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Recent advances in microbiome research have brought renewed focus on beneficial

bacteria, many of which are available in food and dietary supplements. Although

probiotics have historically been defined as microorganisms that convey health benefits

when ingested in sufficient viable amounts, this description now includes the stipulation

“well defined strains,” encompassing definitive taxonomy for consumer consideration and

regulatory oversight. Here, we evaluated 52 commercial dietary supplements covering a

range of labeled species using plate counting and targeted genotyping. Strain identities

were assessed using methods recently published by the United States Pharmacopeial

Convention. We also determined the relative abundance of individual bacteria by high-

throughput sequencing (HTS) of the 16S rRNA sequence using paired-end 2 × 250 bp

Illumina MiSeq technology. Using these methods, we tested the hypothesis that products

do contain the quantitative and qualitative list of labeled microbial species. We found

that 17 samples (33%) were below label claim for CFU prior to their expiration dates.

A multiplexed-PCR scheme showed that only 30/52 (58%) of the products contained a

correctly labeled classification, with issues encompassing incorrect taxonomy, missing

species, and un-labeled species. The HTS revealed that many blended products

consisted predominantly of Lactobacillus acidophilus and Bifidobacterium animalis

subsp. lactis. These results highlight the need for reliable methods to determine the

correct taxonomy and quantify the relative amounts of mixed microbial populations in

commercial probiotic products.

Keywords: probiotics, labeling, testing and assessment, Lactobacillus, Bifidobacterium,multiplex PCR, taxonomy,

high-throughput nucleotide sequencing

INTRODUCTION

Whereas microbiology has historically focused on pathogens and infectious agents, recent efforts
have established the importance that microbiomes in general and beneficial microbes in particular
play in promoting and maintaining human health (Turnbaugh et al., 2007; Human Microbiome
Consortium, 2012). The benefits of health-promoting bacteria have fueled several investigations
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establishing the genetic and phenotypic basis for probiotic
functionalities (Papadimitriou et al., 2015). The International
Scientific Association of Probiotics and Prebiotics defines
products containing probiotics as those that “deliver live
microorganisms with a suitable viable count of well-
defined strains with a reasonable expectation of delivering
benefits for the well-being of the host” (Hill et al., 2014),
expanding the FAO/WHO definition to include strain-level
taxonomy.

The global probiotic industry continues to grow and product
introductions rely on the conformation to guidance by local
regulatory agencies. Specifically required from several different
regulatory bodies (Hammett, 2008; Health Canada, 2015)
is accurate labeling of consumer products containing live
microbials with species-level identity and viability. Probiotic
benefits are typically attributed to specific strains, for which safety
and efficacymust be established (Branton et al., 2011; Pariza et al.,
2015). In some cases, it is necessary to determine and compare
the complete genomes of isolates to accurately identify and
distinguish particular genotypes using high-resolution nucleic
acid analyses, as beneficial metabolic effects are attributed to
these key differences in strains (Briczinski et al., 2009; Broadbent
et al., 2012; Ruiz-Moyano et al., 2013). Additionally, strains
must be present in sufficient viable quantities to confer a
probiotic effect, which varies based on consumer and desired
effect (Reid et al., 2001; Leyer et al., 2009). The traditional ISO-
approved method of determining viable cell count is by serial
dilution and selectively culturing cells to result in colony forming
units (CFU) per gram or milliliter (International Organization
for Standardization, 2003). While product packaging provides
the CFU level content, these are most often reported as
the total CFU of a dose and not of individual species or
strains. Furthermore, CFU are sometimes measured at time of
manufacture although they are known to decrease over time
depending on environmental stressors and strain characteristics
(Sanders et al., 2014). Indeed, maintaining viability over the
course of storage is a major challenge and focus for the probiotics
industry.

