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The origination of new genes contributes to phenotypic evolution in humans. Two major challenges in the study of new

genes are the inference of gene ages and annotation of their protein-coding potential. To tackle these challenges, we created

GenTree, an integrated online database that compiles age inferences from three major methods together with functional

genomic data for new genes. Genome-wide comparison of the age inference methods revealed that the synteny-based pipe-

line (SBP) is most suited for recently duplicated genes, whereas the protein-family–based methods are useful for ancient

genes. For SBP-dated primate-specific protein-coding genes (PSGs), we performed manual evaluation based on published

PSG lists and showed that SBP generated a conservative data set of PSGs by masking less reliable syntenic regions. After

assessing the coding potential based on evolutionary constraint and peptide evidence from proteomic data, we curated a

list of 254 PSGs with different levels of protein evidence. This list also includes 41 candidate misannotated pseudogenes

that encode primate-specific short proteins. Coexpression analysis showed that PSGs are preferentially recruited into organs

with rapidly evolving pathways such as spermatogenesis, immune response, mother–fetus interaction, and brain develop-

ment. For brain development, primate-specific KRAB zinc-finger proteins (KZNFs) are specifically up-regulated in the mid-

fetal stage, which may have contributed to the evolution of this critical stage. Altogether, hundreds of PSGs are either

recruited to processes under strong selection pressure or to processes supporting an evolving novel organ.

[Supplemental material is available for this article.]

New genes have attracted the interest of evolutionary geneticists
for decades. They are novel genetic units that have originated in
the evolutionary period of interest (Long et al. 2003; Kaessmann
2010; Betrán 2015). Extensive studies have shown that various
mechanisms, including DNA- or RNA-mediated duplication and
de novo origination, lead to a high rate of protein-coding gene
gain in human evolution (Zhang et al. 2012; Zhang and Long
2014). Transcriptome profiling has revealed that new genes in

the human genome postdating the human and mouse split (i.e.,
primate-specific genes [PSGs]) are often expressed in the testis
(Vinckenbosch et al. 2006; Tay et al. 2009; Kaessmann 2010; Xie
et al. 2012) or brain (Tay et al. 2009; Zhang et al. 2011; Xie et al.
2012). Limited case studies have supported the functionality of
PSGs in these tissues. For example, glutamate dehydrogenase 2
(GLUD2) is a hominoid-specific RNA-mediated duplicate (func-
tional retrocopy or retrogene), which facilitates metabolism in
the brain and testis (Burki and Kaessmann 2004; Spanaki et al.
2010). Anecdotal evidence has also implicated PSGs in other bio-
logical processes (e.g., injury response) (Costantini et al. 2015;
Baird et al. 2016).
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The explosion of new techniques, such as organoids derived
from induced pluripotent stem cells (iPSCs) (Pääbo 2014;
Giandomenico and Lancaster 2017) and gene editing using
CRISPR-Cas9 (Hsu et al. 2014),makes itmore feasible to investigate
the functional roles of new genes in humans. However, progress in
understanding the contribution of new genes to primate- or hu-
man-specific traits has been hindered by the lack of a consensus
data set of PSGs. Actually, the estimated number of PSGs varies be-
tween five and 2000 (Demuth et al. 2006; Tay et al. 2009; Zhang
et al. 2011; Ezkurdia et al. 2014). Similarly, the number of hu-
man-specific genes (HSGs), that is, genes that are not even present
in the chimpanzee genome, ranges from 300 to 700 (Demuth et al.
2006; Zhang et al. 2010b).

Two key challenges in creating a consensus data set are the
disagreement in age estimationbetweendifferentmethods and an-
notation instability. First, the main gene-dating methods, that is,
the synteny-based gene-level dating strategy (Knowles and
McLysaght 2009; Tay et al. 2009; Zhang et al. 2010b) and the
homologous gene family-level dating
strategy (Demuth et al. 2006; Toll-Riera
et al. 2009; Ezkurdia et al. 2014), often as-
sign different ages to the same gene. So
far, no genome-wide comparison has
been performed to assess their relative
performance to allow a rational choice.
Second, the annotation for new genes is
unstable, often shifting between pro-
tein-coding and noncoding models
across releases. For example, 660 pri-
mate-specific coding models annotated
in Ensembl v51were reannotated as non-
coding models, for example, pseudo-
genes, in a later release (v65) (Hubbard
et al. 2007; Zhang et al. 2010b, 2012). A
major reason is the uncertainty of the
protein-coding potential for these loci
(Zhang et al. 2012). Two approaches
have been proposed to assess the coding
potential of new genes, namely, the
detection of protein-level evolutionary
constraint (Betrán et al. 2002; Mudge
and Harrow 2016; Xu and Zhang 2016)
and peptide search in proteomic data
sets (Kim et al. 2014; Wright et al. 2016).
Nevertheless, the performance of these
two strategies has not been studied on a
genome-wide level.

To tackle these challenges, we devel-
oped GenTree (http://gentree.ioz.ac.cn/).
This resource features age inferences
from major genome-wide dating meth-
ods or small-scale manual curation.
GenTree also presents evolutionary and
proteomic evidence for assessing the pro-
tein-coding potential. Based on such a re-
source, we performed extensive meta-
analysis: (1) We compared the strengths
and weaknesses between various dating
methods; (2) we curated a data set of
254 PSGs with coding potential; and (3)
we finally examined the overall function-
al properties of PSGs.

Results

GenTree is an integrated database for new genes in the human

genome

As a new-gene–focused database, GenTree is designed to enable us-
ers to evaluate when and how a gene arises and what type of func-
tion it may have (Fig. 1).

On the back end, we first applied our previously developed
synteny-based dating pipeline (SBP) (Zhang et al. 2010a,b) to
date all human protein-coding genes in Ensembl (Flicek et al.
2012) v73 (Supplemental Fig. S1; Methods). To compare SBP esti-
mates with those from protein-family–based methods, we incor-
porated into GenTree two widely used age data sets from the
phylostratigraphy (Domazet-Lošo and Tautz 2010) and
ProteinHistorian (Capra et al. 2012) databases. Origination mech-
anisms were inferred for genes that postdated the vertebrate split.
To assess the potential functions of new genes, we integrated
publicly available functional genomics data and population

Figure 1. The overall architecture of GenTree. It integrates three types of data: (1) gene annotation
data from Ensembl; (2) gene age inference and originationmechanism inference data; and (3) gene func-
tion information based on either functional genomic data including Human Protein Atlas (HPA),
Genotype-Tissue Expression (GTEx), Human Proteome Map (HPM) and BrainSpan (http://www
.brainspan.org) data, quantitative genetic data (genome-wide association data fromGWASdb2), and se-
lection data (positive selection tracks from PopHuman).
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genomic data while accounting for the uncertainty due to the
similarity between paralogs if possible (Methods).

On the front end,GenTree implements a user-friendlyweb in-
terface to provide both individual gene information and summary

statistics of gene families or functional groups. To showcase the
functionality of GenTree for individual genes, we use the afore-
mentioned GLUD2 as an example. As shown in Figure 2A, a
mouse-over will show the SBP dating result, which is in agreement
with previous studies (Fig. 2A, branch 10; Supplemental Fig. S1;
Burki and Kaessmann 2004). GenTree also shows evidence for
GLUD2originating via RNA-based duplication: It has a single exon,
whereas the parental gene GLUD1 has multiple exons (Fig. 2B).
Lastly, GenTree presents functional genomic data (Human
Protein Atlas [HPA]), showing that GLUD2 is predominantly
expressed in the testis (Fig. 2C), consistent with both the known
testis bias of new genes (Vinckenbosch et al. 2006; Kaessmann
2010) and the previous literature for GLUD2 (Spanaki et al. 2010).
GenTree allows the user to compare the expression profile of the
new gene to the parental gene by showing that the parental copy
for GLUD2, that is, GLUD1, is more strongly and more broadly ex-
pressed (Fig. 2C).Notably, after removing testis data, theexpression
levels of GLUD1 and GLUD2 are in fact positively correlated (Fig.
2D). This pattern has been discovered for retrogene and parental
gene pairs in rice and zebrafish (Sakai et al. 2011; Zhong et al.
2015). The Genotype-Tissue Expression (GTEx) data (The GTEx
Consortium2015) show similar correlation (Supplemental Fig. S2).

