting similar 

transcriptional regulation of these nuclear receptors by dietary fatty acid composition. These 

results thus indicate that the genetic background of the fish might affect PPAR transcriptional 

responses to LC-PUFA. In contrast, no nutritional regulation was observed for PPARγ 

transcription in liver, in accordance with previous studies in fish, including salmon, and its 

predominant role in adipocytes [24,28]. 

The hypotriglyceridemic effects of n-3 LC-PUFA in mammals involve activation of 

PPARα, leading to up-regulation of β-oxidation genes (including carnitine 

palmitoyltransferase I - CPT1 and acyl-CoA oxidase - ACO) and suppression of SREBP-1c 

transcription that down-regulates lipogenic enzymes [29,30]. As previously reported, FAS 

expression was up-regulated in both family groups fed the VO diet but neither CPT1 nor ACO 

expression, was affected [12]. As elovl2 expression was only altered in the Lean fish and both 

∆5fad and ∆6fad showed greater up-regulation in Lean salmon fed VO, we may speculate 

that PPARα (and potentially also PPARβ) expression may be involved in down-regulation of 

LC-PUFA biosynthesis. Paradoxically, fatty acyl desaturases are regulated by both SREBPs 

and PPARs in mammals [31]. In addition, PPARα agonists regulate the transcriptional 
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activity of elongases in rat, although only elovl5 and not elovl2 [32]. However, in mammals, 

PPARα ligands induce the transcription of elongases and desaturases while we observed an 

up-regulation of elovl2 and a stronger stimulation of ∆5fad and ∆6fad transcription when 

PPARα expression was lower. In the rat and human ∆6fad gene promoters, both PUFA and 

PPARα response regions have been identified which suppress and induce, respectively, ∆6fad 

expression [33]. The molecular mechanisms of transcriptional regulation of these genes are 

complex and will require further investigation in salmon [34]. In contrast, target genes of 

SREBP-1 remain elusive and, although it may regulate FAS expression [23], this was only 

observed in Fat fish whereas, in the Lean group, another mechanism is required to explain up-

regulation of FAS in VO-fed fish as expression of SREBP-1 was unaffected. Nonetheless, the 

action of SREBP-1 is under the regulation of liver X receptor (LXR) and these complex 

pathways have only recently started to be investigated in fish [23]. 

Another gene affected by diet was squalene epoxidase (SQLE), which was up-regulated by 

VO but only markedly in the Lean family group. This enzyme catalyses the first oxygenation 

step in sterol biosynthesis, a pathway identified earlier as presenting a diet × genotype 

interaction [12]. In contrast, cytochrome P450 reductase (CPR) was down-regulated in salmon 

fed VO, particularly in Lean fish. This enzyme has multiple roles as the electron donor for 

several oxygenase enzymes, such as cytochrome P450 (involved in drug and xenobiotic 

metabolism, and sterol and bile acid synthesis), HOX and cytochrome b5 (which supports 

both sterol and LC-PUFA biosynthesis pathways). In addition, it has key roles in the 

biosynthesis of several signalling factors and the regulation of oxidative response genes 

[reviewed by 35]. CPR is transcriptionally regulated by PPARα in mouse and, given the 

comparable PPARα and CPR expression in Lean salmon fed VO, similar regulation likely 

occurs in salmon. However, changes in CPR expression can be related to several processes 

that were affected by FO replacement. Thus, CPR expression could be linked to changes in 
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both cholesterol and LC-PUFA biosynthesis, both more marked in Lean fish, although this is 

unlikely because VO induced up-regulation of these pathways. A more likely association is 

with cell oxidant metabolism, also suggested by the microarray results as being possibly 

down-regulated in VO-fed fish. In particular, down-regulation of HOX in salmon fed VO, 

more marked for Lean fish correlating with CPR expression, might be an indication of this. 

Effect of diet on carbohydrate and intermediate metabolism 

Within the metabolism genes that were identified by the microarray analysis as being 

significantly affected by dietary oil substitution, a few relate to carbohydrate metabolism, 

particularly glucose and intermediary metabolism. Given that similar effects were observed in 

previous salmonid studies, and that a few signal transduction genes present in the list of diet 

significant effects are also potentially implicated in these pathways, these results warrant 

further discussion, even if the observed fold changes were low. An association between lipid 

and carbohydrate metabolism in salmon is not surprising given that the pathways of 

lipogenesis, lipolysis, glycolysis, gluconeogenesis and pentose phosphate shunt are all 

interrelated in the regulation of body energy homeostasis. In mammals, the role of LC-PUFA 

as “fuel partitioners” involves both directing fatty acids away from anabolic and towards 

catabolic routes as well as enhancing glucose flux to glycogen, mediated by effects on 

SREBP-1 and transcription factors that regulate key genes of lipid metabolism and glycolysis 

[30]. Similar mechanisms may operate in fish but differences are likely given that carnivorous 

fish like salmon have low capacity to use carbohydrate and appear to show features of glucose 

intolerance [36,37]. Nonetheless, dietary n-3/n-6 ratio has been shown to influence mRNA 

levels of the glucose transporter GLUT4 in Atlantic salmon muscle, with some reflection in 

plasma glucose [38]. In addition to a decreased hexokinase and phosphoenolpyruvate 

carboxykinase expression, complete replacement of FM and FO by vegetable alternatives in 

rainbow trout resulted in a slightly increased expression of glycerol kinase, as observed here 
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[11]. This enzyme is at the intersection of lipid-carbohydrate metabolism and over-expression 

of this gene in human muscle and rat hepatoma cells resulted in higher TAG synthesis and up-

regulation of the pentose phosphate pathway providing reducing power for lipogenesis [39]. 