Advances in sequencing technologies, assembly, and
annotation have enabled the scientific community to determine
the complete genomes of probiotic strains (Altermann et al.,
2005; Stahl and Barrangou, 2013), allowing the development
of genotyping methods (Barrangou et al., 2009; Barrangou
and Horvath, 2012), and providing unequivocal insights into
the proper taxonomy of broadly used commercial strains
(Makarova et al., 2006; Briczinski et al., 2009; Loquasto et al.,
2013; Milani et al., 2013; Holzapfel and Wood, 2014; Lugli
et al., 2014). Trends regarding the formulation of increasingly
efficacious and complex blends of multiple probiotics in food
and dietary supplements demand the development of high-
resolution, yet affordable methods that enable the determination
of bacterial counts, and their classification for proper labeling.
Some surveys of commercial probiotics have been reported
previously, in which authors tested congruence with label claim
for phylogenetic identity and CFU counts (Lewis et al., 2015;
Patro et al., 2016). Several reports analyzing probiotic claims at
the species level focus on ribosomal-based methods. Arguably

the gold-standard in prokaryotic taxonomic identification,
the 16S rRNA gene contains homologous and polymorphic
sequence regions that can be leveraged in techniques including
PCR (Angelakis et al., 2011) and subsequent restriction digest
banding (Moreira et al., 2005) to affirm taxonomic classification.
By combining 16S rRNA gene PCR with High-Throughput
Sequencing (HTS) techniques, the relative abundance of
bacteria in a sample can be examined in the form of sequence
reads (Caporaso et al., 2011). Indeed, this strategy has been
revolutionary in assessing microbiomes in many sample types
(Cho and Blaser, 2012; De Leoz et al., 2015; Forssten et al., 2015;
Butteiger et al., 2016). There are, however, known limitations to
using 16S rRNA sequences, including the presence of multiple
heterogeneous copies within a single genome and high sequence
similarity between species and sub-species (Dahllöf et al.,
2000; Mohkam et al., 2016). This is a known challenge for
probiotic genera, notably Bifidobacterium and Lactobacillus
(Milani et al., 2014; Sun et al., 2015). In addition to ribosomal
genes, whole genome sequences reveal many other conserved
genes that offer higher resolution genotyping opportunities
(Figure 1). One such gene is glucose-6-phosphate isomerase
(pgi; EC: 5.3.1.9), a single copy gene whose enzyme catalyzes
the important reversible reaction of D-glucose-6-phosphate
to D-fructose-6-phosphate in the pentose phosphate pathway
and glycolysis (Kanehisa et al., 2016). The aforementioned
pathways are conserved biochemical cornerstones of most
bacteria, and can actually serve as phylogenetic biomarkers
(Brandt and Barrangou, 2016). Furthermore, these genes are
widespread, well-annotated, and can be leveraged for taxonomic
applications.

Typically, the genus and species binomial nomenclature,
together with a total or species-attributed CFU count, are
reported on the label of probiotic products. Most probiotic
dietary supplement products contain a blend of strains
representing various combinations of bacterial genera and
species, occasionally including a particularly well-documented
strain, formulated with various additional ingredients depending
on the delivery format. We surveyed a large set of commercial
probiotic samples (n = 52) to test whether products meet or
exceed the labeled amount, quantitatively, and determine if
they are properly labeled, qualitatively. We hypothesized that
probiotic blends are formulated to have several key strains that
over-represent the total CFU, while other strains are present
at lower quantities. Testing the overall viable count claim on
labels was completed using traditional plating and species/sub-
species identity was surveyed using a novel multiplex PCR
(mPCR) targeting polymorphism within the pgi gene. Some
products also listed strain designations, which we assessed
using strain-specific methods (United States Pharmacopeial
Convention, 2015) for seven commonly used probiotics. We
then used 16S rRNA PCR and HTS to evaluate the relative
abundance of species within product formulations. Our results
show that there are a select few key probiotics that account
for the majority of probiotic blends and high-resolution
molecular testing must replace general bacterial surveys to
determine qualitative and quantitative contents of probiotic
products.
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FIGURE 1 | Sequence homology of the 16S rRNA and the glucose-6-phosphate isomerase sequences in commercial probiotics. Gene sequences for the

16S rRNA and pgi genes were aligned separately for all 20 organisms listed using the Geneious alignment algorithm. The resulting percent identity matrices were

combined into one table and visualized by heat map using Prism 7.01. The overall sequence similarity is higher in the 16S rRNA genes than the pgi genes, which

presents opportunities for higher resolution assays.