Besides single gene annotation, GenTree provides summary
statistics for genes with the same Gene Ontology (GO) term (Ash-
burner et al. 2000) or InterPro family annotation (Hunter et al.
2009). In both cases, we calculated the gene age distribution for
each GO or InterPro family category, divided by chromosomes.
For example, the Krueppel-associated box C2H2 zinc-finger pro-
tein family (KZNF) was known to have expanded especially on
Chromosome 19 (Chr 19) of humans (Nowick et al. 2010, 2011).
Consistent with this, the chromosomal browser view (Supplemen-
tal Fig. S3) revealed that KZNFs are enriched for PSGs (82 or 11%)
compared with the genome-wide background (354 or 1.8%, Fish-
er’s exact test [FET] P=2.2 ×10−16), with Chr 19 harboring 55
(67%) entries.

SBP performs dating at the individual gene level based on syntenic

alignment, whereas phylostratigraphy and ProteinHistorian act at

the gene family level based on protein alignment

To be comprehensive, GenTree provides users with multiple
gene dating data, namely, SBP and protein-family–based ages

A

B

C

D

Figure 2. Representative sections in the gene page of GenTree database
showing the evolutionary and functional features of GLUD2. (A) Branch
view of GLUD2. When the mouse is placed over the branch on which
GLUD2 originated, the top left tooltip shows the inferred age, that is,
branch 10. For the external leaf node, the black line indicates the syntenic
alignment, and the gray line indicates the nonsyntenic alignment. When
the mouse is placed over an external node, that is, gibbon, the top right
tooltip shows the alignment details in this species. Photo courtesy of Jim
Zuckerman, Gibbon Conservation Center. (B) Paralogous alignment be-
tween GLUD2 and its parental gene, GLUD1. The top row shows the
gene structure of GLUD2 with the open reading frame (ORF) indicated
in a blue block and the untranslated region (UTR) indicated in an unfilled
block. The gene structure of GLUD1 on the bottom is likewise indicated.
The diagram in the center shows the protein alignment at the exon level,
which is triggered by mouse-over. Mismatches are indicated in red.
Users can zoom into a specific region of interest. (C) HPA transcriptome
profile across tissues for the two paralogs. For each tissue, themean expres-
sion across replicates is shown as the log2-transformed FPKM value.
(D) Scatter plot view of expression intensity. Users can disable samples
from some tissue (e.g., testis) and zoom into an area filled with data points
of interest. Accordingly, the Pearson’s correlation and P-value across the re-
maining samples (e.g., without testis) are recalculated automatically.
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(phylostratigraphy and ProteinHistorian) (Fig. 1). We performed
genome-wide comparisons between them to determine their suit-
ability for dating PSGs.

Overall, SBP was consistent with phylostratigraphy and Pro-
teinHistorian for 60% of all genes (Fig. 3A). However, the consis-
tency for young genes is much lower than that for older genes.
Specifically, for PSGs dated by SBP, the majority (>90%) were as-
signed to older branches by phylostratigraphy, whichmainly com-
prise DNA- and RNA-mediated duplicates (Fig. 3B). In comparison,
orphans or candidate de novo genes show a higher consistently
(75% vs. 6%, FET P=9.8 ×10−4). Such a pattern is expected because
phylostratigraphy assigns the age of the oldest member to the
whole family (Domazet-Lošo et al. 2007). ProteinHistorian is sim-
ilar as phylostratigraphy (Fig. 3C) except in the case of a patchy
phylogenetic distribution, that is, candidate orthologs are lost in
some ingroup lineages. In those situations, ProteinHistorian may
infer multiple recent gains rather than one ancient origination
(Capra et al. 2013). This should contribute to our observation
that ProteinHistorian sometimes infers a younger age than SBP
does (Fig. 3A,C).

Different from phylostratigraphy and ProteinHistorian, SBP
relies on syntenic relationshipsbasedonwhole-genomealignment
and distinguishes different duplicates. Although this makes SBP
suitable for dating recently originated genes, the same feature lim-
its its ability to date evolutionarily old genes because only 70% of
all genes show conserved synteny between humans and zebrafish
(Barbazuk et al. 2000). In practice, SBP collapses all genes predating
human–zebrafish split into a single age group. In contrast, family-
level dating is applicable over a broader time range due to both its
scalability and low decay rate of proteins (Albà and Castresana
2007; McLysaght and Hurst 2016).

Besides gene or family-level dating, SBP and protein-family–
based methods differ with respect to their dependence on annota-
tion quality for reference species. On one hand, SBP relies only on
genomic alignment, hence it is insensitive to annotation quality,
which is crucial for protein-family–based methods. On the other
hand, SBP only tracks the presence or absence of syntenic DNA
fragments in the reference species with respect to the gene in the
focal species and not whether those syntenic fragments are tran-
scribed and translated into a protein. Thus, SBP can overestimate
age when a reference species harbors the orthologous DNA but
does not express the protein. Taking the myeloma overexpressed
(MYEOV) gene as an example, SBP showed that the DNA sequence
emerged in a common ancestor of humans and opossums
(Supplemental Fig. S4A). However, MYEOV has been reported to
be a primate-specific de novo protein-coding gene (Chen et al.
2015), which is also supported by phylostratigraphy and
ProteinHistorian (Supplemental Fig. S4B,C).

By presenting both the gene- and family-level dating results,
GenTree allows users to have a comprehensive view and choose
the most appropriate age estimate based on the specific context.
Taking the aforementioned GLUD2 as an example, both SBP and
the previous synteny-based report (Burki and Kaessmann 2004)
showed that GLUD2 is a hominoid-specific retrogene, whereas
phylostratigraphy and ProteinHistorian dated this gene back to
the common ancestor of cellular life (Supplemental Fig. S5). The
latter assignment is consistent with the gene family, including
GLUD2, being evolutionarily old. Indeed, SBP dates the other
member of the family, that is, GLUD1, as predating the vertebrate
split (Supplemental Fig. S6). Together, the results of the three
methods for this family suggest that GLUD1 is an old gene shared
by cellular organisms, whereas GLUD2 is a PSG.

SBP detects and controls for

less reliable synteny

The quality of synteny constructed by
whole-genome alignment (Kent et al.
2003) determines the accuracy of dating
result of SBP. In the initial release of
SBP, we introduced two functionalities
to detect and mask less reliable synteny
(Zhang et al. 2010a,b). We first excluded
genes that have>70%of exons consisting
of transposable elements (TEs). TEs are
known to form nested clusters in mam-
mals (Abrusán et al. 2008) and thus cause
difficulties in between-species align-
ment. Even if a TE does not form a clust-
er, the identification of its bona fide
ortholog is oftennot straightforward. Fol-
lowing a similar reason, we excluded
Y-linked genes because Chromosome Y
is full of TEs and remains poorly assem-
bled for most reference species. Overall,
the filter of TEs led to the exclusion of
177 (0.9%) genes.

