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Abstract

Autism spectrum disorders (ASD) are characterized by both phenotypic and genetic heterogeneity. 

Our analysis of functional networks perturbed in ASD suggests that both truncating and non-

truncating de novo mutations contribute to autism, although there is a strong bias against 

truncating mutations in early embryonic development. We find that functional mutations are 

preferentially observed in genes likely to be haploinsufficient. Multiple cell types and brain areas 

are affected, but the impact of ASD mutations appears to be strongest in the cortical neurons and 

the medium spiny neurons of the striatum, implicating corticostriatal brain circuits. In females, 

truncating ASD mutations on average impact genes with 50–100% higher brain expression levels 

compared to males. Our study also suggests that truncating de novo mutations play a smaller role 

in the etiology of high-functioning ASD cases. Overall, we find that stronger functional insults 

usually lead to more severe intellectual, social and behavioral ASD phenotypes.

INTRODUCTION

Autism spectrum disorders (ASD) are associated with a wide range of cognitive and 

behavioral abnormalities1, 2. It is estimated that many hundreds of genes may ultimately 

contribute to autism and related phenotypes2, 3. Functionally important de novo mutations 

associated with ASD are individually rare, but their collective contribution to sporadic ASD 

cases is likely to be substantial due to a large number of target genes3-10. Several recent 

studies identified a large collection of de novo mutations associated with ASD, including 
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copy number variations (CNVs)6 and single nucleotide variations (SNVs)3, 8, 11. These 

studies demonstrated that truncating SNVs (such as nonsense, splice site, and frameshift 

mutations) and large CNVs are likely to play a causal role in ASD.

To explore these underlying biological pathways, we previously developed a computational 

approach (NETBAG+) that searches for cohesive biological networks using a diverse 

collection of disease-associated genetic variants12, 13. Using network-based approaches we 

and others have recently demonstrated that genetic variations associated with ASD and other 

psychiatric disorders converge on several biological networks involved in brain 

development and synaptic function12-15. In parallel with the identification of disease-

associated genetic variations, complementary datasets of brain-related functional and 

phenotypic resources are rapidly being accumulated. These include a comprehensive 

database of gene expression data across different cell types, distinct anatomical brain 

regions, and developmental stages16, 17. In addition, resources such as the Simons Simplex 

Collection (SSC)18 have assembled a large compendium of ASD-related phenotypic data, 

including intelligence and social phenotypic scores. In the present study we focus our 

analyses on a set of genes implicated by our network-based computational approach and also 

on all de novo truncating mutations from several recent studies. These two approaches 

provide complementary genes sets with a significant fraction of causal ASD mutations. We 

investigate the temporal, spatial, and cell-specific expression profiles of implicated genes. 

We also explore how expression, network, and functional properties of autism-associated 

genes affect ASD phenotypes.

RESULTS

Functional gene networks affected by de novo mutations

To elucidate functional networks perturbed in ASD, we applied NETBAG+ to a set of genes 

affected by de novo CNVs and SNVs observed in autistic patients from the Simons Simplex 

Collection (SSC) 3, 6-8. Of note, all the mutations used as the input for our analyses were 

obtained using genome-wide methodologies and are therefore not biased by any pre-existing 

hypotheses of ASD etiology. The combined input data contained a total of 991 unique genes 

from 624 independent genomic loci, including 580 unique genes with de novo SNVs, and 

434 genes within de novo CNVs; we note that the number of genomic loci used in this study 

is considerably larger than the 47 loci considered in our previous analysis of de novo CNV 

events in autism15. We used NETBAG+ to identify a subset of the input genes that are 

strongly connected in the underlying phenotypic network (see Methods). The NETBAG+ 

search revealed a functional network containing 159 genes (P = 0.036, Fig. 1), of which 131 

genes were affected by de novo SNVs (Fig. 1, circles), and 31 by de novo CNVs (squares). 

The network’s significance was estimated using random input sets that matched the real data 

in terms of protein length and network connectivity. Notably, no significant networks were 

detected using genes associated with the 368 non-synonymous de novo mutations identified 

in siblings.

To explore the biological functions associated with the functional network, we used 

DAVID19 to identify Gene Ontology (GO) terms that are significantly enriched among 

network gene annotations (Table 1). This analysis identified a diverse set of functions 
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associated with the implicated network, including synaptic functions, chromatin 

modifications, and calcium channel activity. To better understand the functional 

relationships between genes in the network, we performed hierarchical clustering of the 

network genes using the strength of interactions in the phenotypic network as a metric. This 

analysis identified four major clusters in the network, each of which was associated with 

distinct and non-overlapping biological functions (Supplementary Table S3; node colors in 

Fig. 1 indicate cluster assignment).