MATERIALS AND METHODS

Product and Standard Preparation
Commercial probiotics were purchased from several retailers
in Madison, WI and stored at 4◦C within the end shelf-
life to decrease cellular mortality. Product contents, including
bacteria species, potency, capsule materials, enzymes, flavorings,
and other ingredients were noted (Table S1). Samples were
resuspended 1:10 (w/v) aseptically, remaining encapsulated
when possible, and added to 1X Tris-EDTA, pH 8.0 (1X TE)
(ThermoFisher p/n BP2473-1). One sample contained chocolate
and was resuspended 1:100 (w/v) in 1X TE buffer and then
incubated in a water bath at 37◦C for 30 min to melt. All samples
were vortexed until homogenized before further manipulation.

Samples of single-strain freeze-dried concentrates
representing all 20 of the species and sub-species in the mPCR
were obtained from DuPont and similarly weighed and diluted
1:10 (w/v) in 1X TE buffer to serve as standards for validation.
The standards were previously tested with the ISO method
for CFU and partial 16S rRNA sequence for species identity.
Standard samples were created by combining concentrates prior
to genomic DNA (gDNA) extraction (labeled with _CFU) as well
as extracting each concentrate separately and then combining
(labeled with _DNA), using 1X TE buffer for all dilutions. Three

subsets of standards were created for each set: one with template
from all samples at equal CFU (all), four standards with only
the organisms in each reaction in equal amounts (rxnA-D, see
Section mPCR Primer Design), and three mock communities
with over-represented Lactobacillus rhamnosus, Lactobacillus
acidophilus, and Bifidobacterium animalis subsp. lactis (Lrha,
Laci, Blac). Final sample concentrations of _CFU standards
before gDNA extraction were: all_CFU: 1 × 108 CFU/mL of the
20 targets; rxnA-D_CFU: 1 × 108 CFU/mL of the targets in each
reaction; and Lrha_CFU, Laci_CFU, Blac_CFU: 1× 108 CFU/mL
of key targets, 1 × 105 CFU/mL of the other 19 organisms. The
final concentrations of the DNA standards were: all_DNA: 100
pg/µL of the 20 targets; rxnA-D_DNA: 1 ng/µL of the five targets
in each reaction; and Lrha_DNA, Laci_DNA, Blac_DNA: 1
ng/µL of key target, 1 pg/µL of the other 19 organisms. Standard
concentrations are defined further in Table S6.

Genomic DNA Preparation
gDNA was extracted from 250µL of the 1:10 dilutions of
all samples and standards as described above using the
MoBio Powersoil gDNA Extraction Kit (MoBio Laboratories,
Carlsbad, CA) according to the manufacturer’s protocol.
Negative controls were included to prevent contamination
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of upstream testing. Individual standard gDNA was analyzed
by Nanodrop spectrophotometry (ND-1000, Nanodrop,
Wilmington, DE) for purity and Qubit (Qubit 2.0, Life
Technologies, Carlsbad, CA) for concentration. Standards were
further analyzed by electrophoresis of 2% (w/v) agarose gel
(p/n 17852, ThermoFisher) in 1X Tris-acetate-EDTA (p/n B49,
ThermoFisher) stained for 15 min with 1% (w/v) Ethidium
bromide (p/n E-8751, Sigma) in DI water and de-stained in
DI water for 15 min before visualization with UV light (Gel
Logic 1500, Kodak, Rochester, NY). All gDNA was stored in
−20◦C until use. Statistical tests were performed using Minitab
17 (Minitab, State College, PA) and Prism 7.01 (GraphPad, La
Jolla, CA). Figures were made using Prism and Geneious v. 6.1.8
(Biomatters Ltd., Auckland, New Zealand).

