
Thousands of genetic variants have now been associ-
ated with common human diseases1,2. These associa-
tions between genetic variation and disease risk have the 
potential to revolutionize our understanding of common 
diseases because they identify pathways and processes 
that are causally implicated in a disease, providing a first 
step towards the development of targeted therapies and 
prevention strategies.

However, will a particular individual, carrying a 
defined set of genetic variants, actually develop one 
or more of thousands of different diseases? Although 
often presented as a cornerstone of ‘personalized and 
predictive medicine’, making accurate predictions for 
most common diseases is still an ambitious challenge. 
Crucially, these predictions must be made at the level of 
individuals. A patient does not want to know the typi-
cal outcome of a mutation that they carry: they want to 
know what will actually happen to them.

In most cases, our understanding of the genetics of 
common human diseases is far from complete2. Moreover, 
even with a complete understanding of the genetics of a 
complex disease, we may never be able to make accurate 
predictions about disease risk in individuals using genet-
ics alone, as is well demonstrated by the high levels of dis-
cordance for most common diseases in identical twins3–5.

How can we progress to a more complete under-
standing of the genetics of a disease? And why do even 
genetically identical individuals often substantially differ 
in phenotypic traits such as disease risk? The aim of this 
Review is to highlight recent work in model organisms 
that is relevant to both of these questions. The goal is not 
to provide an exhaustive overview but rather to highlight 
examples of studies that are enriching our understanding 
of the interplay between genotype and phenotype and 

so are providing a framework for the development of 
personalized genetics in humans. I focus in particular 
on non-vertebrate models, in which much larger-scale 
systematic experiments have been possible.

I first consider the problem of associating genes 
and genetic variation with particular phenotypes on a 
genomic scale. I then proceed to the question of how 
mutations in multiple genes combine to alter phenotypic 
traits before introducing the idea of ‘whole-genome 
reverse genetics’ to assess our ability to make accurate 
phenotypic predictions. I then turn to the question of 
why genome sequences are often insufficient to predict 
trait variation in individuals. This requires consideration 
of how the environment, stochastic processes, life history 
and transgenerational influences interact to determine 
phenotypic traits in individuals. All of these potentially 
important influences on phenotypic variation are now 
being studied at the molecular level in model organisms.

Globally linking genes to phenotypes

Despite the recent explosion of genome-wide associa-
tion studies (GWASs) in humans, we probably still do 
not know most of the genetic variants that can influence 
susceptibility to common diseases2. Given a subset of the 
genes relevant for a trait, how can we predict the rest? 
This is a question that has been quite extensively inves-
tigated in invertebrate models, where systematic for-
ward- and reverse-genetic screens have provided much 
more complete maps of which genes, when mutated, can  
influence which phenotypic traits.

Lessons from systematic genetics. In contrast to the situ-
ation in mammals, in invertebrate model organisms it is 
relatively straightforward to carry out systematic genetic 
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Abstract | To what extent can variation in phenotypic traits such as disease risk be 

accurately predicted in individuals? In this Review, I highlight recent studies in model 

organisms that are relevant both to the challenge of accurately predicting phenotypic 

variation from individual genome sequences (‘whole-genome reverse genetics’) and for 

understanding why, in many cases, this may be impossible. These studies argue that only 

by combining genetic knowledge with in vivo measurements of biological states will it be 

possible to make accurate genetic predictions for individual humans.
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Modules

Groups of genes or proteins in 

a network that have strong 

interactions among themselves 

and that carry out particular 

functions largely independently 

of other genes or proteins. 

Mutations in genes from a 

module often have similar 

phenotypic consequences.

Orthologous

A gene in one species is 

orthologous to a gene in 

another species if they are 

derived from a common 

ancestor.

screens. For example, in budding yeast6, fission yeast7 
and Escherichia coli8, the construction of gene deletion 
collections means that researchers can ‘walk through the 
genome’ identifying all of the gene deletions that influ-
ence a phenotype of interest. Similarly, in worms9 and 
flies10, genome-wide RNA interference (RNAi) screens 
allow the comprehensive identification of genes that 
influence any trait of interest. Moreover, cheap whole-
genome sequencing and genotyping are revolutionizing 
the ease with which both random laboratory-induced 
mutations11 and natural genetic variants12–16 can be 
linked to trait variation.

The connections between genes and phenotypes are 
therefore both more complete and more systematic in 
model organisms than they are in humans. This provides 
an unbiased assessment of the genetic complexity of  
phenotypic traits, and indeed rather than a handful 
of genes influencing a trait of interest, it is more com-
mon to identify hundreds or thousands of genes9,17–19. 
Moreover, genetic screens in model organisms have 
highlighted that pleiotropy is extremely common: many 
genes are linked to a wide diversity of traits9,17–19. Of 
course, natural genetic variation in genes may not nec-
essarily be so pleiotropic in consequence but, in general, 
the pithy statement by Sewall Wright20 in the 1930s that 
“each character is affected by many genes and each gene 
affects many characters” has largely been confirmed by 
twenty-first century genetics. This seems to be the rule 
rather than the exception.