One cluster in our network (Fig. 1, cyan) contains genes responsible for synapse formation 

and function. This cluster contains neurexin (NRXN) and neuroligin (NRLG), and important 

components (SHANK2 and DLG2/DLG4) of the postsynaptic density (PSD) of excitatory 

synapses. A related cluster (blue) includes a diverse set of ion channels and receptors. This 

cluster contains genes (CACNA1B/D/E/S) for subunits of several voltage-dependent calcium 

channels, which play an important role in learning and memory20. The largest cluster 

(green) of the implicated network contains genes primarily associated with neuronal 

signaling and migration (NF1, DCC, EPHA1/B2), intracellular signaling (MAPK3, EGFR, 

PTEN, MDM2, CTNNB1, PRKCA, LIMK1), and the development of neuronal projections 

and actin cytoskeleton (CYFIP1, TRIO, SPTAN1, FLNA, ACTN4). As we have previously 

demonstrated, ASD-associated mutations often perturb multiple signaling pathways that 

converge on the regulation of actin cytoskeleton and other structural processes that are 

required for neuron migration, cell-cell adhesion, and the development of neuronal 

projections12, 21, 22. Many genes in the clusters described above encode proteins that 

participate in various processes related to the growth and function of dendritic spines, which 

have been implicated in our previous analyses of genetic insults in ASD and 

schizophrenia12, 13. The final cluster (red) is primarily related to functions associated with 

chromatin modifications, chromatin remodeling, and transcriptional regulation. Notably, 

there is growing evidence that chromatin regulatory mechanisms crucially affect various 

stages of neural development, neuroplasticity, and learning23. This cluster also contains 

genes involved in other processes that have recently been implicated in ASD: RNA 

interference (DICER1, AGO1/EIF2C1), translation (EIF4A1, EIF4G1, EIF3G) and splicing 

(SFPQ, TRA2B)24.

Association of the implicated genes with specific functional subsets

In addition to the molecular and biological GO categories discussed above, it is interesting 

to investigate an overlap between the network and specific gene subsets that may highlight 

the phenotypic and functional properties of the network genes. Recent exome sequencing 

studies revealed recurrent truncating mutations in several genes (ADNP, ANK2, ARID1B, 

CHD8, CUL3, DYRK1A, GRIN2B, KATNAL2, POGZ, SCN2A, and TBR1)3, 8, 11, 34. 

Although only 131/580 (~23%) of all genes harboring missense SNVs form the implicated 

network, six out of the eleven genes with recurrent truncating mutations are in the network 

(Fisher’s exact one-tail test P = 0.02). This suggests that there is a significant enrichment of 

causal genes in the implicated network. Because ASD de novo mutations are predominantly 

heterozygous, it is likely that true causal mutations would preferentially target 

haploinsufficient genes. Indeed, using haploinsufficiency probabilities from a recent study25, 

we found that genes in the implicated network are significantly more likely to be 
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haploinsufficient than genes not selected by NETBAG+ (median probability for network and 

non-network genes are 0.57 and 0.32, respectively; Wilcoxon rank-sum two-tail test P < 

10−14); a similar result is also observed for genes with recurrent truncating mutations 

(median probability for genes with recurrent truncating mutations and unaffected sibling 

SNV genes are 0.69 and 0.39, respectively; Wilcoxon rank-sum two-tail P = 0.016). We also 

considered the Genomic Evolutionary Rate Profiling (GERP) score to characterize the 

severity of SNV mutations. Interestingly, the average GERP score of network genes is 

significantly higher than the average GERP score of genes not selected into the network 

(average network and non-network GERP scores are 4.0 and 3.3, respectively; Wilcoxon 

rank-sum one-tail P = 0.001). As higher GERP scores correspond to more damaging 

mutations, this analysis demonstrates that NETBAG predominantly selects genes harboring 

SNV mutations with potentially higher functional impact.

Notably, a recent exome study showed a significant overlap between genes harboring 

truncating ASD de novo SNVs and targets of the fragile X mental retardation protein 

(FMRP) 3, 26. FMRP is a RNA-binding protein, essential for a wide array of cognitive 

functions including synaptic plasticity and learning27, 28. Failure to properly express FMRP 

can cause fragile X syndrome, a genetic disorder resulting in a spectrum of cognitive 

disabilities and often accompanied by autistic symptoms. Following the analysis by Iossifov 

et al. of truncating de novo SNVs, we calculated the expected number of FMRP targets for 

ASD network genes by inferring gene mutabilities from a large exome sequencing study29 

(see Methods); the expected number of FMRP targets was compared to the observed values 

in various ASD gene sets (Table 2). This analysis showed that, similar to truncating SNVs 

genes, genes in the implicated network are significantly enriched for FMRP targets 

(truncating SNV gene enrichment 1:2.13, two-tail binomial test P = 3×10−4; network gene 

enrichment 1:2.78, P = 3×10−11). The enrichment remains significant when considering only 

network genes harboring non-truncating SNVs (enrichment = 1:2.67, P = 4×10−9). 

Significant enrichment is also observed for FMRP targets from another recent study 

(Supplementary Table S5)30. In contrast, there is no significant enrichment for proband SNV 

genes not selected to the network (P = 0.2) and de novo SNV genes from unaffected siblings 

(P = 0.15). Furthermore, enrichment for FMRP targets remains significant when we 

separately consider each of the four functional clusters of the implicated network (Table 2). 

Overall, these analyses confirm that FMRP targets play an important role in the autism 

etiology and suggest a causal role for a significant fraction of genes with non-truncating de-

novo SNVs.