Second, we dealt with recently du-
plicated genes, which tend to have low-
quality synteny because of the difficulty
in assembly or alignment. We cannot
simply mask all recent duplicates, how-
ever, because they account for a large

A B

C

Figure 3. Comparison of gene age estimates between SBP, phylostratigraphy, and ProteinHistorian.
Panel A shows the statistics for all genes; panels B and C focus on SBP-dated PSGs and group them based
on their origination mechanism.
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number of PSGs (Bailey and Eichler 2006; Kemkemer et al. 2009).
Instead, we identified and masked 661 (3%) genes that show
patchy phylogenetic distribution of orthologs, which often sug-
gest problematic synteny inference (Methods). For example, a
well-known human-specific duplicated fusion gene, CHRFAM7A

(Costantini et al. 2015), showed reciprocal synteny in orangutan
but not in chimpanzee and gibbon (Supplemental Fig. S7A). Given
such a patchy distribution of candidate orthologs, we masked this
gene from dating. Actually, the aforementioned synteny was de-
tected based on the old orangutan assembly (Supplemental Fig.
S7A), which disappeared on the new orangutan assembly (Supple-
mental Fig. S7B). Such a scenario is likely due to a sequencing gap
in the old assembly (Supplemental Fig. S7C), and thus it makes
sense to mask this gene. Furthermore, primate-specific synteny
breaks are known to be enriched with recent duplicates (Kem-
kemer et al. 2009). For 82 coding genes located in synteny breaks,
12 (15%, Supplemental Table S1, Methods) were masked and 27
(33%) were dated as PSGs, both of which are significantly higher
than the background proportion (binomial test P< 1×10−4).

In this work, we added a third filter to control for spurious
synteny caused by convergent dispersed duplication. As shown
in the case of GLUD2, our original implementation of SBP (Zhang
et al. 2010b) dated its origination to just before the split of human
and rhesus macaque. However, the previous work (Burki and
Kaessmann2004) showed thatGLUD2predated the split of human
and gibbon (Fig. 2A). We traced this discrepancy to errors in the
synteny inference in which the UCSC synteny view and manual
sequence alignments showed that an independent retroposition
occurred in the evolution of rhesus monkey, which confounded
the construction of synteny (Fig. 4; Supplemental Fig. S8). To han-
dle such scenarios, we took advantage ofUCSC annotations of syn-
teny tracks and excluded nonsyntenic maps, which affected 182
(1%) genes (Methods).

Gene dating by SBP is robust across Ensembl releases

and conservative for PSGs

We previously showed the general consistency of SBP with a few
small-scale synteny-based data sets of gene ages (Zhang et al.
2010a,b). Given the availability of multiple SBP-based genome-
wide age data releases and recently generated data sets of PSGs
and HSGs, we herein perform a more thorough comparison be-
tween this work and published data sets.

First, we compared the current estimates with previous SBP-
based estimates (Zhang et al. 2010b, 2012). It is worth noting
that the SBP method used in the present work is not different
from what was used previously, except the newly added filter for
nonsyntenic maps. We thus focused on how different Ensembl
versions affect age estimates of SBP. As shown in Figure 5A, the ef-
fect of Ensembl releases on the age estimate is small: Between
Ensembl v51 and v73, 18% of the genes were assigned different

ages. The difference between Ensembl v65 and v73 is even smaller,
affecting just 5% of the genes. The relatively large difference be-
tween v51 and v73 is attributable to the following factors: (1) dif-
ferences in the human genome assemblies (NCBI build 36 vs.
GRCh37); (2) changes in the genome alignments owing to updates
in both the human genome and the reference genome assemblies;
and (3) gene structure changes (e.g., newly annotated exons) ow-
ing to updates in human gene annotation. In contrast, v65- and
v73-based age data share the same human genome assembly,
and the differences of reference species assemblies or gene annota-
tions are also minor.

Next, we compared SBP-based estimates with three recently
published lists of HSGs or PSGs, two of which are based on synteny
(Dennis et al. 2017; Florio et al. 2018) and one based on phyloge-
netic tree reconstruction (Jacobs et al. 2014).We found that, on av-
erage, our results agree with the published lists in 50% of the cases
(Fig. 5B; Supplemental Table S2). Among those that do not agree,
25% (e.g., the aforementioned CHRFAM7A) were attributable to
genes being masked in our dating pipeline because of unreliable
synteny.

For the remaining 25% of the cases, our estimates are older
than the published estimates. The first reason for this is because
we separately evaluated each exon in a gene, and when the results
for all exons do not agree, we used the age of the oldest exon as the
age estimate of the entire gene. Our rationale is that the oldest
exon, being the most conserved, is likely also the most important
for the gene’s function. In cases in which exons have different age
due to exon shuffling or partial duplication, the age of genewill be
somewhat ambiguous (Capra et al. 2013). For example, the
ankyrin repeat domain 20 family member A2 (ANKRD20A2) is
classified as human-specific by Florio et al. (2018). However, the
UCSC syntenic view showed that ANKRD20A2 is human-specific
in its middle exons but orthologous with chimpanzee in terminal
exons (Supplemental Fig. S9). This is why SBP dated this gene in
the common ancestor of human and chimpanzee. A second
reason could be intrinsic methodological difference. Specifically,
Jacobs et al. (2014) focused on 14 primate-specific KZNFs identi-
fied based on reconstructed gene trees. SBP assigned an older age
for six of the 14 cases. Because KZNFs are prone to gene conversion
because of their tandem arrangement (Nowick et al. 2013), distor-
tion of gene trees may occur. Therefore, SBP estimates could be
more reliable for these cases.

In summary, we conclude that SBP is suitable for dating new
genes, with its pros and cons listed below. On the up side, SBP as a
computational pipeline is applicable to the genome-wide dating. It
is robust to genome releases and is insensitive to the quality of an-
notation in the reference species. On the down side, SBPonly looks
for syntenic DNA fragments without assessing their transcription
and translation potential, resulting in overestimates for de novo
proteins. It also masks genes that have low-quality syntenic rela-
tionships with reference species, and this group is known to be en-
riched with young duplicates.

Given its strength and limitations, our final list of 805
PSGs consist of 777 entries dated by SBP plus 10 entries reported
in the literatures but were excluded in our pipeline (e.g.,
CHRFAM7A, Supplemental Table S3) and 18 published primate-
specific de novo genes (Chen et al. 2015; Ruiz-Orera et al. 2015;
McLysaght and Hurst 2016). For the 18 de novo genes, eight
are supported by phylostratigraphy and ProteinHistorian,
whereas the remaining 10 are not included in their dating results,
possibly due to differences in the Ensembl versions (Supplemental
Table S3).

Figure 4. Two independent retropositions of GLUD1 in primate
evolution.
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At least a portion of PSGs encode proteins, as supported

by evolutionary constraint or peptide mapping

A second challenge in the study of PSGs is the instability of
their annotation, as shown by changes from coding genes to
pseudogenes between Ensembl releases (Zhang et al. 2012).
We reasoned that PSGs with protein evidence are more likely
to play an important role than those without. Therefore, we sys-
tematically evaluated the coding potential of PSGs by combin-
ing two approaches. The first took evolutionary information,
that is, signatures of selective constraints for coding sequences.
The second method searched peptides derived from the Human
Proteome Map (HPM) covering 30 tissues or cell types (Kim et al.
2014).

