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We associate an algebra A(Ŵ) to a triangulation Ŵ of a surface S with a set

of boundary marking points. This algebra A(Ŵ) is gentle and Gorenstein of

dimension one. We also prove that A(Ŵ) is cluster-tilted if and only if it is

cluster-tilted of type A or Ã, or if and only if the surface S is a disc or an annulus.

Moreover all cluster-tilted algebras of type A or Ã are obtained in this way.

1. Introduction

Among the main recent results in the fast-growing theory of cluster algebras is the

paper of Fomin, Shapiro and Thurston [Fomin et al. 2008], relating triangulations

of oriented surfaces to cluster algebras. This approach, which existed since the

beginning of the theory [Caldero et al. 2006], was followed in [Labardini-Fragoso

2009; Schiffler 2008], among others. In the same spirit, we consider in the present

paper an unpunctured oriented surface S and a finite set of points M , lying on the

boundary of S and intersecting every boundary component of S. We then associate

to a triangulation Ŵ of the marked surface (S,M) a quiver Q(Ŵ), and a potential

on Q(Ŵ) (in the sense of [Derksen et al. 2008]), thus defining an algebra A(Ŵ),

namely the (noncompleted) Jacobian algebra defined by Q(Ŵ) and the associated

potential.

Such an algebra A(Ŵ) has some very nice properties: it is always Gorenstein

of dimension one, and also it is a gentle algebra in the sense of [Assem and

Skowroński 1987]. In the unpunctured case studied here, our definition coincides

with Labardini’s definition of a quiver with potential associated to a (possibly punc-

tured) surface [Labardini-Fragoso 2009]. But in the punctured case, one does not
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get gentle algebras, or even string algebras. For instance, a once-punctured disc

gives rise to cluster-tilted algebras of type D [Schiffler 2008].

Gentle algebras form a particularly nice subclass of the class of string algebras

of [Butler and Ringel 1987] and are much investigated in the representation theory

of algebras. For instance, this subclass contains the tilted algebras of type A and

Ã (see [Assem 1982] and [Assem and Skowroński 1987], respectively) and it is

closed under tilting and even under derived equivalence (see [Schröer 1999] and

[Schröer and Zimmermann 2003], respectively).

Our objective in this paper is twofold. Firstly, we ask which gentle algebras

arise in this way, that is, are induced from triangulations of an unpunctured surface

with boundary marked points. We show in Proposition 2.8 that this is the case for

every gentle algebra such that every relation lies on what we call a 3-cycle with

radical-square zero (see definition before Theorem 2.7 or [Buan and Vatne 2008]

for the definition). Secondly, we ask which gentle algebras are cluster-tilted. The

class of cluster-tilted algebras, introduced in [Buan et al. 2007], has been much

investigated and is by now well-understood (see, for instance, [Assem et al. 2008a;

Barot et al. 2008; Buan et al. 2006; Buan and Vatne 2008; Caldero et al. 2006;

Keller 2009; Keller and Reiten 2007; Schiffler 2008]). In particular, it was shown

in [Assem et al. 2008a] that every cluster-tilted algebra is the relation-extension

of a tilted algebra, that is, it is the trivial extension of a tilted algebra C by the

C-C-bimodule Ext2C(DC,C). We may now state the main result of this paper.

Theorem 1.1. Let A(Ŵ) be the algebra associated to the triangulation Ŵ of an

unpunctured marked surface (S,M). Then the following statements are equivalent:

(1) A(Ŵ) is cluster-tilted.

(2) A(Ŵ) is cluster-tilted of type A and Ã.

(3) A(Ŵ) is the relation-extension of a tilted algebra of type A and Ã.

(4) The surface S is a disc or an annulus.

Moreover, all cluster-tilted algebras of type A (or Ã) are of the form A(Ŵ) for some

triangulation of a disc S (or an annulus S, respectively).

Actually, we prove in Theorem 3.3 that a cluster-tilted algebra is gentle if and

only if it is of type A and Ã, or if and only if it is the relation-extension of a

gentle tilted algebra, and the latter coincide with the tilted algebras of type A or Ã,

respectively.

The case where S is a disc has already been studied in [Caldero et al. 2006], and

it is known that the bound quivers of all cluster-tilted algebras of type A arise from

triangulations of the (unpunctured) disc. These algebras have also been described

explicitly in [Buan and Vatne 2008]. Also, the potential we use for defining the

cluster-tilted algebras of type Ã is a particular case of the potential recently defined
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by Keller [2009]. However, we do not use this fact, but rather present another proof

(predating Keller’s result), which uses [Assem et al. 2008a] and properties of the

second extension group.

The paper is organised as follows: in Section 2, we define our algebras A(Ŵ)

and prove their main properties in Theorem 2.7. Section 3 is devoted to the classi-

fication of the gentle cluster-titled algebras and Section 4 to the proof of our main

theorem and some of its consequences. We conclude with an example of an algebra

A(Ŵ) that is not of polynomial growth in the sense of [Skowroński 1990].

2. Algebras arising from surface triangulations

Throughout this paper, the algebras we consider are basic connected algebras over

a fixed algebraically closed field k. Unless otherwise stated, all algebras are finite-

dimensional. Consequently, they are given in the form A = k Q/I where Q is a

quiver and I is an admissible ideal of the path algebra k Q [Assem et al. 2006].

The pair (Q, I ) is called a bound quiver, and the algebra A = k Q/I is referred to

as a bound quiver algebra.

Given a bound quiver algebra A=k Q/I , for every vertex x of Q we denote by ex

the idempotent of A associated to x . Also, Px , Ix and Sx will be the corresponding

indecomposable projective module, indecomposable injective module and simple

module, respectively.

We study in this section the algebra associated with a surface triangulation. For

background material on oriented surfaces we refer to [Massey 1991].

The medial quiver Q(Ŵ). We first recall from [Fomin et al. 2008] the construction

of a quiver for every triangulation of a marked surface. Let S be an oriented surface

with boundary ∂S, and let M be a nonempty finite set of points on ∂S intersecting

each connected component of the boundary ∂S. In this paper, we only consider

the case where there are no punctures, that is, we request that the set of marked

points M be contained in the boundary ∂S. The pair (S,M) is referred to as an

unpunctured bordered surface with marked points.

An arc in (S,M) is a curve γ in S such that:

• The endpoints of γ are marked points in M .

• γ does not intersect itself, except that its endpoints may coincide.

• γ intersects the boundary of ∂S only in its endpoints.

• γ does not cut out a monogon (that is, γ is not contractible into a point of M).

We call an arc γ a boundary arc if it cuts out a digon (that is, γ is homotopic to

a curve δ on the boundary ∂S that intersects M only in its endpoints). Otherwise,

γ is said to be an internal arc. Each arc γ is considered up to homotopy in the
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class of such curves. A triangulation of (S,M) is a maximal collection Ŵ of arcs

that do not intersect in the interior of S (more precisely, there are curves in their

respective homotopy classes that do not intersect in the interior of S).

Proposition 2.1 [Fomin et al. 2008, (2.10)]. In each triangulation of (S,M), the

number of internal arcs is

n = 6g+ 3b+ c− 6,

where g is the genus of S, b is the number of boundary components, and c = |M |

is the number of marked points.

This proposition also indicates that in some cases a triangulation does not exist

(for instance a disc with one marked point would give n = −2). We consider

from now on only marked surfaces (S,M) that admit a triangulation. Given a

triangulation Ŵ, we also refer to M as the set of vertices of Ŵ. The triangles are

the components of S\Ŵ with the arcs of Ŵ as edges.

We denote by Q(Ŵ) the medial quiver of internal arcs of Ŵ. That is, Q(Ŵ) is

the quiver whose set of points is the set of internal arcs of Ŵ, and the arrows are

defined as follows: whenever there is a triangle T in Ŵ containing two internal arcs

a and b, then Q(Ŵ) contains an arrow a→ b if a is a predecessor of b with respect

to clockwise orientation at the joint vertex of a and b in T (we can talk about

clockwise orientation around each marked point because S is an oriented surface).