Panserat et al. [11] hypothesised that the up-regulation of glycerol kinase may be related to 

higher lipid biosynthesis in liver when trout were fed plant-based diets. Similarly, our results, 

associated with the observed changes in FAS mRNA when VO replaced FO, suggest a 

possible relationship with lipogenesis. Also possibly related with this was the up-regulation of 

two different biotinidase clones with the potential to increase availability of substrates for 

FAS and/or gluconeogenesis in VO-fed fish. This gene, besides being involved in the 

regulation of gene expression, including genes of glucose metabolism, codes for an enzyme 

that recycles biotin, which is a co-factor for several carboxylases responsible for production 

of substrates for lipogenesis and gluconeogenesis [40]. 

Another gene affected by diet was alpha-enolase, which was slightly down regulated in 

Lean fish fed VO. A similar effect was observed in liver of salmon fed rapeseed oil in 

comparison to FO [9]. This glycolytic enzyme participates in the conversion of glucose to 

pyruvate, a key intermediate at the intersection of multiple metabolic pathways, including 

lipogenesis. Thus, this might result in lower levels of pyruvate for conversion to acetyl-CoA 

in VO-fed fish. This result does not necessarily conflict with an increase in lipogenesis given 

that, in fish, carbon skeletons for de novo fatty acid production are mainly derived from amino 

acid catabolism rather than from carbohydrates, whose main contribution towards lipogenesis 

is to supply NADPH via the pentose-phosphate pathway [37].  

Finally, a few signalling genes that were significantly affected by diet might also have an 

effect on glucose metabolism, assuming that similar cascades exist in fish. One of these is 

phosphoinositide 3-protein kinase (PI3K), which mediates insulin’s effects on glucose, lipid 

and protein metabolism, and that was significantly down regulated in VO-fed fish. Among 
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other roles, it regulates glucose cellular uptake in mammals, recruiting GLUT4 transporters to 

the cell surface [41]. In addition, it is found upstream of a signal transduction cascade 

regulating glycogen synthesis through glycogen synthase, by inactivating glycogen synthase 

kinase-3 (GSK3) [41,42]. In our study, expression of GSK3-binding protein (GBP) was 

significantly increased in VO-fed Lean fish. GBP is a protein that blocks GSK3, which in turn 

inactivates glycogen synthase [43]. Hence, it is possible that the oil composition of the diet 

might also affect glucose metabolism and glycogen storage. 

Effect of diet on oxidative stress and immune response 

Increased oxidative stress associated with the consumption of FO has been typically reported 

in fish and mammals [27,44,45]. Accordingly, genes related to oxidant metabolism were 

found in the significant list for diet. A thioredoxin domain-containing protein, possessing an 

antioxidant role [46], and GST, which detoxifies peroxidised lipids and xenobiotics [47], were 

down-regulated in salmon fed VO, consistent with the higher auto-oxidative potential of LC-

PUFA in FO. However, quantification of GST by RT-qPCR was not consistent with the 

microarray result, although the possibility exists that different GST genes with differential 

regulation exist in salmon and this requires clarification. In addition, the observed down-

regulation of HOX in VO-fed fish, validated by RT-qPCR, might be related to a decrease in 

oxidative stress in these fish. This enzyme catalyses the degradation of heme and can be 

induced by oxidative stress [48] and may be increased during pro-inflammatory states, being 

thought to increase resistance to oxidative injury and ameliorate inflammation [49]. The n-3 

LC-PUFA in FO have important anti-inflammatory actions in mammals [50], which does not 

correlate with the expression of HOX and its putative role in inflammation in this case. 

Inflammation is an important mechanism in immune defence but, in fish, the demonstrated 

effects of LC-PUFA on immune and inflammatory mechanisms have been inconsistent [45]. 

However, a recent study has clearly shown an effect of dietary oil composition on the 
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progression of a myxosporean parasite infection in Gilthead sea bream, with fish fed the VO 

diet showing higher signs of the disease and faster course of infection in comparison with 

those on a FO diet [51].On the other hand, the synthesis of pro-inflammatory eicosanoids was 

increased in the intestine of salmon fed vegetable-based diets in response to acute stress [52]. 

In the present study immune response was the second highest category of genes affected by 

diet, after metabolism. Whether this is due to the potential anti-inflammatory role of dietary 

FO or whether VO diets can have detrimental health effects is not clear as the fold-changes 

were subtle, as expected in unchallenged animals. Nonetheless, the majority of genes related 

to processes of both innate and adaptive immunity were up-regulated in fish fed VO. Only T-

cell and leukotriene B4 (LTB4) receptors, that are reduced after antigen and LTB4 exposure, 

respectively, and, in the case of LTB4 receptor, increased after EPA administration [53-55], 

were down-regulated in salmon fed VO. 

Differences in gene expression between Lean and Fat genotypes 

Muscle adiposity is a trait of great importance in animal production, aquaculture included, and 

hence physiological changes induced by genetic selection for this phenotype have been 

examined in various animals, including rainbow trout [7,8]. In the present study the main 

differences between family groups were associated with signal transduction pathways, 

followed by metabolism. Only a small number of lipid metabolism genes varied in relation to 

muscle adiposity, as reported previously in rainbow trout, where the main differences were 

related to lipogenesis and mitochondrial oxidative metabolism [7,8]. In our study 

glycerophospholipid metabolism may have been down-regulated in the Lean family group 

through AGPAT and LPP2, two enzymes acting consecutively on de novo TAG and 

phospholipid biosynthesis [56,57]. Quantification of AGPAT and LPP2 expression by RT-

qPCR confirmed this down-regulation but fold-changes were too subtle to be significant. 

