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Summary

Bacteria belonging to the genus Burkholderia are
highly versatile with respect to their ecological niches
and lifestyles, ranging from nodulating tropical plants
to causing melioidosis and fatal infections in cystic
fibrosis patients. Despite the clinical importance and
agronomical relevance of Burkholderia species, infor-
mation about the factors influencing their occurrence,
abundance and diversity in the environment is
scarce. Recent findings have demonstrated that pH is
the main predictor of soil bacterial diversity and com-
munity structure, with the highest diversity observed
in neutral pH soils. As many Burkholderia species
have been isolated from low pH environments, we
hypothesized that acid tolerance may be a general
feature of this genus, and pH a good predictor of their
occurrence in soils. Using a combination of environ-
mental surveys at trans-continental and local scales,
as well as in vitro assays, we show that, unlike most
bacteria, Burkholderia species have a competitive
advantage in acidic soils, but are outcompeted in
alkaline soils. Physiological assays and diversity
analysis based on 16S rRNA clone libraries demon-
strate that pH tolerance is a general phenotypic trait

of the genus Burkholderia. Our results provide a
basis for building a predictive understanding of the
biogeographical patterns exhibited by Burkholderia
sp.

Introduction

The genus Burkholderia, which belongs to the
β-Proteobacteria class, currently comprises more than 60
species that are widely distributed and frequently isolated
from a large range of natural and clinical environments
(Compant et al., 2008). The genus Burkholderia can be
divided phylogenetically into two main clusters: the first
one consists mainly of human, animal and plant patho-
gens, e.g. the Burkholderia cepacia complex (Bcc) and
the rice pathogen B. glumae. However, it is important to
note that some strains belonging to Bcc, such as
B. ambifaria or B. lata, also show plant growth-promoting
abilities as well as biocontrol activities against
phytopathogenic fungi. The other cluster consists mainly
of plant-beneficial-environmental (PBE) Burkholderia
species (Suárez-Moreno et al., 2012). The members of
the first cluster have been extensively studied because of
their medical importance, but recently the PBE cluster has
been the focus of research efforts with the discovery that
various species of this cluster are able to fix nitrogen
(Estrada-De Los Santos et al., 2001; Martínez-Aguilar
et al., 2008) and to nodulate legumes (Moulin et al.,
2001). Burkholderia from the PBE cluster have been
mainly isolated from plant rhizosphere, but they are also
frequently detected in sediment and bulk soil (Salles
et al., 2002; Lazzaro et al., 2008; Lim et al., 2008; Lepleux
et al., 2012; Štursová et al., 2012). In addition to their
nitrogen-fixing and nodulating abilities, their versatile
metabolism also enables them to survive in harsh condi-
tions, such as nutrient-limited or polluted environments,
and to degrade recalcitrant compounds (Pérez-Pantoja
et al., 2012). As such, they have been suggested as good
candidates for use in biotechnology, e.g. for bio- or
phytoremediation, biocontrol and biofertilization. Despite
the high relevance of the Burkholderia genus for human
health, agronomy and biotechnology, surprisingly little is
known about the factors underlying their geographical
distribution.
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Soil pH has frequently been shown to be the main
predictor of overall soil bacterial community composition,
diversity and the relative abundance of many individual
taxa (Tiedje et al., 1999; Fierer and Jackson, 2006; Rousk
et al., 2010; Griffiths et al., 2011). Although it is not known
if Burkholderia distributions are related to soil pH, most
studies that have reported their presence in soil were
investigating acidic environments (Trân Van et al., 2000;
Curtis et al., 2002; Salles et al., 2002; 2004; Belova et al.,
2006; Garau et al., 2009; Aizawa et al., 2010). For
instance, Burkholderia unamae could only be isolated
from the rhizosphere of plants growing in soils, with a pH
ranging from 4.5 to 7.1, but not from soils with a pH higher
than 7.5 (Caballero-Mellado et al., 2004). Likewise, a
survey of over 800 Australian soil samples revealed that
B. pseudomallei was specifically associated with low pH
soils, but not recovered from higher pH soils (Kaestli
et al., 2009). Burkholderia species have also been iso-
lated from acidic Sphagnum peat bogs (Belova et al.,
2006; Opelt et al., 2007a; 2007b), from root tissues of the
highly acidifying cluster rooted Lupinus albus (Weisskopf
et al., 2011) or from soils as acidic as pH 2.9 (Curtis et al.,
2002). To the best of our knowledge, only one study
reported isolation of Burkholderia strains from an alkaline
environment (Estrada-de los Santos et al., 2011). While
the pH of the rhizosphere soil investigated in this study