Example. We illustrate the construction of Q(Ŵ) when Ŵ is a triangulation of an

octagon:
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Lemma 2.2. The quiver Q(Ŵ) contains no oriented cycles of length ≤ 2.

Proof. We first show that Q(Ŵ) contains no loops. A loop α at the point a of Q(Ŵ)

would arise from a triangle T in Ŵ in the following way:

r r
r
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But in this case the triangle T is homeomorphic to

r
✫✪
✬✩

r
x

a

which means that x is an internal vertex, contradicting our assumption that M is

contained in the boundary of S.

We now show that Q(Ŵ) contains no oriented cycles of length two. Indeed, such

a cycle corresponds to the following situation in Ŵ:

r rr
r

✟✟✟✟

✟✟✟✟❍❍❍❍

❍❍❍❍

x

a a

b

Then a neighbourhood of x is homeomorphic to

r
✫✪
✬✩

r
r

x
a

b

which again contradicts the assumption that Ŵ contains no internal vertices. �

Remark. Fomin et al. [2008] associate a skew-symmetric matrix B(Ŵ) to a tri-

angulation Ŵ of (S,M). This construction is equivalent to the construction of the

quiver Q(Ŵ) we consider here. Since Q(Ŵ) contains no oriented cycles of length

≤ 2, it is uniquely determined by a skew-symmetric matrix B (where the number

of arrows between two vertices is given by the entries of B, and the direction of

the arrows is determined by the sign of the matrix entries). It is easy to see that

B coincides with B(Ŵ). Thus all the results from [Fomin et al. 2008] apply; in

particular, mutations of the quiver Q(Ŵ) correspond to flips of the triangulation Ŵ.

Let b be an internal arc of Ŵ. Thus b is one diagonal of the quadrilateral formed

by the two triangles of Ŵ that contain b. The flip of b replaces the edge b by the

other diagonal b∗ of the same quadrilateral. Keeping all other edges unchanged,

one obtains a new triangulation µb(Ŵ).

r rr
r

✟✟✟✟

✟✟✟✟❍❍❍❍

❍❍❍❍b
µb
−→ r rr

r
✟✟✟✟

✟✟✟✟❍❍❍❍

❍❍❍❍b∗

An essential ingredient in the definition of cluster algebras by Fomin and Zele-

vinsky [2002] is the mutation of skew-symmetric matrices. Reformulated in the

language of quivers, one obtains a mutation of quivers Q 7→µb(Q). The following

proposition shows that flips of the triangulation commute with quiver mutations.
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Proposition 2.3 [Fomin et al. 2008, Proposition 4.8]. Suppose that the triangula-

tion µb(Ŵ) is obtained from Ŵ by a flip replacing the diagonal labelled b. Then

Q(µb(Ŵ))= µb(Q(Ŵ))

The algebra A(Ŵ). We define in this section an algebra A(Ŵ) for each triangula-

tion Ŵ of the unpunctured marked surface (S,M). Our construction generalizes

the one given in [Caldero et al. 2006] for polygons. An even more general case

is considered in [Labardini-Fragoso 2009], where such an algebra A(Ŵ) is defined

for a general marked surface (allowing punctures). If there are no punctures, the

definitions coincide (although Labardini works in the equivalent framework of op-

posite medial quivers).

A triangle T in Ŵ is called an internal triangle if all edges of T are internal

arcs. Every internal triangle T in Ŵ gives rise to an oriented cycle αTβT γT in

Q(Ŵ), unique up to cyclic permutation of the factors αT , βT , γT . We define

W =
∑

T

αTβT γT ,

where the sum runs over all internal triangles T of Ŵ. Then W is a potential on

Q(Ŵ) and we define A(Ŵ) to be the (noncompleted) Jacobian algebra of (Q,W )

[Derksen et al. 2008; Keller 2007]. Thus A(Ŵ) can be described as a quotient

A(Ŵ)= k Q(Ŵ)/I (Ŵ) of the path algebra k Q(Ŵ) by the ideal I (Ŵ) generated by all

paths αTβT , βT γT and γTαT whenever T is an internal triangle of Ŵ. Labardini

[2009] showed that flips in the triangulation correspond to mutations of the quiver

with potential (Q(Ŵ),W ) as defined in [Derksen et al. 2008].

The following result is shown in [Labardini-Fragoso 2009, Theorem 36] for the

more general case of punctured marked surfaces.

Lemma 2.4. Let Ŵ be a triangulation of an unpunctured marked surface (S,M).

Then the algebra A(Ŵ) is finite-dimensional.

We show in Lemma 2.5 that the algebras A(Ŵ) belong to a class of algebras

called gentle algebras. Recall from [Assem and Skowroński 1987] that a finite-

dimensional algebra is gentle if it admits a presentation A = k Q/I satisfying the

following conditions:

(G1) At each point of Q start at most two arrows and stop at most two arrows.

(G2) The ideal I is generated by paths of length 2.

(G3) For each arrow β there is at most one arrow α and at most one arrow γ such

that αβ ∈ I and βγ ∈ I .

(G4) For each arrow β there is at most one arrow α and at most one arrow γ such

that αβ 6∈ I and βγ 6∈ I .
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If the pair (Q, I ) satisfies conditions (G1) through (G4), we call it a gentle bound

quiver, or a gentle presentation of A= k Q/I . Note that in contrast to [Assem and

Skowroński 1987], we do not assume that A = k Q/I is triangular. An algebra

A = k Q/I where I is generated by paths and (Q, I ) satisfies the two conditions

(G1) and (G4) is called a string algebra [Butler and Ringel 1987], and thus every

gentle algebra is a string algebra. The gentle algebras can be characterized by

the fact that their repetitive categories are special biserial [Assem and Skowroński

1987; Pogorzały and Skowroński 1991].

We recall here the classification of indecomposable modules over a string alge-

bra A=k Q/I which is given in [Butler and Ringel 1987] in terms of reduced walks

in the quiver Q. A string in A is by definition a reduced walk w in Q avoiding the

zero-relations, and thus w is a sequence

w = x1
α1
←→ x2

α1
←→ · · ·

αn−1
←→ xn,

where the xi are vertices of Q and each αi is an arrow between the vertices xi and

xi+1 in either direction such that w does not contain a sequence of the form

β
←−

β
−→ or

β1
−→ · · ·

βs
−→

with β1 · · ·βs ∈ I , or their duals. A string is cyclic if the first and the last vertex

coincide. A band is defined to be a cyclic string b such that each power bn is a

string, but b itself is not a proper power of some string c.

The string module M(w) is obtained from the string w by replacing each xi in

w by a copy of the field k. The action of an arrow α on M(w) is induced by the

relevant identity morphisms if α lies on w, and is zero otherwise. The dimension

vector dim M(w) of M(w) is obtained by counting how often the string w passes

through each vertex x of the quiver Q:

dim M(w)=
( ∑

1≤i≤n

δx,xi

)
x∈Q0

,

where δx,xi
= 1 for x = xi and δx,xi

= 0 otherwise. Similarly, each band b in A

gives rise to a family of band modules M(b, λ, n) where λ∈ k and n ∈N (we refer

to [Butler and Ringel 1987] for the precise definition). All string and band modules

are indecomposable, and in fact every indecomposable A-module is either a string

module M(w) or a band module M(b, λ, n) [Butler and Ringel 1987].

We now return to the study of algebras stemming from surface triangulations:

Lemma 2.5. Let Ŵ be a triangulation of an unpunctured marked surface (S,M).

Then A(Ŵ) is a gentle algebra.

Proof. By Lemma 2.4, the algebra A(Ŵ) is finite-dimensional, so we only need to

verify conditions (G1) to (G4) for the bound quiver (Q(Ŵ), I (Ŵ)) of A(Ŵ).
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(G2): By definition, the ideal I (Ŵ) is generated by paths of length two.