AGPAT converts lysophosphatidic acid into phosphatidic acid (PA), while LPP2 then 
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catalyzes the conversion of PA to diacylglycerol. All these molecules can function as second 

messengers and are involved in the regulation of multiple signalling pathways. Therefore, 

down-regulation of this pathway in the Lean group has the potential to lower lipid 

biosynthesis, at least partly explaining the flesh lipid phenotype, but may also alter levels of 

lipid signalling molecules. On the other hand, differences in muscle adiposity might also be 

caused by higher hepatic “de novo” fatty acid synthesis in the Fat family group, as indicated 

by the expression of FAS. In a previous study, no differences were found in the expression of 

ACO and CPT1, which suggested that the phenotypes could not be explained by differences 

in β-oxidation [12]. By contrast, in rainbow trout Fat and Lean families, β-oxidation and 

mitochondrial oxidative metabolism, but not lipogenesis, were affected by genetic selection 

[7], although another study using the same trout lines suggested differences related to 

lipogenesis rather than fatty acid oxidation [8]. Thus, both metabolic processes are likely 

involved and discrepancies in the data are likely due to lack of methodological sensitivity to 

detect the small fold-changes that are possibly characteristic of these biological processes and 

typical in this type of experiment. 

PPARα, PPARβ and SREBP-1 were also regulated in response to genotype, being down-

regulated in Lean fish, but only when fed the VO diet. In cobia, Rachycentron canadum, a 

negative correlation was found between PPARα mRNA levels in liver and body lipid 

deposition [58]. Furthermore, PPARβ appears to play a similar role in fish to that in 

mammals, as a ubiquitous regulator of fat burning and with a role in energy mobilisation 

during early development [24,25]. Therefore, both PPARα and PPARβ might have a role in 

the control of adipogenesis in fish and it may be the case that, similarly to chickens [59], Fat 

salmon might have higher lipid turnover than their Lean counterparts when fed a diet that 

predisposes for hepatic fat deposition, even though the end result is higher lipid accumulation 

in liver [60]. To explain this, Collin et al. [59] suggested that a fat chicken family is better 
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“equipped” to deal with higher circulating levels of TAG when fed a high fat diet, compared 

to lean chicken. On the other hand, we observed a direct relationship between SREBP-1 and 

FAS expression in the Fat family group in response to diet, as well as in VO-fed fish in 

response to genotype. It thus appears that SREBP-1 may be partly responsible for higher 

lipogenesis in Fat fish, compared to Lean, when fed VO. 

Conclusions 

This study has enabled the identification of metabolic pathways and key regulators that may 

respond differently to more sustainable diets, in which FO is replaced by VO, depending on 

genotype, thus confirming the potential of microarrays as hypothesis-generating tools, even in 

these nutritional studies where changes in gene expression are quite subtle. Collectively, and 

in conjunction with previous studies, the data indicate that dietary lipid composition may 

potentially affect glucose, glycogen storage and intermediary metabolism, in addition to 

lipogenesis, supporting a role for LC-PUFA in “fuel partitioning” in fish as well as in 

mammals. Therefore, more integrative studies investigating the effects of dietary VO on 

energy homeostasis are required. However, important genotype-related differences may also 

exist in the regulation of metabolism. In terms of lipid metabolism, expression of LC-PUFA 

and lipid biosynthesis genes, as well as of key regulator transcriptional factors, was 

differentially affected by diet depending on the genetic background of the fish. Although 

further studies are required, the present data indicate that it will be possible to identify 

families better adapted to alternative diet formulations that might be appropriate for future 

genetic selection programmes. 

Methods 

Feeding trial and sampling 

A dietary trial was conducted using two genetically characterised and contrasting groups of 

farmed Atlantic salmon post-smolts, comprising full-sib families selected from the Landcatch 
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Natural Selection Ltd (LNS) breeding program (Argyll, Scotland). The choice of the two 

family groups was based on estimated breeding values (EBVs) of the parents for high or low 

flesh adiposity, assessed by Torry Fatmeter (Distell Industries, West Lothian, UK), a trait that 

was found to have a heritability ranging from 0.17 to 0.39 in this dataset. The two groups 

were created from four unrelated full-sib families; two families from the extreme lower end of 

the EBV distribution for flesh lipid content ('Lean') and two families from the extreme upper 

end of the distribution ('Fat'). The average EBV for the lipid content of the two Fat families 

was 2.00 percentage units higher than that of the two selected Lean families, representing a 

standardised selection differential of 2.33 standard deviations. Assessment of the flesh and 

viscera lipid content at the end of the feeding trial confirmed differences in adiposity between 

the two genotypes, in spite of an interaction with diet being also found [12]. 