Our evolutionary approach is based
on the assumption that protein-coding
genes generally show lower rates of
nonsynonymous substitutions than syn-
onymous ones (Ka/Ks<1), with the
exception of genes under positive selec-
tion. In total, we implemented four relat-
ed tests. First, we used the conventional
Ka/Ks test based on two orthologous se-
quences (Yang 2007). To have sufficient
power (enough substitutions between
the orthologs), this test requires the pres-
ence of a relatively distant ortholog. We
thus applied this test to 94 PSGs predat-
ing the human–monkey split (Xu and
Zhang2016;Methods). Among these cas-
es, we found 51 (54%) cases with a Ka/Ks

value significantly smaller than one (q<
0.05, Table 1; Supplemental Table S4).

For duplicated PSGs that emerged
after the human–rhesus split (branches
10–13 in Supplemental Fig. S1, e.g.,
GLUD2), we applied two modified ver-
sions of the Ka/Ks test. First, we compared
the child copy with the parental copy in-
stead of with the ortholog in a reference
species. Under the null hypothesis in

which the parental copy is under constraint (Ka/Ks<1) and the
child copy is nonfunctional (Ka/Ks=1), we expect the Ka/Ks ratio
between the child and parental copies to be less than one but
not significantly lower than 0.5 (Betrán et al. 2002). A paralogous
Ka/Ks ratio significantly lower than 0.5 is therefore taken as evi-
dence for constraints on both copies. We applied this method to
124 pairs (Methods) and found five (4%) to be significant at this
conservative threshold (Table 1; Supplemental Table S5). Second,
we performed a branch-level test that included orthologous genes
of parental genes in outgroup species (Methods). Because this test
can examine the selection pressure specifically on the child gene
branch, it is expected to have a higher power compared to the
paralogous test. Consistently, out of 74 cases, 14 are significant
(14/74 vs. 5/124, FET P=0.001, Supplemental Table S6).

Table 1. Statistics of evolutionary tests and proteogenomics mapping

Method Gene model Branch Total count Detected genes (q<0.05)

Ka/Ks<1
Orthologous Ka/Ks test Coding 0–7 13,852 12,159 (98%)

8–9 94 51 (54%)
Pseudogene 8–9 3144 1 (0.03%)

Ka/Ks<0.5
Paralogous Ka/Ks test Coding 0–9 628 410 (65%)

10–13 124 5 (4%)
Ka/Ks<1

Branch test Coding 8–9 64 22 (34%)
10–13 74 14 (19%)

CountN/Count(N+S)<0.7
Polymorphism-based test Coding 0–9 18,948 4183 (22%)

10–13 524 4 (0.8%)
With peptide

Proteogenomics Coding 0–7 18,669 9575 (51%)
8–13 803 46 (5.7%)

Pseudogene 8–13 9928 40 (0.4%)

(CountN) Number of nonsynonymous polymorphisms.
(Count(N+S)) Total number of nonsynonymous and synonymous polymorphisms.

A B

Figure 5. Evaluation of SBP-dated ages. (A) Bar plot showing percentage of genes with consistent,
older, or younger ages in earlier SBP dating based on Ensembl v51 and v65 compared to the current
work based on Ensembl v73. Only coding gene models maintained across different Ensembl releases
are used. (B) Comparison between the current SBP release (Ensembl v73) and three published human-
specific gene (HSG) or primate-specific gene (PSG) lists.
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Finally, we applied the polymorphism-based test for PSGs
postdating the human and rhesus macaque split. This method is
conceptually similar to the orthologous Ka/Ks test but uses poly-
morphism instead of divergence (Moyers and Zhang 2016). For a
coding region under neutrality, the ratio of nonsynonymous poly-
morphisms and all polymorphisms will be equal to that from the
mutational input, which is approximately 0.7. A statistical paucity
of nonsynonymous polymorphisms compared with that expected
therefore indicates a protein-level constraint. We applied this test
to 524 PSGs with at least one SNP available in the 1000 Genomes
human variation data (The 1000 Genomes Project Consortium
2015) and found that only four of the 524 (0.8%) cases exhibited
a significantly lower level of nonsynonymous polymorphisms
(Table 1; Supplemental Table S7). This low fraction is unsurprising
given that the polymorphism-based test is known to have low
power to detect the signals of selection, because deleterious muta-
tions can segregate at low frequencies before being removed by se-
lection (Kryazhimskiy and Plotkin 2008).

In total, the four tests identified 93 (12%) PSGs under nega-
tive selection. In contrast, the tests applied to the old genes always
yield much higher percentages (Table 1). This suggests that old
genes in general experience stronger selective constraints because
of their higher expression levels (Zhang et al. 2012; Zhang and
Yang 2015).

Next, we searched the proteomic database for peptide
evidence of the candidate PSGs. We processed the raw mass spec-
trometry data from all 30 HPM samples (Kim et al. 2014) by distin-
guishing child and parental copies (Methods). Among the PSGs, 46
(5.7%) had matching peptides. In contrast, 51% of the old genes
(non-PSGs) had peptide evidence (Table 1; Supplemental Table
S8). Among the expressed PSGs, ∼20% are predominantly ex-
pressed in the testis (Supplemental Fig. S10), which is consistent
with the testis bias observed at the transcriptional level for new
genes (Vinckenbosch et al. 2006; Kaessmann 2010).

Combining the evolutionary tests and proteomic evidence,
we identified a total of 123of 805 (15%) codingPSGs thatwere sup-
ported by at least onemethod (Supplemental Table S9). Among 46
PSGs with peptide evidence, 16 (35%) were also supported by evo-
lutionary analyses (Supplemental Fig. S11). Suchmoderate overlap
could arise from method-specific false negatives or false positives.
For example, the HPM proteomics data set recovered only half of
the non-PSGs, likely due to the limited tissues that were sampled.
A search of the 805 PSGs in the UniProt database (The UniProt
Consortium 2015) revealed that 66 out of the 123 (54%) have
been experimentally shown to encode proteins (Supplemental
Fig. S11). In contrast, only 90 (13%) of the remaining 682 PSGs
were experimentally supported based on UniProt. This suggests
that the evolutionary and proteogenomic analyses we conducted
are capable of identifying bona fide protein-coding genes.

After including the 90 PSGs with experimental support
from UniProt, we obtained a nonredundant data set of 213 (28%,
123+90) PSGs that are protein coding. This represents the best an-
notation we can achieve at this time. In comparison, 16,252 of the
18,669 (87%) non-PSGs are supported by at least one type of
evidence.

Forty-one primate-specific pseudogenes may encode proteins,

and thus the human genome likely encodes 254 PSGs with coding

evidence

Our initial list of 805 PSGs consists of Ensembl-annotated pro-
tein-coding genes and experimentally characterized PSGs report-

ed in the literature (Supplemental Table S3). Given the difficulty
of differentiating protein-coding genes from pseudogenes (Zhang
et al. 2012; Mudge and Harrow 2016), we asked whether
some primate-specific pseudogenes (PSPGs) may in fact encode
proteins. To address this question, we performed computa-
tional analyses for 9928 SBP-dated PSPGs (Methods) as we did
for PSGs.

Based on the open reading frames (ORFs) predicted according
to the coding paralogs, we applied the orthologousKa/Ks test to the
3144 PSPGs that predated human and rhesus monkey split, which
shows relatively higher sensitivity (Table 1, Methods). However,
consistent with PSPGs being annotated as pseudogenes in
Ensembl, we identified only one entry under selective constraints
(Table 1; Supplemental Table S10). Next, we queried the ORFs of
the PSPGs against the HPM data and detected 40 translated entries
(Table 1; Supplemental Table S11). For the nonredundant data set
of 41 PSPGs, the protein-coding potential of 38 cases is further sup-
ported by ribosome-profiling data (Supplemental Table S12),
which captures actively translated mRNAs collected by the
GWIPS-viz database (Michel et al. 2015).