Genes forming the postsynaptic density (PSD) are also likely to play an important role in 

ASD and other psychiatric disorders12, 31. The PSD is localized at the postsynaptic 

membrane of excitatory synapses and is crucial to synaptic communications and 

plasticity32-34. There is a significant enrichment of PSD-associated genes in the implicated 

network (enrichment 1:3.4, two-tail binomial test P = 7×10−9, Supplementary Table S5) and 

marginal enrichment for truncating de novo SNVs in probands (enrichment 1:1.9, P = 0.05). 

No enrichment is observed for genes harboring SNVs in unaffected siblings (enrichment 

1:1.05, P = 0.8). For genes not selected to the network, PSD genes are significantly under-

represented (enrichment 1:0.58, P=0.04).
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Temporal and spatial brain expression patterns of implicated genes

Gene expression patterns provide important clues for understanding physiological and 

developmental contexts of gene function. Therefore, we next investigated brain expression 

of the ASD-implicated genes using the Human Brain Transcriptome database (HBT, 

hbatlas.org)16. Based on postmortem transcriptional analysis of tissue samples from healthy 

individuals, the HBT database provides a comprehensive map of mRNA expression in 

multiple regions of the human brain and across developmental stages. The average 

expression levels across developmental periods are shown in Fig. 2a for various gene sets 

that form the implicated network as well as for genes with truncating de novo SNVs. The 

brain expression of network genes (Fig. 2a, red) is significantly higher (Wilcoxon rank-sum 

two-tail test P < 10−15) than the expression of SNV-containing genes that were not selected 

to the network (purple) or all human genes in the HBT database (dashed line). This result 

confirms that the implicated network is significantly enriched in brain-related genes. 

Notably, high brain expression of network genes is not simply a consequence of their length 

or connectivity in the phenotypic network; randomly selected human genes with equivalent 

length or network connectivity are expressed in the brain at significantly lower levels (P < 

10−4) across all developmental periods (Supplementary Fig. S2).

Expression of the network genes (Fig. 2a, red) is on average highest during the early fetal to 

early mid-fetal periods (8 to 19 post-conception weeks), possibly due to higher activity of 

ASD-related genes within brain cells or changes in brain cellular composition. To quantify 

the prenatal expression bias, we calculated the difference between the expression during 

prenatal developmental periods and during postnatal periods for every gene harboring de 

novo mutations. We used a Wilcoxon rank-sum test (PWT) to estimate the significance of the 

expression difference between sets of biological samples, and a permutation-based test (PPT) 

to estimate the probability of observing a greater bias in random probe sets of equal size (see 

Methods). The prenatal bias was highly significant for network genes (bias 0.16, one-tail test 

PWT < 10−15/PPT < 10−4) and also for genes with truncating SNVs (bias 0.18, PWT < 

10−15/PPT < 10−4). However, we did not observe the high prenatal expression of ASD 

network genes in the embryonic period. This effect is particularly dramatic for genes with 

truncating de novo SNVs in the network (Fig. 2a, orange) and for genes from de novo CNVs 

in the network (Fig. 2a, green) in which embryonic expression is substantially lower 

compared to later developmental periods (two-tail test PWT = 6×10−7/PPT < 10−4 and PWT = 

10−14/PPT < 10−4 respectively); Fig. 2b shows the average expression profiles for network 

genes with truncating (CNVs and truncating SNVs) and non-truncating mutations. 

Reassuringly, the bias against mutations in the embryonic period is absent for non-

synonymous de novo SNV genes not selected to the network (PWT = 0.4/PPT = 0.3) and for 

genes with de novo SNVs in siblings (PWT = 0.2/PPT = 0.2). The observed bias against de 

novo truncating SNVs and CNVs during the earliest phase of embryonic development 

suggests strong selection against harmful mutations as they likely lead to more severe 

developmental consequences compared to mutations typically associated with autism.

We also examined the temporal expression profiles of each of the four clusters forming the 

implicated network (Fig. 2c). The cluster that is primarily associated with the postsynaptic 

density (Fig. 2c, cyan) has the highest overall expression in the brain. Both the PSD cluster 
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and the cluster associated with various channel activities (blue) show a distinct rise during 

early fetal development, consistent with the start of synaptogenesis at the early mid-fetal 

developmental stage. In contrast, the cluster associated with chromatin modification and 

regulation (red) shows high embryonic expression, consistent with a developmental peak of 

neuronal proliferation and differentiation, and then gradually decreases to a postnatal 

plateau. Sustained expression of chromatin modification genes after neurodevelopmental 

stages may be attributed to their involvement in synaptic plasticity35. Finally, the cluster 

associated with neuronal signaling and cytoskeleton (green) is relatively constant across all 

developmental stages. This is consistent with important roles that signaling and structural 

genes play across all stages: from neural differentiation and migration to neuron projection 

development, and from synaptogenesis to learning and memory. Importantly, while the 

average expression profiles of clusters are shown in Fig. 2c, there is significant variability in 

the expression of individual genes (Supplementary Fig. S3). This variability is likely to be at 

least partially explained by different dosage requirements of individual genes. Normalized 

expression trajectories (see Supplementary Fig. S3) show that the temporal profiles of 

individual genes are generally consistent with the average expression profiles of 

corresponding functional clusters.