was high (8.7), the isolated strains were all able to grow at
low pH (4.5). These reports provide anecdotal evidence
that Burkholderia might be tolerant to low pH conditions,
which enables members of this genus to thrive in niches
where others would be inhibited. We, therefore, hypoth-
esized (i) that low pH tolerance is an intrinsic phenotypic
trait of the Burkholderia genus, and (ii) that the relative
abundance and diversity of Burkholderia populations are
highest in low pH soils, with the biogeography of
Burkholderia predictable from soil pH. To test these
hypotheses, we developed a novel quantitative polymer-
ase chain reaction (qPCR) protocol to analyze the relative
abundance of Burkholderia populations in soils at a trans-
continental and a local scale. Intrageneric diversity and
community structure were determined by 16S rRNA-
based clone libraries constructed from a selected subset
of the trans-continental scale soil samples. In addition, in
vitro physiological assays were used to test the direct
effects of pH on Burkholderia species.

Results

Low pH tolerance, a genus-wide property of
Burkholderia that largely accounts for its relative
abundance in soils

To test whether the occurrence of Burkholderia species in
acidic environments reflects an intrinsic capacity of this
genus to tolerate low pH conditions, we tested the ability
of 68 strains of Burkholderia belonging to 31 different
species to grow at a pH range of 3.5–8. All Burkholderia
strains that were tested in physiological assays grew in
pH as low as pH 4.5. Out of 68 tested strains (31 different
species), 32 (18 species) were growing also at pH 4 and
15 (8 species) even at pH 3.5, but no species-specific
tolerance could be observed under such conditions
(Table S1).

Based on this result, we hypothesized that members of
the Burkholderia genus would be favoured in low pH
environments. We tested this hypothesis by analyzing the
relative abundance of soil Burkholderia in a trans-
continental sample collection of 44 soils from a broad
array of ecosystem types that represent a wide range of
soil and site characteristics (Table S2). The relative abun-
dance of Burkholderia species greatly varied between
these different soils sampled across North and South
America (Fig. 1A). Highest relative abundance was
observed in moderately acidic soils (pH 5–pH 6), where
up to 6.7% of the total bacterial population was repre-
sented by Burkholderia species. It is worthwhile to notice
that within this pH range a large variability in Burkholderia
relative abundance was observed (standard devia-
tion = ± 2.02), spanning from 0.04% to 6.25%, whereas in
more acidic soils (pH <4) relative abundances were
approximately 1% or higher. While high relative abun-
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Fig. 1. Relative abundance of Burkholderia 16S rRNA genes in 44
soils.
A. Representation of Burkholderia 16S rRNA gene relative
abundance at the different sites as assessed by qPCR. Relative
abundance is represented by the circle size; the colour indicates
the pH of the sampled soils.
B. Influence of pH on the relative abundance of Burkholderia 16S
rRNA genes. Circles represent the average of three replicates for
each soil sample.
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dance of Burkholderia 16S rRNA gene copy numbers was
detected in soils with a pH lower than 7, the relative
abundance was under the detection limit of our qPCR
method (less than 100 copies reaction−1) in neutral and
alkaline soils (Fig. 1B). As expected, pH was a significant
factor predicting Burkholderia relative abundance
(P = 0.03, R = −0.33), although the correlation was weak,
probably due to the high variability of Burkholderia relative
abundance in low pH soils. Moreover, pH is not the only
variable that changes across the soils analyzed, and pH
often correlates with other soil and site characteristics.
The C/N ratio showed the best correlation (P = 0.0005,
R = 0.50) with Burkholderia relative abundance, but since
pH and C/N ratio correlate (P = 0.003, R = −0.4380), we
tested our hypothesis in a different experimental set-up, in
which the effect of pH could be discriminated from that of
C/N ratio. To this end, we analyzed the relative abundance
of Burkholderia in an agricultural field with a pH gradient
of 4.5–7.5 but a constant C/N ratio. Relative abundance of
Burkholderia 16S rRNA was lower in this soil than in soils
collected across North and South America. Highest rela-
tive abundance was detected at pH 4.5 (0.23–0.16%),
and an almost linear decrease with increasing pH was
observed, reaching 0.01–0.008% of Burkholderia 16S
rRNA relative abundance in soil of pH 7.5 (P < 0.0001,
R = −0.76) (Fig. 2).