(G1): Let a be a point of Q(Ŵ) corresponding to an internal arc a of Ŵ. Since Ŵ is

a triangulation of a surface, the arc a is contained in at most two triangles:

r rr
r

✟✟✟✟

✟✟✟✟❍❍❍❍

❍❍❍❍
b1

b2

a

Hence there are at most two arrows α1 : b1→ a and α2 : b2→ a of Q(Ŵ) ending

in a. The same holds for arrows starting in a point a.

(G3), (G4): Suppose now that Q(Ŵ) contains α1, α2, β as follows:

r rr
r
✟✟✟✟✯

❍❍❍❍❥ ✲

α1

α2

β

b1

b2

a c

We have to show that precisely one of α1β, α2β belongs to I (Ŵ). In Ŵ, the

internal arcs a, b1, b2 belong to two triangles as considered in the proof of (G1).

The arrow β encodes that the arc c is a successor of a in one of these triangles, say

the one formed by a, b1, c. This gives rise to the relation α1β, and α2β does not

belong to I (Ŵ) since α2 and β arise from different triangles. �

From the construction of A(Ŵ) it is clear that for each αβ ∈ I (Ŵ) there is an

arrow γ in Q(Ŵ) such that βγ ∈ I (Ŵ) and γα ∈ I (Ŵ). In the following lemma we

study a homological property of all gentle algebras satisfying this condition: an

algebra A is Gorenstein of dimension one if the injective dimension of the (finitely

generated) projective A-modules is at most one, and the projective dimension of

the (finitely generated) injective A-modules is at most one. Note that all cluster-

tilted algebras are Gorenstein of dimension one, and that an algebra of Gorenstein

dimension one is either hereditary or has infinite global dimension; see [Keller and

Reiten 2007].

Lemma 2.6. Let A = k Q/I be a gentle algebra such that for each αβ ∈ I there is

an arrow γ in Q such that βγ ∈ I and γα ∈ I . Then A is Gorenstein of dimension

one.

Proof. We only compute the projective dimension of the injective modules here; the

proof of the other part in the definition of Gorenstein of dimension one is dual. It is

sufficient to show that for every vertex x of Q the corresponding indecomposable

injective A-module Ix has projective dimension at most one. To do so, we construct

explicitly a projective resolution of Ix . We write the string module Ix as Ix =

M(u1α1α
−1
2 u−1

2 ), where u1 and u2 are oriented paths. Both paths might have length
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zero, and in this case, also the arrows α1 and α2 might not be present. The following

figure is used throughout the proof:

e1
w1 ///o/o/o/o/o/o/o/o f1

a1
u1 ///o/o/o/o/o/o/o/o

γ1

??

b1

α1   

c1oo v1 ///o/o/o/o/o/o/o d1

x

β1

>>

β2

  
a2

u2 ///o/o/o/o/o/o/o/o

γ2 ��

b2

α2

>>

c2oo v2 ///o/o/o/o/o/o/o d2

e2
w2 ///o/o/o/o/o/o/o/o f2

Note that {x, c1, b1} and {x, c2, b2} form oriented cycles in Q such that the com-

position of any two consecutive arrows is zero. Let

p0 : P(0)→ Ix

be a projective cover; then

P(0)= M(w−1
1 γ−1

1 u1α1β2v2)⊕M(w−1
2 γ−1

2 u2α2β1v1)

and
Ker p0 = M(w1)⊕M(w2)⊕M(v−1

1 β−1
1 β2v2)

(note that some summands of the terms of this sequence can be zero). We show

that Ker p0 is projective, thus obtaining the desired projective resolution

0 // Ker p0
// P(0)

p0 // Ix
// 0.

In order to see that the first two summands of Ker p0 are projective (namely the

indecomposable projectives Pe1
and Pe2

), one has to show that there are no other ar-

rows starting at the vertices e1, e2. Suppose there is an arrow δ1 :e1→ y in Q. Since

the algebra A is gentle, the composition γ1δ1 lies in the ideal I . The assumption of

the lemma guarantees the existence of a cycle γ1δ1ǫ1 such that γ1δ1, δ1ǫ1, ǫ1γ1 ∈ I .

But then the simple A-module Sy would be a composition factor of Ix , contradict-

ing the assumption Ix = M(u1α1α
−1
2 u−1

2 ). This shows that M(w1) = Pe1
, and

a similar argument shows that M(w2) = Pe2
. Since M(v−1

1 β−1
1 β2v2) = Px , we

conclude that Ker p0 is projective. �

Example. We illustrate the projective resolution constructed in Lemma 2.6 when

Ŵ is the following triangulation of a polygon with 11 vertices (where the midpoints



210 I. Assem, T. Brüstle, G. Charbonneau-Jodoin and P.-G. Plamondon

of internal arcs are labeled):
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The corresponding algebra A(Ŵ) is given by the quiver

e1

a1
u1 //

γ1

>>

b1

α1 ��

c1
δ1oo

x

β1

??

β2

��
b2

α2

??

c2
δ2

oo v2 // d2

with relations α1β1= β1δ1= δ1α1= 0 and α2β2= β2δ2= δ2α2= 0. The projective

resolution of the injective module Ix is then

0 // Pe1
⊕ Px

// Pa1
⊕ Pb2

// Ix
// 0,

where Pe1
is simple and Px = M(β−1

1 β2v2), Pa1
= M(u1α1β2v2) and Pb2

=

M(α2β1).

We recall from [Gabriel 1981] the concept of Galois coverings of bound quiver

algebras: Let 3 = k Q̃/ Ĩ be a bound quiver algebra (where the quiver Q̃ is not

necessarily finite). A group G of k-linear automorphisms of 3 is acting freely

on 3 if gex 6= ex for each vertex x of Q̃ and each g 6= 1 in G. In this case the

multiplication in 3 induces a multiplication on the set 3/G of G-orbits which

turns 3/G into an algebra. The canonical projection 3 → 3/G is called the

Galois covering of 3/G with group G.

In the following theorem we call (as in [Buan and Vatne 2008]) a 3-cycle an ori-

ented cycle αβγ where α, β, γ are three distinct arrows; and by a 3-cycle with rad-

ical square zero we mean a 3-cycle αβγ in an algebra k Q/I such that αβ, βγ, γα
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all lie in I . By a simple cycle we refer to a subquiver C of Q with n distinct vertices

{x0, x1, . . . , xn−1, xn = x0} and n arrows αi : xi → xi+1, for i = 1, . . . , n− 1.

Theorem 2.7. Let Ŵ be a triangulation of an unpunctured marked surface (S,M).

(1) The algebra A(Ŵ) is a gentle algebra.

(2) The algebra A(Ŵ) is Gorenstein of dimension one.

(3) There is a relation in A(Ŵ) from x to y only if there is an arrow y→ x.

(4) A(Ŵ) admits a Galois covering by a bound quiver algebra k Q̃/ Ĩ satisfying:

(T1) Every simple cycle in Q̃ is a 3-cycle with radical square zero.

(T2) The only relations in Ĩ are those in the 3-cycles.

Proof. Part (1) is shown in Lemma 2.5, and part (2) is shown in Lemma 2.6 since

the condition imposed on the gentle algebra A there clearly holds for the algebra

A(Ŵ). Part (3) follows directly from the definition of A(Ŵ). Maybe the most

intuitive way to obtain the Galois covering required in part (4) is the following.

By construction, the only relations in the algebra A(Ŵ) are those in the 3-cycles.

In a first step, we identify all 3-cycles to points, replacing each 3-cycle C with

vertices {x1, x2, x3} by one single vertex x and replacing each arrow y → xi (or

xi → y, respectively) by an arrow y→ x (or x→ y, respectively). The quiver Q

thus obtained contains no relations, and we let Q̃ be its universal Galois covering,

a (maybe infinite) tree. The bound quiver (Q̃, Ĩ ) is then obtained by placing back

the 3-cycles C = {x1, x2, x3} for all contracted vertices x of Q̃. �

Note that the finite quivers satisfying conditions (T1) and (T2) from the pre-

vious theorem form precisely the class of quivers Qn considered in [Buan and

Vatne 2008], where also the same relations are imposed. It would be interesting

to relate the Galois covering (Q̃, Ĩ ) constructed above with the universal cover of

the bordered surface (S,M).