A high male to female incidence ratio, estimated at more than 4:1 for high-functioning 

individuals, is one of the most consistent and dramatic findings in ASD36, 37. Evidence 

suggests that this bias may be due to a female protective effect that requires a higher 

threshold of genetic insults to trigger ASD in females compared to males38. Consistent with 

this hypothesis is the observation that females in the SSC collection have a greater burden of 

truncating mutations than males (Fisher’s exact one-tail test P = 0.07) and this gender 

dimorphism is even stronger for the genes in the implicated network (30% of SNV 

mutations in females are truncating compared to 13% in males; Fisher’s exact one-tail test P 

= 0.03). Notably, the average brain expression is significantly higher for genes harboring 

truncating de novo mutations in females than in males (Fig. 2d; 7.98 the average log2 

expression for genes in females compared to 7.40 for males; one-tail test PWT < 10−15/PPT = 

2×10−3). Thus, the expression data also suggest that relatively stronger genetic 

perturbations, i.e. truncating mutations in genes with higher brain expression, are 

preferentially associated with ASD in females. Importantly, the observed expression patterns 

cannot be explained by normal expression differences between males and females. For genes 

with truncating SNV mutations in females, the average brain expression levels in females 

and males are 8.02 and 7.95 (< 1% difference), respectively; for genes with truncating SNVs 

in males, the average brain expression levels in females and males are 7.42 and 7.39 (< 0.5% 

difference), respectively. We also note that the relative difference in brain expression for 

genes harboring mutations in females versus males is larger for genes harboring truncating 

SNVs than for implicated network genes. This result is likely a consequence of the severe 

impact of truncating mutations on protein function, which makes the expression of 

corresponding genes an important factor in explaining the variability of ASD phenotypes 

across patients.

To investigate whether ASD-associated mutations preferentially affects specific brain 

regions, we analyzed spatial expression data available in the HBT database. For each brain 
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region, we compared the average expression levels of network genes to the expression levels 

of genes with SNVs in unaffected sibling. Compared to controls, network genes show 

significantly higher expression across all brain regions (Supplementary Table S7), a result 

consistent with the wide spectrum of phenotypic abnormalities observed in ASD. 

Furthermore, we investigated the prenatal expression bias for network and truncating genes 

and compared these to the control bias for genes with SNVs in siblings (Table 3). This 

analysis demonstrated that the prenatal versus postnatal bias was generally similar and 

statistically significant for all brain regions (Supplementary Table S8). We note however 

that the amygdala, which is known to play a crucial role in processing emotional stimuli39, 

shows a numerically, though not significantly, larger prenatal bias compared to other 

regions. But overall, the lack of regional specificity underscores the pleiotropic nature of 

genes and functional processes involved in ASD.

The human brain contains a variety of neuronal and non-neuronal cell types, and it is 

interesting to investigate possible biases of implicated genes towards specific cell types. To 

explore this question we used an independent dataset of cell-specific gene expression 

generated using translating ribosome affinity purification (TRAP)17; the dataset contains 

gene expression profiles for 25 distinct cell types from the mouse central nervous system 

(CNS). To assess cell-specific expression biases, we compared, for each cell type, the 

expression of mouse orthologs for the implicated network genes with the expression of 

orthologs for genes harboring mutations in unaffected siblings. This analysis revealed that 

multiple neuronal and non-neuronal cell types are likely affected by de novo ASD mutation 

in the network genes (Fig. 3 and Supplementary Table S8). The diversity of affected cells 

can be explained, at least partially, by shared usage of common signaling, structural, and 

neural pathways across diverse cell types. While multiple cell types are affected, particularly 

strong and significant expression biases for implicated network genes are observed in 

cortical neurons, especially layer 5 pyramidal projection neurons, cerebellar granule cells, 

and medium spiny neurons of the striatum (Fig. 3, red). Notably, these cell types are also 

independently implicated by considering expression biases for 11 genes with recurrent 

truncating de novo mutations (Fig. 3, blue). On the other hand, some other cell types, such as 

motor neurons and astroglial cells, are markedly less affected. Notably, deep layer cortical 

glutamatergic projection neurons were also identified recently as a point of spatio-temporal 

convergence in co-expression networks built around high confidence ASD genes40.

Functional properties of implicated genes and disease phenotypes

Because ASD manifest significant pathophysiological differences across probands, it is 

important to understand how functional properties of implicated genes and associated 

mutations affect phenotypic characteristics of the disease. To investigate the effect of 

truncating de novo mutations on IQ, we calculated — separately for CNVs and truncating 

SNVs — the number of truncating mutations per individual across the IQ spectrum (Fig. 