In addition to providing basic insights into genetic 
architecture, these comprehensive model organism 
genotype–phenotype maps can also have direct rel-
evance to human disease. This is because genes tend to 
work in evolutionarily conserved pathways or modules,  
and so genotype–phenotype maps can be directly trans-
ferred between species. For example, mutations in a 
subset of genes that function in the response to DNA 
damage tend to cause a high incidence of males (Him) 
phenotype in Caenorhabditis elegans and breast cancer 
in humans, meaning that new worm him genes make 
good candidates for breast cancer genes21 (FIG. 1a). These 
non-obvious relationships between phenotypes in  
different organisms that are affected by mutations  
in overlapping sets of orthologous genes are referred to 
as ‘phenologues’ and can be systematically identified21. 
Mapping phenologues between species can also predict 
new clinically relevant drugs. For example, on the basis 
of the observation that a common set of genes influence 
cell-wall maintenance in yeast and vascular growth in 
vertebrates, an approved antifungal drug called thiaben-
dazole was predicted and validated as a novel inhibitor of  
angiogenesis22 (FIG. 1b).

Genome-scale networks that link genes to phenotypes. 
The comprehensive genotype–phenotype data avail-
able for model organisms also provide a fantastic 
resource for developing and evaluating computational 
methods to predict the connections between genes and 
phenotypes on a genomic scale.

A powerful strategy to achieve this is ‘guilt-by-
association’: if two genes function in the same pathway 
or process, then mutations in these genes are likely to 
have overlapping phenotypic consequences23,24. Guilt-
by-association is a successful framework because many 
different types of evidence can be used to identify func-
tionally associated genes (FIG. 2). For example, genes 
encoding proteins that physically interact, that are 
co-regulated or that are co-evolving are all more likely to 
function in a common process. One approach for predict-
ing functionally coupled genes is therefore to integrate 
evidence from diverse data sets to build large networks 
of functional associations between genes25–27. Building 
these networks requires the reliability of different data 
sets to be evaluated and for interactions in the final 
network to represent a weighted integration of interac-
tions that is inferred from different types of evidence23,24. 
Crucially, the systematic genetic data that are available 
in model organisms then allow the systematic evalua-
tion of the utility of the networks in guilt-by-association  
predictions for diverse traits28,29.

As an example, diverse data sets were used from 
multiple organisms to construct a network consisting 
of 102,803 linkages among 5,483 budding yeast pro-
teins (more than 90% of the proteome in this species)30. 
This network was shown to have a broad utility for pre-
dicting new genes associated with diverse phenotypic 
traits28,31. Indeed, networks for yeast25,26,30,32, worms29,33, 
mice34 and plants35,36 have all been shown to associate 
thousands of genes accurately to phenotypes. Moreover, 
similar approaches in humans have shown potential for 

Figure 1 | Phenologues: mapping phenotypes between organisms. Perturbation of 

overlapping modules of orthologous genes may result in one set of phenotypes in 

one organism but a different set of phenotypes in another organism. a | For example, 

mutations in a module of DNA damage response genes cause breast cancer in 

humans but a high incidence of males (Him) phenotype in Caenorhabditis elegans 

(owing to chromosome non-dysjunction). Other genes linked to the Him phenotype 

therefore make good candidate genes for novel breast cancer loci. b | The overlap in 

the sets of genes linked to vascular growth in vertebrates and to cell-wall 

maintenance in yeast allowed the prediction that the approved antifungal drug 

thiabendazole would act as an angiogenesis inhibitor21.
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Disordered regions

Regions of proteins that are 

intrinsically unfolded; that is, 

they are without a well-defined 

tertiary structure under 

physiological conditions.

Expression quantitative 

trait loci

(eQTLs). Regions of the 

genome containing genetic 

polymorphisms that alter  

how genes are regulated, 

influencing how much RNA  

or protein they produce.

identifying new genes for Mendelian27,37 and complex38 
diseases, although much more research is still needed in 
the application of these ideas to human genetics, espe-
cially to GWAS data. Although the guilt-by-association 
approach may have some bias towards identifying  
pleiotropic genes39, extensive experimental validation 
has demonstrated the practical utility of the approach.