Intrageneric diversity of Burkholderia soil populations
does not depend on pH

To analyze the intrageneric diversity of soil Burkholderia
populations and to determine whether some groups
showed any pH preference, 14 sites varying in pH (from

3.5 to 6.8), C/N ratio, location and relative abundance of
Burkholderia 16S rRNA genes were selected from the
trans-continental scale sampling set for phylogenetic
analyses. Clone libraries targeting the 16S rRNA gene
were constructed for each of the selected sites, and a total
of 675 sequences (590 bp) were obtained, corresponding
to 123 operational taxonomical units (OTUs) at a 98%
identity threshold between Burkholderia 16S rRNA gene
sequences (Fig. 3). Diversity and richness of the soil
Burkholderia communities were highly variable between
the sites, e.g. only one phylotype was found in KP2 or
PE3, but CL4 and PE5 harboured 33 and 25 phylotypes
respectively (Fig. 3). However, there was no significant
correlation between pH and Burkholderia diversity. To test
whether pH or any other of the described environmental
parameters could influence Burkholderia community com-
position, a Mantel test was performed (see Table 1). Our
data showed that pH had no correlation with community
structure (rM = 0.110, P = 0.204), while site elevation and
spatial parameters did significantly positively correlate
with Burkholderia communities (rM = 0.39, P = 0.002 and
rM = 0.38, P = 0.038 respectively). Burkholderia commu-
nity structure was also marginally influenced (P < 0.1) by
climatic factors and soil chemistry (rM = 0.295, P = 0.077
and rM = 0.260, P = 0.094 respectively). These results
indicate that low pH would generally affect the relative
abundance of the Burkholderia genus, but not the relative
abundances of individual species within this genus, which
is in line with our observations that low pH tolerance is a
genus-wide feature of Burkholderia sp. (Table S1).

