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Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma
(ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally
significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases
and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P < 5 3 1028, and the strongest signal
was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19–1.40) and P 5 7.63 3
10210. An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest
imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral re-
combination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly
responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype
along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was
rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33
that map to the CASP8/ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied
across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the
widely studied rs3834129 and rs1045485 SNPs in CASP8. Future studies of esophageal and other cancers
should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and
rs10201587 and other strongly correlated variants.

INTRODUCTION

Worldwide, esophageal cancer causes more than 400 000
deaths each year (1) and within the People’s Republic of
China it ranks fourth as a cause of cancer-related deaths (2).
As seen throughout the economically developing world,
esophageal squamous cell carcinoma (ESCC) predominates,
which differs from recent trends in populations of European
descent, where esophageal adenocarcinoma rates now exceed
ESCC (3). In contrast to low-incidence populations, tobacco
smoking and excessive alcohol consumption do not appear
to be major risk factors in the geographically limited areas
of China with a heavy burden of ESCC (4). Numerous
studies show that a family history of esophageal cancer
increases risk in China (5), but compared with other cancer
types, few studies have comprehensively assessed the contri-
bution of common genetic variants to ESCC risk.

Recently, two genome-wide association studies (GWASs)
examined the contribution of common genetic variants to
ESCC risk in Han Chinese (6,7). Both studies reported a strong
association with single-nucleotide polymorphisms (SNPs) on
chromosome 10q23, which harbors a plausible candidate gene,
PLCE1. Variants in PLCE1 have also been linked to an inherited
nephrotic syndrome and dengue fever shock syndrome (8,9).
To further explore the role of common variants in ESCC risk,
we combined risk estimate data from the two studies and
completed a meta-analysis.

RESULTS

Meta-analysis of known risk variants at 10q23

The joint data set included 2961 ESCC cases and 3400 con-
trols, including 2024 cases and 2708 controls from one scan
(6) and 937 cases and 692 controls from the other (7). In the
joint data set, we examined associations at the previously
reported susceptibility locus at 10q23 (Supplementary Mater-
ial, Table S1); rs2274223, a nonsynonymous SNP in PLCE1
that was independently reported in the previous GWAS,

showed a combined per allele odds ratio (OR) [95% confi-
dence interval (CI)] of 1.39 (1.27–1.51) with P ¼ 1.44 ×
10213. Six other SNPs also showed highly significant
associations, with the strongest at rs3765524 with a P-value
of 3.15 × 10214.

Meta-analysis of all hits with P < 0.05

Using the combined data set, we discovered an association at
2q33 that achieved genome-wide significance. We found five
SNPs at this locus with P , 5 × 1028 in the combined data
set (Table 1). The strongest signal was rs13016963, with a
combined OR (95%CI) of 1.29 (1.19–1.40) and P ¼ 7.63 ×
10210. These SNPs are in high linkage disequilibrium (LD)
and map to a region including CASP8, ALS2CR12 and
TRAK2 (Fig. 1). In models conditioned on the most notable
marker, rs10201587, the associations for the other five SNPs
were attenuated, which suggests that our findings point to a
single association signal.

Imputation analysis of variants at 2q33

The association between cancer risk and variants at the 2q33
locus, which includes CASP8, has been tested for many
tumor types in over 50 studies (10,11). Since the SNPs
tested and the genomic location associated varied by study,
organ and histology, to better define our association signal,
we imputed SNPs with the IMPUTE2 program (12) in the
National Cancer Institute (NCI) scan using a hybrid reference
of the 1000 Genomes Asian set and the Asian component of
the Division of Cancer Epidemiology and Genetics (DCEG)
Reference Imputation Set (13). We imputed 4304 SNPs in
the 2q33 region with a mean certainty of 80.7% based on
the information measure of the IMPUTE2 program and the
SNPs associated with cancer risk with P , 1 × 1025 that are
listed in Supplementary Material, Table S2. The imputed
SNP (rs6745435) with the strongest association signal was
only marginally better than the strongest association for a gen-
otyped SNP in the NCI scan (rs10201587) (Fig. 2). These
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SNPs were also in high LD and when we tested the 34 imputed
SNPs in models conditioned on rs10201587 (Supplementary
Material, Table S3), we found that all other SNP associations
were attenuated, suggesting that these associations are from a
single association signal.