Gain-of-function mutations. To date, large-scale 
assessments of gene function have largely focused on 
loss-of-function mutations. However, some systematic 
data for gain-of-function genetic perturbations are avail-
able. For example, in budding yeast, ~15% of protein-
coding genes were found to affect growth severely when 
strongly overexpressed40. The properties associated with 
these ‘dosage-sensitive’ proteins include: a high con-
tent of disordered regions containing linear motifs that 
are important for protein–protein interactions; a large 

number of transient protein interactions; and enrich-
ment for protein domains that bind to linear motifs. 
These features suggest the hypothesis that one of the 
causes of dosage sensitivity is mass-action-driven pro-
miscuous molecular interactions41. However, it is likely 
that promiscuous (‘off-target’) molecular interactions 
are only one cause of dosage sensitivity. Other causes, 
such as increased or constitutive activation of ‘on-target’  
pathways, protein aggregation, interference in the 
assembly of protein complexes and disruption of  
the ‘balance’ between pathways, have also been sug-
gested to be important40,42. The development of tech-
niques that allow the gene copy number at which a gene 
becomes detrimental to be determined43 should allow 
a finer investigation of dosage sensitivity, and in gen-
eral more screens are needed to link gain-of-function  
mutations to particular phenotypic traits.

Non-coding variation. An important challenge that 
also deserves more attention is to predict the effects of 
mutations in non-protein-coding regions of the genome: 
for example, when do mutations in regulatory regions 
affect phenotypic variation? This is particularly impor-
tant, given the accumulating evidence that many causal 
variants that influence human disease actually lie out-
side coding regions and alter gene expression. Systematic 
maps of transcription factor binding sites, chromatin 
modifications, chromatin accessibility and expression 

quantitative trait loci (eQTLs) can be used to pinpoint 
potentially important regulatory regions44,45, but this 
does not directly address the question of whether vari-
ation in these regions has phenotypic consequences. To 
date, evolutionary conservation has been used to identify 
properties that predict when genetic variation in regula-
tory regions is most likely to be detrimental46, but as for 
gain-of-function protein traits, systematic experimental 
data on the phenotypic consequences of mutations in 
regulatory regions is largely missing. The use of large 
libraries of synthetic promoters47,48 may provide one 
starting point, but ultimately comprehensive data sets of 
links between genetic variation and phenotypic variation 
will be required to develop and to evaluate predictive 
methods for regulatory regions.

Systematic analysis of epistasis

Mutations often have consequences that vary across 
individuals, and one reason for this is epistasis or 
genetic interactions, which are understood most 
broadly as the dependence of mutation outcome on 
genetic background49,50. There are numerous examples 
of epistatic interactions in human disease, and indeed 
epistatic interactions might, in part, have led to over-
estimations of the heritability (phenotypic variance 
attributable to genetic variation) of human disease51. 
Model organisms have been used extensively both to 
understand epistasis better and to learn how to predict 
it52. Numerous types of epistasis can be envisaged53, but 
two important outcomes are that the combined effect  
of two mutations can be either stronger (negative or syn-
ergistic interaction) or weaker (positive or antagonistic  
interaction) than expected54.

Figure 2 | Guilt‑by‑association: integrating data into genome‑scale networks that 

can be used to link genes to phenotypes. Many different experimental and 

computational data sets can be used to predict whether two proteins (nodes in the 

figure) physically or functionally interact (edges in the figure). Predicted functional 

associations derived from different data sets, such as protein–protein interactions 

(green lines), co-expression (red lines) and co-evolution (blue lines), can be integrated 

by first benchmarking the interactions inferred from each data set against a set of 

‘gold-standard’ interactions and then combining them in such a way that the 

interactions are weighted according to their estimated reliability (weights here are 

represented by the width of each line). In the final network, proteins are connected by 

weighted interactions that may derive from one or multiple sources of evidence. 

Mutations in proteins with high-confidence interactions with known disease genes 

(red) are predicted candidate genes for the same disease (green).
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Major- and minor-effect loci

Regions of the genome 

containing genetic 

polymorphisms that account 

for a large or small proportion 

of variance in a particular 

phenotype, respectively.

Systematic mapping of genetic interaction networks. 
Epistatic interactions between mutations have been 
mapped on a massive scale in budding yeast55 and on 
a smaller scale in fission yeast56,57, C. elegans58,59 and in 
Drosophila melanogaster cells60. In yeast, this has been 
facilitated by the development of selection procedures 
that allow arrays of mutant strains to be systematically 
mated to construct double mutants61. Genetic interac-
tions have also been studied between natural variants: 
for example, between QTLs that influence mating 
efficiency62,63 and between QTLs that influence gene 
expression traits (namely, eQTLs)64. Here I highlight 
some important take-home messages from these genetic 
interaction analyses in model organisms: epistatic inter-
actions are prevalent; genes differ widely in the number 
of interactions in which they participate; interactions are 
context-dependent; and interactions can be predicted. 
These properties seem to be conserved between species, 
and so they are also likely to apply to human genetic 
disease.

Epistasis is prevalent. The first important conclusion 
from these studies is that the potential for genetic inter-
actions is huge: in yeast, significant interactions were 
detected between ~170,000 different pairs of genes from 
more than 5 million pairs tested55. Put simply, there are 
many more ways to generate similar phenotypic effects 
in yeast cells by combining two gene deletions than 
there are by deleting a single gene. Consistent with 
this, in an analysis of QTLs influencing gene expres-
sion, it was estimated that approximately two-thirds of 

225 gene expression traits influenced by two different  
loci involved a significant interaction between the  
two loci65. Moreover, epistasis between both major- and 

minor-effect loci was found to be important in deter-
mining sporulation efficiency in the progeny of a cross 
between two budding yeast strains62,63, and higher-order 
epistatic interactions involving multiple loci underlie 
differences in the effects of gene deletions between two 
laboratory strains of yeast66.