Recovering topological data from A(Ŵ). The condition (4) in Theorem 2.7 is very

strong. Combined with the fact that the algebra is gentle, it implies the remaining

conditions (2) and (3). We show in this section that a gentle algebra satisfying

condition (4) is given by an unpunctured marked surface.

First we give a different combinatorial description of the algebras studied here.

Consider the following two bound quivers, where type I is a quiver of type A2, and

type II is a 3-cycle with radical square zero:

Type I ❞ ❞✲ Type II ❞ ❞
❞♣♣♣ ♣ ♣ ♣♣♣♣✡

✡✡✣ ❏
❏❏❫✛

Using these bound quivers one can construct algebras in the following way.

Suppose we start with a collection C of disjoint blocks of types I and II. Choose
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a partial matching (that is to say a partial bijection) π of the vertices in C , where

matching a vertex to another vertex of the same block is not allowed. Identifying

(or “gluing”) the vertices within each pair of the matching we obtain an algebra

A(C, π). Note that the arrows are not identified by this procedure, so one might ob-

tain parallel arrows or two-cycles. We consider only matchings where the algebra

A(C, π) is connected.

The procedure of gluing blocks is considered in a more general situation (using

plenty of building blocks) in [Brüstle 2001], where the resulting algebras are called

kit algebras. A similar construction to glue blocks of type I, II and four more types

is described in [Fomin et al. 2008].

We show below that the gentle algebras that admit a Galois covering satisfying

conditions (T1) and (T2) from Theorem 2.7 are algebras of the form A(C, π), and

thus results from [Fomin et al. 2008] concerning these algebras can be applied.

Proposition 2.8. Let A= k Q/I be a gentle algebra where every relation lies on a

3-cycle with radical square zero. Then there exists an unpunctured marked surface

(S,M) with a triangulation Ŵ such that A(Ŵ)= A.

Proof. The statement follows from [Fomin et al. 2008, (14.1)] once we show that

the algebra A admits a unique block decomposition A = A(C, π) using blocks of

types I and II. We therefore define C to be the disjoint union of all 3-cycles with

radical square zero of A together with the disjoint union of all remaining arrows

from A. Denote by f the quiver morphism f :C→ Q that identifies the blocks of

C with their images in Q.

We first show that | f −1(x)|≤2 for each vertex x ∈Q. Indeed, if f −1(x) contains

three different vertices, then there are three different arrows in Q adjacent to the

vertex x . But since the algebra A is gentle, there has to be one relation between

these three arrows. However, the set C is constructed in such a way that all relations

of A belong to one of the components in C , so there are no relations between arrows

corresponding to different components of C , and so the fiber f −1(x) contains at

most two vertices.

We now define a matching π on C relating x1 to x2 whenever f −1(x)={x1, x2}.

As required in the definition of A(C, π), we do not match a vertex to itself or to

some vertex in the same block. It is clear from the construction that A= A(C, π).

Moreover, the choice of blocks of type I or II is unique since all relations have to

correspond to a block of type II. �

We would like to point out that all algebras A(Ŵ) given by a triangulation Ŵ of

an unpunctured marked surface are of the form A(C, π) for some C and π , but the

converse is not true: One can easily produce two-cycles in an algebra A(C, π), but

this never occurs for the algebras A(Ŵ) as we have shown in Lemma 2.2.
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3. Gentle cluster-tilted algebras

Cluster-tilted algebras. Let 1 be an acyclic quiver. In [Buan et al. 2006] the clus-

ter category C1 is studied in order to obtain a categorical interpretation of the

cluster variables of the cluster algebra associated with 1. It is shown there that

clusters correspond bijectively to tilting objects T in C1. Their endomorphism

rings EndC1
(T ) are called cluster-tilted algebras of type 1. They were introduced

and studied in [Buan et al. 2007].

Here we use a different description that has been given in [Assem et al. 2008a].

Let A be the hereditary algebra k1. An A-module T is called a tilting module if

Ext1A(T, T ) = 0 and the number of isomorphism classes of indecomposable sum-

mands of T equals the number of isomorphism classes of simple A-modules. In

this case, the endomorphism ring EndA(T ) is called a tilted algebra of type 1.

Let C be an algebra of global dimension two. The trivial extension

C̃ = C ⋉ Ext2C(DC,C)

of C by the C-C-bimodule Ext2C(DC,C) is called the relation-extension of C . It

is useful to describe explicitly the operations on C̃ . As an abelian group, C̃ =

C ⊕ Ext2C(DC,C). Therefore, let (c, e) and (c′, e′) be two elements of C̃ , where

e and e′ are respectively represented by the exact sequences of C-modules

e : 0 // P // M // N // I // 0,

e′ : 0 // P ′ // M ′ // N ′ // I ′ // 0,

with P, P ′ projective and I, I ′ injective. The addition is given by

(c, e)+ (c′, e′)= (c+ c′, e+ e′),

where the sum c+ c′ is the ordinary sum inside C , while e+ e′ is the Baer sum in

Ext2C(DC,C) (for which we refer to any textbook of homological algebra). The

product in C̃ is given by the formula

(c, e)(c′, e′)= (cc′, ce′+ ec′),

where the product cc′ is the ordinary product inside C , while ce′ and e′c are defined

as follows. Viewing c∈C as an element of End CC
∼=C , then e1=ce′ is represented

by the sequence obtained by pulling down the sequence e′:

e′ : 0 // P ′ //

c
��

M ′ //

��

N ′ // I ′ // 0

e1 : 0 // P1
// M1

// N ′ // I ′ // 0

Similarly, if we view c′ ∈ C as an element of End DCC
∼= C , then e2 = ec′ is

represented by the sequence obtained by lifting the sequence e:
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e2 : 0 // P // M // N2
//

��

I2
//

c′��

0

e : 0 // P // M // N // I // 0

The following theorem allows us to view cluster-tilted algebras as relation-

extensions of tilted algebras.

Theorem 3.1 [Assem et al. 2008a]. An algebra 3 is cluster-tilted of type 1 if and

only if there exists a tilted algebra C of type 1 such that 3 is isomorphic to the

relation-extension C̃ of C.

Every cluster-tilted algebra satisfies conditions (2) and (3) from Theorem 2.7

[Keller and Reiten 2007]. The bound quivers of cluster-tilted algebras of type A

are explicitly described in [Buan and Vatne 2008, Proposition 3.1]. In fact they

were already described in [Caldero et al. 2006] as the algebras A(Ŵ) arising from

a triangulation of an unpunctured polygon. The following proposition is contained

in [Buan and Vatne 2008], but it also follows from Theorem 3.3 below.

Proposition 3.2 [Buan and Vatne 2008, (3.1)]. An algebra A is cluster-tilted of

type A precisely when A is gentle and there is a presentation A = k Q/I which

satisfies conditions (T1) and (T2) from Theorem 2.7.

In particular, the cluster-tilted algebras of type A are gentle. We describe in

the following theorem, whose proof occupies the rest of the section, which of the

gentle algebras are cluster-tilted:

Theorem 3.3. Let C=k QC/IC be a tilted algebra, and C̃ be its relation-extension.

The following are equivalent.

(1) C is gentle.

(2) C is tilted of type A or Ã.

(3) C̃ is gentle.

(4) C̃ is cluster-tilted of type A or Ã.

A preliminary part of the proof follows from a result in [Schröer 1999], which

says that the class of gentle algebras is stable under tilting.

Lemma 3.4. If a tilted algebra is gentle, then it is tilted of type A or Ã.