The criteria for annotating a pseudogene is the presence of
premature termination codons (PTCs) or frame-disrupting indels
relative to their coding homologs. The truncated transcript could
be targeted by nonsense-mediated mRNA decay, and thus no pro-
tein ismade (Yang et al. 2015). This, however, is not necessarily the
case, and a short protein can be expressed and be functional (Xu
and Zhang 2016). Indeed, for 37 of the 41 PSPGs identified above
(Supplemental Table S12), proteogenomics or selective constraints
suggest a short ORF (e.g., Supplemental Fig. S12), which is consis-
tent with the presence of PTCs or indels. For the remaining four
genes, we unexpectedly found that the proteomic evidence sup-
ports two tandemly linked short ORFs rather than a single truncat-
ed protein. In other words, these represent new gene structures
that emerge from the fission of an ancestrally larger protein.

Oneof the four cases,MYH16,wasbelieved tobeapseudogene
due to a frame-disrupting indel, whose pseudogenization could
cause jaw-dropping and brain expansion in human evolution
(Stedman et al. 2004). Herein, we found that its fission status is
well supported. Specifically, as shown in Figure 6, both mRNA
and EST sequences strongly support a transcript with 41 introns
flanked by the canonical splicing junction (GT-AG). This transcript
could be translated as two ORFs based on the ancestral frame,
which exactly flanks the indel. The HPM proteomics data showed
that both the upstream and downstream ORFs are expressed with
multiple matching peptides. Analogously, the ribosome-sequenc-
ing data support the existence of both ORFs (Fig. 6). These data
are consistent with two previous reports: (1) The orthologous Ka/
Ks values between human and chimp are less than one for both
ORFs, although the difference is significant only for the upstream
ORF (Perry et al. 2005); and (2) mass spectrometry data support
the coding potential of the downstream ORF, which was further
validated by synthetic peptides (Branca et al. 2014). Moreover,
MYH16 is one of six PSGs that show signatures of recent positive se-
lectionbasedon thePopHumandatabase (SupplementalTable S13,
Methods). In particular, this locus has a high integrated Haplotype
Score (iHS) (Voight et al. 2006) and Cross Population Extended
Haplotype Homozygosity (XP-EHH) (Sabeti et al. 2007) in the
European population (Fig. 6).

In summary, we identified 41 annotated PSPGs that are likely
to encode proteins. Together with the 213 PSGs identified in the
previous section, a total of 254 candidate PSGs are supported by
at least one type of protein-level evidence (Fig. 7). Among them,
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85 are relatively well characterized, as supported by both protein-
level expression in UniProt and GO terms (Supplemental Table
S9). An additional 38 PSGs are supported by two types of protein
evidence.

Notably, although we did not specify a cutoff of ORF length
for annotated protein-coding genes, the majority (85%, Supple-
mental Fig. S13) of PSGs are longer than the often-used cutoff of
100 amino acids (Hangauer et al. 2014). Under another cutoff de-
signed for new genes, that is, 50 amino acids (Zhao et al. 2014),
the proportion increases to 96%. For the small data set with coding
evidence, the proportion will be 96% (>100) and 100% (>50),
respectively.

PSGs are preferentially involved in

spermatogenesis, mother–fetus

interactions, defense responses,

and brain development

To gain insight into the potential func-
tions of the PSGs, we used the HPA
transcriptome data integrated in GenTree
and performed weighted gene coexpres-
sion network analysis (WGCNA) (Lang-
felder and Horvath 2008) for the 846
(801+45) candidate PSGs (Fig. 7; Meth-
ods). We identified 17 HPA-based mod-
ules (HMs), seven of which (HM1, -7, -9,
-10, -14, -17, -21) were tissue biased (Sup-
plemental Fig. S14; Supplemental Table
S14). Among these seven modules, HM1
is associatedwith testis-dominant expres-
sion (Supplemental Fig. S14A,B), and GO
term enrichment analysis suggested that
HM1 genes are involved in spermatogen-
esis (Fig. 8, Methods).

In addition to the well-known testis
bias of new gene expression (HM1)
(Vinckenbosch et al. 2006; Tay et al.
2009; Kaessmann 2010; Xie et al. 2012),
we found a similar extent of enrichment
of PSGs in the placenta-biased module
(HM21 in Fig. 8; Supplemental Fig.
S14A,B). For example, one member
gene, that is, primate-specific galectin
16 (LGALS16), has been shown to medi-
ate maternal–fetal interaction by pro-
moting immune cell death (Than et al.
2009). LGALS16 shows strong LD in Afri-
can population as shown by an outlier
iHS score (1.81, Supplemental Table
S13), suggesting that this gene may be
subject to local adaptation. In contrast,
HM7, which contains adult brain-biased
genes, shows a significant deficit of
PSGs. This finding is consistent with
the observation that the adult brain tran-
scriptome is conserved between humans
and mice (Strand et al. 2007). Similarly,
the 10 modules containing broadly ex-
pressed genes tend to consist of fewer
PSGs than the genome average, although
this difference is significant for only five
modules (HM4-5, HM8, HM11-12) (Fig.

8). This pattern is also consistent with the known tendency of
new genes to be tissue-specific (Zhang et al. 2012).

To increase our confidence in the above trends (Fig. 8), we
repeated the enrichment analyses in the smaller data set of 254
PSGs with protein evidence. All patterns were reproducible (Sup-
plemental Fig. S15), although the statistical significance was of-
ten lower because of the smaller sample size. One exception
was HM17, for which the enrichment of PSGs was more sig-
nificant in the smaller data set (P= 0.02) than in the full data
set (P=0.18). The genes in HM17 are mainly transcribed in
bone marrow and have functions related to immune responses
(enriched GO terms in Fig. 8; Supplemental Fig. S14A,B;

Figure 6. Gene structure and expression ofMYH16. The UCSC Genome Browser snapshot around the
MYH16 locus is presented. The tracks including “FilteredmRNA” and “Filtered EST” show only the entries
that are uniquely mapped to this locus. Because these mRNA and ESTs share a single compatible exon–
intron structure, one transcript encoding 43 exons can be inferred, as shownby the GENCODE (Ensembl)
pseudogene annotation track.MYH16 can therefore be translated as two ORFs separated by the indel (a
deletion of “AC”), whose position is highlighted by the purple arrow. Two continuous exons supported
by four ESTs (e.g., DY655550) are highlighted by a purple frame, indicating that these two ORFs are en-
coded by a single transcript. Uniquelymapping peptides detected by two algorithms (MaxQuant, pFind)
and Ka/Ks values reported by Perry et al. (2005) are shown. The iHS and XP-EHH tracks from PopHuman
were added, with the 95th percentile indicated by the purple line. CEU and YRI represent one European
population and one African population, respectively.
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Supplemental Table S14). Because immune processes are subject
to frequent gene family expansion and contraction (Demuth
and Hahn 2009) and HM17 consists of known PSGs (e.g., glyco-
phorin B [GYPB]) (Tarazona-Santos et al. 2011), we reason
that the overrepresentation of PSGs in this module is likely
genuine.

We then replicated our HPA-based analyses with the GTEx
data set (Supplemental Table S15). Results based on GTEx con-
firmed that PSGs are enriched in the testis-dominant module
(GM1) and is depleted in the brain-dominant module (GM2) or
broadly transcribed modules (Supplemental Fig. S16). Because
GTEx does not have placenta or bone marrow samples, we could
not make a direct comparison for these tissues.