4a). Interestingly, for high-functioning ASD probands, the fractions of truncating mutations 

(CNVs and truncating SNVs) in all protein-altering events decreases and becomes similar to 

the average fractions in unaffected siblings. The combined fraction of truncating mutations 

(CNVs and truncating SNVs) for probands with IQ less than 100 is about two times higher 

compared to probands with IQ greater than or equal to 100 (0.13 for IQ<100, 0.067 for 
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IQ≥100; Fisher’s exact two-tail test P = 0.001). In contrast, similar analyses for non-

truncating mutations (synonymous and non-truncating SNVs) in probands show that the 

average number of non-truncating mutations per individual is relatively constant across IQs 

(Fig. 4b), without a prominent decrease for high-functioning ASD probands (0.43 for IQ < 

100, 0.46 for IQ ≥ 100; Fisher’s exact two-tail test P = 0.7). Relative to synonymous 

mutations, non-truncating non-synonymous mutations are significantly enriched in probands 

with IQs above 70 compared to those below 70: 160 non-truncating and 72 synonymous 

mutations (2.2 ratio) are observed in probands with IQ ≤ 70, while 330 non-truncating and 

110 synonymous mutations (3.3 ratio) in probands with IQ > 70 (Fisher’s exact one-tail test 

P = 0.04). Overall, these analyses suggest that truncating mutations are likely to play a less 

prominent role in high-functioning ASD cases. Notably, a recent study by Samocha et al.41 

also demonstrated no excess of de novo loss-of-function mutations for high-functioning 

ASD probands.

Notably, there is a significant difference in IQs between probands with network genes 

affected by CNV deletions and duplications. The average IQs for probands with CNV 

deletions and duplications are 64.8 and 83.9, respectively (Wilcoxon rank-sum one-tail test 

P = 6×10−3). This result suggests a significantly higher functional impact of an increase in 

gene dosage compared to a decrease.

Genes implicated in ASD exhibit diverse patterns of brain expression (Fig. 2c). Therefore, 

we asked whether the overall level of gene expression in the brain is associated, on average, 

with different phenotypic outcomes. For this analysis we considered the full-scale IQ and 

Autism Diagnostic Interview-Revised (ADIR) social interaction and repetitive behavior 

scores. The ADIR scores are based on structured interviews with proband parents and reflect 

patterns in reciprocal social interactions (ADIR-S) and repetitive/restrictive behaviors 

(ADIR-R)42. To explore the relationship between the average expression level of affected 

genes and corresponding phenotypes, we divided the ASD cases into low- and high-scoring 

phenotypic subsets relative to the corresponding median phenotype scores. We then 

calculated the average expression levels across these subsets for genes forming the 

implicated network and for all genes with truncating de novo SNVs (Fig. 5). This analysis 

reveals that affected genes associated with lower IQ scores or higher ADIR scores (both 

indicating more severe phenotypes) usually have significantly higher brain expression: 

network genes (solid lines in Fig. 5) one-tail test PWT < 10−15/PPT = 0.01 for IQ, PWT < 

10−15/PPT = 0.3 for ADIR-S, and PWT < 10−15/PPT = 0.024 for ADIR-R; genes with 

truncating mutations (dashed lines) one-tail test PWT < 10−15/PPT < 10−4 for IQ, PWT < 

10−15/PPT = 1.5×10−3 for ADIR-S, and PWT < 10−15/PPT = 0.08 for ADIR-R.

DISCUSSION

Our study suggests that the pathophysiological heterogeneity of ASD is matched by the 

diversity of genetic and functional insults associated with the disorder. We find that affected 

genes have diverse developmental expression profiles and therefore likely play important 

roles in multiple stages of neurogenesis, neuron mobility, synaptogenesis, and brain 

development. Although implicated genes and processes are active across multiple cells, 

some cell types, such as cortical neurons and medium spiny neuron of the striatum, seem to 
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be more strongly impacted. Importantly, layer 5 cortical pyramidal neurons often project to 

the striatum, and the corresponding corticostriatal circuits are known to mediate diverse 

emotional, motor, habit forming, and motivational behaviors that are often perturbed in 

ASD43-46. Consequently, our unbiased genetic analysis implicates specific functional neural 

circuits that may mediate stereotypical and repetitive behaviors in ASD.

Although previous studies primarily emphasized the role of truncating de novo mutations in 

ASD3, 7, 8, our analysis suggests that a substantial fraction of non-truncating de novo 

missense mutations observed in probands also contributes to the disorder. Notably, we find 

that functional mutations are preferentially observed in haploinsufficient genes, which 

confirms that dosage effects play an important role in the disease mechanisms. We find that 

functional characteristics of affected genes — such as brain expression levels -- are likely to 

influence the observed phenotypic consequences of de novo ASD mutations. Stronger 

functional insults lead, on average, to more severe ASD phenotypes. Therefore, the 

distinction between intellectual disability and autism may lie primarily in the degree of 

overall functional impact rather than specific genes and pathways affected in the two 

disorders.

The presented analysis of brain expression provides further evidence for the hypothesis that 

stronger functional impacts, such as perturbation of genes with higher brain expression, are 

associated with female autistic phenotypes. Stronger functional perturbations in females 

compared to males were previously demonstrated based on the analysis of autism CNVs 

sizes6, 47 and gene network properties13. Thus, multiple independent sources of evidence 

suggest a protective effect in females, although the mechanisms of this effect remain to be 

elucidated.

