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A B S T R A C T   

Brain functional networks have been traditionally studied considering only interactions between pairs of regions, 
neglecting the richer information encoded in higher orders of interactions. In consequence, most of the con-
nectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a 
genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more re-
gions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysi-
ology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional 
magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal 
dementia (bvFTD), Alzheimer’s disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in 
comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neu-
rodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on 
medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the 
insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub 
regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and 
auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. 
EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ 
band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological 
processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and 
robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We 
conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and 
psychopathological-specific characterization of different neurodegenerative conditions.   

1. Introduction 

Brain dynamics reflect an exquisite orchestration of neural activity at 
different spatial and temporal scales (Avena-Koenigsberger et al., 2017; 
Lynn and Bassett, 2019), which can be tracked at millisecond temporal 
resolution by magneto/electroencephalography (M/EEG), and at 

millimeter spatial resolution by functional magnetic resonance imaging 
(fMRI). A hallmark of brain dynamics - and self-organized systems more 
generally (Seif et al., 2020) - is to exhibit emergent collective behavior 
(Tognoli and Kelso, 2014), which refers to functional patterns of activity 
that are better described as a whole rather than as the sum of their parts. 

Theoretical (Grasso et al., 2021; Rosas et al., 2019), methodological 
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(Ince et al., 2017), and empirical (Delis et al., 2022; El-Gaby et al., 2021; 
Gatica et al., 2021; Luppi et al., 2020; Shahidi et al., 2019) studies 
support collective behavior as a biologically plausible signature of the 
brain in health and disease (Kragel et al., 2018). Nevertheless, accu-
rately characterizing collective dynamics in brain networks has been 
hindered by the technical impossibility of assessing the exponentially 
increasing number of high-order interactions (Roebroeck et al., 2011). 
The simple but popular strategy to avoid this combinatorial explosion is 
to focus only on pairwise interactions, and extract information about 
collective phenomena from their overall topology via metrics derived 
from network science (Bullmore and Sporns, 2009). This strategy leads 
to functional connectivity, which captures the degree of covariation of the 
activity between pairs of regions. Although some functional connectivity 
approaches can capture nonlinear dependencies (Ince et al., 2017; King 
et al., 2013), the rich coordination displayed by brain function makes 
this approach severely limited: genuine higher-order functional in-
teractions cannot be retrieved from networks built solely from pairwise 
statistics (Mazade and Alonso, 2019; Rosas et al., 2019). Thus, it is 
plausible that the unsatisfying performance of fMRI functional connec-
tivity in association studies (Marek et al., 2022) may be improved not 
only by increasing the sample size of the corresponding datasets, but 
also assessing collective neural activity that goes beyond pairwise 
effects. 

The collective dynamics of the brain — and its disruption in neuro-
degeneration — can be addressed by high-order functional connectivity 
(HOFC), which accounts for functional interactions involving three and 
more brain regions, conferring HOFC more biological plausibility 
compared to its pairwise counterpart. An effective approximation to the 
computation of genuine HOFC should successfully address the problem 
of combinatorial explosion and open the door to the rich information 
encoded in the high-order interactions of the brain. While some HOFC 
approaches have been proposed (Chen et al., 2021; Zhang et al., 2019, 
2017), these have important methodological and theoretical limitations: 
i) they are fundamentally pairwise, as they are based on pairwise cor-
relations between abstract representations of the activity of groups of 
regions, such as the correlation of correlations (Zhang et al., 2017); ii); 
they have not solved the combinatorial problem and hence the analysis 
has been restricted to triplets (Camino-Pontes et al., 2018) or to small 
brain parcellations (Gatica et al., 2021), neglecting important spatial 
details of brain networks and iii) they have not been applied in a 
multimodal setting with high temporal (EEG) and spatial (fMRI) reso-
lution, missing complementary information present in different scales 
(Uludağ and Roebroeck, 2014). 

Examining higher order interactions has been demonstrated in 
neuroimaging studies (Gatica et al., 2021; Luppi et al., 2022). However, 
for HOFC to represent a substantial advance, it should afford new in-
sights into disorders of brain connectivity. The anatomical substrate of 
brain functional patterns – the connectome – is already known to be 
disrupted by neurodegenerative diseases (Fornito et al., 2015; van den 
Heuvel and Sporns, 2019) resulting in widespread functional alterations 
(Alderson et al., 2018; Pievani et al., 2014). Furthermore, the mecha-
nism for this disruption is well described. For example, the pathogenic 
protein spread hypothesis (Frisoni et al., 2022; Walsh and Selkoe, 2016) 
suggests that pathological protein aggregates spread in the brain 
through the connectome via cell-to-cell contacts, triggering widespread 
brain hub dysfunctions (Crossley et al., 2014; Walsh and Selkoe, 2016). 
This strongly suggests that it should be possible to effectively track 
neurodegenerative diseases by assessing appropriate patterns of coor-
dinated brain activity. Currently, there is a lack of integrative and robust 
frameworks that can describe the specific pathophysiological signatures 
of neurodegeneration in terms of hypo and hyper connectivity of HOFC 
of different spatiotemporal scales (Schultz et al., 2017). Bridging this 
gap would directly impact the reliability of neuroimaging biomarkers to 
detect, predict, and characterize the effect of neurodegeneration in brain 
networks. 

Here, we provide a novel, multimodal, and systematic framework to 

characterize genuine HOFC in brain networks from resting state EEG and 
fMRI recordings, leveraging recent advances in multivariate information 
theory (Ince et al., 2017; Rosas et al., 2019). Furthermore, this frame-
work was applied to two diseases with known disrupted connectivity – 
behavioral variant frontotemporal dementia (bvFTD, Ibañez and Manes, 
2012) and Alzheimer’s disease (AD, Zhou and Seeley, 2014) – to 
investigate high-order brain functional networks involving up to 20 
brain regions as a whole functional unit. Our approach overcomes the 
combinatorial problem by introducing a novel greedy search algorithm 
(Wilt et al., 2010), finding the most compromised high-order networks 
in a specific disease or condition. The greedy search algorithm was used 
in combination with machine learning techniques to characterize brain 
network dysfunction. A feature selection procedure found the smallest 
set of multimodal networks - combined from source space EEG and fMRI 
recordings - that yielded the strongest discriminative power. This set 
was characterized in terms of the number and identity of the regions 
involved, the relevance of each modality, and the changes in HOFC, 
controlling for potential confounding variables. Results show that HOFC 
was for more effective, and identified more parsimonious markers, of the 
pathophysiological signatures of neurodegeneration, compared to 
traditional pairwise functional connectivity approaches. By integrating 
these efforts, this work provides convergent multimodal evidence of 
HOFC disruptions across neurodegenerative diseases by accounting for 
collective behavior in the development of biologically plausible bio-
markers of brain health. 

2. Materials and methods 

2.1. Experimental design 

The study comprised a total of 173 participants, including 99 healthy 
controls (CN), 25 bvFTD, and 49 CE patients from an ongoing analytical 
framework of multimodal neuroimaging (Birba et al., 2022; Díaz-Rivera 
et al., 2022; Legaz et al., 2021; Salamone et al., 2021) led by BrainLat 
(Duran-Aniotz et al., 2022) and including resting-state electroencepha-
lography (EEG) and f/MRI recordings. For the CN group, 95 patients 
were recorded using fMRI, 46 EEG, and 42 using both. For the bvFTD 
and AD groups, 22 and 43 subjects were recorded using fMRI, 18 and 31 
using EEG, and 15 and 25 subjects with both modalities, respectively. 
Recruitment was conducted in clinical centers of Chile(GERO/CMYN, 
Universidad de Chile), Argentina (CNC, Universidad de San Andrés), and 
Colombia (Pontificia Universidad Javeriana) by a multidisciplinary 
team, following a multicentric database with a common protocol for 
recruitment and diagnosis as provided elsewhere (Díaz-Rivera et al., 
2022; Salamone et al., 2021). Diagnoses were conducted by a consensus 
group including different expert neurologists, according to the current 
criteria for probable bvFTD (Rascovsky et al., 2011) and NINCDS- 
ADRDA clinical criteria for AD (McKhann et al., 2011), and supported 
by extensive neurological, neuropsychiatric, and neuropsychological 
examinations (Baez et al., 2014; Melloni et al., 2016; Piguet et al., 2011; 
Santamaría-García et al., 2017) (Table S3, S4, and S5). Patients of each 
group displayed their expected atrophy pattern (Krueger et al., 2010) 
(see Table S1 and S2). Examinations were conducted in accordance with 
the standardized protocol provided by the Multi-Partner Consortium to 
Expand Dementia Research in Latin America (ReDLat) (Ibanez et al., 
2021a, 2021b). This assessment ensures that harmonized evaluations 
are carried out by certified examiners, with extensive training for clin-
ical and cognitive evaluations, based on a quality assurance checklist. 
Participants and their informants reported no history of neurological, or 
psychiatric disorders, primary language deficits, or substance abuse. 
Demographic information for the full and matched samples is provided 
in Tables 3 and 4, respectively. All the subjects gave written informed 
consent before participating. The experimental protocol was approved 
by the Research and Ethics Committee of all relevant institutions in 
compliance with the Helsinki declaration for research with human 
subjects. 