Previously, we and others have
shown that new genes are overrepresent-
ed among brain-biased genes (Tay et al.
2009; Zhang et al. 2011; Xie et al.
2012), which presents an apparent con-
tradiction to the deficit of PSGs in HM7
and GM2 (Fig. 8; Supplemental Fig.
S16). One possible explanation is that
the current pattern is based on expres-
sion levels in adult brain alone, whereas
previous results were based on a broad
range of developmental stages (e.g., fetal
brain). To test the hypothesis that PSGs
are differentially recruited to different
brain developmental stages, we investi-
gated the expression pattern of PSGs in
fetal and infant brains using the previ-
ously generated coexpression modules
for those stages (Parikshak et al. 2013).
Among the 12 brain-related modules
(BMs) (Supplemental Table S16), PSGs
are overrepresented only in BM2 (P=1 ×
10−5, Fig. 9A; and P=1×10−5 for smaller
data set, Supplemental Fig. S17). This
module consists of genes up-regulated

between 12 and 22 wk postconception,
when progenitor proliferation and cell-
fate specification in the brain occur
(Parikshak et al. 2013). Notably, BM2 is
also one out of five coexpression mod-
ules associated with autism disease risk
(Parikshak et al. 2013).

When we examined the centrality
of genes in the coexpression network,
we found that PSGs in BM2 show higher
centrality than non-PSGs, although the
difference is not statistically significant
(Fig. 9B). In contrast, this pattern is re-
versed in other modules. It is known
that transcription factors tend to be
hubs of coexpression networks com-
pared with other gene groups (Parikshak
et al. 2013). Together with the fact that
KZNF-type transcription factors are over-
represented in PSGs (Supplemental Fig.
S3), we tested the hypothesis that KZNFs
drive the higher centrality of PSGs in
BM2. Indeed, we found that compared
with other modules, BM2 consists of a

much higher proportion of primate-specific KZNFs (18 vs. 0 –8,
FET P<0.05) (Supplemental Table S16), which tend to have higher
centrality compared with non-KZNFs (Supplemental Fig. S18A)
and be up-regulated in the mid-fetal stage (Supplemental Fig.
S18B). Actually, the 10 PSGs showing the highest centrality in
BM2 (Fig. 9) include nine KZNF members and eukaryotic transla-
tion initiation factor 2 subunit gamma B (EIF2S3B). The top con-
nected gene is ZNF430, which is among the six PSGs (similar to
MYH16) with signatures of recent positive selection (Supplemental
Table S13), showing high population differentiation between Eu-
ropean and African populations and exhibiting a long haplotype
in the European population. Moreover, an ancestral branch statis-
tic-based test also detected signatures of selective sweep around

Figure 8. Percentage of PSGs within each coexpression module generated based on HPA adult tissue
transcriptome. The genome-wide percentage of PSGs (3%) is indicatedwith a horizontal pink line, where-
asmodules exhibiting a significant excess or paucity (Bonferroni-corrected P<0.05) of PSGs are indicated
in light red and light blue, respectively. Nonsignificant categories are shown in gray. The corresponding
multitesting adjusted P-values are marked above the boxes. The seven tissue-biased modules are labeled
with their corresponding tissue names. For testis-biased, bone marrow–biased, and placenta-biased
modules, the top five significantly enriched GO terms are shown.

Figure 7. Two lists of primate-specific protein-coding genes. The entire list includes 846 (805 +41)
genes (framed with magenta outline). Among them, 254 entries (green outline) show varying levels
of support for protein expression, of which 213 (blue outline) are annotated as coding genes and 41
(red outline) are pseudogenes that are likelymisannotated. Herein, selection refers to all types of selective
constraints mentioned above (Table 1; Supplemental Table S9). The gray arrow indicates the decreasing
confidence in the coding status. One hundred ninety-two out of 846 PSGs are human-specific, whereas
the number of that for 254 PSGs with protein evidence is 18.
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ZNF430 in the European population (Cheng et al. 2017). Lastly,
the associationbetweenZNF430 and autism is reproduced recently
in a transcriptome study based on iPSC neurons of autism patients
(Adhya et al. 2018).

In summary, we conclude that PSGs such as KZNFs are specif-
ically recruited intomid-fetal brain, which contribute to the afore-
mentioned brain bias of new genes.

Discussion

We developed GenTree as an integrated resource to facilitate the
functional studies of new protein-coding genes in the human ge-
nome. The rich data underlying this database not only enable
the genome-wide evaluation of dating and annotation methods

for the first time but also allow us to gen-
erate a list of PSGs and a global quantita-
tive viewof their functional bias. Because
new genes share similar features (e.g., low
expression) across different animal sys-
tems (Zhang et al. 2012; Schlötterer
2015), we expect that our approach and
findings may have wider implications.

Inference of the protein-coding

potential of new genes requires both

evolutionary and proteomic approaches

Both selective constraints and proteoge-
nomics (Branca et al. 2014; Kim et al.
2014; Wright et al. 2016) have been
used to annotate proteins. Here we ap-
plied both methods toward new genes
on a genome-wide scale. Our results sug-
gest that the twomethods should be used
in combination to complement each
other’s strength and weakness.

The advantage of evolutionary in-
ference is that it is directly related to fit-
ness and, thus, the function of proteins.
However, it also has two limitations.
First, it only works for ORFs with a suffi-
cient length (e.g., >600 bp) (Marques
et al. 2005). For small ORF encoded poly-
peptides (SEPs; <300bp) (Saghatelian and
Couso 2015), the evolutionary tests may
not work given the scarcity of substitu-
tions. A second issue is that evolutionary
tests, including the orthologous Ka/Ks

test, paralogous Ka/Ks test, and branch
test, only reflect the functionality of a
protein in its evolutionary history rather
than its status as of now (Mudge and
Harrow 2016).

Compared to evolutionary tests,
which are restricted to genes that satisfy
certain criteria (e.g., the presence of ho-
mologous sequences), proteogenomics
works for all genes in principle. Further-
more, evolutionary methods only sug-
gest protein-coding potential, whereas
proteomic evidence is more intuitive,

and unambiguous protein-level evidence like mass spectra has
been argued to be mandatory for a novel coding gene model (Bru-
ford et al. 2015). In ourwork, a gene is expected to be expressed as a
protein given presence of at least two mass spectra (Supplemental
Methods). Consistently, 38 of 46 (83%) PSGs that were supported
by peptides have been experimentally characterized as protein-
coding genes in the UniProt database (Supplemental Fig. S11). In
contrast, only 41 of 93 (43%) PSGs that were detected through evo-
lutionary analyses have been identified as protein-coding genes
(FET P=2.2 × 10−5). Thus, our proteomic analyses are highly con-
servative and accurate. Nevertheless, the presence of peptides
does not necessarily mean that the corresponding protein is func-
tional (Xu and Zhang 2016). In fact, only 15% pseudogenes with
peptide evidence show protein-level purifying selection (Xu and
Zhang 2016). Thus, an ideal protein-coding gene model should

A

B

Figure 9. Percentage and connectivity of PSGs within each coexpression module generated based on
brain developmental transcriptome. (A) Bar plot of PSG enrichment in precomputed modules (Parikshak
et al. 2013). Notably, only a proportion of the 846 PSGs were included in the analyses (Parikshak et al.
2013). Below each module, the developmental period in which the genes are up-regulated is shown.
PCW and MAB refer to “post conception weeks” and “months after birth,” respectively. For example,
BM13, -16, and -17 show peak expression in the late fetal to early postnatal stage, with moderate differ-
ences in their temporal profiles (Parikshak et al. 2013). Autism-associated modules are masked in blue.
Only BM2 shows significant enrichment of PSGs (indicated in light red) relative to the genome-wide per-
centage (pink horizontal line). (B) The distribution of connection degree within coexpression modules
was shown separately for PSGs and non-PSGs as violin plots, where the black bar in the center indicates
the interquartile range, the violin curve indicates the probability density of the data, and the white dot
indicates the median. Only the three modules with more than 10 PSGs are shown here.
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be supported by both selection and the proteomic evidence. How-
ever, in this work we chose to include all PSGs supported by any
one of the methods, given their individually low power (Table 1;
Fig. 7).