We also find, in agreement with recently published studies41, 48, that truncating mutations 

play a relatively smaller role in high-functioning ASD cases. Because truncating mutations 

are usually associated with a loss-of-function, this result suggests that high-functioning 

autism phenotypes are less likely to be mediated by a loss of normal gene function in the 

brain. Functional gain and other types of genetic variations, such as non-truncating de novo 

mutations, common polymorphisms, or mutations in non-coding regulatory regions may 

predominantly contribute to high-functioning ASD cases.

Taken together, our analyses suggest that various functional properties of mutations and 

target genes may be useful in predicting ASD phenotypic severity. In future studies it will be 

important to investigate the extent to which individual ASD patients can be stratified based 

on affected pathways, biological functions, and cell-types. Such patient stratification — now 

a common practice in cancer — may lead to individualized diagnostic and prognostic 

predictions, and, ultimately, to targeted ASD therapies.

METHODS

ASD associated de novo variants

Variants were obtained from several recent studies of families in the Simons Simplex 

Collection and included de novo copy number variants (CNVs)6 and de novo single 
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nucleotide variants (SNVs)3, 7, 8. Overlapping CNVs were combined into a single event and 

CNVs larger than 5 Mb were ignored. When a gene affected by a SNV was also contained 

within a CNV event, the SNV gene was considered individually and the remaining genes in 

the CNV were considered as a separate event. Combining overlaps and removing duplicate 

genes resulted in 991 genes at 624 distinct genomic loci that were used as input in our 

analysis. Eleven probands considered in our study had multiple SNV mutations; in various 

tests comparing mutations and corresponding functional properties, these probands were 

counted multiple times, once for each SNV.

Phenotypic network and the NETBAG+ algorithm

The NETBAG+ approach relies on the previously described phenotypic network in which 

all pairs of human genes are assigned a score proportional to the likelihood ratio that genes 

contribute to the same genetic phenotype12, 13. This ratio was calculated using a naïve 

Bayesian integration of various descriptors of protein function: shared Gene Ontology (GO) 

annotations, shared pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG), 

protein domains from the InterPro database, tissue expression from the TiGER database, 

direct protein-protein interactions, shared interaction partners in a number of databases 

(BIND, BioGRID, DIP, HPRD, InNetDB, IntAct, BiGG, MINT and MIPS), phylogenetic 

profiles and chromosomal co-clustering across genomes49. The likelihood network was 

constructed using the carefully curated set of human genes compiled by Feldman et al., 

which contains 476 human genes associated with 132 different genetic phenotypes50.

The 991 genes affected by de novo mutations were mapped to the corresponding nodes of 

the phenotypic network. A greedy search algorithm was then used to find strongly 

interconnected networks among the input genes; starting from each input gene, the greedy 

algorithm consecutively adds the genes most strongly connected to the growing network. 

Networks are scored based on a weighted sum of all pairwise likelihood scores between the 

network genes12, 13. Each CNV event was constrained to contribute at most one gene to the 

network. Small networks with five or fewer genes were ignored during the network 

searches.

Network significance was determined by applying the same greedy search algorithm to 5000 

random gene sets and comparing the score of the network obtained using real input data to 

the distribution of network scores obtained using random gene sets. The random gene sets 

used in the calculations were chosen to match the input genes in terms of network 

connectivity (based on the average of the top five edge scores) and protein lengths to ensure 

that network significance was not driven by highly connected or long genes; real data, i.e. 

genes affected by de novo ASD mutations, were allowed to participate in the random set. 

The final network P-value reflects the probability of finding a higher network score using 

random gene sets, while also correcting for multiple hypothesis testing due to various 

network sizes12, 13. The final network of 159 genes was selected as the largest network 

before a considerable decrease in the network significance.
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FMRP and PSD enrichment among implicated gene sets

Following the approach by Iossifov et al.3 and other similar studies, we estimated the 

enrichments using the overlap between FMRP targets26, 30 or PSD genes31 and a set of rare 

synonymous mutations from a large exome sequencing study; we used for this purpose the 

NHLBI ESP exome sequencing study by Fu et al.29 Using the exome sequencing data of 

about 6500 individuals, we calculated the fractions of all rare synonymous mutations, i.e. 

synonymous mutations observed in the study only once, that affect FMRP target genes and 

genes associated with PSD. Consensus human PSD proteins from the Bayes et al. study 

were used. NHLBI ESP variant data was downloaded from evs.gs.washington.edu and 

unique entries were determined using the variant chromosomal position and allele. The 

calculated fractions represent the background (expected) probabilities for a random SNV 

mutation to occur in FMRP and PSD genes. We then compared the expected and the 

observed fractions of SNVs events in various ASD disease gene sets; the expected and 

observed fractions were compared using a two-tail binomial test (Table 2 and 

Supplementary Table S5). We also confirmed the FMRP enrichment results by comparing 

the overlap of FMRP target genes with various ASD gene sets to the overlap of FMRP target 

genes with random sets of human genes matched by protein length and connectivity to the 

genes affected by ASD mutations (Supplementary Table S6).