R. Herzog et al.                                                                                                                                                                                                                                  



Neurobiology of Disease 175 (2022) 105918

3

2.2. Neuroimaging recordings 

2.2.1. fMRI acquisition and processing 
We acquired and pre-processed three-dimensional volumetric and 

ten-minute-long resting-state MRI sequences following OHBM recom-
mendations (Poldrack et al., 2017). Data were recorded in 3 different 
centers (Supplementary section fMRI acquisition and processing). 

Resting state recordings were obtained by instructing participants 
not to think about anything in particular while remaining still, awake, 
and with eyes closed. Then, to ensure that magnetization achieved a 
steady-state, we discarded the first five volumes of each subject’s 
resting-state recording. Images were then preprocessed using the Data 
Processing Assistant for Resting-State fMRI (DPARSF V2.3), an open 
access toolbox that generates an automatic pipeline for fMRI analysis. 
DPARFS works by calling the SPM12 and the Resting-State fMRI Data 
Analysis Toolkit (REST V.1.7). Preprocessing steps included slice-timing 
correction (using the middle slice of each volume as the reference scan) 
and realignment to the first scan of the session to correct head movement 
(SPM functions) (García-Cordero et al., 2016). We regressed out six 
motion parameters, cerebrospinal fluid (CSF) and white matter (WM) 
signals to reduce potential effects of movement-related, physiological, 
and cardio-respiratory effects (REST v.1.7 toolboxes). Motion parame-
ters were estimated during realignment, and CFS and WM masks were 
derived from the tissue segmentation of each subject’s T1 scan in native 
space with SPM12 (after co-registration of each subject’s structural 
image with the functional image). None of the participants showed head 
movements >3 mm and/or rotations higher than 3◦ and no differences 
in head motion among groups were found (Table S6). Finally, images 
were normalized to the MNI space using the echo-planar imaging (EPI) 
template from SPM12, smoothed using an 8-mm full-width-at-half- 
maximum isotropic Gaussian kernel, and bandpass filtered between 
0.01 and 0.1 Hz to correct and remove low-frequency drifts from the 
MRI scanner. Data was parcellated with the AAL90 (Tzourio-Mazoyer 
et al., 2002) removing the subcortical regions, using only 84 regions. 

2.2.2. EEG acquisition and processing 
The participants sat in a comfortable chair, inside a dimly lit sound- 

attenuated and electromagnetically-shielded EEG chamber. As for fMRI, 
participants were instructed to remain still and awake. Ongoing, eyes- 
closed EEG was recorded for 5 min from 128 scalp locations using a 
radial electrode placement system. The reference electrodes were set to 
linked mastoids. Electrodes were also placed in periocular locations to 
record eye blinks and eye movements. The EEG was recorded using a 
Biosemi Active-two acquisition system. Analog filters were set at 0.03 
and 100 Hz. Signals were sampled at 1024 Hz, and preprocessed offline 
using standard procedures implemented in a costume processing pipe-
line. Recordings were band-pass filtered between 0.5 and 40 Hz using a 
zero-phase shift Butterworth filter, and re-referenced to the average of 
all channels. Malfunctioning channels were identified and replaced 
using weighted spherical interpolation. Data were down-sampled to 512 
Hz, and independent component analysis was used for correcting EEG 
artifacts induced by eye movements. No significant difference in eye 
movements between groups were found (ANOVA, p-value>0.1, 
Table S7). 

2.2.3. EEG source localization 
The source analysis of the EEG was conducted using the standardized 

Low-Resolution Electromagnetic Tomography method (sLORETA 
(Pascual-Marqui et al., 2002)). The sLORETA uses a particular scalp 
voltage distribution of the EEG to compute the standardized current 
density at each of a number of predefined virtual sensors located in the 
cortical gray matter and the hippocampus of a reference brain (MNI 305, 
Brain Imaging Centre, Montreal Neurologic Institute) based on the 
linear, weighted sum of the scalp electric potentials. The electrodes 
layout (Biosemi 128) was registered onto the scalp MNI152 coordinates. 
Landmarks for registering the electrode locations were Nasion (Nz), 

Inion (Iz), the left preauricular point (LPP) and the right preauricular 
point (RPP). Location of landmark and recording electrodes were 
expressed in millimeters, using the Cartesian coordinate system. A signal 
to noise ratio of 1 was the choice for the regularization method used to 
compute the sLORETA transformation matrix (forward operator for the 
inverse solution problem). The lead field in sLORETA is calculated for a 
fixed set of 316 scalp electrodes from the 5% location system (Pascual- 
Marqui et al., 2002). The standardized current densities maps were 
obtained using a head model of three concentric spheres, in a predefined 
source space of 6242 voxels (voxel size of 5x5x5 mm3) of the MNI 
average brain. Data was also parcellated using the AAL90 (Tzourio- 
Mazoyer et al., 2002) removing the subcortical regions. Current den-
sities were estimated for each of the 153.600 voltage distributions 
comprising the five minutes rsEEG (sampling frequency of 512 Hz). 
Time-varying current densities computed at a particular point in time 
were averaged among voxels belonging to the same AAL90 region, such 
that a single (mean) time series was obtained for each cortical region. 

2.3. Data analysis 

All analyses were carried out using custom scripts written in MAT-
LAB 2021. 

2.4. Dual total correlation 

Consider a system of n random variables denoted by Xn = (X1, …,Xn). 
The dual total correlation is a non-negative generalization of the mutual 
information (MI) (Rosas et al., 2019), which and can be expressed as: 

DTC(Xn) = H(X1,…,Xn)−
∑n

i=1
H(Xi| Xn

−i ) (1) 

where H(X1,…,Xn) is the joint Shannon’s entropy of the n variables, 
and H(Xi| Xn

−i ) is the the entropy of the i-th region conditioned by the 
activity of the whole system without it - which is known as “residual 
entropy,” and is denoted as Ri in Fig. 1. Above, X-i

n is a shorthand notation 
for the vector of all variables except Xi (i.e., (X1, …, Xi-1, Xi+1, …, Xn)). A 
visual representation of the DTC for groups of 2, 3, 4 and 5 variables is 
shown (gray zone) on the Venn diagrams of Fig. 1. 

The calculation of information-theoretic quantities from continuous 
data - as the one obtained in resting state neuroimaging recordings 
(temporal signals of fMRI and source space EEG, Fig. 2A) has important 
challenges (Lizier, 2014). One robust way to address these challenges is 
to use the Gaussian copula method (Gatica et al., 2021; Ince et al., 2017), 
which enables an efficient and robust estimation of information- 
theoretic quantities in general, and the DTC in particular, from contin-
uous data. This method transforms the distribution of each single vari-
able into Gaussian while preserving the copula between them. A notable 
advantage of this method, compared to non-parametric ones (Lizier, 
2014), is that all the information-theoretic quantities have closed form 
(including the estimation biases) and can be reliably estimated for 
Gaussian variables. 