Two thousand fish of each group were stocked into eight 12 x 5m3 net pens at the Ardnish 

Fish Trials Unit (Marine Harvest Scotland, Lochailort, Highland; 500 fish pen-1). Duplicate 

pens from each group of fish were fed one of two experimental diets (Skretting ARC, 

Stavanger, Norway) containing 32-25% fish meal, 40-45% plant meals and 27.5-30% oil 

supplied either as northern fish oil (FO) or as a vegetable oil (VO) blend comprising rapeseed, 

palm and Camelina oils in a ratio of 5:3:2 [12]. Diets were formulated to fully satisfy the 

nutritional requirements of salmonid fish [61] and contained similar levels of PUFA (around 

31%) but different n-3 and n-6 PUFA contents, 25.3% and 4.6% in the FO diet and 13.4% and 

17.1% in the VO diet, respectively. Further details including full diet formulations, proximate 

and fatty acid compositions of the feeds can be found in Bell et al. [60]. 

After 55 weeks on the experimental diets 25 fish were sampled per pen. The fish were 

killed by a blow to the head following anaesthesia using MS222, 24 h after the last meal. 

Samples of liver were immediately frozen on dry ice and stored at -70ºC for molecular and 

fatty acid analyses. 
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RNA extraction and purification 

Liver tissue (0.2 g) from six individuals per experimental group was rapidly homogenised in 

2mL of TRI Reagent (Ambion, Applied Biosystems, Warrington, U.K.) using an Ultra-Turrax 

tissue disrupter (Fisher Scientific, Loughborough, U.K.) and stored at –70 ºC. Total RNA was 

later isolated, following manufacturer’s instructions, and RNA quality (integrity and purity) 

and quantity was assessed by gel electrophoresis and spectrophotometry (NanoDrop ND-

1000, Thermo Scientific, Wilmington, U.S.A.). One hundred micrograms of total RNA from 

each individual sample was further cleaned by mini spin-column purification (RNeasy Mini 

Kit, Qiagen, Crawley, UK), and then re-quantified and quality assessed as above. 

Microarray hybridizations and image analysis 

The TRAITS/SGP (v.2.1) salmon 17k cDNA microarray, described in detail by Taggart et al. 

[10], was used in this experiment (ArrayExpress accession: A-MEXP-1930). A dual-label 

experimental design was employed for the microarray hybridisations. Each experimental 

sample was competitively hybridised against a common pooled-reference sample, which 

comprised equal amounts of all samples used in the study. This design permits valid statistical 

comparisons across all treatments to be made. The entire experiment comprised 24 

hybridisations - 2 genotypes (Lean/Fat) × 2 diets (FO/VO) × 6 biological replicates. 

An indirect labelling methodology was employed in preparing the microarray targets. 

Antisense amplified RNA (aRNA) was produced from 500 ng of purified total RNA per 

sample using the Amino Allyl MessageAmpTM II aRNA Amplification Kit (Ambion, 

Applied Biosystems), as per manufacturer’s instructions, followed by Cy3 or Cy5 fluor 

incorporation mediated by a dye-coupling reaction, as previously described in detail [12]. 

Experimental samples and the pooled reference sample (batch reaction) were labelled with 

Cy3 and Cy5 dye suspension stocks (PA23001 or PA25001, GE HealthCare, Little Chalfont, 

UK), respectively.  Unincorporated dye was removed by column purification (Illustra 

AutoSeq G-50 spin columns; GE Healthcare). Dye incorporation and aRNA yield were 
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quantified by spectrophotometry (NanoDrop ND-1000) and further quality controlled by 

separating 0.4 µL of the sample through a thin mini-agarose gel and visualising products on a 

fluorescence scanner (Typhoon Trio, GE Healthcare). 

Microarray hybridisations were performed in a Lucidea semi-automated system (GE 

Healthcare), without a pre-hybridisation step. For hybridisation of each array, each labelled 

biological replicate and corresponding pooled reference (40 pmol each dye, c. 150 ng aRNA) 

were combined and added to the hybridisation solution, comprising 185 µL 0.7X UltraHyb 

buffer (Ambion), 20 µL poly(A) at l0 mg/mL (Sigma-Aldrich, Dorset, UK), 10 µL herring 

sperm at c. 10 mg/mL (Sigma-Aldrich) and 10 µL ultra pure BSA at 10 mg/mL (Sigma-

Aldrich), as detailed previously [12]. Two post-hybridisation automatic washes followed by 

six manual washes to a final stringency of 0.1× SSC (EasyDipTM Slide staining system; 

Canemco Inc., Quebec, Canada) were performed before scanning. 

Scanning was performed at 10 µm resolution using an Axon GenePix 4200AL Scanner 

(MDS Analytical Technologies, Wokingham, Berkshire, U.K.) with laser power constant 

(80%) and “auto PMT” enabled to adjust PMT for each channel such that less than 0.1% of 

features were saturated and that the mean intensity ratio of the Cy3 and Cy5 signals was close 

to one. BlueFuse software (BlueGnome, Cambridge, U.K.) was then used to identify features 

and extract fluorescence intensity values from the resultant TIF images. Following a manual 

spot removal procedure and fusion of duplicate spot data (BlueFuse proprietary algorithm), 

the resulting fluorescence intensity data and quality annotations for the 17,102 gene features, 

were exported into the GeneSpring GX version 10.0.2 analysis platform (Agilent 

Technologies, Wokingham, Berkshire, U.K.) after undergoing a block Lowess normalisation. 

Data transformation and quality filtering were then performed and all control features were 

excluded from subsequent analyses [12]. This returned a list of 14,772 genes eligible for 

statistical analysis. Experimental annotation complied fully with minimum information about 
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a microarray experiment (MIAME) guidelines [62]. The experimental hybridisations and 

further methodological details are archived on the EBI ArrayExpress database 

(http://www.ebi.ac.uk/arrayexpress/) under accession number E-TABM-1089. 