Hierarchical clustering of the implicated network

We used average linkage hierarchical clustering to divide the implicated network into 

functional clusters (Supplementary Fig. S1). The inverses of the phenotypic network 

likelihood scores were used as the clustering metric. In this way, gene pairs strongly 

connected in the phenotypic network were considered to be closer in distance.

Spatial and temporal analysis of human brain expression

Expression data across developmental stages and brain regions was obtained from the 

Human Brain Transcriptome database (GEO accession ID GSE25219)16; the HBT data 

represents quantile normalized and log2 transformed expressions values from the 

postmortem samples of healthy individuals.

To quantify the expression biases for each brain region, we calculated the difference 

between the average log2 expression of implicated genes and the average log2 expression of 

genes harboring SNVs in siblings. The prenatal expression bias for each brain region was 

quantified by calculating the difference between the average log2 of prenatal expression 

(embryonic to late fetal stages) and the average log2 postnatal expression (early infancy to 

late adulthood stages). The significance of regional and prenatal biases was evaluated using 

the Wilcoxon rank-sum test with the Bonferroni correction to account for multiple 

hypothesis testing.

Complementary to the Wilcoxon rank-sum test (PWT), we also estimated the significance of 

various expression differences using a method based on randomly generated expression 

probe sets (Supplementary Table S9). The permutation test P-values (PPT) obtained with the 

random trials reflect the probability to obtain a bias greater or equal to the bias in the 

original data. The numbers of probe sets sampled in random trials were equal to the numbers 
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of probes sets in corresponding original datasets. Analogous to the procedure used to 

process the original HBT data, we computed the median probe set expression values in each 

of 10,000 randomly generated probe sets; expression biases were then calculated by taking 

the difference between the corresponding expression averages.

Cell type specific expression analysis

To evaluate expression bias of the implicated genes toward specific cell types, we 

considered mouse expression data obtained in the study by Doyle et al. using ribosome 

affinity purification (GEO accession ID GSE13379)17. The considered dataset contains 

expression information for 25 different cell types from the Mus. musculus central nervous 

system (CNS). To connect the mouse expression data and the human genetic data, we used 

the list of human-mouse orthologs provided by Affymetrix for the Mouse Genome 430 

Array. The expression biases in probands compared to siblings were quantified for each cell 

type by calculating the difference between the average log2 expression of mouse orthologs 

for implicated human genes and the average log2 expression of mouse ortholog for human 

genes with de novo SNVs in unaffected siblings. We evaluated significance of the 

expression biases using the Wilcoxon rank-sum one-tail test and corrected for multiple 

hypothesis testing using the Benjamini-Hochberg procedure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The network implicated by NETBAG+ based on ASD-associated de novo SNVs and CNVs 

from recent studies (network is comprised of 159 genes; P = 0.036). Node sizes are 

proportional to the contributions of each gene to the overall network score, and edge widths 

are proportional to the likelihood that the corresponding gene pair contributes to the same 

genetic phenotype (see Methods). For clarity, only the two strongest edges for each gene are 

shown. Node shapes indicate types of the corresponding mutations: circles represent genes 

from SNVs, squares represent genes from CNVs, and diamonds represent genes affected by 

both mutation types. The network was divided into cohesive functional clusters (indicated 

by node colors) using hierarchical clustering; general functions of these clusters determined 

using DAVID are shown in the figure (see Supplementary Table S3 for a complete list of 

GO terms associated with each cluster). Grey nodes represent genes that are not members of 

the network clusters.
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Figure 2. 
Temporal gene expression profiles in the human brain across developmental stages for 

implicated gene sets. Expression data were obtained from the HBT database; average 

expression levels at each developmental stage were calculated using all genes in a given set 

and error bars represent SEM. Vertical dashed lines indicate birth. (a) Expression profiles 

for truncating SNV genes in the network (orange), all network genes (red), network genes 

from CNVs (green), all truncating SNV genes (blue), and non-network SNV genes (purple). 

(b) Expression profiles for network genes with truncating (cyan) and non-truncating (red) 

mutations observed in probands. (c) Expression profiles for functional clusters (Fig. 1) of the 

implicated network: postsynaptic density genes (cyan), chromatin modification/regulation 

genes (red), signaling/cytoskeleton genes (green), and channel activity genes (blue). (d) 

Expression profiles for network and truncating female/male SNV genes: female truncating 

SNV genes (red), female network genes (green), male network genes (blue), and male 
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truncating SNV genes (purple). Human expression data were obtained from the HBT 

database. Vertical dashed lines separate prenatal and postnatal developmental stages. Error 

bars represent SEM.
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Figure 3. 
Cell type expression biases for network mutations and recurrent truncating mutations. 