Disease specifiers and disease modifiers. A second 
important conclusion from systematic studies of epista-
sis is that the number of potential genetic interaction 
partners differs widely among genes: mutations in 
some genes have many modifier loci but most have far 
fewer55. Genes with many potential genetic interaction 
partners (‘genetic hubs’) are functionally biased: for 
example, they often encode components of chroma-
tin and transcription complexes55,58. Genes with many 
interactions in one species also tend to have many inter-
actions in other species. Moreover, the biased functional 
properties of hub genes means that they can probably be 
predicted to some extent even if no orthologous genes 
exist in a model organism67. The same genes and pro-
cesses that have many genetic interactions in worms and 
yeast are therefore likely to have many genetic interac-
tions in human disease. One way to consider genetic 
hubs is as ‘disease modifiers’58; a mutation in a hub gene 
has the potential to enhance the effects of mutations 
in many other loci that alter very different phenotypic 
traits (FIG. 3).

Predicting genetic interactions. The third conclusion 
from the systematic analysis of genetic interactions is 
that genes with closely related functions tend to have 
similar profiles of genetic interactions. This means that 
genetic interaction profiles can successfully predict gene 
function55, but also conversely that gene functions (and 
interactions that link functionally related genes) can suc-
cessfully predict genetic interactions68,69. In particular, 
if two genes from two different processes have a nega-
tive genetic interaction, this predicts that other genes  
in the two pathways will also negatively interact68–72. 
Thus, the genetic interaction network is highly modular, 
and modules of genes share similar profiles of genetic 
interactions72. This allows genetic interactions to be pre-
dicted on a genomic scale using guilt-by-association69,73.  
This is important because in higher organisms the sys-
tematic experimental mapping of genetic interactions 
may never be realistic, and the number of possible 
combinations to test statistically in association studies 
is immense. Moreover, even in yeast, interactions have 
primarily been mapped only for a single trait: growth. 
Thus, extensive efforts are required to learn how best 
computationally to predict likely interactions that can 
then be statistically evaluated in human populations.

Genome–environment interactions

In addition to the effects of genetic background, another 
widely appreciated influence on the outcome of muta-
tions is the environment: mutations may predispose 

Figure 3 | Systematic analysis of genetic interactions (epistasis): disease specifiers 

and disease modifiers. In yeast, worms and fly cells, the effects of inhibiting two  

genes simultaneously have been systematically tested for many combinations of genes.  

This allows large-scale networks to be constructed where each edge in the network 

represents either a negative (enhanced phenotype) or positive (relieved phenotype) 

epistatic interaction. Whereas some genes in genetic interaction networks have few 

genetic interactions with genes of related functions, others interact promiscuously  

with genes with diverse molecular functions. The first class of genes can be considered to 

be ‘disease specifiers’ because their perturbation (alone and in combination) is only likely 

to influence a limited number of phenotypic traits. By contrast, perturbation of genes 

with functionally diverse interaction partners (here indicated by differently coloured 

nodes) may enhance the consequences of mutations in many different processes, 

depending on the other mutations carried in a genome. These genetic interaction hubs 

have therefore been termed ‘disease modifiers’ to reflect this potential for promiscuity58.
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to a particular disease but only if individuals are also 
exposed to a particular biotic or abiotic environmental 
condition or a trigger such as diet, temperature, parental 
nurturing, variation in the microbiota or exposure to a 
pathogen.

How mutations interact is also context-dependent. 
Gene–environment interactions have been studied 
both systematically and at base-pair resolution in model 
organisms and have been found to be widespread17–19,74. 
Moreover, epistatic interactions between genes have also 
been found to be context-dependent. Thus, an interac-
tion detected in one particular condition74–77 or spe-
cies78–80 is often not detected in a second condition or 
species. This plasticity of genetic interactions predicts 
that even if a gene is implicated in two particular dis-
eases, it may have different interactions (or modifier 
loci) in the two pathologies. As such, although the same 
functional module may be implicated in two diseases, 
the interactions of this module may differ between one 
tissue and another.

Promiscuous influences of the environment. In addi-
tion to specific interactions with particular mutations, 
it is important to note that the environment can also 
influence the outcome of mutations in more general, 
or promiscuous, ways. For example, the environment 
can influence the effects of mutations by altering the 
availability or activity of molecular chaperones, which  
are proteins that influence the folding or activity of other 
proteins in the cell81. This is because the effects of many 
mutations are modified by molecular chaperone activ-
ity, either because chaperones directly stabilize mutated 
proteins or because the outcome of a mutation is influ-
enced by the activity of a second, chaperone-dependent 
pathway or process82.