Proof. Let 1 be a quiver such that C is tilted of type 1. Then there exists a tilting

C-module T such that End T = k1. According to [Schröer 1999], k1 is a gentle

algebra. This implies that the quiver 1 is of type A or Ã. �

Lemma 3.5. If C̃ is gentle, then so is C.

Proof. This follows from the fact that C̃ is a split extension of C and from [Assem

et al. 2008b, (2.7)]. �
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Lemma 3.6. The algebra C is tilted of type A or Ã if and only if C̃ is cluster-tilted

of type A or Ã.

Proof. Clearly, if C is tilted of type A or Ã, then C̃ is cluster-tilted of type A or

Ã. Conversely, suppose C̃ is cluster-tilted of type A or Ã. By [Assem et al. 2008a]

there exists a local slice 6′ in mod C̃ such that C ′ = C̃/Ann6′ is tilted of type A

or Ã. On the other hand, since C̃ = C ⋉ Ext2C(DC,C), then there exists a local

slice 6 in mod C̃ such that C = C̃/Ann6. Since both 6 and 6′ have the same

underlying graph, C and C ′ have the same type, so C is tilted of type A or Ã. �

The main part of the proof of Theorem 3.3 is concerned with the problem of

showing that C̃ is gentle if C is tilted of type A or Ã. This will be done next.

Relation-extensions of tilted algebras of types A and Ã . Suppose C = k QC/IC

is tilted of type A or Ã. In particular, C is gentle because of [Assem 1982] and

[Assem and Skowroński 1987]. Moreover, the quiver of C̃ is known, as are some of

its relations, namely those already in C [Assem et al. 2008a; Assem et al. 2008b].

The aim here is to study the remaining relations of C̃ .

First, the bound quiver of a tilted algebra of type A has been described in [Assem

1982], and that of a tilted algebra of type Ã in [Roldán 1983]. The criterion given

here is derived from [Huard and Liu 2000].

We recall that a double-zero in a gentle algebra is a reduced walk of the form

αβωγδ, where α, β, γ and δ are arrows such that αβ and γδ are relations, while

ω is a nonzero reduced walk (that is, a walk which does not contain any relation).

Note that ω may be trivial and that in this case β and γ may coincide.

Example. The algebra

•
β //

φ

��

•

•

α
??

γ ��

•
ψ

??

ε

��
•

δ

??

•

where αβ = φψ = δε = 0, is gentle with a double-zero (namely φψβ−1φψ).

Proposition 3.7 [Assem 1982; Assem and Skowroński 1987]. (1) An algebra is

tilted of type A if and only if it admits a bound quiver presentation k Q/I , with

(Q, I ) a gentle tree with no double-zero.

(2) An algebra is tilted of type Ã if and only if it admits a bound quiver pre-

sentation k Q/I , with (Q, I ) a gentle presentation with no double-zero and a

unique (nonoriented) cycle such that, if the cycle is a band, then all arrows

attached to the cycle either enter it or leave it.
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Example. Consider the algebras given by the bound quivers

•

α ��

• •
φ // •

β

��
•

β

??

γ ��

• •

α
??

γ ��

•

•
δ

??

•
ψ

// •
δ

??

αβ = 0 αβ = γδ = 0

Using Proposition 3.7, we see that the first one is tilted of type A, while the second

one is tilted of type Ã.

A vanishing criterion. We need a criterion to verify whether a given exact se-

quence represents the zero element in the second extension group:

Lemma 3.8 [Happel et al. 1996, (II.1.3)]. Given a morphism f : M −→ N , the

exact sequence

0 // Ker f // M
f // N // Coker f // 0

represents the zero element of Ext2(Coker f,Ker f ) if and only if there exist a

module X and morphisms g, h such that the sequence

0 // M
(p,g)t // Im f ⊕ X

( j,h) // N // 0

is exact, where p and j are the natural morphisms arising from f .

The following lemma will be used frequently.

Lemma 3.9. Let (Q, I ) be a gentle presentation of an algebra C , and let α :c−→b

and β : b −→ a be arrows in Q. Let σ and η be strings, not passing through b,

such that βσ and ηα are strings. Let f : M(βσ)−→ M(ηα) be a morphism such

that Im f = Sb.

Then the exact sequence

e : 0 // Ker f // M(βσ)
f // M(ηα) // Coker f // 0

represents a nonzero element of Ext2C(Coker f,Ker f ) if and only if αβ lies in I .

Proof. In view of Lemma 3.8, the sequence e represents a nonzero element of

Ext2C(Coker f,Ker f ) if and only if there exists no short exact sequence of the

form

0 // M(βσ)
(p,g)t // Im f ⊕ X

( j,h) // M(ηα) // 0,
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Assume such a sequence exists. Since Sb appears exactly once as a composition

factor of M(βσ) and M(ηα), then it also appears exactly once as a composition

factor of X . Therefore, there exists a unique indecomposable summand Y of X

admitting Sb as a composition factor.

We claim that g : M(βσ) −→ X is a monomorphism: let x ∈ Q0 and take

a vector v ∈ M(βσ)x such that gx(v) = 0. If x 6= b, then px(v) = 0 and so

(p, g)tx(v)= 0 which implies v = 0. If x = b, then (pa(βv), ga(M(βσ)β(v)))
t =

(p, g)ta(M(βσ)β(v))= (Im f ⊕X)β(p, g)tb(v)=0 which implies M(βσ)β(v)=0.

Since (M(βσ)β is injective, then v = 0. This completes the proof of our claim.

Since the evaluation M(βσ)β of the module M(βσ) on the arrow β is nonzero,

we must have Xβ 6= 0. Now, Sb is a composition factor of Y , hence Yβ 6= 0 as well.

Similarly, h is an epimorphism and it follows that Yα 6= 0. On the other hand, Y

must be a string or a band module. The above reasoning implies that αβ must then

be a subpath of a string or a band, which implies that αβ /∈ I , as required.

Conversely, if αβ /∈ I , then we have a short exact sequence

0 // M(βσ) // Sb⊕M(ηαβσ) // M(ηα) // 0,

and hence e represents the zero element in Ext2C(Coker f,Ker f ). �

Arrows. From now on, let C be a tilted algebra of type A or Ã. We give a descrip-

tion of the elements of C̃ = C ⋉ Ext2C(DC,C) corresponding to the arrows of its

ordinary quiver. In [Assem et al. 2008a, (2.4)], it is proved that the quiver of C̃ is

obtained from that of C by adding an arrow from x to y for each relation from y

to x . The elements of C̃ corresponding to the arrows of C are of the form (α, 0),

where α is an arrow of C .

The other arrows correspond to relations in C . Let αβ be a relation from c to a

in C , and let ξαβ be the corresponding new arrow in C̃ .

Lemma 3.10. The new arrow ξαβ lies in 0⊕Ext2C(Ic, Pa).

Proof. This new arrow lies in eaC̃ec, which can be written as the direct sum of

eaCec and eaExt2C(DC,C)ec. We know from Proposition 3.7 that the quiver of C

contains no double-zero. Consequently, there are no paths from a to c, and hence

eaCec = 0. Moreover, eaExt2C(DC,C)ec = Ext2C(Ic, Pa). The element ξαβ thus

lies in 0⊕Ext2C(Ic, Pa). �

The following lemma gives the dimension and a basis of the extension space

involved in the last expression.

Lemma 3.11. Let α : c−→b and β :b−→a be two arrows of C such that αβ ∈ IC .
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(a) The dimension of the vector space Ext2C(Ic, Pa) is 1 or 2. Its dimension is 2 if

and only if the following situation occurs in the bound quiver of C :

c
α // b

β // a

σ

���\
�\

�\
�\

�\

x
γ //

η

BB
B�

B�
B�

B�
B�

y
δ // z

where γ and δ are arrows, η and σ are paths, possibly stationary, without

relations, and αβ, γδ are relations.