2.5. Effect size 

To find the most compromised networks associated with each pa-
thology, the changes in HOFC were quantified via the Cohen’s d measure 
of the effect size (Sawilowsky, 2009): 

d =
μcondition − μcontrol

s
, s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(m − 1)s2
condition + (mcontrol − 1)s2

control

mcondition + m − 2

√

, (2) 

where μcontroland μcondition are the average DTC of the control and 
neurodegenerative disease group, respectively, and s is the pooled 
standard deviation where scontrol

2 (scondition
2 ) and mcontrol(mcondition) are the 

variance of the control (condition) group and their sample sizes, 
respectively, and mis the total sample size given by mcondition + mcontrol. 
This metric measures a standardized mean difference between groups, 
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and its sign indicates the direction of the effect: a positive value of 
d indicates DTC increases in the neurodegenerative diseases, while a 
negative value indicates decreases. Instead of using p-values to assess the 
group differences, metrics of classification performance were used to 
validate these differences (see Methods: Random Forest classifier). 

2.6. Greedy search algorithm (GSA) 

To approximate the set of most compromised brain networks (largest 
changes in the DTC), we developed a greedy search algorithm (GSA) to 
find the networks with the largest DTC increase associated with a 
neurodegenerative condition. Here, we used k to denote the order of 
interaction, i.e. the number of regions involved on each network, with k 
= 2 being the smallest order. The GSA searches in a stepwise manner the 
networks associated to the maximum (minimum) effect size (measured 
with the Cohen’s d, see Methods: effect size) at each order of interaction, 
starting the search from each possible pair of regions. As illustrated in 
Fig. 2B, the process proceeded, for each pair of regions, by calculating 
the DTC of all the triples with two of the three regions belonging to a 
given pair, and then selecting the triplet with the largest effect size. 
Then, all the tetraplets with three of the four regions belonging to the 
triplet with the largest effect size were evaluated, selecting the one with 
the largest effect size, and so forth (the latter procedure worked analo-
gously but follows the networks with the largest negative effect sizes). 
These steps were repeated until reaching networks of 20 regions, up to 
which the estimations of the DTC are still reliable (Gatica et al., 2021). 

2.7. Pairwise metrics 

For fMRI and EEG the Pearson correlation coefficients between pairs 
of brain regions was used as a measure of linear correlation (Prado et al., 
2022), and it were computed following cov(X,Y)/(σx σy), where cov(X, 
Y) was the covariance between the time series X and Y, and σx(y) was the 
standard deviation of X (Y). The non-linear correlation metric used was 
the mutual information (MI), which was computed via the Gaussian 
copula method (Ince et al., 2017). Eq. 1 was used to compute MI, as the 
DTC is equivalent to the MI for two variables. 

2.8. Random forest classifier 

The fitcensemble MATLAB function was used with default parameters 
to train a random forest classifier. LogitBoost was used as a boosting 
method, with 100 learning cycles, 10 maximum splits, and each split 
used the square root of the number of predictors. Node classification 
error was used as split criterion. To perform cross-validation, the data 
set was randomly partitioned with stratification into 5 groups with 
approximately the same number of subjects. Then, the model was fit 
using 4 of these groups, and its performance (ROC curve and confusion 

matrix) was tested using the group that remained, and repeated this 
process until all groups were used for testing and training. This pro-
cedure was repeated 60 times (unless other is specified) to obtain dis-
tributions and average measures of performance. For the case of the 
multi-modal data set, the missing data were handled using surrogate 
splits (Feelders, 1999). Area under the ROC curve (AUC) was used to 
summarize the classification performance, and a detailed statistical 
analysis was provided by the precision, sensitivity, specificity, accuracy, 
and F-score (Moguilner et al., 2022). 

2.9. Maximum relevance minimum redundancy 

The fsmrmr MATLAB function was used to compute the maximum 
relevance minimum redundancy (MRMR) score for each feature (Peng 
and Ding, 2005). This algorithm sorted the features according to a ratio 
between the maximum relevance (measured by the MI between a feature 
and a response variable) and the redundancy (measured by the MI be-
tween two features). Instead of using these scores to select the number of 
features, we used the scores in descending order to sequentially add 
features one by one until a maximum in the average AUC was obtained. 

2.10. Multivariate linear regression of confounders 

The mvregress Matlab function was used to remove the effect of 
diverse confounders on the features based on HOFC. Two separate 
procedures were performed: one to remove the effect of demographics 
(age and education) and other to remove recording artifacts (fMRI head 
movements and EEG eye artifacts). For the first case, age and education 
were used as explanatory variables, and the response variables were the 
HOFC features. For the second case, only the features obtained from 
fMRI were regressed by fMRI head movements (translation and rotation) 
while only features obtained from EEG were regressed by eye artifacts. 
In both cases the residuals of the fit were used as a new set of features 
where the effect of demographics and recording artifacts were removed, 
respectively. The fit used an intercept, only diagonal terms of the 
covariance matrix were used, and missing values were imputed using 
the expected value of the missing observation given the observed data. 

2.11. Additional statistical analysis 

Categorical variables were analyzed with Pearson’s chi-squared (χ2) 
test. Continuous variables were analyzed through ANOVA and post-hoc 
pairwise comparisons. For atrophy maps, a cluster-correction for mul-
tiple comparisons was used in AlphaSim. Changes in HOFC in EEG and 
fMRI were assessed using Cohen’s d effect size (eq. 3). Comparisons 
between AUC distributions were carried out using non-parametric 
Mann-Whitney test. 

Fig. 1. An information-theoretic metric of high-order functional connectivity (HOFC). A) The traditional pairwise functional connectivity is represented by Venn 
diagrams. The light blue (green) circle corresponds to the Shannon’s entropy (H(⋅)) of brain region 1 (2), and their intersection to their pairwise functional con-
nectivity, here measured by the dual total correlation (DTC, gray). B) Illustration of the high-order functional connectivity (HOFC) for triplets, tetraplets, and 
quintuples. The gray zone also represents the DTC, which measures the functional connectivity for 3 or more regions. Xn: n-variable system. Xi: i-th variable of Xn. Ri: 
residual entropy of the i-th region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3. Results 

3.1. High-order functional connectivity (HOFC) 

The first contribution was the development of a principled frame-
work to assess genuine HOFC which overcame the combinatorial 
problem. The framework assessed the HOFC between 3 or more brain 
regions via a multivariate extension of Shannon’s mutual information 
(MI) known as dual total correlation (DTC, Fig. 1 and eq. 1) (Rosas et al., 
2019). Intuitively, the DTC captures the shared information - i.e., the 
part of the activity that is common to two or more brain regions. The 
DTC is equal to the MI for two variables (i.e., when n = 2), and it is zero if 

and only if all the considered variables are jointly independent (i.e., 
their joint distribution is equal to the product of their marginals). The 
Venn diagram (Fig. 1) illustrates the natural extension from pairwise 
functional connectivity to HOFC using the DTC, which represents the 
core metric to capture brain network dysfunction in bvFTD and AD. A 
conceptual advantage of this perspective is that brain networks are not 
defined as a collection of pairwise relationships; they are defined ac-
cording to their overall interdependence as a group, accounting for 
pairwise to n-th order interactions. 

Our aim was to identify the high-order networks that were more 
affected by neurodegeneration in bvFTD and AD. Any data-driven 
approach to identify these networks faces a combinatorial problem: 

Fig. 2. Workflow overview. A) Two neuroimaging modalities (fMRI and EEG) were obtained for control subjects and dementia patients (bvFTD and AD). Atrophy 
maps in the inset show expected gray matter loss in fronto-temporo-insular regions (bvFTD), and in middle-temporal and posterior regions (AD; Table S1 and S2 for 
details). The EEG recordings were source localized and bandpass filtered in the canonical EEG bands. B) A greedy search algorithm (GSA) was implemented to find 
the network whose DTC maximizes (minimizes) the effect size for each order of interaction. In the Venn diagrams, also displayed in Fig. 1, each square represents one 
brain region, each row is a specific n-plet, and each column a different pair. C) For each order of interaction, the network with the maximum (red) and the minimum 
(blue) effect size is obtained. D) Area under the receiver operating characteristic (ROC) curve obtained from a random forest classifier trained using 2 features per 
order of interaction: the DTC of the network with maximal and minimal effect size, respectively. E) For each comparison between groups, the most compromised 
networks per order of interactions were obtained. F) Finally, as the GSA was applied to each data modality, a set of the most compromised networks for each of them 
was obtained. A total of 228 features (19 orders of interaction, 2 features per order, and 6 data types) were used as inputs for a feature selection algorithm that gives 
the optimal multimodal biomarker for each condition. fMRI: functional magnetic resonance imaging; EEG: electroencephalogram; bvFTD: behavioral variant 
frontotemporal dementia; AD: Alzheimer’s disease; CN: healthy controls group; DTC: dual total correlation; AUC: Area under the receiver operating characteristic 
curve; d: Cohen’s effect size. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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for a moderate parcellation of 82 brain regions (we used 82 cortical 
regions of the Automated Anatomical Labeling atlas, AAL90), there are 
3.321 possible pairs, 88.560 possible triplets, 1.749.060 tetraplets, 
28.285.336 quintuplets, and so on. Hence, an evaluation of each of the 
possible interactions of all orders –whose number is on the order of 
1030– is not feasible. To address this combinatorial challenge, we 
introduced an efficient algorithm to investigate the differences between 
a healthy control group (CN) and bvFTD and AD groups, respectively, 
which is explained in the next section. 