Assessment of recombination hotspots across 2q33

The five genotyped SNPs that exceeded genome-wide signifi-
cance localize between two recombination hotspots (positions
201819605 and 202211605, medians of 2 kb inferred hotspot
intervals), which contain all SNPs with P-value ,5 × 1028.
The top SNP in the combined data (rs13016963) and two
others (rs9288318 and rs10201587) are located in introns of
ALS2CR12 (amyotrophic lateral sclerosis 2 chromosomal, can-
didate 12) (Fig. 1). These are in high LD with rs10931936
(r2¼ 0.982) located in an intron of CASP8 (caspase 8,
apoptosis-related cysteine peptidase), and rs9288318 (r2¼
0.865), rs10201587 (r2¼ 0.874) and rs7578456 (r2¼ 0.734),
which are located in the region between ALS2CR12 and
TRAK2, adding further support to a single locus.

Ancestral recombination graph analyses at 2q33

We conducted an inferred ancestral recombination graph
(ARG) analysis (14) to identify one or more haplotypes that
harbor the variants directly responsible for the detected asso-
ciation signal. We used data from the NCI scan (4732 subjects
and 53 genotyped SNPs) to identify the location with the most
likely functional SNPs by reconstructing the genealogical
history based on haplotypes inferred using the PHASE
program (15). The Margarita program determines whether a
possible mutation resides on the marginal tree by comparing
the frequency of the branches between cases and controls.
The most probable pair of haplotypes for each subject was
selected for analysis in the Margarita program, and during
this process subjects whose highest haplotype pair probability
was ,50% were excluded from further analysis. We estimated
100 ARG genealogies and calculated permutation P-values
(106 permutations) for each of the 53 SNPs. In a comparison
of the location and strength of association from the ARG ana-
lysis with that from the standard GWAS P-values for each
SNP (Fig. 3), both methods indicate that the strongest signal
is localized to a region near rs10201587 (chr2: 201 911 036,
hg18). The background association signal of the ARG analysis
points to a haplotype containing the five SNPs and further dis-
tinguishes between risk haplotypes and protective haplotypes.
In Figure 4, all haplotypes highlighted in green are predicted
not to harbor the risk allele, whereas those in red are predicted
to carry the risk allele. The ARG analysis showed that among
all the marginal trees, rs10201587 had the lowest permutation
P-value and has the greatest ability to segregate cases and
controls, but four additional SNPs in near-perfect LD
with rs10201587 (rs3769823, rs10931936, rs13016963 and
rs9288318) provide the same discrimination when we restricted
the data to haplotypes with a frequency of at least 1%. The
complete separation of haplotypes with a frequency .1%
identified the five genotyped SNPs and 45 imputed SNPs in
strong LD with an r2 . 0.8.T
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DISCUSSION

In this study, we combined results from two previous GWASs
in Han Chinese and discovered a new association between
highly correlated variants at 2q33 and risk of ESCC, which

maps to the CASP8/ALS2CR12/TRAK2 gene region. The
strongest association was observed for rs13016963 [OR
(95%CI) of 1.29 (1.19–1.40) and P ¼ 7.63 × 10210]. In an
imputation analysis of over 4000 SNPs, no stronger signal
was observed with ESCC risk. The notable SNPs are strongly