PSGs contribute to phenotypic evolution

Through genome-wide dating and reannotation, we generated a
high-quality data set of PSGs and inferred the functional bias of
PSGs by classifying genes into coexpression modules. The results
corroborated known patterns. Specifically, for the brain bias of
new genes (Zhang et al. 2011), our analysis revealed a complex pat-
tern, inwhich thepreviouslyobserved enrichment for newgenes is
restricted to themid-fetal stage, whereas there is in fact a paucity of
PSGs among the adult brain-specific genes (Figs. 8, 9). For the over-
representation of PSGs among placenta-biased genes (Knox and
Baker 2008), our results strengthenedprevious observations, show-
ing an even greater excess (50% to 170%).We also detected a novel
pattern, that is, the enrichment of PSGs implicated in the defense
response (Fig. 8; Supplemental Fig. S15), which is not surprising
given the rapid gene family evolution in immune response
(Demuth and Hahn 2009). Thus, new genes are either recruited
to processes under tremendous selection pressure, such as male re-
production and defense, or to processes supporting an evolving
novel organ, such as an expanded brain and placenta. Similar to
the results for the fetal brain (Fig. 9B), the centrality of PSGs in tes-
tis, bone marrow, and placenta is also higher (Supplemental Fig.
S19), suggesting the functional importanceofPSGs in theseorgans.
It is worth noting that our functional enrichment analyses were
based on data that are still limited in tissue and developmental-
stage coverage. Thus it is possible thatPSGs are also recruited tooth-
er important processes not covered by these data sets (e.g., injury
response) (Costantini et al. 2015; Baird et al. 2016).

Besides the global patterns, ourmeta-analyses also help prior-
itize candidates for follow-up functional studies, especially consid-
ering the majority of PSGs are uncharacterized (Fig. 7; Zhang et al.
2012). The aforementionedMYH16 and ZNF430 aremost notable.
Orthologs of MYH16 are known to be transcribed in masticatory
muscles of primates (Stedman et al. 2004). In contrast, the two de-
rived ORFs in human are transcribed in multiple tissues such as
stomach and testis (Supplemental Fig. S20A,B). GWASdb2 further
implicates this locus in Crohn’s disease and osteoarthritis, lending
support to its neofunctionalization in nonmuscle tissues (Supple-
mental Fig. S20C). From this aspect, four cases including MYH16

(Supplemental Table S12) represent a neofunctionalization model
of gene fission in which LoFmutations led to the fission of the an-
cestral gene into two smaller ORFs and possible domain decou-
pling. This model is substantially different from the traditional
subfunctionalizationmodel of gene fission,which occurs by dupli-
cation followed by complementary degeneration in each copy
(Wang et al. 2004; Zhou and Wang 2008).

ZNF430 represents another interesting case given its high
centrality (BM2, Supplemental Fig. S18) and signal of positive se-
lection (Supplemental Table S13). Notably, KZNFs overall are sub-
ject to frequent domain evolution (Nowick et al. 2010, 2011). We
thus analyzed the domain evolution of PSGs and tested whether
BM2 was enriched with PSGs with domain changes. Consistently,
BM2 covers six out of 13 PSGs with domain changes (Supplemen-
tal Data Set 1), which is significant compared with the overall
background (binomial test P=0.001). The excess is mainly con-
tributed by five KZNFs: (1) changes of zinc-finger copy numbers
(ZNF320 and ZNF486) and (2) loss of KRAB (ZNF117, ZNF138,

ZNF714). ZNF486 and ZNF117 are particularly notable. ZNF486

shows copy number difference of zinc fingers between rhesus
monkey and human/gibbon lineage (Supplemental Data Set 1),
which may cause the difference of binding (Nowick et al.
2010). Furthermore, ZNF486 is associated with copy number var-
iant in children with motor coordination disorder, implicating its
importance in brain development (Mosca 2013). ZNF117 is sub-
ject to two independent losses of KRAB in both the ancestor of
human and chimpanzee, and the gibbon lineage, respectively
(Supplemental Fig. S21). For an old KZNF shared by mammals,
i.e., ZNF268, loss of KRAB is reported to resort proteins from nu-
cleus to cytoplasm and thus cause radical functional changes
(Wang et al. 2013). Whether ZNF117 situates in the same sce-
nario and how its different location shapes brain developmental
program across primate warrant future studies.

In summary, PSGs represent a group of genes potentially driv-
ing phenotypic evolution in primates.

GenTree will be more interactive and fine-tuned for functional

studies of new genes

We plan to improve GenTree from the following three aspects.
First, our analyses show how complex it is to date and annotate
new genes (Figs. 5, 7). It seems that manual curation is still the
best method for some cases (e.g., CHRFAM7A). Thus, similar to
other popular databases (e.g., FlyBase) (Crosby et al. 2007),
GenTree will be more community driven in future updates. For ex-
ample, an interactive form can be designed to allow users to com-
ment on age and coding status. Second, our coexpression analysis
corroborated the narrow expression of new genes. Single-cell tran-
scriptomes provide higher spatiotemporal resolution than bulk tis-
sue data currently integrated in GenTree. Actually, for PSG-biased
tissues such as fetal brain or testis, single-cell data are recently be-
coming available (Nowakowski et al. 2017;Wang et al. 2018). After
controlling mapping ambiguity, such data will be more helpful in
motivating function-related hypotheses than bulk data (e.g.,
HPA). Finally, isoforms likely have different evolutionary ages
(e.g., Supplemental Fig. S22). Although users can view ages of dif-
ferent isoforms in the current release, the other functionality on
web pages (e.g., transcriptional quantification) is only available
for the representative isoform, which can be optimized in future.

Methods

For an extended version, please see Supplemental Methods.

General gene data set and computational tools

We used Ensembl v73 (October, 2013) (Flicek et al. 2012) as our
core gene set. The longest principle transcript (Rodriguez et al.
2015) was used to represent each gene unless otherwise noted.
We used MySQL v5.1.61 for storing and querying the data,
BioPerl and BioEnsembl to assemble the pipeline, and R v3.2.3
(R Core Team 2007) to perform statistical analyses.

Synteny-based pipeline

We dated 20,300 Ensembl (Flicek et al. 2012) annotated coding
genes located on themajor chromosomes, based on our previously
described SBP (Fig. 1; Supplemental Table S3; Zhang et al. 2010a,b).
Briefly, for each gene, we inferred the phylogenetic distribution of
its orthologs based on the whole-genome alignment generated by
the UCSC Genome Browser (Kent et al. 2003; Rhead et al. 2010)
and assigned evolutionary age according to the most ancient
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exon (Supplemental Fig. S1). We excluded 838 (4%) genes from
dating because of their unreliable synteny: (1) geneswith >70% ex-
onic regions overlapping with RepeatMasker (Smit et al. 2017)
tracks of UCSC or genes situated on Chromosome Y; (2) genes
with a patchy phylogenetic distribution of orthologs, which tend-
ed to be covered by known synteny breaks (Kemkemer et al. 2009).
As an improvement compared to our previous studies (Zhang et al.
2010a,b), we excluded the UCSC alignment blocks labeled as two-
way nonsyntenic (“nonsyn”).