Assessment of Total Colony Forming Units
Samples were resuspended 10% (w/v) in buffered peptone water
(p/n FTPW9966, 3M) and serially diluted sufficiently to test the
label claim of CFU. A pour plate technique was used, where
1 mL of the final dilution and 15 mL of deMan, Rogosa, and
Sharpe (MRS) agar (p/n 288210, BD Difco, Franklin Lakes,
New Jersey) supplemented with 0.05% cysteine-HCl (p/n C7880,
Sigma, St. Louis, MO) were added to three replicate petri dishes.
The plates were swirled gently to homogenize and cooled at
room temperature until the agar solidified. Plates were incubated
anaerobically at 37◦C for 48 h. Resulting colonies were multiplied
by the dilution factor and averaged between the replicates to give
final CFU/g. This method provides enrichment for all 20 of the
organisms in the following assays.

mPCR Primer Design
Complete pgi sequences (Table S2) were extracted from both
non-public DuPont culture collection genomes and those
in the National Centre for Biotechnology (NCBI, Bethesda,
MD) and the Genomes Online Database (JGI, Walnut Creek,
CA). Sequences were categorized by species or sub-species
based upon whole genome alignments and full-length 16S
identity. Pairwise alignment was then performed using Geneious
alignment algorithm and resulted in a consensus sequence
with degenerate nucleotides representing 100% sequence identity
(Figures S1A,B). All alignments were made using the default
input values. The consensus sequences were then compared to
the top 100 matches using the Basic Local Alignment Search Tool
(blastn; NCBI) to locate suitable priming targets compared to the
closest related sequences. Primers were designed for each species
or sub-species (Table S3) and then tested for hairpins and dimers
using OligoAnalyzer (Integrated DNA Technologies, Coralville,
IA). Further in silico analysis was performed using blastn to
prevent possible amplification of undesired targets. The assays
were grouped into four pentaplex reactions (rxnA-D) based on
amplicon length (Figure S2). Oligos were obtained from IDT and
rehydrated with 1X TE buffer to a stock concentration of 100µM
and stored at−20◦C.

mPCR Validation
Reactions were optimized for primer concentration, annealing
temperature, MgCl2 concentration, dNTPs, and GC enhancer
by gradients (data not shown). All primer combinations were

tested individually against all other 19 species and sub-species
to assess non-specific primer binding. Primer target specificity
was further validated by testing each primer set against up to
10 different strains of each species and sub-species. Limit-of-
detection (LOD) and preferential amplification experiments were
tested using the standards as listed above. The mPCR reaction
formula and thermocycler settings are listed on Table S4.

Probiotic Sample Testing by mPCR and
Strain-Specific PCR
Samples and standards were tested according to the PCR
procedures listed in Table S4. Amplicons were visualized using
2% agarose gel electrophoresis with ethidium bromide staining
as described above or by 2% E-Gel with ethidium bromide (p/n
G600002, Invitrogen). Samples requiring sequence confirmation
were cleaned with PCR Clean-Up and Gel Extraction Kit
(Clontech, Mountain View, CA) and sent to Eurofins Genomics
(Eurofins MWG Operon LLC, Louisville, KY) for Sanger
sequencing. Sequences were analyzed using Geneious.

High-Throughput 16S rRNA Gene
Sequencing
Samples and CFU standards were processed using a custom
barcoding scheme as previously described (Caporaso et al., 2011).
Briefly, triplicate PCR was performed with the 16S rRNA V4
primers in Table S3 and associated Golay barcodes according to
the PCR procedures listed inTable S4. Amplicons were visualized
using 2% agarose E-Gels with ethidium bromide, normalized
with SequalPrep Normalization Kits (p/n A1051001, Applied
Biosystems), pooled and concentrated with Microcon 30K
Centrifugal Columns (p/n UFC503024 EMD Millipore, Merck
KGaA, Darmstadt, Germany). The amplicon pool was sequenced
using 2× 250 Paired-End Illumina MiSeq technologies (Pioneer,
Johnston, IA) with the addition of 25% PhiX to increase
library diversity. Sequencing data was processed using the
Quantitative Insights into Microbial Ecology (QIIME v1.9.1)
pipeline (Caporaso et al., 2010). Reads were paired using fastq-
join (Aronesty, 2011) and filtered to remove reads that contained
ambiguous bases or a Phred quality score <30. The remaining
sequences were clustered de novo at 100% identity with uclust
(Edgar, 2010) and assigned a taxonomic identity using the default
Greengenes database (DeSantis et al., 2006; v 13_8) in QIIME.
Additionally, taxonomy was manually assigned to de novo OTUs
representing >0.1% of the total reads by pairwise alignment to
the closest type strain in the EZ-Taxon database (Kim et al.,
2012) to achieve greater accuracy and resolution (Figure S4).
Phylogenetic trees were generated using Geneious.