The chaperone activity — and therefore the mutation-
buffering capacity — of a cell or organism can increase or 
decrease in response to environmental stimuli. For exam-
ple, severe environmental stress can titrate away molec-
ular chaperones and can therefore ‘unbuffer’ (that is, 
enhance) the effects of otherwise phenotypically incon-
sequential mutations83,84. Conversely, a mild heat shock 
that induces a protective stress response that includes 
the induction of chaperones can increase the capacity 
of an organism to buffer the effects of inherited detri-
mental mutations85. This shows how both current and 
prior environmental conditions can have promiscuous  
influences on the outcome of mutations.

Although promiscuous influences of the environ-
ment on mutation outcome have largely been con-
sidered from the perspective of protein folding, other 
potential mechanisms may exist by, for example, promis-
cuous effects on gene expression. These warrant future 
investigation.

Whole-genome reverse genetics

Ultimately, the best test of our understanding of genetics  
is whether we can predict phenotypic variation from 
sequence. In a given environment and for a given phe-
notype, which individuals will differ and how? This 

challenge of predicting phenotypic variation from the 
complete genome sequences of individuals can be termed 
‘whole-genome reverse genetics’86. The goal is to make 
accurate predictions, preferably for many different phe-
notypes or conditions simultaneously. This can seem like 
a daunting task because of the sheer number of genetic 
variants in each individual. For example, budding yeast 
strains isolated in different environments or from dif-
ferent regions typically have protein-coding variation in 
thousands of their 6,000 genes87. Simultaneously chang-
ing thousands of parameters is might be considered 
one of the ‘worst possible experiments’ for a biologist.  
However, it is a challenge that must be tackled.

Model organisms represent an ideal opportunity 
for testing our ability to make whole-genome reverse-
genetic predictions. In several model organisms, we 
have fairly comprehensive information from forward- 
and reverse-genetic screens on the genes that can influ-
ence many different phenotypic traits (see above). 
Moreover, cheap and quantitative experiments can be 
carried out in model organisms to evaluate prediction 
performance.

The challenge of making whole-genome reverse-
genetic predictions has been attempted and experi-
mentally evaluated in budding yeast86, but it could 
also be applied to other model species. In the budding 
yeast study, only protein-coding variation was consid-
ered, and all predictions were made relative to a ref-
erence laboratory strain. The approach consisted of 
three main steps (FIG. 4). First, the variants affecting the 
amino acid sequence of each protein in each individual 
were evaluated to determine whether they were likely 
to alter the function of that protein. There are many 
different ways to estimate whether particular mutations 
alter protein function88, and in this study a fairly simple 
approach of considering the evolutionary conservation 
of each amino acid across different yeast species was 
used. Indeed, on the basis of an evaluation of budding 
yeast mutations that are known to alter protein function 
isolated in forward-genetic screens, this evolutionary 
method seems to work well86. Second, for each different 
environmental condition, the individual yeast strains 
were ranked using the total function-altering mutation 
load that they carry in sets of genes that were previously 
reported to influence growth when deleted under the 
same condition. These lists of genes were derived from 
genome-wide screens using the deletion collection. 
Thus variants in any of these genes were considered to 
have a similar potential to influence the trait, and their 
effects were assumed to combine additively. Third, the 
actual phenotypic differences among individuals were 
experimentally quantified (in this case, growth rate and 
efficiency in different environments and resistance to 
drugs), and these experimental data were used to evaluate  
the performance of the predictions.

Surprisingly, this simple, protein-only, ‘black box’ 
and additive genetic model provided reasonable pre-
dictions of phenotypic variation across individuals86. 
Moreover, when predictions failed, this could partially 
be accounted for by the low reliability of the sets of 
genes that were reported as influencing the trait, as 
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evaluated by their lack of clustering in an integrated 
network86. This study is, however, only a first step, and 
the approach that it proposes could be more widely 
used to evaluate alternative methods for predicting 
phenotypic variation from whole-genome sequences. 
For example, information on regulatory regions, gene 
expression measurements and epistatic interactions 
could all be incorporated into more sophisticated 
models. Indeed, it could be envisaged that multiple 
different groups could make phenotypic predictions 
from a common set of individual genome sequences, 
and the performance of these predictions could then 
be determined by independent experimental evalua-
tion. Such cycles of prediction and independent evalu-
ation in model organisms might be one way to improve 
methods for predicting phenotypic variation from  
whole-genome sequences.