Analogously, we also dated 14,134 pseudogenes and identi-
fied 9927 primate-specific entries. For MYH16, although the cod-
ing region was inferred as emerging on branch 2 (Supplemental
Fig. S1), the indel in MYH16 was known to postdate the human–
chimpanzee split (Stedman et al. 2004). Given the extensive study
of this locus in the fields of evolutionary genetics (Stedman et al.
2004) and proteogenomics (Branca et al. 2014), we manually
merged it into the data set of primate-specific pseudogenes (9928
PSPGs).

Comparison across age data sets

To evaluate the quality of SBP, we integrated two genome-wide age
data sets including phylostratigraphy (Domazet-Lošo and Tautz
2010) and ProteinHistorian (Capra et al. 2012) and three recently
published HSG or PSG lists (Jacobs et al. 2014; Dennis et al.
2017; Florio et al. 2018). We examined how SBP agreed with these
data sets.

Robustness of PSG list between GRCh37 and GRCh38 assembly

releases

By lifting PSGs fromGRCh37 (Ensembl v73) to GRCh38, we found
that only 5% (45/846) of the genes could not be lifted with 100%
coverage, and these genemodels got expired in the new release. By
comparing PSG or HSG lists based on GRCh38 (Dennis et al. 2017;
Florio et al. 2018) with ourGRCh37-based lists, we found that only
eight (12%) gene models are unique to GRCh38. This degree of al-
ternation (5%or 12%) is not expected to change our functional en-
richment analysis (e.g., Fig. 8).

Inference of origination mechanisms

We inferred gene originationmechanisms asDNA-mediated dupli-
cates, retrogenes or de novo genes as previously described (Zhang
et al. 2010a,b). We further curated a list of de novo genes from re-
cent literature (Chen et al. 2015; Ruiz-Orera et al. 2015;McLysaght
andHurst 2016). To be conservative, only 18 entries that are anno-
tated as coding genes in Ensembl v73 were retained.

RNA-seq data processing

We first downloaded theHPARNA-seq data set of 27 tissues (Uhlen
et al. 2010). We took the splice-aware mapper STAR (v2.4.0k)
(Dobin et al. 2013) to align the reads to the human genome guided
by the Ensembl annotation. The output of “quantMode” was
served as the input of the quantification software, RSEM
(v1.2.19) (Li and Dewey 2011). As a complementary data source,
we also integrated the GTEx data set covering 32 tissues (The
GTEx Consortium 2015). Specifically, to control the heterogenei-
ty, we picked 1936 samples from individuals who are of
European descent with an age between 20 and 50 yr. We excluded
those low-quality samples with an RNA integrity (RIN) value less
than seven. We performed quantification via kallisto because of
its high speed (Bray et al. 2016). We finally integrated the
BrainSpan transcriptome because of the expression bias of new
genes in brain (Tay et al. 2009; Zhang et al. 2011; Xie et al.

2012). Because BrainSpan does not provide raw sequencing data,
we incorporated its precomputed FPKM values directly into
GenTree.

Analyses of selection force

We performed four types of tests for coding genes, all of which
are followed by multiple test corrections via the qvalue package
(http://github.com/jdstorey/qvalue).

First, for the orthologous Ka/Ks test, we extracted the ortho-
logs from the rhesus macaque based on the Ensembl Compara da-
tabase (Vilella et al. 2009) and the UCSC synteny data. We aligned
the protein sequence and translated this alignment to a codon-lev-
el alignment. We then ran the PAML 4.8 package (Yang 2007) to
perform the likelihood ratio test (LRT) with the expectation of
Ka/Ks as one after excluding less reliable alignments. Second, for
the paralogous Ka/Ks test, we constructed the protein sequence
alignment using BLAST (bl2seq 2.2.26) based on the parent–child
gene relationship. We performed LRT with the expectation of 0.5
(Betrán et al. 2002). Third, for the branch test, we focused on
PSGs with a parental copy that predates primate and rodent split
or emerges even earlier. We then tested whether the derived copy
branch shows a Ka/Ks significantly smaller than one. For the
PSGs with a Ka/Ks smaller than one, we excluded potentially
pseudogenic entries identified by the olfactory receptor database
(https://senselab.med.yale.edu/ordb/). Finally, for the polymor-
phism-based test, we downloaded the latest phase3 data of the
1000 Genomes Project (1000GP) (The 1000 Genomes Project
Consortium 2015) and tested whether nonsynonymous SNPs
are <70% relative to the sum of synonymous and nonsynony-
mous SNPs (Moyers and Zhang 2016).

For 3538 PSPGs predating the human and rhesus monkey
split, we only implemented the orthologous alignment-based Ka/
Ks test after predicting ORFs based on the parental proteins.

GenTree also integrates the PopHuman database (Casillas
et al. 2017), which provides FST, XP-EHH, and iHS tracks related
to positive selection.

Domain evolution

For each PSG and its orthologs, we performed a domain search for
the longest protein via the “search_pfam.pl” script based on the
Pfam v31 database (Finn et al. 2015). By following the Dollo parsi-
mony, we identified candidate domain gain or loss events. We
identified 85 events, 72 of which were caused by confounding fac-
tors (Supplemental Table S17).

Mass spectrometry data analyses

We modified the published pipeline (Kim et al. 2014) as follows:
(1) We implemented free software pFind v2.8 (Li et al. 2005;
Wang et al. 2007) and MaxQuant v1.5.3.30 (Cox and Mann
2008); (2) we discarded peptides withmore than four electric char-
ges; (3) the more rigorous group level false discovery rate was esti-
mated for peptides from PSGs when pFind was used (Fu and Qian
2014; Zhang et al. 2015); (4) we excluded peptides mapping to
multiple genes or different genomic locations; and (5) we discard-
ed peptides in which the only mismatches between top two hits
are isoleucine versus leucine, which are not distinguishable for
proteomics (Zhang et al. 2013).

For candidate misannotated pseudogenes, we further re-
quired (1) theminimal predictedORF ismore than 50 amino acids;
and (2) the differentiating amino acids should not be a polymor-
phic nonsynonymous site in the paralogous protein, based on
the 1000GP data.
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We then performed manual curation and took the intersec-
tion of pFind and MaxQuant as the final output.

Coexpression network analysis

Weconstructed coexpressionmodules based on theHPA transcrip-
tome data using WGCNA software (v1.51) (Langfelder and
Horvath 2008). We required genes to be present in at least one tis-
sue, with a mean FPKM across replicates higher than 0.5, which
represented robust transcription (Hart et al. 2013). We ran
WGCNA according to the method of Parikshak et al. (2013),
with the followingmodifications: (1) We specified the soft thresh-
old as 12 rather than 26 because the former fits the data well
(Supplemental Fig. S23A); and (2) to identify more modules while
ensuring a decentmodule size, we set the deep split parameter and
minimum module size in the cutreeHybrid function to four and
150, respectively. For modules with an excess of PSGs, we per-
formed GO term enrichment analysis with the KOBAS server
(Xie et al. 2011).WGCNA forGTEx datawas performed in a similar
way, except that the power was chosen as 20 (Supplemental Fig.
S23B).

Within each module, we measured centrality of one gene by
summing its correlation coefficients to other genes, which is fur-
ther normalized by dividing the raw value by themaximumdegree
of this module (Chou et al. 2014).

Data access

The web-accessible database together with the batch download is
available at GenTree (http://gentree.ioz.ac.cn/).
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