Burkholderia glathei: a major and widespread
soil inhabitant

Within the entire sequence set, those closely related to
B. glathei were by far the most abundant and most widely
distributed of all (approx. 40% of sequences). These
sequences comprised four OTUs, which contained 190,
33, 32 and 12 sequences respectively (Fig. 3). The most
widespread and abundant OTU (190 sequences) was
present at nine sites out of 14. Interestingly OTU 3, the
next most abundant OTU of this B. glathei group, was
present only at one site (HI3) and represented all of the 33
sequences collected at this site. The next most abundant
OTU beside the B. glathei group was most closely related
to B. terricola (53 sequences). Unlike the B. glathei group,
however, this OTU was only found in one site (KP2),
where it was the only Burkholderia representative.
Sequences closely related to B. phenazinium,
B. fungorum and B. terrae were very abundant as well,
while other OTUs were represented by less than 20
sequences, and a high proportion (103 OTUs) consisted
of less than five sequences (Table S3). Despite the high
diversity of Burkholderia in some of our soil samples,
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Fig. 2. Relative abundance of Burkholderia 16S rRNA genes along
a local pH gradient in an agricultural field in Scotland. Relative
abundance was quantified by qPCR in three soil samples for each
pH along the pH gradient. Abundance of Burkholderia is strongly
and negatively correlated with pH (Pearson’s product-moment
correlation: R = −0.76, P < 0.001).
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rarefaction curves reached a plateau in almost all soils
analyzed (Fig. S1). The least diverse sites were HI3, KP2
and SK1 having less than four OTUs (Fig. 3). In all except
for KP2, the majority of sequences were affiliated with
B. glathei (100% at site HI3 and 93% at site SK1), sug-
gesting a preeminent role of this species in the soil.

Discussion

Low pH tolerance is a general property of the genus
Burkholderia

All Burkholderia strains that were tested on minimal
medium showed tolerance to acid pH (pH 4.5). Similar
results were obtained by Estrada-de los Santos and
colleagues (2011), who reported that most of the 43 tested
Burkholderia species were able to grow in a pH range of
5–11, although the medium used in their study was neither
buffered nor was growth quantitated. Our results are in
agreement with previous reports (Belova et al., 2006;
Aizawa et al., 2010; 2011; Schmerk et al., 2011) and
suggest that Burkholderia are acidotolerant rather than
acidophilic. The unveiling of this genus-wide acid toler-
ance allows conclusions on the lifestyle and environmen-
tal adaptation of these bacteria, and also offers new
possibilities to select or enrich Burkholderia isolates from
complex environments.

Burkholderia are relatively more abundant
in low pH soils

Our results demonstrated a negative correlation between
pH and relative abundance of Burkholderia 16S rRNA

pH 3.57 3.61 4.05 4.23 5.03 5.37 5.41 4.45 5.68 5.83 6.18 6.50 6.53 6.83
No. of 

sequences 47 58 41 44 65 40 76 57 51 51 37 53 33 22

No. of 
phylotypesa 17 10 8 5 12 16 3 3 10 8 8 1 1 13

Coverage b 0.45 0.86 0.91 0.91 0.68 0.50 1 0.95 0.86 0.73 0.82 1 1 0.50
Shannon c 2.78 2.19 1.95 1.18 2.26 2.69 0.84 0.49 2.19 1.43 1.62 0 0 2.22
Simpson d 0.93 0.8 0.84 0.62 0.87 0.93 0.48 0.24 0.88 0.62 0.71 0 0 0.84

a Number of phylotypes was calculated based on rarefied sequences number 
b Coverage was calculated based on rarefied sequences number 
c Shannon -Weaver diversity index was calculated based on rarefied sequences number 
d Simpson diversity index was calculated based on rarefied sequences number

Number of 
sequences

Closely related Burkholderia
species from BLAST

OTU 1 190 B. glathei; Hg 4
OTU 2 53 B. terricola (T); LMG 20594T
OTU 3 33 B. glathei (T); LMG14190T
OTU 4 32 B. glathei; Hg 5
OTU 5 29 B. phenazinium; Hg 8
OTU 6 27 B. fungorum; W566
OTU 7 26 B. terrae; KMY01
OTU 8 17 B. hospita; LMG 20574
OTU 9 15 Burkholderia cepacia complex
OTU 10 14 B. sartisoli (T); RP007
OTU 11 13 B. phenazinium (T); LMG2247T
OTU 12 12 uncultured eubacterium WD227
OTU 13 12 B. glathei; Hg 5
OTU 14 8 B. soli (T); GP25-8
OTU 15 8 Burkholderia sp. DM-Ni1
OTU 16 7 Burkholderia sp. TNFYE-5
OTU 17 7 B. phytofirmans (T); PsJN
OTU 18 7 B. caribensis; MWAP71
OTU 19 6 B. mimosarum; Br3467
OTU 20 6 B. unamae (T); MTl-641
OTU 21 –123 5 < Burkholderia sp.
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Fig. 3. Intrageneric diversity of soil Burkholderia. Pie chart represents the total number of OTUs obtained from 14 sites. Pieces represent
OTUs that contain more than five sequences and are ordered by size (number of sequences). Dark green represents OTUs that contain less
than five sequences. The largest group of sequences, which is represented by strains of B. glathei, is highlighted. The bar chart represents
the relative abundance of OTUs per site, ordered by pH. The table contains the diversity indices calculated using rarefied sequence number
(22 sequences) per site. All indices were calculated using 98% identity between sequences.