RESULTS

Total Viable Count in Samples Compared
to Expiration Date
The products listed an array of ingredients including capsule
type, excipients, and specialty ingredients such as flavoring,
vitamins and minerals, and enzymes such as lactase, lysozyme,
and protease (Table S1). The average labeled count was 2.3 ×

1010 CFU/g, with minimum and maximum counts of 1.0 × 108
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CFU/g and 9.0× 1010 CFU/g, respectively. Many of the products
(n = 24) listed the disclaimer that potency measurements on the
label weremade at the “time of manufacture,” and are represented
in red in Figure 2. The plated count had an average of 6.6× 1010,
with a minimum count of 4.7 × 105 and a maximum count of
4.0 × 1011. Overall, 35 of the samples (67.3%) had total CFU
above the label claim, and four of those samples had an excess
of over 1 log (Figure 2A). Furthermore, products quantified at
time of manufacture had significantly less average CFUs than
those labeled “to expiration” (p = 0.015, 2-Sample t-Test) and
were trending toward having more samples below the label claim
(p= 0.080, 2-Sample t-Test). The time to expiration from date of
measurement was also noted, although there was no correlation
between overall time to expiration and congruence with label
claim (Figure 2B).

mPCR Validation
Primers were validated against multiple strains of each sub-
species noted in the assay. The B. longum and B. infantis
assays were compared to the BLIR test (Lewis et al., 2015)
using gDNA standards and both assays successfully differentiated
the sub-species (Figures S1C–E). Each primer set was tested
against all other species and sub-species standards to confirm
no cross-amplification. Some of the higher G+C templates in
bifidobacteria did show faint non-specific binding, although
amplicon sizes were distinguishable. Furthermore, in silico
analysis showed that the B. infantis and B. breve assays
may amplify other species of bifidobacteria that are not
typically sold as probiotics. All results were considered positive
only if the gel bands exactly matched in silico amplicon
length.

FIGURE 2 | Total colony forming units of probiotic products compared to labeled potency. (A) The CFU of each sample compared to the label claim.

Samples are organized by decreasing total CFU/g. Error bars show the standard deviation of each triplicate plate count. (B) The months until expiration is noted on

the horizontal axis. Samples above the 0 y-axis gridline are above label claim, and those below are below label claim. All samples in red claimed potency at the time of

manufacture.
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Measurement of the individual standard gDNA extractions
showed that on average, 1.2 × 1010 cells produced a yield of
51.8 ng/µL of high molecular weight DNA with an average
A280/A260 nm of 1.93. One sample had 2.1 × 108 CFU and had
a gDNA yield of 11.6 ng/µL. No significant sampling yield bias
was seen between the lactobacilli and bifidobacteria standards
(One-way ANOVA, p = 0.261). The all_CFU controls amplified
in all reactions, showing that there is no inhibition of individual
reactions when all are blended at similar concentrations. The
all_DNA control was serially diluted to 1 pg/µL and all but
one reaction amplified. This adheres to the definition of LOD
as the lowest concentration at which 95% of positive samples
are detected (Bustin et al., 2009). The Lrha_CFU, Laci_CFU,
Blac_CFU controls all amplified the labeled species, however
only 78.9% of the lower dilutions amplified for the _CFU
samples and none of the _DNA lower dilution targets amplified.
This shows that high concentrations of single organisms can
have an inhibitory effect on targets with lower concentrations.
Considering the above controls, the mPCR assay is effective for
blends of the listed target bacteria that are at 1 pg/µL, or 2.3× 105

cells of starting material, which is below most recommended
effective probiotic doses.