3.2. Overcoming the combinatorial explosion with a greedy search 
algorithm (GSA) 

The combinatorial explosion represents an important obstacle when 
adopting the high-order perspective, and the naive perspective (i.e., 
random sampling) is sub optimal for a moderate network of 82 brain 
regions. In the face of a daunting combinatorial challenge, greedy search 
algorithms (GSA) represent a natural compromise between an inefficient 
random search and an infeasible exhaustive search (Wilt et al., 2010). 
Following the principles of GSA, our proposed procedure identified 
compromised networks (changes in HOFC) for each neurodegenerative 
condition (bvFTD and AD) and modality (EEG and fMRI, Fig. 2A). In the 
following, we describe our greedy search algorithm that approximates 
the set of networks that maximizes/minimizes the effect size between 
conditions. With maximization we aim to find the largest DTC increase, 
while with minimization we aim the opposite, this is, to find hyper and 
hypo connectivity, respectively. To ease the notation, we use n to denote 
the total number of regions and k to denote the number of brain regions 
(i.e., the order of interaction) involved in a given network (Fig. 2B). 

Our approach employs a step-wise search by selecting, on each step, 
the most compromised (i.e., largest effect size) brain network, and then 
using it as a starting point for the next step. First, given a n-variable 
system, all the possible duplets (pairs) were generated, i.e., k = 2. Then, 
each pair was used as the base for generating its corresponding list of n 
− 2 triplets (k = 3). For instance, if the algorithm started with the duplet 
(1,2), the following triplets would be generated: (1,2,3), (1,2,4), (1,2,5), 
…, and (1,2,n), where the triplet (1,2,1) and (1,2,2) are not considered 
due to the repetition of one of the elements. Once all the triplets were 
generated for a specific pair, the associated dual total correlation (DTC) 
was computed for all the subjects, altogether with the effect size 
(Cohen’s d, see eq. 2) between conditions. Then, if the aim was to find 
DTC increase (decrease), the triplet that maximizes (minimizes) the ef-
fect size between conditions was used for the construction of all the 
possible n − 3 tetraplets (k = 4) that used this triplet as base. Accord-
ingly, the tetraplet that maximized (minimized) the effect size between 
conditions was used as base for the construction of all the possible n − 4 
quintuplets (k = 5). This accumulative procedure was performed until k 
= 20, a size that has been previously used in the analysis of high-order 
interactions in neuroimaging data (Gatica et al., 2021) and where the 
estimations can still be reliable considering the short sample size of fMRI 
data specially. Thus, for each possible pair, the maximum and minimum 
effect size at each order of interactions was extracted, resulting in se-
quences of networks of different sizes with their corresponding effect 
size as illustrated in Fig. 2C. Finally, to obtain the set of networks that 
best captured the differences between conditions, the maximum (mini-
mum) effect size among all pairs was extracted at each order of inter-
action. In summary, our algorithm identified one hyper and one hypo 
connected network per order of interaction: one with a maximal increase 
of HOFC and one with a maximal decrease. The DTC values of these 
compromised networks were then used as features for a machine 
learning classifier to assess the predictive power of HOFC to classify the 
groups (see next section and Methods for details) (Fig. 2D). 

Leveraging the multimodal application of this framework, the GSA 
was separately applied to fMRI and source space EEG filtered in 5 ca-
nonical bands (δ, θ, α, β, and γ) (Laufs, 2008). A total of 228 networks 
were obtained: 2 networks per order of interaction (the maximum and 

minimum d), 19 orders (2 to 20), and 6 different data types (one for fMRI 
and 5 for EEG bands, Fig. 2A,F). In order to find the top predictors, a 
feature selection algorithm (Methods: maximum relevance minimum 
redundancy) identified the smallest set of networks that maximizes the 
classifier’s performance (Fig. 2F). Thus, by coupling the GSA with 
feature selection, we aimed to obtain robust and parsimonious multi-
modal potential biomarkers for neurodegeneration based on HOFC, 
whose interpretation informs the brain functional networks that become 
hypo- or hyper- connected in bvFTD and AD, respectively. 

3.3. Neurodegenerative conditions are reliably characterized and 
predicted by HOFC in EEG and fMRI signals 

To investigate the power of HOFC to identify subjects from the 
healthy controls, bvFTD, and AD groups, the GSA was separately applied 
to fMRI and source space EEG. We found that both neurodegenerative 
conditions exhibited highly compromised networks, evidenced in both 
neuroimaging modalities (i.e., large effect size, absolute value of 
Cohen’s d > 1, Fig. 3A). There were increases and decreases (large 
positive and negative effect sizes, respectively) in dual total correlation 
(DTC; intuitively, capturing the part of the activity that is common to 
two or more brain regions). Although d varied among comparisons, the 
maximum/minimum effect size was always obtained at orders of 
interaction larger than 2. This suggests that HOFC captures more vari-
ance in data than the traditional pairwise connectivity (Results: HOFC 
involves a more parsimonious characterization of neurodegeneration than 
standard pairwise metrics). In each comparison, the largest absolute effect 
size was associated with DTC decrease, suggesting a larger relevance of 
hypo than hyper connectivity. 

To evaluate the predictive power of these highly compromised net-
works in each recording modality, a random forest algorithm was 
trained (60 random partitions of data, see Methods: random forest clas-
sifier) for each order of interaction, using the two most compromised 
networks per order. The performance of the classifier was measured 
with the area under the (AUC) receiver operator characteristic (ROC) 
curve, the precision, sensitivity, specificity, accuracy, and F1-score, 
obtaining one average value per order of interaction, and modality 
(Table 3). 

Orders of interaction beyond 2 best discriminated patients from 
controls (consistent with the effect size magnitudes). For fMRI data, the 
average AUC increased with the order of interaction for both conditions, 
reaching a peak of AUC = 0.904 ± 0.017 at k = 16 for bvFTD, and AUC 
= 0.900 ± 0.014 at k = 11 for AD (Fig. 3B). For EEG, the average AUC of 
bvFTD peaked at 0.955 ± 0.021 for k = 7 in the δ band, while AD peaked 
at 0.867 ± 0.024 for k = 6 in the θ band. The repeated random partitions 
of data to train and test the classifier, and the small confidence intervals, 
ensures the reliability of our approach. These results suggest that HOFC 
robustly captures pathophysiological signatures for bvFTD and AD, 
respectively, in terms of spatiotemporal brain networks, their changes in 
functional connectivity, and the number of regions involved. 

Since our aim was to characterize the specific pathophysiological 
signatures of each disease with respect to the controls, we did not delve 
into the differences between bvFTD and AD. However, excellent average 
AUC values were found in both the unimodal and multimodal case (AUC 
~ 0.95, Supplementary Fig. S1), demonstrating that our approach is also 
useful to distinguish between subtle differences in neurodegenerative 
diseases. 