RT-qPCR 

Expression of selected genes was determined by reverse transcription quantitative real time 

PCR (RT-qPCR). Details on the target qPCR primer sequences are given in Table 1. In 

addition, amplification of three potential reference genes - cofilin-2, elongation factor-1α (elf-

1α) and β-actin - was performed. However, only cofilin-2 expression proved to be sufficiently 

stable across treatments for normalisation of the results. Cofilin-2 had been established in a 

previous salmon cDNA microarray study as a suitable reference gene on the basis of constant 

expression between FO and VO based feeds over a wide range of time points ('unidentified 

liver EST', [10]).  

For RT-qPCR, 1 µg of column-purified total RNA per sample was reverse transcribed into 

cDNA using the VersoTM cDNA kit (ABgene, Surrey, U.K.), following manufacturer’s 

instructions, using a mixture of random hexamers (400ng/µL) and anchored oligo-dT 

(500ng/µL) at 3:1 (v/v). Negative controls (containing no enzyme) were performed to check 

for genomic DNA contamination. A similar amount of cDNA was pooled from all samples 

and the remaining cDNA was then diluted 20-fold with water. RT-qPCR analysis used 

relative quantification with the amplification efficiency of the primer pairs being assessed by 

serial dilutions of the cDNA pool. qPCR amplifications were carried out in duplicate 

(Quantica, Techne, Cambridge, U.K.) in a final volume of 20 µL containing either 5 µL or 2 

µL (for the reference genes and HOX) diluted (1/20) cDNA, 0.5 µM of each primer and 10 

µL AbsoluteTM QPCR SYBR® Green mix (ABgene). Amplifications were carried out with a 

systematic negative control (NTC-non template control). The qPCR profiles contained an 

initial activation step at 95 °C for 15 min, followed by 30 to 40 cycles (depending on target): 
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15 s at 95 °C, 15 s at the specific primer pair annealing temperature (Ta; Table 1) and 15 s at 

72 °C. After the amplification phase, a melt curve of 0.5 °C increments from 75 ºC to 90 °C 

was performed, enabling confirmation of the amplification of a single product in each 

reaction. RT-qPCR product sizes were checked by agarose gel electrophoresis and the identity 

of amplicons of newly designed primers (FAS, GFPT1, HOX, LPP2 and AGPAT) was 

confirmed by sequencing.  

Lipid extraction and fatty acid analyses 

Total lipids from six fish per treatment were extracted and determined gravimetrically from 1-

2 g of liver by Ultra Turrax homogenisation in 20 volumes of chloroform/methanol (2:1 v/v) 

[63]. Fatty acid methyl esters (FAME) were prepared by acid-catalysed transesterification of 

total lipids [64]. Following purification, FAME were separated and quantified by gas-liquid 

chromatography using a Thermo Fisher Trace GC 2000 (Thermo Fisher, Hemel Hempstead, 

UK) equipped with a fused silica capillary column (ZB wax, 30 m×0.32 mmi.d.; 

Phenomenex, Macclesfield, UK) with hydrogen as carrier gas and using on-column injection. 

The temperature gradient was from 50 to 150 °C at 40 °C/min and then to 195 °C at 1.5 

°C/min and finally to 220 °C at 2 °C/min. Individual methyl esters were identified by 

comparison with known standards. Data were collected and processed using the Chromcard 

for Windows (version 2.00) computer package (Thermoquest Italia S.p.A., Milan, Italy). 

Statistical analysis 

Microarray hybridisation data were analysed in GeneSpring GX version 10.0.2 (Agilent 

Technologies) by two-way ANOVA, which examined the explanatory power of the variables 

‘diet’ and ‘genotype’ (diet×genotype interaction presented in [12]), followed by Gene 

Ontology (GO) enrichment analysis, at a significance level of 0.05. No multiple test 

correction was employed as previous analyses, confirmed by RT-qPCR, indicate that such 

corrections are over-conservative for this type of data [14]. Gene expression results assessed 
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by RT-qPCR were analysed by the ∆∆Ct method using the relative expression software tool 

(REST 2008, http://www.gene-quantification.info/), employing a pair wise fixed reallocation 

randomisation test (10,000 randomisations) with efficiency correction [65], to determine the 

statistical significance of expression ratios between two treatments. Finally, significant 

differences in liver fatty acid composition were determined by means of two-way ANOVA, at 

a significance level of p<0.05, using the Graphpad Prism™ (version 4.0) statistical package 

(Graphpad Software, San Diego, CA).  
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Table 2 Liver transcripts corresponding to the top 100 most significant features 

exhibiting differential expression between diets. Annotated features (65% of all clones) are 

arranged by categories of biological function and, within these, by decreasing significance 

(assessed by two-way ANOVA). Also indicated are the GenBank accession numbers for each 

clone (or, when not available, the probe number is given instead) and the expression ratio 

between fish fed VO and those fed FO, for each genotype (Lean and Fat).   