(b) If the dimension of the space is 1, then a basis is given by the sequence

e1 : 0 // Pa
// M(βσ) // M(ηα) // Ic

// 0,

where η and σ are paths such that Ic = M(η) and Pa = M(σ ).

(c) If the dimension of the space is 2, then a basis is given by the sequences

e1 : 0 // Pa
// M(βσ) // M(ηα) // Ic

// 0,

e2 : 0 // Pa
// M(σδ−1) // M(γ−1η) // Ic

// 0,

where γ, δ, η and σ are as in the figure in part (a).

Proof. (a) It is known from [Assem et al. 2008a] that there is a new arrow from a

to c; thus the dimension cannot be zero. On the other hand, since C is gentle and

without double-zero, the local situation of the relation αβ can be described by the

following figure, where dotted lines represent relations.

j
ψ ///o/o/o/o/o/o/o/o k

e
ι ///o/o/o/o/o/o/o/o

φ
??

f

d
γ ///o/o/o/o/o/o/o/o

δ
??

99

c
α

  

++ a
η ///o/o/o/o/o/o/o i

b

β
>>

θ

  
g

σ ///o/o/o/o/o/o/o h

This diagram allows us to compute a projective resolution of Ic in mod C :

0
p3 // P(2)

p2 // P(1)
p1 // P(0)

p0 // Ic
// 0,
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where P(2) = M(ψ)⊕ M(η), P(1) = M(ι−1φψ)⊕ M(σ−1θ−1βη) and P(0) =

M(ι−1δ−1γαθσ). Note that some direct summands of the terms of this sequence

can be zero. Applying HomC(−, Pa), we get a complex

0 // HomC(Ic, Pa)
(p0,Pa)// HomC(P(0), Pa)

(p1,Pa)// HomC(P(1), Pa)
(p2,Pa)// HomC(P(2), Pa)

(p3,Pa)// 0.

This yields

Ext2C(Ic, Pa)=
Ker Hom(p3, Pa)

Im Hom(p2, Pa)
=

Hom(M(ψ), Pa)⊕Hom(M(η), Pa)

Im Hom(p2, Pa)
.

Since Pa = M(η), we have dim Hom(M(η), Pa)= 1, and since

Hom(M(σ−1θ−1βη), Pa)= 0,

no nonzero morphism in Hom(M(η), Pa) factors through p2.

We claim that Hom(M(ψ), Pa) is nonzero if and only if j= i . Indeed, a nonzero

morphism from M(ψ) to Pa can only exist when j coincides with a vertex on the

path η. But if j were a vertex different from i , then there would be an arrow

φ′ : j → j ′ in the path η, forcing the relation φφ′′ and creating the double-zero

δφφ′. Thus j = i . In this case, ψ has no choice but to be the trivial path in i , and

dim Hom(M(ψ), Pa)= 1. Since Hom(M(ι−1φψ, Pa)= 0, no nonzero morphism

in Hom(M(ψ), Pa) factors through p2.

Hence no nonzero morphism in Hom(M(ψ), Pa) ⊕ Hom(M(η), Pa) factors

through p2. Thus the dimension of this space is either 1 or 2, and it is 2 exactly

when i = j . In this case, and in this case only, we have

c
α // b

β // a

���\
�\

�\
�\

�\

d //

BB
B�

B�
B�

B�
B�

e // j

as desired.

(b) It follows from Lemma 3.9 that e1 is nonzero. The result follows.

(c) It follows from Lemma 3.9 that e1 and e2 are nonzero. It remains to be shown

that e1 and e2 are linearly independent. Suppose there exists a nonzero scalar λ

such that e2+ λe1 = 0. Computing this sum, we get the sequence

0 // Pa
// M(βσδ−1)

f // M(γ−1ηα) // Ic
// 0,

where all morphisms are multiples of the natural morphisms between string mod-

ules.
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Here, applying Lemma 3.9 is not possible, since Im f = Sb⊕ Sy , but a similar

technique of proof can be used.

Suppose there exist a module X and morphisms g and h such that the sequence

0 // M(βσδ−1)
(p,g)t // (Sb⊕ Sy)⊕ X

( j,h) // M(γ−1ηα) // 0

is exact, where f = j p is the canonical factorisation. Since Sb appears exactly once

as a composition factor of M(βσδ−1) and M(γ−1ηα), it also appears exactly once

as a composition factor of X . Therefore, there exists a unique indecomposable

summand Y of X admitting Sb as a composition factor. As in the proof of Lemma

3.9, we show that Yβ 6= 0 and Yα 6= 0. Therefore, αβ must be a subpath of a string

or a band, which is a contradiction, since it is a relation.

The sequences e1 and e2 thus form a basis of the extension space. �

It remains to determine which of the basis elements are represented by arrows

of C̃ .

Lemma 3.12. Let α : c −→ b and β : b −→ a be two arrows of the quiver of C

such that αβ is a relation. Let ξαβ be the corresponding new arrow in C̃. With the

notation of Lemma 3.11, the element (0, e1) can be chosen to represent ξαβ .

Proof. The space 0⊕Ext2C(Ic, Pa) contains at least one arrow.

If its dimension is 1, the result is obvious.

If its dimension is 2, Lemma 3.11 describes the situation of αβ in the quiver of

C . Two cases arise.

First, suppose that η and σ are both trivial paths.

b
β

��
c

α
??

++33

γ ��

aks

y
δ

??

In this case, two arrows from a to c are added to the quiver. Both (0, e1) and (0, e2)

must thus represent arrows of C̃ .

Second, suppose η and σ are not both trivial. In this case, Lemma 3.11 implies

that Ext2C(Ix , Pz) is of dimension 1, and that a basis is given by

e′ : 0 // Pz
// M(δ) // M(γ) // Ix

// 0.

Reasoning as above, we get that (0, e′) represents the new arrow from z to x .

Moreover, a straightforward calculation yields (σ, 0)(0, e′)(η, 0)= (0, e2).
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Since one of η and σ is not trivial, one of (0, η) and (0, σ ) must lie in rad C̃ .

Therefore (0, e2) ∈ rad2C̃ , and (0, e1) ∈ rad C̃ \ rad2C̃ ; in other words, (0, e1)

represents an arrow from a to c. �

Relations. Knowing how to write arrows in C̃ allows us to compute the relations.

Lemma 3.13. Let C = k QC/IC and C̃ = k QC̃/IC̃ .

(1) Let ω1, ω2, . . . , ωn be paths from x to y in the quiver of C , and let λ1, λ2, . . . ,

λn ∈ k. Then
∑n

i=1 λi (ωi , 0)= 0 in C̃ if and only if
∑n

i=1 λiωi = 0 in C.

(2) Let α : c −→ b and β : b −→ a be two arrows in the quiver of C such

that αβ is a relation. Let (0, e1) be the element representing the correspond-

ing new arrow, where e1 is as in Lemma 3.11. Then (0, e1)(α, 0) = 0 and

(β, 0)(0, e1)= 0.

(3) The ideal IC̃ is generated by the relations of C and those described in (2).

Proof. (1) This is shown in [Assem et al. 2008b].

(2) Viewing α as an element of End DC , or more precisely as a morphism from

Ib to Ic, we can compute e1β:

e1β : 0 // Pa
// M(βσ) // M(ηα)⊕M(ϕγ) // Ib

// 0,

where Ib = M(ηαγ−1ϕ−1). This sequence represents the zero element, because of

Lemma 3.8 and exactness of the sequence

0 // M(βσ) // Sb⊕M(ϕγβσ)⊕M(ηα) // M(ϕγ)⊕M(ηα) // 0.

Therefore (0, e1)(α, 0)= 0.

In a dual way, we prove that (β, 0)(0, e1)= 0.

(3) It is sufficient to show that new arrows in the quiver of C̃ are not involved in

other relations than those described in (2).

