Genus, Treewidth, and Local Crossing Number

Vida Dujmović, David Eppstein, and David R. Wood

Graph Drawing 2015, Los Angeles, California

Planar graphs have many nice properties

- They have nice drawings (no crossings, etc.)
- They are sparse (\# edges $\leq 3 n-6$)
- They have small separators, or equivalently low treewidth (both $O(\sqrt{n})$, important for many algorithms)

But many real-world graphs are non-planar

Even road networks, defined on 2d surfaces, typically have many crossings [Eppstein and Goodrich 2008]

CC-BY-SA image "I-280 and SR 87 Interchange 2" by Kevin Payravi on Wikimedia commons

Almost-planarity

Find broader classes of graphs defined by having nice drawings (bounded genus, few crossings/edge, right angle crossings, etc.)

Prove that these graphs still
have nice properties
(sparse, low treewidth, etc.)

RAC drawings of K_{5} and $K_{3,4}$

k-planar graph properties

k-planar: $\leq k$ crossings/edge

$$
\begin{aligned}
& \text { \# edges }=O(n \sqrt{k}) \\
& {[\text { Pach and Tóth 1997] }} \\
& \Rightarrow O\left(n k^{3 / 2}\right) \text { crossings }
\end{aligned}
$$

Planarize and apply planar separator theorem
\Rightarrow treewidth is $O\left(n^{1 / 2} k^{3 / 4}\right)$
[Grigoriev and Bodlaender 2007]
Is this tight?

1-planar drawing of the Heawood graph

Lower bound for k-planar treewidth

$$
\sqrt{\frac{n}{k}} \times \sqrt{\frac{n}{k}} \times k \text { grids are always } k \text {-planar }
$$

Treewidth $=\Omega\left(\sqrt{\frac{n}{k}} \cdot k\right)=\Omega(\sqrt{k n})$ when $k=O\left(n^{1 / 3}\right)$ Subdivided 3 -regular expanders give same bound for $k=O(n)$

Key ingredient: layered treewidth

Partition vertices into layers such that, for each edge, endpoints are at most one layer apart

Combine with a tree decomposition
(tree of bags of vertices, each vertex in contiguous subtree of bags, each edge has both endpoints in some bag)

Layered width $=$ maximum intersection of a bag with a layer

Upper bound for k-planar treewidth

- Planarize the given k-planar graph G

- Planarization's layered treewidth is ≤ 3 [Dujmović et al. 2013]
- Replace each crossing-vertex in the tree-decomposition by two endpoints of the crossing edges
- Collapse groups of $(k+1)$ consecutive layers in the layering
- The result is a layered tree-decomposition of G with layered treewidth $\leq 6(k+1)$
- Treewidth $=O(\sqrt{n \cdot \operatorname{ltw}})$ [Dujmović et al. 2013] $=O(\sqrt{k n})$.

k-Nonplanar upper bound

Suppose we combine k-planar and bounded genus by allowing embeddings on a genus- g surface that have $\leq k$ crossings/edge?

- Replace crossings by vertices (genus- g-ize)

- Genus-g layered treewidth is $\leq 2 g+3$ [Dujmović et al. 2013]
- Replace each crossing-vertex in the tree-decomposition by two endpoints of the crossing edges
- Collapse groups of $(k+1)$ consecutive layers in the layering
- The result is a layered tree-decomposition of G with layered treewidth $O(g k)$
- Treewidth $=O(\sqrt{n \cdot \mid \mathrm{tw}})=O(\sqrt{g k n})$.

k-Nonplanar lower bound

Find a 4-regular expander graph with $O(g)$ vertices
Embed it onto a genus-g surface
Replace each expander vertex by $\sqrt{\frac{n}{g k}} \times \sqrt{\frac{n}{g k}} \times k$ grid

When $n=\Omega\left(g k^{3}\right)$ (so expander edge \leftrightarrow small side of grid) the resulting graph has treewidth $\Omega(\sqrt{g k n})$

Can sparseness alone imply nice embeddings?

Suppose we have a graph with n vertices and m edges
Then avoiding crossings may require genus $\Omega(m)$ and embedding in the plane may require $\Omega(m)$ crossings/edge

But maybe by combining genus and crossings/edge we can make both smaller?

Lower bound on sparse embeddings

For g sufficiently small w.r.t. m, embedding an m-edge graph on a genus- g surface

$$
\begin{aligned}
& \text { may require } \Omega\left(\frac{m^{2}}{g}\right) \text { crossings } \\
& \quad \quad \text { [Shahrokhi et al. 1996] } \\
& \Rightarrow \Omega\left(\frac{m}{g}\right) \text { crossings per edge }
\end{aligned}
$$

There exist embeddings that get within an $O\left(\log ^{2} g\right)$ factor of this total number of crossings [Shahrokhi et al. 1996]

But what about crossings per edge?

Surfaces from graph embeddings (overview)

Embed the given graph G onto another graph H, with:

- Vertex of $G \rightarrow$ vertex of H
- Edge of $G \rightarrow$ path in H
- Paths are short
- Paths don't cross endpoints of other edges
- Each vertex of H crossed by few paths
- H has small genus edges - vertices +1

Replace each vertex of H by a sphere and each edge by a cylinder \Rightarrow surface embedding with few crossings/edge

Surfaces from graph embeddings (details)

We build the smaller graph H in two parts:

Load balancing gadget

Connects n vertices of G to $O(g)$ vertices in rest of H
Adds $\leq g / 2$ to total genus
Groups path endpoints into evenly balanced sets of size $\Theta(\mathrm{m} / \mathrm{g})$

Expander graph
Adds $\leq g / 2$ to total genus
Allows paths to be routed with length $O(\log g)$ and with $O(m \log g / g)$ paths crossing at each vertex [Leighton and Rao 1999]

Conclusions

n-vertex k-planar graphs have treewidth $\Theta(\sqrt{k n})$
n-vertex graphs embedded on genus- g surfaces with k crossings/edge have treewidth $\Theta(\sqrt{g k n})$
m-edge graphs can always be embedded onto genus- g surfaces

$$
\text { with } O\left(\frac{m \log ^{2} g}{g}\right) \text { crossings/edge (nearly tight) }
$$

Open: tighter bounds, other properties (e.g. pagenumber), other classes of almost-planar graph, approximation algorithms for finding embeddings with fewer crossings when they exist

References

Vida Dujmović, Pat Morin, and David R. Wood. Layered separators in minor-closed families with applications. Electronic preprint arXiv:1306.1595, 2013.
David Eppstein and Michael T. Goodrich. Studying (non-planar) road networks through an algorithmic lens. In Proc. 16th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information Systems (ACM GIS 2008), pages A16:1-A16:10, 2008. doi: 10.1145/1463434.1463455.

Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embeddable with few crossings per edge. Algorithmica, 49(1):1-11, 2007. doi: 10.1007/s00453-007-0010-x.

Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM, 46(6):787-832, 1999. doi: 10.1145/331524.331526.
János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427-439, 1997. doi: 10.1007/BF01215922.
F. Shahrokhi, L. A. Székely, O. Sýkora, and I. Vrt'o. Drawings of graphs on surfaces with few crossings. Algorithmica, 16(1):118-131, 1996. doi: $10.1007 / \mathrm{s} 004539900040$.