Accuracy of Bacterial Species Labeling in
Probiotic Products
Probiotic samples were tested and assessed by comparing
resulting amplicons to positive control ladders (Figure S2).
Discrepancies from the label claim were retested to rule out
PCR error. All amplicons were compared further against the
16S profiling and all results were mapped based on the label
claims (Figure 3A). Overall, 11 (21.1%) of the blended products
with at least two organisms had one or more claimed probiotic
organisms missing or too diluted to detect. Conversely, 18
(34.6%) blended products had an additional organism not listed
on the label claim. Considering some samples had both unlabeled
positives and labeled negatives, 22 (42.3%) of the samples tested
showed evidence of having incorrectly listed the target species
and sub-species, only two of which did not originally claim one of
the target genus Bifidobacterium. Some samples appeared to have
switched some species, such as B. infantis for B. longum (29 and
30), L. paracasei for L. casei (29, 30, and 50), and L. helveticus for
L. acidophilus (32, 51 and 52). Noteworthy, some of these closely
related species have been historically difficult to distinguish until
recent advances in molecular biology.

Detecting Strains in Blended Products
In general, 18 (34.6%) of the products listed specific strain
designations. Samples that matched the species of the target
strains were tested with the strain-specific primers listed in
Table S3 and are visualized in Figure 3B. Two of the samples
(33 and 44) were confirmed to have incorrect L. acidophilus
strains labeled. Four samples (33, 42–44) incorrectly labeled the
presence of L. acidophilus strain NCFM, where it was not found
to be present. The majority of products (36/41) that contain an
L. acidophilus were confirmed to have strain La-14. Two samples
(22 and 43) had multiple B. lactis strains indistinguishable by
SNP typing. Some products listed strains that do not have USP

reference methods and therefore their strain designation could
not be confirmed.

Relative Abundance of Organisms in the
Product Microbial Blends
We focused analysis on OTUs comprising more than 0.1%
of total sequencing reads which resulted in 42 OTUs that
were grouped to type strains using EzTaxon (Table S5, Kim
et al., 2012). Most species were individually distinguishable
except for several closely related species: the B. breve group
that included B. longum and B. infantis; the L. casei group
that included L. paracasei; and the L. acidophilus group that
included L. helveticus. The average reads per sample after quality
filtering was 58,144 reads and only one sample (14) had <10,000
reads and was removed from analysis. Controls were also
sequenced to assess the accuracy of the abundance calculations
(Figure 4A). Comparisons of standard CFU dilutions to percent
reads resulted in a linear regression line with an R-squared
value of 89.6% (simple regression). HTS results were ordered
based on the two most abundant species overall in all tested
products, namely L. acidophilus and B. lactis, which represented
35.6 and 15.7% of all sample reads, respectfully (Figure 4B,
Figure S3). L. acidophilus was significantly more abundant than
all other species, even after removing samples positive for L.
helveticus using the mPCR, while B. lactis was significantly
more abundant than all species but B. breve, L. plantarum,
L. rhamnosus, L.gasseri, and L. reuteri (p < 0.05, Tukey’s
multiple comparisons test). Furthermore, the two species on
average made up 65.8% of the reads in blends with at least
two probiotics. The abundances of the top 10 probiotics in
each product positive for 10 or more probiotics with the mPCR
test were assessed. The average abundance of the top OTU
group in each product by input was nearly two orders of
magnitude higher than the 10th ranked OTU group (40.7–0.6%,
respectfully), and the general decrease in product abundance
fits a decreasing logarithmic curve (R-squared 92.6%, simple
regression; Figure 4C).