Table 1. Relationship of Burkholderia community structure to com-
bined and individual environmental parameters revealed by Mantel
test.

Environmental parameters rM P

Soil chemistry 0.260 0.094
pH 0.110 0.204
C/N ratio −0.197 0.916
% organic C 0.226 0.126

Climatic 0.295 0.077
MAT 0.273 0.042*
MAP 0.141 0.231

Soil 0.176 0.170
% silt and clay 0.289 0.030*
Depth of O horizon −0.119 0.666
SMD 0.125 0.236

Biological 0.227 0.125
C mineralization rate 0.226 0.134

Spatial (longitude, latitude) 0.379 0.038*
Site elevation 0.387 0.002*

Parameters highlighted in bold represent combined matrices that
were used and included factors highlighted in italic (used also sepa-
rately). Bold values represent significant P values (< 0.1). P values
< 0.05 are indicated in bold and with an asterisk. rM, Mantel’s corre-
lation coefficient.
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genes: Burkholderia relative abundance was higher in
acidic than in neutral soils and was absent or under the
detection limit in alkaline soils. The highest relative
abundance was observed in moderately acidic soils
(pH 5–6), where Burkholderia represented 6.25% of the
total bacterial 16S gene copies. Similar relative abun-
dances of Burkholderia were previously observed in
pyrosequencing studies investigating acidic bulk soils
(1.2%), while abundances increased in the rhizosphere
(1.96–3.08%) and even more in the mycorrhizosphere
environments (3.30–8.33%) (Uroz et al., 2010; 2012). C/N
ratio was another environmental parameter that signifi-
cantly influenced the relative abundance of Burkholderia
populations in soils, but this parameter was also, as often
observed, strongly correlated with pH (Kemmitt et al.,
2006). For this reason, we conducted a local-scale study
on an agricultural field with a pH gradient where the C/N
ratio is fairly constant and where the aboveground plant
community is the same. Our data showed that the effect of
pH on Burkholderia relative abundance was even
stronger than what was observed on the trans-continental
scale, with an almost linear decrease with increasing pH,
which strongly suggests that pH, rather than C/N ratio,
influences the distribution of Burkholderia populations in
soil.

Intrageneric diversity of Burkholderia soil populations
does not depend on pH

Previous studies investigating the phylogeny of
acidobacteria have shown that their relative abundance
and intrageneric diversity are higher in low pH soils. Inter-
estingly, certain subgroups within this genus were
identified, which were only found in neutral or even in
alkaline soils (Lauber et al., 2008; Jones et al., 2009;
Griffiths et al., 2011). Since our results of Burkholderia
relative abundance are similar to the trends observed
for acidobacteria, we investigated whether certain
Burkholderia lineages would have a preference for soils
with a particular pH. However, our diversity analysis
showed no correlation between pH and community com-
position within the genus. While the intrageneric diversity
varied greatly between the samples, no OTU was found
that was specifically enriched in highly or moderately
acidic soils. This is in line with our in vitro low pH tolerance
assays, which suggested that pH tolerance is a general
feature of the genus Burkholderia. Interestingly, patho-
genic species, such as B. pseudomallei or B. mallei, or
opportunistic pathogens, such as members of the Bcc,
were very rarely detected in our soil survey, indicating that
while they have been reported to be major inhabitants
of maize (Bevivino et al., 2011) or sugar cane
(Castro-González et al., 2011) rhizospheres, they are not
commonly present in nutrient-limited bulk soil. In contrast,