First suppose that w is a monomial relation involving new arrows and rela-

tions other than those described in (2). Then it must contain exactly one new

arrow ξ , corresponding to a relation αβ; otherwise the quiver of C would contain

a double-zero. Write w = uξv , where u and v are nonzero paths consisting of

arrows of C . Let e1 be the sequence as in Lemma 3.11 corresponding to ξ . Then

(u, 0)(0, e1)(v, 0)= (0, ue1v), where ue1v is the sequence

0 // M(u−1u′) // M(βu−1u′) // M(v ′v−1α) // M(v ′v−1) // 0,

where u′ and v ′ are paths in the quiver of C . The figure at the top of the next page

illustrates the local situation, where αβ = γ′δ′ = 0; the last arrow of u and the first
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of t form a relation, as do the last of v and v ′ and the first of w′ and w, respectively.

u ///o/o/o

u′

�� �O
�O
�O

t

OO
O�
O�
O� ξ //

α

��

v ///o/o/o w ///o/o/o

w′

OO
O�
O�
O�

β
__

v ′

OO
O�
O�
O� γ′ // z′ ///o/o/o

δ′

�� t ′ ///o/o/o

This yields the following commutative diagram, where the first line is a projec-

tive resolution of M(v ′v−1):

0 // P(2)
p2 //

( f,0)

��

P(1)
p1 //

(0,g,0)

��

P(0)
p0 //

(h,ℓ)

��

M(v ′v−1) // 0

0 // M(u−1u′) // M(βu−1u′) // M(v ′v−1α) // M(v ′v−1) // 0,

where P(2)= M(t)⊕M(t ′), P(1)= M(w′w)⊕M(z−1γ−1βt)⊕M(z′−1δ′t ′) and

P(0)=M(z−1γ−1α−1vw)⊕M(z′−1γ′−1v ′w′), and all nonzero morphisms are the

natural morphisms between string modules. It is then seen that ( f, 0) cannot factor

through p2, and thus the lower exact sequence is nonzero. Hence there are no other

monomial relations than those in (2).

Now suppose we have a minimal relation of the form
∑m

i=1 λiwi , where each

λi is a nonzero scalar, each wi is a path in the quiver of C̃ , and m ≥ 2. At least

one of the wi must pass through a new arrow, and since C contains no double

zero, this implies that each wi must pass through exactly one new arrow, say ξi ,

corresponding to a relation αiβi . Write wi = uiξivi , where ui and vi are paths of

the quiver of C .

Since the quiver of C contains at most one cycle, we must have m=2. Since k is

a field, we may suppose that λ1 = 1. Letting e1 and e2 be the sequences associated

to ξ1 and ξ2, respectively, we get that u1e1v1 and λ2u2e2v2 are both sequences of

the form above. Their sum is the sequence

0 // M(u−1
2 u1) // M(β2u−1

2 u1β
−1
1 )

// M(α−1
2 v2v

−1
1 α1) // M(v1v

−1
2 ) // 0.

By an argument similar to the one given in the proof of Lemma 3.11(c), this

element is not zero; a contradiction. Hence no binomial relations exist in C̃ . �

The relations described in the preceding lemma make C̃ a gentle algebra.

Lemma 3.14. If C̃ is cluster-tilted of type A or Ã, then C̃ is gentle.
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Proof. The relations of C̃ are known (see Lemma 3.13). Moreover, C is gentle.

Suppose that there are r new arrows. Let us add the new arrows and the cor-

responding new relations one by one, thus obtaining a sequence C = C0,C1, . . . ,

Cr = C̃ of algebras. We show that Ci is gentle for all i in {0, 1, 2, . . . , r}.

Since C is gentle, then so is C0. Suppose that Ci is gentle, where i is in

{0, 1, 2, . . . , r − 1}. To get Ci+1, we add one new arrow, say γ from x to y. This

arrow comes from a relation αβ from y to x in C . We must add the relations βγ

and γα to obtain Ci+1.

Since Ci is gentle, there were already at most two arrows starting from x in Ci .

Suppose that there were two, say η1 and η2. Since Ci is gentle, then β is involved

in a relation with one of the two, say η1. The arrow η1 cannot be in C , otherwise

there would be a double zero involving αβ and βη1. So the arrow η1 comes from

a relation σβ in C . Since C is gentle, we must have that σ = α, so that η1 = γ,

which is absurd because γ is not in Ci .

Therefore, in Ci , there is at most one outgoing arrow from x , and this arrow

is not involved in a relation with β. This shows that in Ci+1, there are at most

two arrows starting from x , say η and γ, and that βη is not a relation while βγ

is. Moreover, there is at most one more arrow ending in x , say δ, and since Ci is

gentle, we have that δη is a relation, while δγ is not. So the relations at x are those

found in a gentle algebra.

Using a similar argument for the vertex y, we get that Ci+1 is a gentle algebra.

By induction, C̃ is a gentle algebra. �

Example. Lemma 3.13 allows us to compute the relation-extension of any gentle

tilted algebra. As an illustration, consider the two algebras given in the example on

page 216. The relation-extension of each is given in the following diagram:

•

α
��

•
ιoo •

φ // •
β

��
•

β

CC

γ
��

• •

α

CC

γ
��

•
σ

ρks

•

δ

CC

•
ψ

// •

δ

CC

αβ = ια = βι= 0 αβ = γδ = ρα = 0

βρ = σγ = δσ = 0

Proof of the main theorem. Now the proof of Theorem 3.3, developed in separate

parts over the last several pages, can be stated properly.
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Proof of Theorem 3.3. That (1) implies (2) is shown in Lemma 3.4, that (2) implies

(4) in Lemma 3.6, that (4) implies (3) in Lemma 3.14, and that (3) implies (1) in

Lemma 3.5. �

4. Geometry of surfaces and A(Ŵ)

We study in this section more connections between geometric properties of the

marked surface (S,M) and properties of the algebra A(Ŵ) given by a triangulation

of (S,M).

Cluster-tilted algebras arising from surfaces. We first address the question of

which of the algebras A(Ŵ) are cluster-tilted. Recall that all algebras A(Ŵ) share the

properties (2) and (3) from Theorem 2.7 with every cluster-tilted algebra. More-

over, it is shown in [Caldero et al. 2006] and [Buan and Vatne 2008] that the

cluster-tilted algebras of type A are algebras A(Ŵ) arising from a triangulation of

an unpunctured polygon. In this section, we show the following generalization:

Theorem 4.1. Let A(Ŵ) be the algebra associated to the triangulation Ŵ of an

unpunctured marked surface (S,M). Then the following statements are equivalent:

(1) The algebra A(Ŵ) is cluster-tilted.

(2) The algebra A(Ŵ) is cluster-tilted of type A or Ã.

(3) S is a disc or an annulus.

Moreover, all cluster-tilted algebras of type A (or Ã) are of the form A(Ŵ) for some

triangulation Ŵ of a disc S (or an annulus S, respectively).

Proof. It is clear that (2) implies (1). Let us show the converse: Suppose that the

algebra A(Ŵ) is cluster-tilted. Thus there is a sequence of mutations transforming

the quiver with potential defining A(Ŵ) into some quiver Q with zero potential.

This sequence of mutations corresponds to a sequence of flips, transforming the

triangulation Ŵ of (S,M) into a triangulation T with Q(T )= Q and zero potential.

Hence A(T ) = k Q is hereditary. Since we know from Theorem 2.7 that A(T ) is

gentle, this leaves only the possibilities that Q is of type A or Ã. Therefore the

algebra A(Ŵ) is cluster-tilted of type A or Ã.

We prove now the equivalence of (2) and (3). Since all triangulations on (S,M)

are flip-equivalent [Hatcher 1991] and flips of the triangulation correspond to mu-

tations of the corresponding quiver with potential [Labardini-Fragoso 2009], it is

sufficient to consider one particular triangulation. In the case where S is a disc, we

choose the triangulation to be in the form of a fan, giving rise to a linear oriented

quiver of type A. In the case where S is an annulus, we choose the triangulation

given by two fans in opposite direction as shown in the figure at the top of the next

page (where the left and right vertical edge should be identified).
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The corresponding quiver is of type Ã with zero potential; thus (3) implies (2).