Additional influences on trait variation

As noted above, many disease-associated mutations 
are incompletely penetrant (that is, not all individuals 
carrying a mutation develop a disease) or have variable 
expressivity (that is, individuals differ in the severity 
of disease). These phenomena are often assumed to be 
caused by either additive or epistatic interactions with 
other genetic variants in a genome or by interactions 
with environmental risk factors. However, incomplete 
penetrance and variable expressivity are common even 
in identical twins5 and in inbred model organisms, 
such as mice and C. elegans, that can be raised in highly 
controlled environments3. For example, inbred rodent 
strains still show substantial variation in body weight 
even when the environment is tightly controlled89. What 
are the causes of this variation in ‘genome outcome’, even 
when the environment is controlled? The contributions 
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Figure 4 | Whole‑genome reverse genetics: making and evaluating phenotypic predictions from the genome 

sequences of individuals. Model organisms can also be used to test methods for predicting phenotypic variation  

from whole-genome sequences. For example, individual yeast strains from around the world could be subjected to 

whole-genome sequencing and then diverse methods used to predict the genetic perturbations to different genes, 

pathways and processes believed to contribute to different phenotypic traits. In the example, the effects of mutations 

on individuals proteins in a set previously reported to influence a trait are estimated, and proteins predicted to have 

altered functions are indicated in red. The total perturbation in the gene set is then used to predict whether each 

individual will be affected for that trait (red) or not (blue) relative to a reference laboratory strain. These computational 

predictions can then be compared to the actual phenotypic variation quantified in laboratory experiments. Future 

studies could also assess the influence of non-protein-coding variation and changes in gene expression or copy 

number and could consider more complex models, epistatic interactions and non-homozygous genomes.
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Isogenic

Lacking genetic variation. 

Some laboratory animals,  

such as Caenorhabditis elegans 

and mice, are inbred and so 

siblings have identical genome 

sequences except for de novo 

mutations arising in each 

generation.

to this are only just starting to be investigated and so are  
introduced in the final section of this Review.

Epigenetic epistasis. Recent studies have provided 
insights into this question, linking phenotypic variation 
to inter-individual differences in gene expression3. For 
example, in the bacterium Bacillus subtilis, variation in 
the outcome of a mutation in a gene affecting sporulation 
was partially accounted for by variation in the expression 
level of that gene90. A second study in C. elegans exam-
ined how genes vary in expression downstream of an 
incompletely penetrant mutation, showing that in the 
presence of an upstream mutation several downstream 
genes are not expressed, and levels of the remaining (but 
highly variable) active downstream gene are sometimes 
insufficient to activate the final gene in the regulatory 
cascade91.

A third study proposed a more general model for 
incomplete penetrance, suggesting that it is variation in  
genetic interaction partners that underlies variation  
in the outcome of a mutation92. The logic of this model 
is the following: if the effects of a mutation in a gene are 
known to be influenced by mutations in a second gene, 
then non-genetic variation in the activity of this second 
gene might also influence the outcome of the mutation 
(FIG. 5). Thus, knowing the genetic interaction partners 
of a gene, it is possible to predict which genes, if they 
have sufficient inter-individual expression variation, 
might underlie incomplete penetrance or expressivity. 
These interactions between mutations and expression 
variants can be referred to as ‘epigenetic’ interactions or 
epigenetic epistasis.

Epigenetic epistatic interactions can occur both 
because of variation in the expression of specific genetic 
interaction partners and because of variation in more 
promiscuous genetic interaction hubs. For example, 
during the early embryonic development of C. elegans, 
substantial inter-individual variation in the expression of 
the heat-shock protein 90 (HSP90) chaperone DAF-21 is 
observed, and this variation partially predicted variation 
in the outcome of a chaperone-dependent mutation92. 
As noted above, systematic screens in model organ-
isms have shown that most genes have many potential 
genetic interaction partners, meaning that variation 
in the expression or activity of multiple genes could 
have an impact on the outcome of a particular muta-
tion. By simultaneously quantifying the expression of 
two genetic interaction partners — a partially redun-
dant paralogue of the mutated gene and the promis-
cuous genetic hub HSP90 — during early embryonic 
development, it was possible to predict more accurately  
the outcome of an inherited mutation in C. elegans92.

Variation in how an organism responds to an envi-
ronmental challenge can also underlie variation in the 
outcome of mutations. For example, following a mild 
heat stress, not all C. elegans larvae respond similarly, 
and longer signal duration in some individuals is linked 
to stronger induction of target genes, such as chaper-
ones85. The ability to buffer the effects of inherited muta-
tions was also stronger in individuals inducing a more 
substantial stress response85. Thus, gene–environment 
interactions can also vary among isogenic individuals, 
and inter-individual differences in gene expression 
lead to stronger or weaker genotype–environment 
interactions.

To date, inter-individual variation in mutation out-
come has primarily been studied at the level of variation 
in gene expression. However, it is likely that variation at 
other scales could also have an impact on phenotypic 
variation, such as variation in cell contacts or mechani-
cal stresses during development or variation in protein 
aggregation later in life. If such variation is temporally 
stable — for example, in the form of epigenetic inher-
itance through mitotic divisions that is transmitted by 
changes in chromatin or gene circuits — then early 
stochastic events may also influence how an organism 
later responds to a perturbation such as infection or 
diet. Thus, adult traits such as diabetes may also partially 
trace back to embryonic events93,94. Epigenetically stable 
stochastic variation could also be important in the initia-
tion of tumour clones: inter-individual cellular variation 
that provides a growth advantage will be selected and, if 
it is semi-stably mitotically inherited, may lead to cancer.