we observed very high relative abundance of B. glathei,
which was in this study by far the most abundant and
widespread OTU (Fig. 4). B. glathei has been previously
shown to be widely distributed across soils and
rhizospheres (Belova et al., 2006; Uroz et al., 2007;
2012). Here, we show that members of this species are
not only very abundant in different soil and ecosystem
types but are also extremely widespread over diverse
geographical sites. This suggests that B. glathei is a
preeminent soil inhabitant, which is particularly well
adapted to this type of environment, although the specific
functions responsible for the success of this species in
soil remain undetermined. In addition to site descriptors
analyzed in this study, biological factors may have an
important role in shaping Burkholderia community com-
position and might be responsible for the highly variable
intrageneric diversity observed in the selected soil
samples. A good example of such biological factors is the
symbiotic association between nitrogen-fixing Burkhol-
deria species and plants. For example, Burkholderia
mimosarum is capable of nodulating Mimosa plants, and
is therefore only found in areas where the plants are
endemic, such as tropical regions of South-eastern Asia
and South America (Chen et al., 2006; Elliott et al., 2009).
In line with this, we detected B. mimosarum only at site
PE5, which is located in Peruvian Amazonas.

In summary, this study showed that low pH tolerance is
a genus-wide feature of Burkholderia species. This
explains their presence in acidic soils but not their
absence from higher pH environments, especially consid-
ering that under laboratory conditions, the majority of
Burkholderia strains are able to grow in neutral or even
alkaline culture media. This suggests that Burkholderia
have developed pH tolerance mechanisms that enable
them to survive and thrive in environmental niches where
many other taxa are inhibited, while they are outcompeted
by faster growing microorganisms in less harsh condi-
tions. Acid tolerance is a prerequisite for occurrence in low
pH soils, but it is tempting to postulate that the preference
of Burkholderia for such niches is not only the conse-
quence of the ability to tolerate acidity, but the result of a
multifaceted strategy involving both tolerance to abiotic
stress factors (such as higher toxicity of heavy metals)
and to biological constraints (e.g. the predominance of
fungi) inherent to such environments.

Experimental procedures

Testing growth of Burkholderia strains in vitro under
different pH conditions

To study the effect of pH on Burkholderia growth, an in vitro
approach was used. To this end, 68 Burkholderia strains from
different isolation origins were used (Table S1). Before spot-
ting 20 μl aliquots of each culture on growth medium, over-
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night liquid cultures were washed and resuspended in saline
buffer to optical density (OD600) of 1. As growth medium, AB
minimal medium (Clark and Maaløe, 1967) supplemented
with glucose and agar was used, and the pH of the medium
was adjusted to obtain a pH gradient of pH 4–7 in 0.5 unit
steps, with an additional medium of pH 8. To test growth
under more acidic conditions, liquid AB medium supple-
mented with glucose was used, adjusted to pH 3, pH 3.5 and
pH 4. Liquid AB medium with pH 4 was used as a control to
test if the growth patterns were the same between solid and

liquid conditions. Media were buffered with 0.1 M potassium
hydrogen phthalate (C8H5KO4, pKa = 5.4) and 0.1 M HCl
for pH 3, 0.1 M C8H5KO4 and water for pH 4, 0.1 M
NaOH and 0.1 M C8H5KO4 for pH 5–6, and for media
higher than pH 7, 50 mM HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) was added. To detect
changes in pH caused by bacterial growth, resazurin was
added as a pH indicator. Plates were incubated for 4 days at
30°C. Growth was assessed by inspecting the plates for the
formation of colonies.
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Fig. 4. Phylogenetic analysis of Burkholderia 16S rRNA gene sequences from 14 different sites. 675 sequences (590 bp) were aligned with
additional reference sequences using ARB. Phylogeny was constructed using a maximum likelihood-based method. Bootstrap values
(n = 1000) >50% are shown as circles. Colours indicate the affiliation with a given species.
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Soil sampling and DNA extraction