3.4. HOFC reveals the core pathophysiology of neurodegeneration 

To uncover the specific pathophysiological signatures of each 
neurodegenerative condition, the smallest subset of networks with the 
strongest predictive power was selected among all the networks found 
by the GSA (Fig. 2F), including both fMRI and EEG functional networks. 
This multimodal subset was characterized in terms of number of fea-
tures, modalities (fMRI and the 5 EEG frequency bands), changes in 
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DTC, the orders of interaction, and regions involved. A maximum rele-
vance minimum redundancy algorithm (Methods: maximum relevance 
minimum redundancy (Peng and Ding, 2005)) was implemented to sort 
features in descending order (Fig. 4A). Sorted features were sequentially 
included in the random forest classifier, with a subsequent selection of 
the maximum in the average AUC (Fig. 4B). This maximum represented 
the simplest and most accurate description of data that our approach 
could obtain solely from multimodal neuroimaging recordings, despite 
missing data (Methods: participants). 

High average AUC values (>0.95) were obtained using 35 and 51 
features, for bvFTD and AD groups, respectively (Fig. 4B). A better 
classification for bvFTD (AUC = 0.975 ± 0.0111) than for AD (AUC =
0.953 ± 0.0102) was found (Table 4, for classification details). For both 
bvFTD and AD, the multimodal classification involved ~60% of fMRI 
features. Regarding EEG, all the filtering bands were represented in the 
multimodal subset for AD, with stronger presence of the γ band. The 
bvFTD group exhibited more presence of δ band and no participation of 
θ band (Fig. 4C). Consistent with the larger magnitude of negative effect 
sizes in the unimodal case (Fig. 3A), ~70% of the features were asso-
ciated with DTC decrease (Fig. 4C, upper panel). As also suggested by 
the unimodal case (Fig. 3B), the multi-modal biomarkers were 
composed of networks of different orders, with a larger presence of in-
termediate orders (3 < k < 15, Fig. 4C, lower panel). Notably, the 
multimodal subset of AD had more low-order features in comparison 
with that of bvFTD. 

To confirm that the multimodal composition was necessary to cap-
ture differential information from different recording modalities, the 
same procedure described above for the full multimodal combination of 

feature selection was applied to 4 alternative set of features: i) only 
fMRI, ii) only EEG, iii) only DTC increase, and iv) only DTC decrease. 
The full multimodal combination was significantly more accurate than 
all the alternatives (Mann-Whitney p-value <10−6, Supplementary 
Fig. S2). As expected, the fMRI was the closest alternative, followed by 
the alternative that contained only DTC decrease. Using only EEG or 
only DTC increase worsened the results (Mann-Whitney p-value <10−6, 
Supplementary Fig. S2). So, despite the larger importance of fMRI, and 
of DTC decrease for the multimodal biomarkers, the highest predictive 
power was a result of a synergy between DTC increase and decrease 
obtained from both modalities. 

To characterize the brain regions of the multimodal biomarkers, the 
participation of each region was measured by counting the number of 
features in which each region is represented (Fig. 4D and E). In agree-
ment with previous multimodal results, most of the represented regions 
were related to DTC decrease, with few regions involved in DTC increase 
(Fig. 4E). However, some hub regions were involved both in increase 
and decrease: left frontal regions, right precuneus, and right temporal 
pole in bvFTD; right middle frontal regions and right amygdala in AD. 
Notably, frontal, temporal, and default mode network-associated re-
gions were highly represented in both bvFTD and AD. Nevertheless, each 
patient group displayed a specific topographical pattern, where the 
highest MRMR score was associated with DTC decrease in large fMRI 
networks: 12 regions for bvFTD and 15 regions for AD. The former 
included regions of the default mode (frontal, posterior cingulate, 
angular cortices and precuneus), salience (insula and anterior cingulate 
cortices), and somatomotor networks (Rolandic operculum and pre-
central), while the latter included regions of the default mode (frontal, 

Fig. 3. The predictive power of the HOFC for neurodegeneration. A) The GSA yields networks associated with large effect sizes magnitudes for both modalities (fMRI 
and filtered EEG), and condition comparison (CN vs. AD, CN vs. bvFTD). Solid (dashed) lines show the maximum (minimum) effect size obtained by the algorithm. B) 
Using the DTC of the two most compromised networks per order of interaction as features for a random forest classifier, we found that HOFC strongly predicts 
neurodegeneration in both modalities. Solid lines and shaded areas represent the average ± 1 standard deviation of 60 runs of the classifier, respectively. Dashed 
vertical lines indicate the maximum AUC for each condition comparison in each modality. C) Most decorrelated networks for fMRI (left) and EEG (right) value, i.e., 
the hypo connected networks associated with the dashed vertical lines in B. fMRI: functional magnetic resonance imaging; EEG: electroencephalogram; bvFTD: 
behavioral variant frontotemporal dementia; AD: Alzheimer’s disease; CN: healthy controls group; DTC: dual total correlation; AUC: Area under the receiver 
operating characteristic curve; d: Cohen’s effect size; GSA: greedy search algorithm. 
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posterior cingulate, and angular cortices), salience (amygdala), visual 
(calcarine), and auditory (Heschl) networks. These regions were highly 
represented in the multimodal features as well (Fig. 4E). The contribu-
tion of EEG to the DTC decrease, albeit small, was specific to the δ band 
in bvFTD with a similar pattern to the one found for fMRI, with the 
addition of occipital regions. For AD, EEG contributed to DTC decrease 
mainly in the γ band, with a similar pattern to fMRI. Regarding DTC 

increase, bvFTD networks included frontal and temporal regions, as well 
as insula, amygdala and hippocampal regions; AD was associated to 
large fMRI networks involving frontal, temporal, occipital, cingulate, 
and hippocampal regions, in addition to the insula and amygdala, while 
in EEG networks were more associated to intra-frontal networks. In 
agreement with the higher importance of fMRI and DTC decrease, the 
topographical pattern of each condition partially resembles the most 

Fig. 4. Specific pathophysiological signatures of neurodegeneration revealed by multimodal biomarkers. A) The scores of each feature (sorted in descending order) 
were obtained using the MRMR feature selection algorithm. Squares are the best points obtained in B. B) AUC values correspond to classifications based on the 
accumulation of the sorted features obtained by MRMR. Solid lines are the average among 180 runs of a 5-fold cross-validated random forest, and shaded areas 
represent the corresponding standard deviation. Squares represent the maximum average AUC value, i.e. the optimal number of features for each condition (bvFTD 
= 35, AD = 51), with their associated ROC curve and the confusion matrices. Values of the legend were obtained from 300 runs of the classifier. C) Dementias were 
characterized mainly by decreases in connectivity and high-order networks. The selected multimodal feature was characterized in terms of DTC increase (red) and 
decrease (blue), the data modality (colors in the right most panel), and the order of interaction of the compromised networks (bottom panel). D) The bvFTD and AD 
groups exhibited different pathophysiological signatures. The participation of each region in the multimodal feature was quantified in terms of how many features 
included a given region, how many features were related to DTC increase or decrease, and to each data modality (same colour code of C). E) Word clouds with the 50 
AAL regions with largest participation. Size represents the data of the bar charts of D, and colors indicate if the region was more related to DTC increase (red) or 
decreases (blue). fMRI: functional magnetic resonance imaging; EEG: electroencephalogram; bvFTD: behavioral variant frontotemporal dementia; AD: Alzheimer’s 
disease; CN: healthy controls group; DTC: dual total correlation; AUC: Area under the receiver operating characteristic curve; TPR: true positive rate; FPR: false 
positive rate; L: left hemisphere; R: right hemisphere; MRMR: maximum relevance minimum redundancy; ￪: Increase. ￬: decrease. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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decorrelated networks detected in fMRI (previously reproduced in 
Fig. 3C). 

3.5. HOFC is robust against demographic and motor confounders 

To rule out the potential influence of confounders on the predictive 
power of HOFC, we controlled for the influence of demographics and 
motor artifacts on the HOFC features. First, demographics, age and ed-
ucation (Table 1) were controlled using two approaches: i) a multivar-
iate linear regression to remove the joint effect of age and education 
from the HOFC features (Fig. 5A), and ii) subsample analysis using a 
dataset where age and education were matched across groups (Table 2, 
Fig. 5D). Both approaches resulted in comparable magnitudes, but 
significantly different AUC values to the ones obtained in the main 
analysis (Mann-Whitney p-value <10–6, Fig. 5B, F, E). 