 
Accession or Gene VO/FO ANOVA 

probe number   Lean Fat p-value 

Metabolism    
 

 Lipid metabolism 

   

can_D6D_S1B04 Delta-6 fatty acyl desaturase 2.8 1.9 <0.0001 
can_D6D_S1B03 Delta-6 fatty acyl desaturase 2.1 1.4 <0.0001 
can_D5D_S1B01 Delta-5 fatty acyl desaturase 2.3 1.5 <0.0001 
can_D6O_S1B06 Delta-6 fatty acyl desaturase 2.0 1.4 <0.0001 
CK887422 Delta-6 fatty acyl desaturase 2.0 1.8 <0.0001 
EG647320 Delta-6 fatty acyl desaturase 1.8 1.4 0.0001 
CK876943 Fatty acid synthase 1.4 1.6 0.0002 
can_D5D_S1B02 Delta-5 fatty acyl desaturase 2.1 1.2 0.0003 
CK894344 Phospholipase D3 - 1.1 - 1.2 0.0006 
EG647463 Cytochrome P450 reductase - 1.4 - 1.1 0.0017 
liv_lrr_01F07 Angiopoietin-like 3 1.2 1.4 0.0020 
can_D5O_S1B05 Delta-6 fatty acyl desaturase 1.5 1.2 0.0045 
CK879648 Squalene monooxygenase   1.9 1.1 0.0058 
 

Protein and amino acid metabolism 

CK893821 Sequestosome 1or ubiquitin-binding protein P62 - 1.3 - 1.1 0.0022 
CK884400  Kynureninase (L-kynurenine hydrolase) 1.3 1.2 0.0065 
 

Carbohydrate metabolism 

   

int_oss_T4F08 Alpha-enolase putative  - 1.2 - 1.0 0.0007 
liv_lrr_01A06 Glutamine-fructose-6-phosphate transaminase 1 1.2 1.8 0.0032 
CO470771 Glycerol kinase 1.1 1.1 0.0062 
 

Xenobiotic and oxidant metabolism 

AJ425332 Thioredoxin domain-containing protein 8 - 1.3 - 1.3 0.0024 
EG355339 Glutathione S-transferase A - 1.4 - 1.4 0.0036 
 

Transport/ intracellular trafficking 
CK886667 Na/K ATPase  1.5 1.1 <0.0001 
CN181143 Coatomer subunit alpha 1.2 1.4 0.0004 
DW588711 Synaptic vesicle glycoprotein 2B 1.1 1.1 0.0004 
CK894482 Taurine transporter - 1.3 - 1.3 0.0019 
CK887866 ABC-type branched-chain amino acid transport systems 

ATPase component 
1.2 1.1 0.0022 

CO470399 Sodium/potassium-transporting - 1.2 - 1.2 0.0044 
EG647422 Transferrin  - 1.2 - 1.1 0.0047 
EG648286 ATP-binding cassette sub-family B member 10, 

mitochondrial 
1.2 1.3 0.0055 
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mitochondrial 
AM083913 Chromatin modifying protein 2a  - 1.3 - 1.2 0.0068 
 

Regulation of transcription 

   

CK894063 Zinc finger protein 183 - 1.5 - 1.3 0.0003 
CK890154 Butyrate response factor 2 1.5 1.1 0.0043 
EG648112 Retrovirus-related Pol polyprotein 1.1 1.3 0.0046 
CK885196 CCAAT/enhancer binding protein delta1 1.2 1.2 0.0052 
CK890573 MADS box protein AP1b 1.2 1.2 0.0053 
CK883722 Y-box binding protein  1.1 1.3 0.0067 
 

Translation 
   

AM402452 Phenylalanyl-tRNA synthetase, alpha subunit 1.4 1.9 0.0022 
 

Signalling/Signal transduction 
   

CK886572 GSK-3-binding protein  1.9 1.0 0.0002 
CK892148 Growth factor receptor-bound protein 7 - 1.5 - 1.1 0.0028 
ova_opk_09K06 Phosphoinositide 3-protein kinase - 1.1 - 1.3 0.0031 
CK873849 Receptor-type tyrosine-protein phosphatase beta precursor  - 1.1 - 1.1 0.0036 
DW590775 Myozenin-1  1.6 1.5 0.0055 
 

Immune response 
   

EG647383 Human leukocyte antigen (HLA) class II histocompatibility 1.1 1.2 0.0008 
AM402762 Complement component C8 alpha chain 1.3 1.7 0.0018 
EG649410 D-dopachrome tautomerase  1.4 1.1 0.0019 
AJ425750 Non-histone chromosomal protein H6 1.1 1.3 0.0024 
CK884265 Ganglioside GM2 activator 1.3 1.1 0.0030 
AM402841 Complement component C8 alpha chain  1.5 2.1 0.0032 
CK886548 T cell receptor (TCR)-alpha/delta locus - 1.2 - 1.0 0.0041 
spl_sts_18A08 Leukotriene B4 receptor 1 putative - 1.4 - 1.1 0.0047 
CK880083 Interleukin-15 precursor 1.1 1.3 0.0067 
AJ425732 CD97 antigen isoform 2  1.2 1.1 0.0066 
 

Miscellaneous and unknown function 

   

CK897269 Biotinidase precursor  1.3 1.7 0.0002 
AM402518 Biotinidase  1.4 1.9 0.0006 
CK894173 EFHD2  (EF hand domain containing2) 1.2 1.1 0.0007 
kid_cki_A1E04 S100-A1 calcium binding 1.4 1.1 0.0009 
CO469646 beta B3-crystallin  - 1.1 - 1.0 0.0012 
CO469710 Transmembrane protein 30A - 1.1 - 1.2 0.0019 
AJ425502 Heme oxygenase 1 - 2.7 - 1.7 0.0024 
CK885237 EF-hand domain-containing protein D2 1.1 1.1 0.0026 
AJ425502 Heme oxygenase 1 - 2.6 - 1.4 0.0037 
DW588567 S100 calcium binding protein beta subunit 1.1 1.1 0.0042 
CK897725 Type-1 growth hormone  1.1 1.1 0.0053 
BM414485 Apoptosis-inducing factor mitochondrion-associated inducer 1.5 1.4 0.0054 
BM414504 Syndecan 2 - 1.2 - 1.1 0.0061 
BI468143 Anaphase-promoting complex subunit CDC26 - 1.3 - 1.3 0.0064 
CK885116 17-beta hydroxysteroid dehydrogenase 13  - 1.1 - 1.4 0.0065 
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Table 3 Liver transcripts corresponding to the top 100 most significant features 