Figure 1. Association results, recombination and LD plots for the region of 2q33 with risk of ESCC. P-values derived from 1 df trend tests across a region of
2q33.1 bounded by rs12693932 and rs3731707, a distance of 473 kb, were plotted. The five colored-line graphs in the upper panel show likelihood ratio statistics
(Y-axis on the right) for recombination hotspots from the SequenceLDhot software. The top horizontal line indicates a P-value of 5.0 × 1028, and the bottom
horizontal line indicates a likelihood ratio statistic cut-off to predict the presence of a hotspot with a false-positive rate of 1 in 3700 independent tests (32). The
five different colored lines represent five independent samplings used to estimate the location of the hotspots. The trend P-values from the Chinese, NCI and
combined samples were plotted in green triangles, red circles and blue diamonds, respectively. The bottom panel depicts the LD pattern of the region in r2, and
solid black arrows indicate two flanking recombination hotspots containing five SNPs that exceed genome-wide significance (P-values ,5 × 1028). The short
red vertical lines on the LD heat map indicate the locations of the five genome-wide significant SNPs. The sets of black arrows point to the two recombination
hotspots determined in the randomly selected subsets of controls. Since the two panels are on different scales, each has a set of arrows to indicate the hotspots.
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correlated and reside within the boundaries of two recombin-
ation hotspots that we determined in the control subjects of
the NCI GWAS. Since the conditional analysis did not pre-
serve independent significance and in fact demonstrated sub-
stantial diminution of the tested signal, we conclude that
there is one common allele on 2q33 associated with risk for
ESCC.

We also used ARG analyses to further explore the region by
reconstructing the genealogical history in this stable popula-
tion to compare the frequency of branches of cases and con-
trols to further localize the most likely functional variant(s).
In the ARG analysis based on a permutation test, the results
showed that rs10201587 had the strongest signal, but
rs13016963 and three other SNPs were in near perfect LD
with this SNP among the haplotypes tested. Based on the im-
putation analysis, there were 45 additional SNPs in strong LD,
which could also be responsible for the direct association.
Confirmation of the variants role will require additional
study, including re-sequence analysis and functional studies
of the optimal variants.

Numerous studies have investigated whether variation in the
CASP8 gene region alters cancer risk, including cancers of the
lung (16), breast (17), pancreas (18), non-Hodgkin lymphoma
(19), squamous head and neck cancers (20) and others (10,21).
Although a recent GWAS showed that rs13016963 was signifi-
cantly associated with risk of melanoma (22), most previous
studies tested ostensibly functional variants in the CASP8 pro-
moter (2652 6N del, rs3834129), a variant that leads to an
amino acid change in the CASP8 gene product (D302H,
rs1045485), or a base substitution in the 3′UTR (Ex14–271
A.T). Overall, these studies have produced mixed results,
primarily due to their small size and inadequate replication
efforts (10,21,23), but they did include one finding of a

significant association for rs3834129 with ESCC in Han
Chinese (11). However, we found no evidence for an associ-
ation between rs3834129 and risk of ESCC. rs6747918,
which is highly correlated with rs3834129 in Han Chinese
(r2¼ 0.8), had an OR (95% CI) of 1.06 (0.96–1.17) in our
study (P ¼ 0.256).

Two previous studies have investigated associations
between risk of ESCC and other variants in the 3′ end of
CASP8 or further downstream in the region of ALS2CR12
and TRAK2. A small study from our group suggested an asso-
ciation with rs1406121 in ALS2CR12 (24), but this finding was
not replicated in a sample of 300 ESCC cases and matched
controls (25). In our current larger data set, a proxy for
rs1406121 [rs7577057, r2¼ 0.963 in the Beijing Han
Chinese (CHB) population] showed a nominal but not
genome-wide significant association with an OR of 0.87
(0.81–0.93), P ¼ 0.00015. This SNP has r2 (0.284) with the
strongest signal (rs13016963) seen in our meta-analysis.