Probands versus unaffected siblings expression biases were computed across 25 cell types of 

the central nervous system for implicated network genes (shown in red) and for 11 genes 

with recurrent truncating SNVs (blue). The biases were calculated using Mus. musculus 

expression data from the study by Doyle et al.17 To quantify the expression biases, we 

calculated for each cell type the difference between the average log2 expression of mouse 

orthologs for implicated human genes and the average log2 expression of mouse ortholog for 

human genes with de novo SNVs in unaffected siblings. Cell types in the figure are ordered 

by the magnitude of the cell type expression bias for network genes (red). The significance 

of the expression biases was evaluated using the Wilcoxon rank-sum one-tail test and 
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corrected for multiple hypothesis testing using the Benjamini-Hochberg procedure with 

FDR=10%; significant cell types are shown in dark red/blue, and non-significant in light 

red/blue. P-values obtained from the two independent approaches — one based on network 

genes (red) and the other based on genes affected by recurrent truncating mutations (blue) 

— were combined using Fisher’s and Stouffer’s meta-analysis methods. The combined P-

values were corrected using the Bonferroni method, and the cell types passing the 

significance cutoff for both meta-analyses are shown in bold. All P-values associated with 

the figure are presented in Supplementary Table S8.
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Figure 4. 
Average numbers of de novo mutations per individual for probands with different IQs. (a) 

The average number of truncating SNVs (blue) and CNVs (green) per individual. (b) The 

average number of non-truncating SNVs (purple) and synonymous SNVs (orange) per 

individual. Horizontal dashed lines represent the corresponding average numbers of 

mutations per individual for all unaffected siblings. Error bars represent SEM.
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Figure 5. 
Temporal gene expression profiles in the human brain across developmental stages for genes 

affected in subsets of probands with different phenotypic scores. Expression data were 

obtained from the HBT database; average expression levels at each developmental stage 

were calculated using all genes in a given set and error bars represent SEM. In each figure, 

probands were divided into two groups (high and low) relative to the corresponding median 

phenotypic scores. Expression profiles for network genes are displayed as solid lines and 

profiles for truncating SNVs as dashed lines. Profiles for genes affected in probands with 

more severe phenotypes are shown in red and less severe phenotypes in blue. Vertical 

dashed lines indicate birth. (a) Profiles for probands with high/low IQ. (b) Profiles for 

probands with low/high ADIR-S scores. (c) Profiles for probands with low/high ADIR-R 

scores.
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Table 1
Gene Ontology (GO) terms associated with the implicated network

GO ID Ontology Term P-value

GO:0045202 CC Synapse 3×10−7

GO:0016568 BP chromatin modification 6×10−6

GO:0051015 MF actin filament binding 7×10−6

GO:0005262 MF calcium channel activity 1×10−5

GO:0031252 CC cell leading edge 2×10−5

GO:0004386 MF helicase activity 3×10−5

GO:0015629 CC actin cytoskeleton 6×10−5

GO:0030036 BP actin cytoskeleton organization 7×10−5

GO:0016887 MF ATPase activity 7×10−5

GO:0005913 CC cell-cell adherens junction 8×10−5

GO:0045211 CC postsynaptic membrane 8×10−5

GO:0044456 CC synapse part 0.0001

GO:0007611 BP learning or memory 0.0001

GO:0030029 BP actin filament-based process 0.0001

GO:0005938 CC cell cortex 0.0001

GO:0005911 CC cell-cell junction 0.0002

GO:0014069 CC postsynaptic density 0.002

GO:0043005 CC neuron projection 0.004

GO:0030425 CC Dendrite 0.004

Gene Ontology (GO) terms enriched in the implicated network (Fig. 1), as identified by DAVID (david.abcc.ncifcrf.gov). P-values shown in the 
table were corrected for multiple hypotheses testing using the Benjamini-Hochberg procedure in DAVID. The ontology column indicates GO 
domain: BP for biological process, MF for molecular function, and CC for cellular component. Non-specific terms, i.e. terms associated with more 
than 400 human genes, are not shown. For a list of GO terms associated with each network cluster see Supplementary Table S3. The enrichment 
calculations were performed using the default background set of all human genes; similar enrichment results were also obtained using brain-
expressed genes as background (see Supplementary Table S4).
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Table 2
Overlap between ASD gene sets and FMRP targets

Gene set Number of genes Expected : observed P-value

Network genes 159 17.3 : 48 (1 : 2.78) 3×10−11

Truncating SNV genes 108 11.7 : 25 (1 : 2.13) 0.0003

Network non-truncating-SNV genes 138 15.0 : 40 (1 : 2.67) 4×10−9

Neuronal signaling/cytoskeleton cluster genes 69 7.49 : 15 (1 : 2.00) 0.01

Chromatin modification/regulation cluster genes 50 5.43 : 17 (1 : 3.13) 1×10−5

Postsynaptic density cluster genes 11 1.19 : 5 (1 : 4.19) 0.004

Channel activity cluster genes 21 2.28 : 9 (1 : 3.95) 0.0002

Non-network SNV genes 449 48.8 : 40 (1 : 0.82) 0.2

Sibling SNV genes 355 38.6 : 47 (1 : 1.22) 0.15

The expected and observed number of fragile X mental retardation protein (FMRP) targets26 among different sets of implicated genes. The 
expected numbers of FMRP targets were obtained based on the proportion of rare synonymous variants observed in a recent large-scale survey of 

human genetic variation29. The observed and expected overlaps based on another recent study of FMRP targets by Ascano et al.30 are given in 
Supplementary Table S5. The significances of the overlaps were established using the two-tail binomial test.
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