exhibiting differential expression between family groups. Annotated features (67% of all 

clones) are arranged by categories of biological function and, within these, by decreasing 

significance (assessed by two-way ANOVA). Also indicated are the GenBank accession 

numbers for each clone (or, when not available, the probe number is given instead) and the 

expression ratio between Lean and Fat fish fed either FO or VO. 

Accession or Gene Lean/Fat ANOVA 

probe number   FO VO p-value 

Metabolism    
 

 Lipid metabolism 

   

CK889835 N-acylethanolamine-hydrolyzing acid amidase precursor - 1.4 - 1.2 0.0001 
can_Apo_S1A12 Apolipoprotein B - 1.4 - 1.1 0.0014 
BM414066 Endothelial lipase precursor   - 1.1 - 1.6 0.0015 
CK898924 Lipid phosphate phosphohydrolase 2 - 1.2 - 1.2 0.0017 
AJ425826 Intestinal fatty acid binding protein 1.1 1.2 0.0032 
CO470953 1-acyl-sn-glycerol-3-phosphate acyltransferase - 1.1 - 1.3 0.0040 
 

Energy metabolism/generation of precursor metabolites 
   

EG649459 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 1.2 1.2 0.0009 
 

Protein and amino acid metabolism 

CK900470 26S protease regulatory subunit 7 - 1.1 - 1.2 0.0020 
mus_mfo_15B08 Proteasome subunit alpha type-1 1.2 1.1 0.0021 
EG648604 Serine protease-like protein  1.0 1.4 0.0023 
CO470297 Transmembrane protease, serine 2 - 1.2 - 1.1 0.0032 
DW592216 Ubiquitin carboxyl-terminal hydrolase 5 - 1.1 - 1.1 0.0040 
 

Transport/ intracellular trafficking 
CK886667 Na/K ATPase  1.1 1.6 <0.0001 
CK884193 Polycystin-2 (Polycystic kidney disease 2 protein homolog) 1.1 1.2 0.0002 
CK890974 Mitochondrial solute carrier family 25 member 25 - 1.2 - 2.2 0.0002 
CK896189 Mitochondrial solute carrier family 25 member 25 - 1.3 - 2.3 0.0002 
CK880187 ATP-binding cassette sub-family B member 8, mitochondrial - 1.3 - 1.1 0.0011 
 

Regulation of transcription 

   

CK881770 Hematopoietically-expressed homeobox protein  - 1.1 - 1.6 0.0001 
CK888834 BTEB transcription factor - 1.4 - 1.5 0.0002 
CK895950 Transcription factor CP2-like - 1.2 - 1.6 0.0010 
CK884953 Nuclear transcription factor Y subunit beta - 1.2 - 1.1 0.0015 
CK888548 Rev protein - Human immunodeficiency virus 1 - 1.5 - 1.0 0.0019 
CK883410 Retinoic acid receptor gamma (nuclear receptor) - 1.1 - 1.1 0.0020 
int_rpk_78B12 Sp3 transcription factor  - 1.1 - 1.4 0.0035 
CK876044 Homeobox protein HoxB13 - 1.2 - 1.2 0.0041 
DW589427 Cullin-associated and neddylation-dissociated 1 (CAND1) 1.4 1.1 0.0044 
 

Translation 
   

AJ424434 Ribosome production factor 1 1.1 1.2 0.0002 
gil_oss_G6P11 40S ribosomal protein S23 1.3 1.3 0.0008 
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EG648403 60S ribosomal protein L7a 1.2 1.2 0.0013 
CK893177 40S ribosomal protein S26 1.1 1.2 0.0013 
DW591137 40S ribosomal protein S3a - 1.2 - 1.1 0.0024 
EG647811 60S ribosomal protein L7 1.1 1.1 0.0026 
EG648956 Eukaryotic translation initiation factor 1A 1.1 1.1 0.0033 
AJ424851 40S ribosomal protein S18 1.2 1.2 0.0034 
 

Signalling/Signal transduction 
   

CK884714 14-3-3 protein epsilon 1.1 1.1 0.0003 
EG648400 Guanine nucleotide binding protein (G protein) - 1.2 - 1.2 0.0004 
CK888542 Insulin-like growth factor binding protein 1  - 1.2 - 2.5 0.0008 
CK886572 GSK-3-binding protein putative  - 1.1 1.8 0.0009 
CK877143 Calpain-1  - 1.1 - 1.4 0.0010 
EG648399 PTC7 protein phosphatase homolog - 1.2 - 1.1 0.0016 
EG648333 Stathmin 1.1 1.2 0.0018 
CK898969 G-protein coupled receptor 37 - 1.1 - 1.1 0.0019 
DW589782 Amyloid beta (A4) precursor-like protein  1.1 1.2 0.0034 
CK898590 Mitogen-activated protein kinase kinase 4  - 1.0 - 1.2 0.0035 
CK897997 Calpastatin   - 1.1 - 1.1 0.0039 
AJ424385 Protein tyrosine phosphatase, receptor-type, zeta1 - 1.1 - 1.2 0.0041 
 