Second, to control for movement artifacts, a multivariate linear 
regression was used to remove the influence of fMRI head movements 
(translation and rotation, Supplementary Table 6) and EEG eye artifacts 
(Supplementary Table 7) on HOFC (Fig. 5A). Even when these artifacts 
showed no significant differences between groups (Supplementary 
Table 6 and 7), we aimed to provide a more robust and complementary 
result by regressing out these variables on the groups’ comparison. 
Again, the predictive power obtained using the set of regressed features 
was comparable but significantly different to the one obtained in the 
main analysis (Mann-Whitney p-value <10–6, Fig. 5). Thus, we showed 
that although some of the changes in high-order brain connectivity 
could be associated with the population’s demographics and motor ar-
tifacts, their association was negligible in terms of the predictive power 
achieved by our approach solely based on brain resting state activity. 

HOFC involves a more parsimonious characterization of neuro-
degeneration than standard pairwise metrics. 

To investigate whether the high-order approach is simpler - in terms 
of number of features - and performs better than using standard 
pairwise-based connectivity, pairwise functional connectivity was 
computed for both modalities, using linear and nonlinear metrics of 
dependence. For both modalities the Pearson correlation coefficient was 
used as the linear metric (Prado et al., 2022), and the mutual informa-
tion (MI) (Ince et al., 2017) as the nonlinear one. To make the pairwise 
approach comparable to HOFC, for each modality (and EEG frequency 
bands), and metric, the 50 pairwise features with the largest absolute 
effect size were selected, such that we ended up with an initial set of 100 
and 500 features for fMRI and EEG, respectively. Furthermore, we used 
the feature selection algorithm to find the minimal set of pairwise fea-
tures that gave the highest predictive power for both the unimodal and 
multimodal cases. The maximal possible number of features was con-
strained to 100 to result in a fair comparison with the HOFC approach. 

In both unimodal cases, the AUC values were lower than 0.9 in 
bvFTD and AD (Fig. 6A). In the specific case of fMRI, the maximum was 

found using approximately 20 features for both conditions. In the case of 
EEG, bvFTD peaked using 5 features and AD using 86. Compared to the 
HOFC, the performance obtained in the unimodal case with the pairwise 
approach was lower (Mann-Whitney p-value <10−6). However, the 
unimodal EEG case with pairwise metrics used information from all the 
frequency bands, whereas in the HOFC unimodal approach each fre-
quency band was evaluated separately. Remarkably, the HOFC used 
only 2 features, leading to a more parsimonious and interpretable 
description of the specific pathophysiology than the unimodal case. 

For the multimodal case, AUC values were lower than 0.9 for both 
conditions, with ~30 features for bvFTD and ~ 40 features for AD 
(Fig. 6B). The HOFC outperformed the pairwise metric in terms of pre-
dictive power (Mann-Whitney p-value <10−6, Fig. 6C). These results 
support the hypothesis that neurodegeneration impacts connectivity in a 
distributed way (Agosta et al., 2013; Jalilianhasanpour et al., 2019; 
Pievani et al., 2014; Rossini et al., 2020b; Walsh and Selkoe, 2016), 
rather than restricted to local and low-order changes. 

4. Discussion 

We proposed a multimodal high-order interactions framework to 
characterize brain functional networks at different spatiotemporal 
scales. This framework produced biologically plausible multimodal 
HOFC markers of two neurodegenerative diseases, captured via multi-
variate information theory. A first result was the analysis of several 
orders of interaction by using a novel greedy search algorithm, which 
overcame the combinatorial explosion. In spite of the different physio-
logical processes captured by fMRI and the canonical EEG frequency 
bands, we showed that neurodegeneration is characterized by a com-
bination of hyper- and hypo-connectivity, with disruptions in specific 
brain hubs, and a larger relevance of slow timescales. In contrast to other 
HOFC measures used to characterize brain disorders (Zhang et al., 
2019), our approach is not based on pairwise relationships (e.g. corre-
lation of correlations, or other methods of network analysis) but on 
assessing genuine high-order statistical relationships. Despite the 
fundamental differences between our approach and traditional ap-
proaches, many of the regions and networks previously reported to be 
impaired in AD and bvFTD (Jalilianhasanpour et al., 2019) were iden-
tified. In bvFTD, regions from the salience and default mode networks, 
and hypoconnectivity in the δ band were the most relevant features, 
while AD mainly involved regions from the default mode and sensory 
networks, and hypoconnectivity in the γ band. The high discriminative 
performance obtained by our HOFC framework for AD and bvFTD from 
neuroimaging data was similar or even higher than standard bio-
markers, such as PET (Ossenkoppele et al., 2021; Smailagic et al., 2015) 
or plasma (Chouliaras et al., 2022; Thijssen et al., 2021). However, the 
former is less sensitive to bvFTD and very limited in terms of accessi-
bility, while the latter is sensible to both, but it is not directly indicative 

Table 1 
Demographics of full population.   

CN (N = 99) bvFTD (N = 25) AD (N = 49) Statistics  Post-hoc Comparison      

χ2 DF Groups p 

Sex (F/M) 54/44* 7/18 28/20* 6,51 170 CN vs bvFTD 0,03     
p = 0,03  CN vs AD 0,9       

bvFTD vs AD 0,03     
Statistics (ANOVA)    

Age (mean) 67,74 67,20 76,55 F = 18,53 171 CN vs bvFTD 0,78 
Standard Deviation 8,37 11,35 7,74 p < 0,001  CN vs AD <0,001       

bvFTD vs AD <0,001 
Years of education (mean) 14,34 14,48 10,38 F = 13 171 CN vs bvFTD 0,89 
Standard Deviation 4,28 4,78 5,25 p < 0,001  CN vs AD <0,001       

bvFTD vs AD <0,001  

* 1 subject did not inform. Categorical variables were analyzed with Pearson’s chi-squared (χ2) test. Continuous variables were analyzed through ANOVAs and post- 
hoc pairwise comparisons. See Table S5 for cognitive and functional evaluations. DF: Degrees of freedom. AD: Alzheimer’s disease; bvFTD: behavioral variant 
frontotemporal dementia; CN: healthy controls. 
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of the brain function, and not yet widely available. In contrast, our 
approach captures specific brain signatures of both neurodegenerative 
diseases, and has the potential to be widely applicable in low-cost 
unimodal settings as EEG. Moreover, the biological plausibility, 
computational efficiency, and the statistical soundness of our framework 
demonstrate its potential as an affordable and scalable solution for 
identification and diagnosis, as well as for future investigation of 
prognosis and early stages of the disease. The applicability of this 
approach opens the door to further characterizations of brain collective 

Fig. 5. HOFC is robust against the linear influence of demographics and motor artifacts on HOFC. A) Variance of HOFC features (220 features) explained by age, 
education, fMRI head movements (translation and rotation), and EEG eye artifacts before and after multivariate linear regression. Colour scale is the R2 (square of the 
Pearson’s correlation coefficient). B) Classifiers’ performance using HOFC features where the effect of age and education was removed by multivariate linear 
regression. Solid lines and shaded areas represent the average and standard deviation, respectively. Squared denotes the maximal AUC obtained following the feature 
selection procedure. C) Same as B, but with features regressed by fMRI head artifacts and EEG eye artifacts. D) Classifier’s performance using raw HOFC features for a 
subsample of the population where age and education were matched (Table 2). E) Distributions of AUC values associated with the squares in B, C, and D. Sixty 
independent random splits were used for cross-validation. Asterisks denote Mann-Whitney p-value <10–6. bvFTD: behavioral variant of frontotemporal dementia; 
AD: Alzheimer’s disease; R2: coefficient of determination; CN: healthy controls group; HO: high-order; HOFC: high-order functional connectivity; AUC: Area under 
the receiver operating characteristic curve. 

Table 2 
Demographics of matched subpopulation.   