In India, Umar et al. (23) reported an association between
risk of ESCC and the IVS12–19G.A (rs3769818) variant
in CASP8 [per allele OR 3.36 (1.07–10.61), P ¼ 0.039]. In
our data, we did not genotype rs3769818 directly, but
rs13016963 is in high LD with rs3769818 (r2¼ 0.733 in the
NCI study population) and showed a strong association
(Table 1). Furthermore, Umar suggested that the association
was limited to men. In our data, we observed no significant
difference in the association for men and women [ORmen

(95% CI) ¼ 1.30 (1.15–1.46), P ¼ 1.49 × 1025; ORwomen

(95% CI) ¼ 1.20 (1.03–1.40), P ¼ 0.023].
CASP8 encodes caspase-8, a cysteine-aspartic acid protease

that in its mature form initiates apoptosis and in its immature
form, procaspase-8, helps control cell migration and adhesion
(26). Genetic variants altering caspase-8 expression or

Figure 2. Comparison of results for genotyped (in black) and imputed (in grey) SNPs at 2q33 for their association with risk of ESCC. We plotted P-values for
426 genotyped SNPs and 3878 imputed SNPs. For the imputation, we used a hybrid reference of 1000 Genomes Asian set and the Asian component of the DCEG
Reference Imputation Set. This figure shows that the genotyped SNPs were as strong as any SNPs in the imputation analysis.

Human Molecular Genetics, 2012, Vol. 21, No. 9 2137

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/21/9/2132/580931 by guest on 20 August 2022



function have the potential to affect tumorigenesis through
either of these pathways. Earlier work from our group
showed loss of CASP8 expression from both tumors and
esophageal squamous dysplasia (27), the precursor lesion for
ESCC. The association signal we see at 2q33 could also be
attributed to other genes in the region, ALS2CR12 or
TRAK2. The ALS2CR12 protein is strongly expressed in
normal squamous esophageal tissue (http://www.proteinatlas.
org/ENSG00000155749/normal/
esophagus) and is named as a candidate gene for juvenile
amyotrophic lateral sclerosis (28), but the connection to
cancer is unclear. The SNPs associated with ESCC in this
study could also be tagged to TRAK2 (29).

Our meta-analysis identified an association between ESCC
risk and a single locus at 2q33 that harbors a plausible candi-
date gene, CASP8 in ESCC. This locus appears to play a role
in the risk of other cancers, but the pattern of association
between variants at this locus and different cancer types has
varied widely in previous studies, similar to what has been
observed for the TERT/CLPTM1L locus on 5p15 (30).
Future studies of esophageal and other cancers should focus
on comprehensive sequencing of this 2q33 locus and function-
al analysis of rs13016963 and rs10201587and other strongly
correlated variants.

MATERIALS AND METHODS

Subjects and genotyping

The two studies contributing data to this meta-analysis have
been described in detail in the original publications (6,7).
After publication, additional GWAS data were available for
133 ESCC cases and 615 controls in one scan and these
were included in this analysis (6). The newly genotyped

additional data were processed by the Core Genotyping Facil-
ity GWAS pipeline and similar quality control (QC) filtering
metrics were applied to ensure good quality data retained
in the downstream analysis. We excluded the following:
(i) samples with missing rates .6%; (ii) loci with missing
rates .5%; (iii) samples with abnormal mean heterozygosity
values of either .30 or 25%; (iv) gender discordant
samples; (v) unexpected duplicate pairs. In total, this analysis
used data on 2961 ESCC cases and 3400 controls, including
2024 cases and 2708 controls from one scan (vi) and 937
cases and 692 controls from the other (vii). The NCI scan
used the Illumina 660W Quad array for genotyping, whereas
the China scan used the Illumina 610 Quad array. The
details of these methods and the quality assurance and QC
metrics are available in the prior publications (6,7).

From each study, variants with a nominal P-value ,0.05
from a two-sided linear trend test were tabulated and beta esti-
mates and standard errors sent to the NCI analytic core. From
the China scan, this constituted 29 971 SNPs, and from the
NCI scan this constituted 26 177 SNPs.

We designed four TaqMan assays for rs10201587,
rs13016963, rs7578456 and rs9288318, respectively, and geno-
typed a total of 340 samples randomly chosen from the Shanxi
or Singapore studies, out of which 303 samples were previously
genotyped on the Illumina 660W arrays and passed after geno-
typing QC filtering. The overall concordance rate was .99.7%
between the TaqMan data and GWAS data for these four SNPs
in the 303 samples.