Conversely, we know from Proposition 2.8 that the quivers Q(Ŵ) uniquely deter-

mine the topology of the unpunctured marked surface (S,M). Therefore S is a

disc or an annulus, respectively, and since all triangulations are flip-equivalent, it

is clear that all cluster-tilted algebras of the corresponding type occur. �

Curves in (S, M) and string modules. In this section we are comparing strings in

A(Ŵ) to curves in (S,M). By a curve in (S,M) we mean a curve γ in S whose

endpoints lie in M and where all points except the endpoints lie in the interior of S.

We usually consider curves up to homotopy. For instance, for two distinct curves γ

and δ in (S,M), the intersection number IŴ(γ, δ) is defined as the minimal number

of transversal intersections of two representatives of the homotopy classes of γ and

δ. Denote the internal arcs of the triangulation Ŵ by {a1, . . . , an}. Then we define

the intersection vector IŴ(γ) of a curve γ as

IŴ(γ)= (IŴ(γ, a1) . . . , IŴ(γ, an)).

Proposition 4.2. Let Ŵ be a triangulation of (S,M), an unpunctured marked sur-

face. Then there exists a bijection {γ} 7→ w(γ) between the homotopy classes of

curves in (S,M) not homotopic to an arc in Ŵ and the strings of A(Ŵ). Under

this bijection, the intersection vector corresponds to the dimension vector of the

corresponding string module, that is,

IŴ(γ)= dim M(w(γ)).

Proof. Let w = x1
α1
←→ x2

α2
←→ · · ·

αs−1
←→ xs be a string in A(Ŵ). We define a

curve γ(w) in (S,M) as follows: The arcs x1 and x2 belong to the same triangle

T1 since they are joined by an arrow in A(Ŵ). We connect the midpoints of x1

and x2 by a curve γ1 in the interior of T1. Proceeding in the same way with the

remaining arcs x2, . . . , xs we obtain curves γ2, . . . , γs−1 connecting the midpoints

of the respective arcs. The internal arc x1 belongs to two triangles: the triangle

T1 which we considered above and another triangle T0. Let P ∈ M be the marked

point in T0 opposite to the arc x1. We now connect P with the midpoint of x1 by

a curve γ0 in the interior of T0, and proceed in the same way on the other end of

the string w, connecting the midpoint of xs with a marked point Q by some curve

γs . The curve γ(w) is then defined as the concatenation of the curves γ0, . . . , γs .
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By construction, the points of intersection of the curve γ(w) with arcs in Ŵ

are indexed by the vertices of the string w. The curve intersects the arcs of Ŵ

transversally, and since the string w is reduced, none of the γi is homotopic to a

piece of an arc in Ŵ. Thus the intersection numbers are minimal, and IŴ(γ(w))=

dim M(w). Since γ(w) has nontrivial intersection with arcs of Ŵ, it is clear that it

is not homotopic to an arc in the triangulation Ŵ.

Conversely, let γ : [0, 1]→ S be a curve in (S,M) which is not homotopic to an

arc in Ŵ. We assume that the curve γ is chosen (in its homotopy class) such that

it intersects the arcs a of Ŵ transversally (if at all) and such that the intersection

numbers IŴ(γ, a) are minimal. Orienting γ from P = γ(0) ∈ M to Q = γ(1) ∈ M ,

we denote by x1 the first internal arc of Ŵ that intersects γ, by x2 the second arc, and

so on. We thus obtain a sequence x1, . . . , xs of (not necessarily different) internal

arcs in Ŵ. Since the intersection numbers are minimal, we know that xi 6= xi+1.

Thus there are arrows, either αi : xi→ xi+1 or αi : xi+1→ xi in Q(Ŵ), and we obtain

a walk w(γ) = x1
α1
←→ x2

α1
←→ · · ·

αs−1
←→ xs in Q(Ŵ). The fact that γ intersects

the arcs of Ŵ transversally implies that the walk w(γ) is reduced and avoids the

zero-relations, and thus w(γ) is a string in A(Ŵ).

It follows from their construction that the two maps between strings and homo-

topy classes of curves defined above are mutually inverse. �

Remark. Recall that two string modules M(w) and M(v) are isomorphic precisely

when v =w or v =w−1. The inverse string w−1 corresponds to orienting the curve

in the opposite direction.

Proposition 4.3. Let Ŵ be a triangulation of (S,M), an unpunctured marked sur-

face. Then there exists a bijection between the homotopy classes of closed curves

in (S,M) and powers bn of bands b of A(Ŵ).

The proof is analogous to that of the previous proposition.

An example where A(Ŵ) is not cluster-tilted. We finally present in this section

an example of an algebra A(Ŵ) which is not cluster-tilted. Recall that an algebra

A is tame if for all d ∈ N there is a finite number nd of one-parameter families

of A-modules such that almost every d-dimensional A-module belongs to one of

these nd families. The algebra A is said to be domestic if there is a constant c such

that nd ≤ c for all d ∈ N. On the other hand, if the numbers nd grow faster than

any polynomial, then the tame algebra A is said to be of nonpolynomial growth.
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It is well-known that every string algebra A is tame, and that the one-parameter

families are given by the bands in A [Butler and Ringel 1987]. In particular, all the

algebras A(Ŵ) are tame, because they are gentle and thus string algebras. Moreover

the tame cluster-tilted algebras of the form A(Ŵ) studied here are all domestic;

in fact, they are of type A or Ã, and thus we may assume above that c = 0 or

c = 1. We construct in this section an example of an algebra A(Ŵ) which is of

nonpolynomial growth, and thus cannot be cluster-tilted. To obtain this example,

we consider a sphere S with three holes and choose one marked point in each

boundary component. We fix the following triangulation Ŵ of (S,M) :

Then the algebra A(Ŵ) is given by the following quiver with relations ǫiρi =

0, ρiσi = 0 and σiǫi = 0 for i = 1 and i = 2.

b1

��

σ1

  
a1

α

��

ρ1
>>

β
��

c1ǫ1

oo

γ

��

b2
σ2

~~
a2 ǫ2

// c2

ρ2
``

The string algebra A(Ŵ) admits the two bands

ξ = b2
σ2
−→ a2

α
←− a1

ρ1
−→ b1

β
−→ b2,

η = b2
ρ2
←− c2

γ
←− c1

σ1
←− b1

β
−→ b2.

Since ξ and η can be composed arbitrarily, the number of bands of a fixed length

l grows exponentially with l, so the algebra A(Ŵ) is of nonpolynomial growth.

We would like to point out that the notion of nonpolynomial growth of tame

algebras discussed here does not coincide with the notion of nonpolynomial growth

cluster algebras discussed in [Fomin et al. 2008]: There one counts the number of
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cluster variables, that is to say, of arcs in (S,M), instead of one-parameter families,

that is to say, closed curves in (S,M). In [Fomin et al. 2008] the example we are

considering in this section is classified as being of polynomial growth, meaning

that, even if the number of curves is growing exponentially, the number of arcs is

bounded for the sphere with three holes.
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[Roldán 1983] O. Roldán, Tilted algebras of types Ãn, B̃n, C̃n, B̃Cn , Ph.D. thesis, Carleton Univer-

sity, 1983.

[Schiffler 2008] R. Schiffler, “A geometric model for cluster categories of type Dn”, J. Algebraic

Combin. 27:1 (2008), 1–21. MR 2008k:16025 Zbl 1165.16008

[Schröer 1999] J. Schröer, “Modules without self-extensions over gentle algebras”, J. Algebra 216:1

(1999), 178–189. MR 2000d:16022 Zbl 0994.16013

[Schröer and Zimmermann 2003] J. Schröer and A. Zimmermann, “Stable endomorphism algebras

of modules over special biserial algebras”, Math. Z. 244:3 (2003), 515–530. MR 2004i:16024

Zbl 1036.16004
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