The dataset consisted of 44 soil samples distributed across
North and South America. The collected soils came from a
broad range of ecosystems, climates and soil types
(Table S2). Soil collection protocol and methods for edaphic
and environmental properties have been described previ-
ously (Fierer and Jackson, 2006; Bates et al., 2011). In addi-
tion, seven soil samples were collected in March 2011 from
an agricultural field divided into several plots with a pH gra-
dient of 4.5–7.5, which has been maintained since 1961 by
the addition of either lime or aluminium sulphate, and where
plots undergo an 8-year crop rotation cycle (Scottish Agricul-
tural College, Aberdeen, Scotland; grid reference NJ872104).
Detailed soil characteristics are provided by Kemp and
colleagues (1992). The soils were sampled in triplicates from
the upper 20 cm soil layer, homogenized and stored at 4°C
prior usage. Total nucleic acids were extracted from 0.5 g of
soil, as described by Griffiths and colleagues (2000) with
some modifications (Nicol et al., 2005). pH was measured in
deionized water using a ratio of 1:2 soil : water (w/v), shaking
for 30 min and settling for 30 min before measurement.

qPCR

To quantify Burkholderia 16S rRNA genes in soil samples,
primers BKH812F (5′-CCC TAA ACG ATG TCA ACT AGT
TG-3′) and BKH1249R (5′-ACC CTC TGT TCC GAC CAT-3′)
(Bergmark et al., 2012) were used. In their original publica-
tion, Bergmark and colleagues (2012) observed that the
designed primers were not specific, suggesting that the most
likely explanation for lack of specificity was that the Tm value
they used was too low. We, therefore, tested both primers for
their specificity using higher Tm values on DNA isolated from
soils with different pH. An annealing temperature of 64°C was
found to efficiently amplify Burkholderia 16S rRNA genes with
100% specificity. This was tested by sequencing 270 clones
containing PCR products from soils with three different pH.
For both bacterial and Burkholderia 16S rRNA gene, high
amplification efficiency was obtained by qPCR (93–100%
and 91–100%, respectively, and r2 values between 0.995 and
0.999). Relative abundance of Burkholderia was calculated
as a ratio between Burkholderia gene copy numbers by bac-
terial gene copy numbers (see supporting information for
more details).

Amplification and cloning of Burkholderia 16S rRNA
gene sequences

To study the diversity of Burkholderia in soil, Burkholderia
16S rRNA genes were amplified using the modified
primers BKH143F (5′- TGGGGGATAGCYCGGCG −3′)
and BKH1434R (5′- TGCGGTTAGRCTAGCYACT −3′)
(Schönmann et al., 2009). Cycling conditions were 95°C for
3 min, 40 cycles of 95°C for 60 s, 61.5°C for 60 s, and 72°C for
90 s, final extension at 72°C for 5 min. Reactions were per-
formed in 50 μl volumes containing 1× reaction buffer contain-
ing MgCl2 (1.5 mM) (Sigma-Aldrich, St. Louise, MO, USA),
0.8 μM of each primer (Microsynth, Balgach, Switzerland),
0.2 mM dNTP mixture, 0.25 mg ml−1 of bovine serum albumin,
2U of Taq DNA Polymerase (Sigma-Aldrich, St. Louise, MO,

USA) and 2 μl of template DNA. PCR was carried out in a
C1000 Thermal Cycler (Bio-Rad, United Kingdom). PCR prod-
ucts were confirmed by standard 1% agarose gel electropho-
resis and gel purified (Gel PCR purification kit, QIAGEN,
Hilden, Germany). Burkholderia 16S rRNA clone libraries
were made from 14 selected locations (Table S2). Purified
PCR products were cloned into the pGEM-T Easy vector
(Promega, Southampton, United Kingdom). Selected clones
from 16S rRNAclone libraries were sequenced using the M13f
vector primer.