DISCUSSION

The strain-specific health benefits and safety of probiotics are
of utmost importance to dietary supplement industry leaders,
researchers, regulatory entities, and consumer groups. Current
identification methods are not amenable to mixed microbial
communities and therefore probiotic bacteria must be correctly
identified prior to blending of multiple strains across genera and
species. Although efficacy research on probiotics is increasing,
without correct identification and labeling strains cannot be
associated with specific studies. Additionally, this makes it
difficult for consumers to choose products based on health
claims associated with specific strains. With increasing focus
on the small genomic variations that differentiate strains,
and the potential metabolic repercussions therein, there is
a great need to use high-resolution genotyping methods to
assure identity as well as quantity. Recently, the International
Probiotic Association approved Flow Cytometry as a method
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FIGURE 3 | PCR assay of species, sub-species, and strain identity compared to label claim. The presence of organisms is visualized for (A) the mPCR and

(B) the strain-specific PCR assays as different colors: blue denotes claimed and present; white denotes not claimed and absent; red denotes not claimed and

present; black denotes claimed and not present; yellow denotes strain-specific assays unable to be fully characterized using the present assays. Samples are ordered

based on species taxonomy by 16S rRNA sequence.

for enumerating probiotic bacteria (International Organization
for Standardization, 2015). This method quickly detects viable
cells to satisfy the traditional definition of probiotics as “live
microorganisms which, when administered in adequate amounts,
confer a health benefit on the host” (FAO-WHO, 2001), but
does not differentiate cells based on genotype (Davis, 2014).
Colony morphologies of closely related species and sub-species
will not suffice for distinguishing the very closely related
probiotic bacteria, making DNA-based methods the best option
for classification.

Several other molecular methods have been evaluated for
probiotic testing, including qPCR (Postollec et al., 2011) and
microarrays (Patro et al., 2015).While many of these reports have
identified incorrect labeling of probiotic organisms, no single
test has been proposed to survey mixed microbial finished goods
using a single gene target. One report from the FDA recognized

this technology gap and introduced a test based on shotgun
sequencing, and utilizing a custom in-house bioinformatics
pipeline (Patro et al., 2016). While metagenomic sequencing can
offer the resolution needed to identify all strains within a sample,
simpler methods like PCR provide more resolution than current
standards, with less expense and time to release. An industry
accepted intermediate method must affordably, rapidly, and
accurately provide species-level resolution regardless of product
formulation.

In this study, we sought to understand the baseline of
regulatory compliance by investigating label claims of 52
commercial probiotic products for quantity and genetic identity.
Culture-based plating methods showed that a majority of
products (n = 35) contained total amounts of viable probiotics
above the label claim, which is higher than a previous report
(Weese and Martin, 2011). Perhaps not surprisingly, products
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FIGURE 4 | High-throughput sequencing of the 16S rRNA gene in probiotic products. Bar graphs show the percent abundance of (A) controls and (B)

commercial samples. Filtered reads are not shown. OTUs that represent more than one organism have asterisks by the species name. Samples are ordered by

decreasing key species: first L. acidophilus, then B. lactis, and B. breve abundances. (C) Thirteen of the samples had 10 or more probiotics detected using the mPCR

assay. Each OTU in the samples was ranked from high to low abundance regardless of identity, and the averages are noted as dot plots with error bars representing

the standard deviation.

quantified at time of manufacture showed less overall CFU,
and many were below label claim well before the listed
expiration date. Our novel mPCR assay enabled relatively
rapid detection of 20 distinct probiotic species and sub-species.
The authors acknowledge that as new species of probiotics
are introduced, they may or may not contain pgi genes and
that these additions will need to be designed and validated
to flexibly fit with the method described herein. This new
method revealed identification discrepancies for 22 of the 52
products, several of which were likely due to misidentification
of sub-species. While labels may be technically correct in
identifying a species, it is important to denote the correct sub-
species. For example, B. infantis is often used as a dietary
supplement to establish infant microbiota in the presence of
human milk oligosaccharides, a function that has not been

demonstrated by B. longum (LoCascio et al., 2010). Some
labels acknowledged incorrect classification, such as sample
49 that read “B. infantis (B. lactis)” which is scientifically
incorrect and likely confusing to consumers. While few products
listed the strain content on the label, the strain-specific USP
testing demonstrated that it is possible to identify highly clonal
strains using traditional PCR methods, and is verifiable when
indicated. Finally, the HTS based on 16S rRNA gene sequence
showed an uneven abundance of probiotics in blended products,
where the most dominant strains, particularly L. acidophilus
and B. lactis, represented over half of the reads in all of the
samples.