Structural proteins 
   

AJ425204 Tropomyosin-1 alpha (muscle contraction)  - 1.1 - 1.2 0.0031 
 

Immune response 
   

CK886548 T cell receptor (TCR)-alpha/delta locus - 1.1 - 1.2 0.0005 
CK894741 Complement factor D (adapsin) - 1.1 - 1.2 0.0007 
AM042439 Major histocompatibility complex (MHC) class I antigene - 1.3 - 1.4 0.0014 
kid_cki_A1G02 Interferon-inducible protein  - 1.2 - 1.4 0.0015 
CO471904 Major histocompatability complex (MHCI)  - 1.1 - 1.2 0.0019 
CK894557 Major histocompatability complex (MHCI)  - 1.2 - 1.1 0.0023 
AM042249 Major histocompatability complex (MHCI)  - 1.1 - 1.2 0.0025 
bra_opk_01B08  Scavenger receptor cysteine-rich gene - 1.3 - 1.6 0.0029 
CO469739 T-cell receptor(TCR)-alpha/delta locus - 1.1 - 1.1 0.0030 
AJ424124 Major histocompatibility complex (MHC class I) - 1.2 - 1.1 0.0037 
hrt_opk_07E23 Interferon alpha 1-like  - 1.1 - 1.1 0.0041 
 

Miscellaneous and unknown function 

   

CK898014 Protein fuzzy homolog - 1.1 - 1.2 0.0002 
kid_cki_A2A05 Cyclin B2 - 1.3 - 1.4 0.0006 
EG647643 Purine nucleoside phosphorylase - 1.1 - 2.0 0.0010 
liv_lrr_07B04 Nuclear protein 1  - 1.1 - 2.1 0.0028 
AM402622 Non-POU domain containing, octamer-binding - 1.7 - 1.4 0.0029 
EG648147 Adhesion-regulating molecule 1  - 1.2 - 1.1 0.0037 
BM414485 Apoptosis-inducing factor mitochondrion-associated inducer 1.4 1.5 0.0038 
DW589496 Cyclin-dependent kinase inhibitor - 1.2 - 1.3 0.0044 
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Table 4 Relative expression of genes assayed by RT-qPCR in liver of Atlantic salmon. 

Values are normalised (by cofilin-2) gene expression ratios between fish fed VO in relation to 

FO for each family group or of Lean fish in relation to the Fat group when fed either one of 

the diets. Values in bold are significantly different, at p<0.05 (REST 2008). 

    VO/FO   Lean/Fat 

  Lean  Fat  FO  VO 

Genes   Ratio p-value   Ratio p-value   Ratio p-value   Ratio p-value 

∆5fad  3.95 0.001  2.04 0.002  -2.33 0.009  -1.20 0.317 

∆6fad_a  8.27 0.000  4.52 0.004  -1.85 0.049  -1.02 0.942 

elovl5a  1.18 0.505  -1.03 0.817  -1.18 0.420  1.03 0.908 

elovl5b  1.57 0.184  1.05 0.758  -1.25 0.471  1.19 0.416 

elovl2  2.35 0.025  -1.04 0.841  -1.56 0.098  1.58 0.112 

FAS   1.76 0.005  2.11 0.003  -1.72 0.001  -2.04 0.011 

PPARα  -2.22 0.000  1.10 0.643  -1.16 0.358  -2.86 0.001 

PPARβ  -1.92 0.161  1.56 0.169  1.24 0.659  -2.44 0.002 

PPARγ  -1.10 0.828  -1.67 0.251  -2.00 0.214  -1.32 0.229 

SREBP-1  -1.16 0.761  3.32 0.004  1.82 0.332  -2.13 0.022 

GST  -1.18 0.412  1.40 0.010  1.29 0.210  -1.28 0.028 

HOX  -2.69 0.132  -1.82 0.013  1.83 0.271  1.24 0.120 

GFPT1  -1.33 0.244  -1.65 0.090  -1.18 0.619  1.05 0.783 

ApoB  1.40 0.443  1.84 0.152  -1.15 0.791  -1.52 0.076 

EL  3.52 0.034  8.57 0.002  1.38 0.494  -1.75 0.115 

LPP2  -1.33 0.506  -1.31 0.606  -1.22 0.754  -1.25 0.516 

AGPAT  1.40 0.375  1.42 0.041  -1.05 0.906  -1.07 0.574 
fad: fatty acyl desaturase (∆5 and ∆6);  elovl: elongase (three different transcripts); FAS: Fatty acid 

synthase; PPARs; peroxisome proliferator-activated receptors (three isoforms); SREBP-1: Sterol 

regulatory element binding protein-1; GST: glutathione S-transferase A; HOX: heme oxygenase 1; 

GFPT1: glutamine-fructose-6-phosphate transaminase 1; ApoB: apolipoprotein B; EL: endothelial 

lipase; LPP2: lipid phosphate phosphohydrolase 2; AGPAT: 1-acyl-sn-glycerol-3-phosphate 

acyltransferase. 
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Figure 1 Functional categories of genes differentially expressed in Atlantic salmon 

liver. The top 100 most significant clones (two-way ANOVA analysis; p<0.05) which 

were differentially expressed between the two diets (A) and family groups (B) were 

categorized according to biological function. Non-annotated clones, those representing 

the same gene or with a miscellaneous function (Tables 2 and 3) are not represented. 
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