Sequence analysis

Sequences of chimeric origin were detected by analyzing
alignments using Chimera.Slayer and Chimera.UCHIME as
implemented by the MOTHUR software (Schloss et al., 2009;
Edgar et al., 2011; Haas et al., 2011). Sequences from short
or failed reads were excluded from analysis. Sequences were
aligned using the SINA web aligner (Pruesse et al., 2007). The
alignments were merged into the SILVA SSU reference data-
base release 106 using the ARB software package (Ludwig
et al., 2004). Sequences were deposited to the National
Center for Biotechnology Information database with acces-
sion numbers KC353471 to KC354145. A 50% similarity filter
was created for the dataset, based on the alignment, leaving
590 nucleotides for 16S rRNA sequence alignments. The
closest cultivated relatives were selected from the reference
dataset. Bootstrapped maximum likelihood trees (1000 rep-
etitions) were calculated with sequences affiliated with the
groups of interest and close relatives on a dedicated RAxML

web server (Stamatakis et al., 2008).

Phylogenetic analysis

Distance matrices were exported to calculate rarefaction
curves and diversity indices with the MOTHUR software
(Schloss et al., 2009). Sequences were grouped into opera-
tional taxonomic units (OTU) using the furthest-neighbour
approach, with an OTU defined as containing sequences that
are no more than 2% different from each other. This threshold
of 98% identity was selected because of the high similarity
between Burkholderia 16S rRNA sequences over the rela-
tively short read length used in the present study. Richness
and diversity were estimated from 16S rRNA gene clone
libraries using the Shannon–Weaver diversity index (H)
(Shannon and Weaver, 1963) and the Simpson diversity
index (D) (Simpson, 1949). Good’s coverage (C) was calcu-
lated as C = 1 – (n1/N), where n1 was the number of clones,
which occurred only once in a library of N clones (Good,
1953), and relative abundances of major phylogenetic groups
were determined.

Statistical analysis

Pearson’s product-moment correlations between
Burkholderia 16S rRNA gene relative abundance and envi-
ronmental parameters were performed in R 2.12.0 (http://
www.r-project.org/). For correlating Burkholderia trans-
continental distribution, we used the following soil and site
characteristics: soil pH, organic C content, C/N ratio, C
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mineralization rate, elevation, soil moisture deficit (SMD),
mean annual temperature (MAT) and mean annual precipita-
tion (MAP). For correlation analysis at the local scale, pH was
the only factor used.

We used Spearman’s rank correlation to compare estimate
of Burkholderia composition with site elevation, soil chemistry
(matrix including pH, C/N ratio and percentage of organic C)
and climatic (MAT, MAP), soil (percentage of silt and clay,
depth of O horizon and SMD), biological (C mineralization
rate) and spatial (longitude, latitude) parameters. To estimate
the pairwise similarity in Burkholderia communities, we gen-
erated Bray–Curtis dissimilarity matrices, using rarefied abun-
dance table of Burkholderia phylotypes (OTUs) as an input (22
sequences per location). We used the Mantel test in R 2.12.0
to compare dissimilarity matrices to pairwise distances in
environmental characteristics as estimated using normalized
Euclidean distances in the measured soil and site parameters.
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Appendix S1. Detailed experimental procedure.
Fig. S1. Rarefaction curves for Burkholderia 16S rRNA gene
libraries from 14 different samples. The OTUs were formed at
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sequences).
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the BLAST tool, and the best hits were selected as closest
relatives.
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