These results clearly show probiotic strains in these dietary
supplements were characteristically not of equal distribution,
similar to results demonstrated previously by HTS (Patro
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et al., 2015) and microarray analyses (Angelakis et al., 2011).
Although the CFU testing only determined viable cells, PCR can
successfully amplify intact extracellular DNA or DNA from dead
cells (Kramer et al., 2009), so the abundance of viable cells for
the different probiotics could be different. As mentioned, many
different methods are available to determine viable amounts of
specific species (Davis, 2014), although it still remains difficult to
quantify mixed microbial constituents in routine industrial and
commercial product quality assessment. While this study does
not provide an ideal solution to measure viability of different
strains, it does highlight a gap in methods to determine the shelf-
life stability of individual strains after they have been combined
into a commercial mixture.

Although not demonstrated here, we hypothesize that
manufacturers are perhaps formulating products based on the
stability or cost of particular strains, or even on consumer
awareness of select species. While formulations of input strains
seemed skewed for high abundance of a few species, sequencing
also demonstrated that the ingredient strains seem to be free of
any other microbial contamination, including any pathogenic
species, filtered at 0.1%. While not comprehensive, 46 of the
commercial probiotic products we surveyed included more than
one organism, further highlighting the need for a technique to
determine each of the major input organisms at the species level.

Having established that a significant proportion of commercial
probiotic products do not meet basic requirements of the correct
taxonomic group (mostly at the species level) listed on the
ingredients list, we developed methods that enable the industry
to identify and release probiotic products. These methods will
also help formulate, blend, and label probiotic products to meet
the necessary standards for the regulatory agencies and consumer
groups alike. As the health-promoting roles of bacteria become
more substantiated, and the biochemical functions attributed
to microbiomes advance toward therapeutic applications, it will
be paramount to use sound, state-of-the-art, and affordable
methods to formulate commercial products and document their
composition.

DATA DEPOSITION

The HTS data has been deposited in the Sequence Read Archive
in NCBI under accession number SRP090599 and in Qiita as
ID 10681. Proprietary pgi gene sequences have been uploaded
to GenBank in NCBI and can be accessed using the accession
numbers listed in Table S2.
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Figure S1 | Multiplex assay design. Alignments of the pgi genes are shown for

(A) lactobacilli and (B) bifidobacteria. Primers are shown as arrows above the

target sequence. Black lines in the sequence blocks denote polymorphism.

Specific examples of primers are shown with (C) B. longum reverse, (D) B. infantis

forward, and (E) B. infantis reverse. Strains with (T) represent the type strain of

each sub-species.

Figure S2 | Visualization of the positive bands from the mPCR assay. A

virtual gel created in Geneious is next to an E-Gel® with the results of testing

gDNA standards. The band identities and amplicon sizes are listed to the right.

Figure S3 | Heat map of relative abundance of probiotics in samples

based on high-throughput sequencing. The relative abundance of probiotics

in each sample is visualized with shaded cells, with darker shading representing

higher abundance. Blue cells represent the presence of organisms that are

claimed by the products, while red cells are organisms not claimed by products.

OTUs that represent more than one organism have asterisks by the species name.

Figure S4 | Mapping of the OTUs to type strains in EzTaxon. The alignment

tree that maps each of the 42 OTUs to 16S rRNA gene sequences from type

strains of each of the 20 target species. Tree was generated using Geneious Tree

Builder with default settings.

Table S1 | Sample contents. Gray boxes denote a probiotic claimed in the

product.

Table S2 | Strains used to develop the mPCR in silico. Accession numbers

for whole genome sequences are noted if available. GenBank accession numbers

are noted for strains without associated genome sequences.

Table S3 | Primers used in the study.

Table S4 | Settings used for all PCR assays.

Table S5 | HTS read analysis.

Table S6 | Standard concentrations.
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