Statistical analysis

We performed a fixed effect meta-analysis using the inverse
variance method to estimate the combined ORs and 95% CIs.
The P-value for heterogeneity was calculated by Cochran’s

Figure 3. Comparison of GWAS and Margarita P-values for 40 SNPs at 2q33. The GWAS P-values are uncorrected, whereas the Margarita P-values (14) come
from permutation tests and do not need correction for multiple comparisons. The figure includes data from 40 SNPs and extends from rs12470378 to rs10931959.
Both methods show the strongest signal at rs10201587.
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Q, which is distributed as a x2 statistic with 1 degree of
freedom (df).

Imputation

For the imputation reference set, we used a combination of 60
CHB+JPT subjects from 1000 genomes low coverage July
2010 data set (31), 29 additional HapMap CHB+JPT subjects
and an internal imputation data set of 74 subjects scanned with
the Illumina 2.5M chip (13). The IMPUTE2 program (12) was
used with the recommended default settings to impute a 3 Mb
window (200–203 Mb, hg18) on chr2, which encompasses our
newly discovered locus. The association for the imputed SNPs
was analyzed using SNPTEST (31) based on allelic dosage
for the genotypic term, including adjustments for study, age,
sex and the first principal component from the PCA of the
population stratification SNPs.

Determination of recombination hotspots in 2q33

To identify recombination hotspots in the region, we used
SequenceLDhot (32), a program that uses the approximate
marginal likelihood method (33) and calculates likelihood
ratio statistics at a set of possible hotspots. From the controls,
100 individuals were sampled five times without replacement

for five independent recombination hotspot analyses and these
five random samples are represented as five different colored
lines in Figure 1. Specifically, genotypes of 90 SNPs spanning
chr2: 201 432 605–202 408 291 were phased using PHASE
v2.1 (15) to calculate background recombination rates. The
PHASE outcome was used as direct input for the Sequen-
ceLDhot program. For the plot, the likelihood ratio statistic
values between 201783605 and 202283605 were plotted.
The reason we tested a wider range than the plot was to
capture flanking hotspots that contained all highly significant
signals. The LD was calculated as r2 for 55 SNPs that were
genotyped in both data sets within an �473 kb region
bounded by rs12693932 and rs3731707 (chr2: 201 801 640–
202 275 009, UCSC genome build hg18), and a heat map
was drawn using the snp.plotter program (34).

ARG analyses

The genotype data from the NCI scan for 4732 individuals on
53 loci in the 2q33 region were analyzed with the PHASE
v2.1.1 program (15) to statistically infer all probable pairs of
haplotypes for each individual. The most probable pair of hap-
lotypes for each subject was selected for analysis in the Mar-
garita program (14). A total of 141 (,3%) individuals with
ambiguous phasing and a highest haplotype pair probability

Figure 4. Haplotypes for 53 SNPs at 2q33 and risk of ESCC. Thirteen monomorphic SNPs among all the haplotypes with frequency .1% were excluded from
the figure. Haplotype pairs for each subject were inferred using PHASE v2 (15) and used to generate 100 genealogies. ARG result for haplotypes with a fre-
quency .1% containing five SNPs (rs10201587, rs3769823, rs10931936, rs13016963 and rs9288318) showed complete separation between those predicted to be
associated with cancer (red) or not (green). All prediction frequencies were 0 or 1.0. rs10201587 was always the best segregator, but in these haplotypes the other
four SNPs were in near perfect LD with this SNP. The ARG model prediction suggests that rs10201587 (allele frequency 28.9%) is the most likely SNP, or in
strong LD with the functional variant.
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of ,50% were excluded; 4591 (1974 cases and 2617 controls)
remained in the downstream ARG analysis. An ensemble of
100 ARGs was inferred and 1 000 000 permutations were
done for the best cut (determined by the allelic test P-value)
at each marginal tree to estimate the P-value at each locus.
Haplogroups with frequency .1% were categorized into
protective or at-risk groups.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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