Finally, although appreciated as an important influ-
ence in cancer, somatic mutations acquired during an 
individual’s development may also contribute more  
generally to trait variation.

Parental influences on phenotypic variation. Two addi-
tional influences on phenotypic variation that are often 
overlooked and that are still quite poorly understood at 
the molecular level are non-inherited genetic variation 
(that is, the genotypes of parents) and transgenerational  

Figure 5 | Epistasis with only a single mutation: inter‑individual variation in the 

expression of genetic interaction partners contributes to incomplete penetrance. 

a | If the effects of a mutation in one gene (red) can be enhanced by mutations in three 

other genes (blue, green and purple), then variation in the expression levels of these 

three genes may also enhance this mutation. In the example, two of these genes  

(blue and green) show substantial expression variation during early development, as 

indicated by the box plots next to each gene. b | In one possible scenario, the effects  

of the mutation in the red gene may be detrimental if the expression of either of the 

genetic interaction partners (blue and green) is low during development. By contrast, 

the mutation may have no effect when the expression of both of these genes is high. 

Such ‘epigenetic’ inter-individual variation in the expression levels of genetic 

interaction partners may be a common cause of incomplete penetrance and of the 

variable expressivity of mutations. This variation in gene expression can be stochastic, 

environmentally induced or perhaps subject to parental control.
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Haploinsufficiency

A gene is haploinsufficient if 

removal of one of the two 

copies in a diploid organism 

has a detectable effect on 

fitness or a phenotype.

Dominance

The extent to which one allele 

of a gene exerts its effects 

irrespective of a second allele 

in diploid organisms. Complete 

dominance implies that the 

heterozgygote has a phenotype 

that is indistinguishable  

from that of the dominant 

homozygote. Overdominance 

implies that the phenotype  

of the heterozygote lies outside 

the range of both homozygote 

parents.

influences of the environment (for example, alterations 
in maternal provisioning of embryos).

Examples of non-inherited genetic variation that 
influence phenotypic variation are quite common in 
model organisms; examples include maternal-effect 
mutations that affect Drosophila melanogaster develop-
ment and a natural polymorphism with a paternal effect 
in C. elegans that causes lethality in particular zygotic 
genotypes95. Another example is the modification of 
tumour growth in D. melanogaster: individual flies that 
inherit a hyperactive JAK kinase develop tumours if 
their parents carry mutations in several different regu-
lators96, and the authors propose that the JAK kinase 
antagonizes the erasure of parentally derived epigenetic 
markings induced by these mutations. These examples 
highlight the potential for the consequences of inherited 
mutations to be influenced by genetic variation that was 
present in parents but not inherited by their progeny.

In vertebrates and invertebrates, there are also diverse 
examples of how changes in the parental environment 
can influence phenotypic variation in the next genera-
tion3. In some cases, these changes are proximal: for 
example, in C. elegans, osmotic stress triggers increased 
deposition of glycerol into oocytes with the result that 
these oocytes are better protected from osmotic stress 
but are more susceptible to hypoxia97. In other cases, 
the effects of parental environment are longer lasting: 
for example, certain strains of male rat that are fed a 
chronic high-fat diet are more likely to have female off-
spring with pancreatic β-cell dysfunction98, and male 
mice that are fed a low-protein diet have offspring with 
altered metabolic gene expression in their livers99. Such 
parental influences may, in some cases, also be trans-
mitted for multiple generations100. Indeed, in humans 
there is epidemiological evidence that the environment 
experienced by one generation might influence the  
phenotypes of subsequent generations101.

In most cases, how the maternal or paternal envi-
ronment influences phenotypic variation in offspring 
is not understood at the molecular level, and dissect-
ing these molecular mechanisms is a key challenge for 
the field. However, the phenomenon of imprinting in 
mammals — whereby either the maternal or paternal 
copy of a gene is silenced — clearly shows that there is 
the potential for the propagation of specific epigenetic 
information from the germ line to a zygote102. Moreover, 
the establishment of transgenerationally inherited gene 
silencing by small RNA pathways in C. elegans also high-
lights the potential for specific epigenetic information 
to be transferred across generations103–105, as does the 
transgenerational propagation of the effects of genetic 
perturbations that affect lifespan106.

Future challenges

In this Review, I have highlighted some recent work in  
model organisms that is relevant to the problem of 
making accurate phenotypic predictions in individual 
humans. Of course, there remain many important  
challenges, and I discuss a few of these here.