CN (N =
19) 

bvFTD (N 
= 19) 

AD (N =
19) 

Statistics DF 

Sex (F/M) 10/9 5/14 12/7 χ2 
= 3.61 54     

p = 0,16      
Statistics 
(ANOVA)  

Age (mean) 68,89 68,57 73,16 F = 0,84 55 
Standard 

Deviation 7,48 1,92 6,11 p = 0,43  
Years of 

education 
(mean) 14,77 14,57 12,9 F = 1,26 55 

Standard 
Deviation 3,42 0,91 5,36 p = 0,29  

Categorical variables were analyzed with Pearson’s chi-squared (χ2) test. 
Continuous variables were analyzed through ANOVAs and post-hoc pairwise 
comparisons. DF: Degrees of freedom. AD: Alzheimer’s disease; bvFTD: behav-
ioral variant frontotemporal dementia; CN: healthy controls. 

Table 3 
Unimodal classification statistics for the peak AUC values.   

fMRI EEG  

bvFTD vs CN AD vs CN bvFTD vs CN (δ) AD vs CN (θ) 

AUC 0.904 (0.017) 0.900 (0.014) 0.955 (0.021) 0.867 (0.024) 
Precision 0.922 (0.017) 0.892 (0.014) 0.931 (0.022) 0.793 (0.025) 
Specificity 0.655 (0.042) 0.761 (0.069) 0.818 (0.064) 0.683 (0.049) 
Sensitivity 0.944 (0.016) 0.894 (0.014) 0.957 (0.023) 0.816 (0.033) 
Accuracy 0.890 (0.017) 0.853 (0.016) 0.918 (0.024) 0.762 (0.027) 
F1-score 0.933 (0.012) 0.893 (0.010) 0.944 (0.017) 0.804 (0.023) 

Data is presented as mean (standard deviation) out of 300 iterations of the classifier. 

Table 4 
Multimodal classification statistics.   

bvFTD vs CN AD vs CN 

AUC 0.975 (0.0111) 0.953 (0.0102) 
Precision 0.9431 (0.0133) 0.9091 (0.0167) 
Specificity 0.7667 (0.0572) 0.8118 (0.0374) 
Sensitivity 0.9731 (0.0098) 0.9287 (0.0175) 
Accuracy 0.9315 (0.0147) 0.890 (0.0178) 
F1-score 0.9578 (0.009) 0.9186 (0.0132) 

Data is presented as mean (standard deviation) out of 300 iterations of the 
classifier. 

R. Herzog et al.                                                                                                                                                                                                                                  



Neurobiology of Disease 175 (2022) 105918

11

behavior in health and disease. 
Despite the potential of pseudo-HOFC as plausible biomarkers for 

brain disorders (Zhang et al., 2019), these approaches are not able to 
capture the nonlinear statistical dependencies between multiple vari-
ables in their native space. In fact, these approaches compute the linear 
correlation between a pair of variables, where each variable represents 
the activity of a separate group of brain regions. In turn, our approach is 
able to measure nonlinear interactions between groups of variables 
without using abstract representation of their joint activity, leading to 
proper estimates of nonlinear and genuine high-order interactions in 
brain recordings. 

The proposed framework contributes computational and theoretical 
advantages with respect to previous approaches. First, the approach 
leverages advances in multivariate information theory (Rosas et al., 
2019) to propose a natural extension of the traditional pairwise func-
tional connectivity to a genuine measure of HOFC, using the DTC as a 
general and nonlinear metric that captures the statistical dependence 
between 3 or more variables as a whole. Second, our approach over-
comes the combinatorial explosion of high-order interactions via a 
deterministic greedy search algorithm designed to find highly compro-
mised networks. A remarkable outcome of the algorithm was the pres-
ence of peaks on the positive and negative effect sizes at specific scales, 
suggesting that the difference between groups is neither maximized 
using pairs nor the biggest order (k = 20). Third, we obtained the 
simplest set of features that robustly predicted neurodegeneration using 
MRMR (Peng and Ding, 2005) to rank the feature’s importance, and 
validated its discriminative power with the classification performance. 
The maxima in the AUC values closely matched the cut-off on the MRMR 
scores (Fig. 4A–B), suggesting that the latter provides a useful and 
efficient approximation for finding the relevant set of features for 
discriminating between groups. 

Neurodegeneration represents a clinical, social, and economic 
burden upon patients, families, and health systems, especially in un-
derrepresented settings (Ibanez et al., 2021b), with the two conditions 
assessed here being among the most common and critical ones - AD is the 
most frequent dementia and bvFTD is one of the most impactful because 
of its early onset and associated behavioral changes (Jalilianhasanpour 
et al., 2019; Piguet and Kumfor, 2020). The overlap between AD and 
bvFTD (Du et al., 2007), and also with other neurodegenerative diseases, 
requires the development of affordable, scalable, and biologically rele-
vant biomarkers which allow accurate diagnosis. Our results show 

promising evidence supporting applications of low-cost EEG in clinical 
settings, progressing in the international calls for cost-efficient bio-
markers in dementia research (Dottori et al., 2017; Parra et al., 2021). In 
fact, the current international recommendations for research in our re-
gion (Latin America), suggest the development of affordable neuro-
imaging biomarkers potentially linked in the future to plasma 
biomarkers (Parra et al., 2022). Indeed, the large effect sizes, AUC values 
and related measures observed at networks of intermediate orders 
substantially outperformed what could be attained by traditional pair-
wise functional connectivity approaches in terms of parsimony and 
predictive power - for both unimodal and multimodal cases. In reso-
nance with the network degeneration hypothesis (Drzezga, 2018), our 
results support the idea that the effect of neurodegeneration on brain 
activity is better characterized as a dysfunction in collective patterns of 
brain dynamics, rather than as a low-order dysfunction. 

Our results suggest that both hyper and hypo connectivity are asso-
ciated with late neurodegenerative processes, but with a lesser contri-
bution of the former (Brown et al., 2021). Indeed, hyperconnectivity has 
been proposed to be focal, possibly as an initial compensatory process (e. 
g., connectivity overload (Jones et al., 2016)), and to wane with disease 
progression (Bonanni et al., 2021). The novel finding that highly- 
connected regions (in terms of structural connectivity, (Crossley et al., 
2014)) are involved both in hypo and hyperconnectivity suggests that 
the consequences of these compensatory processes could also be present 
at advanced stages of disease progression especially in brain hubs. The 
hyper and hypoconnectivity in the amygdala, insula and frontal regions 
could be associated with plasticity accompanying pathological processes 
(Benussi et al., 2016) which could derive in a reorganization of func-
tional networks (van den Heuvel and Sporns, 2019). However, AD 
exhibited more pronounced simultaneous hyper and hypo connectivity 
in fMRI in the amygdala and middle frontal gyrus consistent with more 
advanced disease. Conversely, bvFTD exhibited mixed effects including 
both fMRI and EEG, especially in frontal and insular regions. Thus, the 
specific regions and temporal scales involved in hyper and hypo-
connectivity could reflect different disease stages and degree of het-
erogeneity in the psychopathological mechanisms, consistent with the 
heterogeneous pattern described in bvFTD (Migeot et al., 2022). This 
needs to be confirmed with further studies that may allow to track dis-
ease progression and heterogeneity with HOFC. 

Despite multiple inconsistent results regarding brain connectivity 
disruptions in neurodegeneration, AD and bvFTD have been 

Fig. 6. Classification using only pairwise metrics. A) Feature selection for the unimodal case using only pairwise metrics. Solid lines and shaded areas represent the 
average and standard deviation, respectively. B) Same as A) but for the multi-modal case. C) HOFC outperformed pairwise FC, as shown by the distributions of AUC 
values for 300 random data splits for the cross-validation procedure. Gray distributions represent the features obtained by the high-order (HO) approach, while the 
colored ones represent the corresponding distribution obtained using pairwise metrics. Asterisks denote Mann-Whitney p-value <10−6. fMRI: functional magnetic 
resonance imaging. EEG: electroencephalogram. bvFTD: behavioral variant frontotemporal dementia. AD: Alzheimer’s disease; CN: healthy controls group; AUC: 
Area under the receiver operating characteristic curve; HO: high-order. 
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characterized by hypoconnectivity mainly in the default mode network 
in AD, and in the salience network for bvFTD (Jalilianhasanpour et al., 
2019). In this last condition, the default mode and salience network 
hypoconnectivity have been associated with allostatic interoceptive 
network and overload mechanisms (Birba et al., 2022). In agreement 
with these effects, both diseases were associated with hypoconnectivity 
in large fMRI networks, where bvFTD involved regions of the allostatic 
interoceptive network (Birba et al., 2022), combining the default mode 
and salience, and somatomotor networks. In turn, AD involved regions 
of the default mode, salience, visual, and auditory networks. Note-
worthy, the specific contribution of the δ band to hypoconnectivity 
between frontal, temporal, parietal and sensory regions in bvFTD may 
reflect structural changes in large-scale networks (Wirsich et al., 2017), 
which resonates with the atrophy and hypometabolism reported in some 
of these regions (Bejanin et al., 2020). However, considering that this 
band has been also related to pairwise hypoconnectivity in this disease 
(Govaarts et al., 2022; Yu et al., 2016), further research is needed to 
unveil the characteristic spatial scales in which different oscillatory 
bands are disrupted, and what are their corresponding underlying 
pathophysiological processes. 

In spite of the lesser contribution of hyperconnectivity to the 
multimodal features, it was associated with large-scale networks that 
included hippocampus, amygdala and insula, which may be related to 
the disruptions of processes of recognition and emotional memory of 
salient information (Zheng et al., 2017; Ibañez et al., 2010). Further-
more, the hyperconnectivity in the α and β EEG bands between frontal 
and parietal regions for bvFTD, and between intra-frontal regions in AD 
may suggest a disease-selective increased recurrence of the frontopar-
ietal network in neurodegenerative diseases. Moreover, the focal and 
concomitant presence of hypoconnectivity in frontal regions suggests 
that part of the hypoconnectivity of neurodegeneration could be 
explained by an increased recurrence between frontal regions that im-
pairs connectivity with remote regions. Also, the larger prevalence of 
hypoconnectivity in the γ band in AD suggests that, in this disease, 
impairments in bottom-up processing (Richter et al., 2017) could be due 
to disconnectivity between integrative (frontal and limbic) and sensory 
areas (posterior and temporal). In turn, in bvFTD this band was involved 
only in one feature associated with hyperconnectivity in a large-scale 
network including frontal, temporal, limbic and posterior regions, 
pointing towards disparate mechanisms of cognitive impairment in the 
two conditions. 

These findings provide a rich and complex characterization of 
spatiotemporal dynamics that is often inconsistent in pairwise connec-
tivity reports (Jalilianhasanpour et al., 2019). Most of the critical re-
gions observed in AD and bvFTD (Fig. 4D) overlap with highly 
connected hubs selectively compromised by neurodegeneration identi-
fied in >20,000 subjects (Crossley et al., 2014). These data-driven re-
sults also resonate with the idea that neurodegeneration disrupts large- 
scale brain communication (Seeley et al., 2009), with more heteroge-
neous networks disrupted in bvFTD than in AD (Fig. 4C), in agreement 
with the disruption of the large-scale allostatic-interoceptive network in 
bvFTD (Birba et al., 2022; Migeot et al., 2022). Finally, such highly- 
dimensional spatiotemporal dynamics revealed by HOFC may provide 
a potential mechanism to explain the usually ignored synergetic 
blending across multiple cognitive and brain processes in brain health 
and disease (Ibanez, 2022). 

Our work highlights the relevance of combining different sources of 
information (Uludağ and Roebroeck, 2014) by demonstrating that the 
top classification results from a synergy between both neuroimaging 
modalities (Fig. S2), and by showing that demographic information, 
motor artifacts, sample size, and missing data do not explain the clas-
sification results (Fig. 5). This last observation is of critical relevance for 
future scalability and expansion of this approach to clinical settings. 
Slow brain dynamics measured with fMRI contributed more to the 
multimodal feature than EEG. Indeed, fMRI and slow EEG activity may 
reflect structural damage in the connectome (Wirsich et al., 2017; 

Wodeyar et al., 2020) triggered by neurodegeneration (Zhou and Seeley, 
2014). However, the high discrimination performance obtained with 
unimodal EEG supports its use as a more scalable and low-cost screening 
tool (Rossini et al., 2020a). Moreover, education (Katzman, 1993) and 
age (Hou et al., 2019) are known risk factors and confounders for neu-
rodegeneration. By combining matched sample analysis, and multivar-
iate approaches (Fig. 5), we confirmed that the redundancy between 
HOFC and demographics is neglectable, as well as with motor artifacts. 
These results suggest that neurodegeneration could be effectively 
tracked mainly with HOFC. In addition, missing data — common in 
multicentric and multimodal studies —was handled by using random 
forest classifier with surrogate splits. Robust replication was obtained 
with the matched subsample having no missing data, thus controlling for 
the effect of missing data. Finally, large classification performance and 
robust effect size was convergently found in a smaller subsample 
(Fig. 5), suggesting that the requirement of very large datasets in fMRI 
association studies (Marek et al., 2022) could be relaxed by leveraging 
more biologically plausible and robust analytical tools. 

Our framework has a number of limitations and brings a novel 
agenda for future research. First, our data-driven approach focuses on 
analyzing high-order patterns, giving no direct indications about the 
potential underlying high-order mechanisms (Rosas et al., 2022). 
However, the lack of mechanistic information is not an obstacle for 
building robust discriminant methods to identify specific pathophysio-
logical signatures. Furthermore, identifying spatiotemporal HOFC 
across neurodegenerative conditions is the first step to develop subse-
quent mechanistic insights with whole-brain modeling (Deco et al., 
2018). Second, our approach currently limits the orders of interaction 
that are assessed, and also does not carry out a full exploration of those 
interactions. Greedy algorithms have well-known limitations, as a 
piecewise selection of local optima may not reach the global optima. 
However, the large effect sizes and AUC values suggest that the 
approximated optima found by the GSA captures relevant information 
for a robust characterization of neurodegeneration. Future work may 
use larger orders of interactions to initialize the GSA (e.g., triplets, tet-
raplets, or higher) which could improve the exploration of the combi-
natorial space. Third, although many other feature selection algorithms 
are available (Li et al., 2017), the computational efficiency and simple 
interpretation of MRMR made it suitable for our demonstrative pur-
poses. Fourth, longer and longitudinal recordings and larger sample 
sizes could allow for a robust identification of even higher-order net-
works, which - we speculate - could provide an even simpler and more 
robust characterization of neurodegeneration. Finally, the main empir-
ical limitation was our modest sample size, which nevertheless was 
similar to or larger than other reports. However, such limitation is 
tempered by the robust effect sizes obtained, the strict control of clinical 
variables, and using detailed diagnostic procedures and systematic as-
sessments (Melloni et al., 2016; Piguet et al., 2011; Rascovsky et al., 
2011). Future studies should replicate present results in larger samples 
and assess the temporality of HOFC in neurodegeneration from early 
(prodromal, preclinical) to late (severe disorganization) stages. 

Present work demonstrates that embracing the study of genuine 
high-order interactions in the brain is neither a theoretical whim nor a 
haunting technical problem, but is a promising avenue for developing 
markers for characterizing brain function. Our HOFC framework is 
theoretically principled, biologically plausible, and feasible for a broad 
range of scenarios involving multimodal neuroimaging data, providing a 
promising new approach to characterize neurodegeneration. We show 
how this framework can provide affordable, specific, scalable, and 
biologically plausible candidate biomarkers of AD and bvFTD, whose 
performance can be enhanced in the presence of multimodal recordings. 
Finally, our work opens a new agenda where the potential of brain 
collective behavior will need to be tested in multiple scenarios, 
including early stages of neurodegeneration, progression, phenotypic 
heterogeneity, and responses to interventions. We hope that this work 
will motivate future larger longitudinal studies, which may lead the way 
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to a more extended clinical application of HOFC as a biologically plau-
sible marker of neurodegeneration and brain dynamics in general. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nbd.2022.105918. 
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Suárez, B.P., Barra, B., Behrens, M.I., Brucki, S.M.D., Busatto, G., Caramelli, P., 
Castro-Suarez, S., Contreras, V., Custodio, N., Dansilio, S., la Cruz-Puebla, M.D., de 
Souza, L.C., Diaz, M.M., Duque, L., Farías, G.A., Ferreira, S.T., Guimet, N.M., 
Kmaid, A., Lira, D., Lopera, F., Meza, B.M., Miotto, E.C., Nitrini, R., Nuñez, A., 
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