First, with respect to the problem of linking genes 
to traits, one major goal should be the creation of 

gene–phenotype maps for vertebrates similar to those 
that have been produced for model organisms. These 
model-organism maps — produced using both RNAi 
and genetics and generated using both cells and whole 
animals — would serve as a framework for human 
genetic studies. One technical challenge is the ‘sign prob-
lem’ of positive and negative regulators: to make accu-
rate genetic predictions, all of the genes that influence a 
human disease need to be distinguished, plus their direc-
tion of action and any interactions. Similarly, the ability 
to distinguish loss-of-function from gain-of-function or 
change-of-function mutations has received little atten-
tion but is important for making integrated predictions 
across genomes. Haploinsufficiency107 and dominance20 have 
also received little attention in the context of genome-
scale predictions, and the mechanisms that cause small 
increases in the dosage of some genes to have phenotypic 
consequences are also not clear and warrant further inves-
tigation. In addition, predicting the effects of variants in 
non-coding regions is still an open challenge, and although 
improved genome annotation and cross-species analysis 
should facilitate this, extensive sets of phenotypically  
relevant mutations are also likely to be required.

Second, with respect to epistasis, a major challenge is 
to understand the molecular mechanisms that underlie 
most epistatic interactions50. Although epistatic interac-
tions often fall ‘between pathways’ (or between mod-
ules)70–72, it is not clear why different modules interact or 
how these interactions can be predicted de novo. Other 
issues that remain to be systematically investigated are 
the importance of epistasis involving weak alleles, rather 
than null alleles or those that strongly reduce function, 
and the extent of epistasis between heterozygous muta-
tions. Moreover, epistasis screens with gain-of-function  
mutations have been limited to a small number of over-
expression screens108, and this is another area that deserves  
more attention. However, the development of computa-
tional methods to predict epistatic interactions in human 
disease genetics is perhaps the most pressing challenge.

Third, with respect to variation in non-protein-
coding regions of the genome, substantial efforts are 
required to identify systematically the regulatory regions 
of each gene and to build computational models of when 
polymorphisms in these regions affect expression and 
phenotypic traits.

Fourth, with respect to gene–environment interactions 
and whole-genome reverse genetics, a key challenge will 
be to make predictions in more complex scenarios, such 
as from heterozygous genomes, for higher model organ-
isms and for traits for which there is less complete knowl-
edge about the relevant genes. An additional challenge 
will be to incorporate other kinds of genetic variation, 
such as copy number changes and variants in non-coding 
regions, as well as gain-of-function mutations. Of course, 
an important question is also whether considering epi-
static interactions between variants will be required to 
make more accurate predictions and how best to predict 
these. Moreover, will complex and dynamic models, such 
as those involving metabolic networks or regulatory 
interactions, or those focused on a particular pathway  
or process be required for more accurate predictions?
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Fifth, with respect to variation in the outcome of 
mutations among isogenic individuals, it will be neces-
sary to test whether the models developed in inverte-
brates also apply to vertebrate systems. Does variation 
during embryonic development have an impact on the 
developmental outcome of mutations and on adult 
phenotypes in other species? In addition, the extent 
to which environmentally triggered responses and 
parental genetics can alter phenotypic variation in 
subsequent generations warrants much more investi-
gation, and the molecular mechanisms that underlie 
these transgenerational effects need to be elucidated. 
Ultimately, it will be necessary to understand how all 
of the various influences on phenotypic traits through-
out an individual’s life interact to determine their final  
characteristics (FIG. 6).

Concluding remarks

I have attempted to highlight here how model organisms 
are being used to develop and to evaluate methods to link 
genetic variation to phenotypic variation more compre-
hensively and also to understand why accurate pheno-
typic predictions may, for many traits and diseases, never 
be possible from genome sequencing alone. Rather, the 
work from model organisms reminds us that to make 
accurate predictions at the level of individuals, it will be 
necessary to combine genetic information with appro-
priate in vivo measurements of physiological states and 
other ‘intermediate phenotypes’, such as gene expression, 
protein and metabolite levels or other functional assays 
that capture additional influences on trait variation109. As 
highlighted above, there still remain many open ques-
tions, and model organisms will continue to provide an 
intellectual framework, directly transferable biological 
knowledge and practical computational methods that 
can be applied to human genetics.

• Maternal products
• Paternal products

Phenotype of adult individual

• Environment (abiotic or biotic)
• Inter-individual variation
• Somatic mutations

Genome

Zygote

‘Epigenetics’

Parental environmentParental genetics
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Figure 6 | Sources of phenotypic variance in individuals. A complete understanding of 

phenotypic variation in individuals will require an understanding of the contributions  

of multiple sources of variance and how they interact. For example, as illustrated here 

for Caenorhabditis elegans, phenotypic traits may be influenced by variation in an 

individual’s genome, by maternal or paternal products contributed to the zygote  

that may be influenced by parental genotype or parental environment, by somatic 

mutations, by inter-individual stochastic variation and by both biotic (for example, 

pathogens, commensal microbiota or parental behaviour) and abiotic (for  

example, diet or temperature) environmental factors experienced at different life 

stages. The extent to which early variation influences later phenotypic variation and 

how early variation is propagated (‘epigenetics’) are also important open questions.
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